
Abstract. The neutron Berry phase is found from an exact
analytic solution of the Schr�odinger equation in a constant
magnetic field B0 and a perpendicular radiofrequency field b
rotating with an angular frequency x. The solution is found for
arbitrary values of B0, b, andx. The Berry phase is shown to be
a linear approximation of the exact value in the parameterx=B0

when this parameter is small.

1. Introduction

We consider a neutron in an infinite space filled with a
magnetic field B0. The neutron spinor wave function satisfies
the equation

i
d
��W�t��
dt

� rB0

��W�t�� : �1�

Here, the standard gyromagnetic ratio gn � jmnj=�h �mn < 0� is
included in the field definition. The solution of Eqn (1) is��W�t�� � exp �ÿirB0t�

��C�0�� : �2�

If jC�0�i � jB0i, i.e., if the initial state corresponds to the
neutron polarization aligned along the field B0, then (2)
reduces to��W�t�� � exp �ÿiB0t�

��C�0�� : �3�

It follows that the initial polarization remains unchanged and
the wave function acquires only the so-called dynamical
phase jd�t� � B0t.

We now imagine that besides the permanent field B0,
which we direct along the z axis, there is also an RF field

b�t� � b
ÿ
cos �2ot�; sin �2ot�; 0� ; �4�

where the factor 2 is separated for convenience to avoid
fractional values in what follows. The total field
B�t� � B0 � b�t� is a vector of the length B � �B 2

0 � b 2�1=2,
whose end runs along a circle with the periodT � 2p=2o, as is
shown in Fig. 1. Therefore, the vector B�t� � B0 � b�t�
becomes a generatrix of the cone. We assume that o5B0,
i.e., the angular speed of the vectorB rotation is much smaller
than the spin precession frequency B around the field B. In
this case, the spin adiabatically follows themoving vectorB�t�
of the field. However a question arises: when the vector B�T �
after the period t � T returns to its initial position B�0�, does
the phase of the spinor wave function have the same
dynamical value jd�T � � BT as for a fixed B? The answer
to this question is no. The phase of the spinor wave function
after the time period T is j�T � � jd�T � � fB, i.e., it acquires
an additional term fB, called the Berry phase [1], which is
equal to

fB �
1

2
O ; �5�

i.e., to half the solid angle that from the origin of B subtends
the area S � pb 2 encircled by the end of B. The factor 1=2 is
characteristic of spin-1=2 particles. At small b, expression (5)
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Figure 1.Neutron spin s precesses around themagnetic fieldB, which itself

slowly rotates about the z axis with a small frequency o. After the period

T, when the magnetic field returns to its original direction, the precession

phase of the spin is not the same as the precession phase jd � Bt around

the fixed field vectorB. There is an additional term, called the Berry phase,

which has the value fB � O=2, where O is the solid angle under which the

area circumscribed by the end of the vector B is seen from its beginning.



reduces to the frequently used form

fB �
1

2

pb 2

B 2
: �6�

It is shown in Section 2 that the SchroÈ dinger equation

i
d
��W�t��
dt

� rB�t���W�t�� �7�

in the field B�t� � B0 � b�t� is easily solved analytically for
arbitrary values of the parameters b, B0, and o. The solution
gives a precise value of the phase j�T �, which in the
adiabatical case, i.e., at a small parameter Z � o=B0, can be
expanded in a power series in this parameter Z, and the linear
approximation in this parameter is just expression (5) for the
Berry phase, where the solid angle O for arbitrary values of
the field b is equal to

O � 2p
�
1ÿ B0

B

�
� 4p sin2

y
2
� pb 2

B 2 cos2 �y=2� ; �8�

where y is the angle between the axis and the generatrixB�t� of
the cone: cos y � B0=B. The solution method was originated
by Rabi [2], and its form shown here was used, for instance,
in [3], and also by many other authors.

2. Solution of the SchroÈ dinger equation

To solve SchroÈ dinger equation (7), we use the identity

rb�t� � b
ÿ
sx cos �2ot� � sy sin �2ot�

�
� b exp �ÿioszt�sx exp �ioszt� ; �9�

and substitute jW�t�i in the form��W�t�� � exp �ÿioszt�
��w�t�� : �10�

As a result, the equation becomes

i
d
��w�t��
dt

� rBB ��w�t�� ; �11�

where BB � �b; 0;B0 ÿ o� is a vector independent of the time t.
The solution of (11) is similar to solution (2) of Eqn (1):��w�t�� � exp �ÿirBBt���w�0�� ; �12�

and with Eqn (10) taken into account, the solution is��W�t�� � exp �ÿioszt� exp �ÿirBBt�
��w�0�� : �13�

With this given solution, we can find the direction of the
neutron spin at any instant t if it is known at t � 0. The initial
spin direction, i.e., the spinor jw�0�i, can be arbitrary. For
convenience, we choose it to be jw�0�i � jBBi, which means
that the initial state is normalized, and its spin is directed
along the unit vector BB=jBBj, where jBBj � �b 2 � �B0 ÿ o�2�1=2.
This state is an eigenspinor of the matrix rBB with the
eigenvalue jBBj. The probability amplitude A�t� of finding
the same polarization during time t is

A�t� � hBBj exp �ÿioszt� exp �ÿirBBt�jBBi
� exp

ÿÿijBBjt�hBBj exp �ÿioszt�jBBi
� exp

ÿÿijBBjt�ÿcos �ot� ÿ i sin �ot�hBBjszjBBi
�
: �14�

At t � T, we have ot � p, sin �oT � � 0, and cos �oT � �
ÿ1 � exp �ÿioT �. Therefore, (14) reduces to the form

A�t� � exp
�ÿiÿjBBj � o

�
T
�
; �15�

i.e., at the end of the rotation cycle, the particle state remains
to be polarized along the vector BB, and the only change in the
wave function is the phase factor with the phase

j�T � � ÿo� jBBj�T : �16�

It differs from the dynamical phase fd�T � � BT by an
additional term:

fB � Dj�T � � j�T � ÿ jd�T � �
ÿ
o� jBBj ÿ B

�
T : �17�

We note that we have not required o to be small so far.
Therefore, (16) is valid for arbitrary values of the parameters
B0, b, ando. In the case of a small ratioo5B0, the additional
phase fB can be represented as

fB �
�
o� jBBj

2 ÿ B 2

jBBj � B

�
T �

�
1ÿ B0

B

�
oT ; �18�

where only the term linear in o was taken into account.
Because oT � p, the additional phase can be represented as

fB �
1

2

�
2p
�
1ÿ B0

B

��
� O

2
� pb 2

B�B� B0� �
pb 2

B 2�1� cos y� :
�19�

At b5B0, we have y5 1, and Eqn (19) reduces to (6).

3. Conclusion

The derivation of the Berry phase presented here is similar to
the one published in [4] but is much simpler, accessible even to
a student audience. It helps understand the physical meaning
of the Berry phase for spin-1=2 particles. For a more
comprehensive coverage of the Berry phase in the case of
arbitrary-spin particles, review [5] is recommended. For those
to whom the simple derivation seems unpersuasive, we
recommend to look at the theoretical justification of the
Berry phase with secondary quantization [6] or the one
based on the study of topological properties of space [7].
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