The neutron Berry phase

V K Ignatovich

Contents

1. Introduction
2. Solution of the Schrödinger equation 604
3. Conclusion 604

References 604

Abstract

The neutron Berry phase is found from an exact $\overline{\text { analytic solution of the Schrödinger equation in a constant }}$ magnetic field B_{0} and a perpendicular radiofrequency field b rotating with an angular frequency ω. The solution is found for arbitrary values of B_{0}, b, and ω. The Berry phase is shown to be a linear approximation of the exact value in the parameter $\omega / \boldsymbol{B}_{0}$ when this parameter is small.

1. Introduction

We consider a neutron in an infinite space filled with a magnetic field \mathbf{B}_{0}. The neutron spinor wave function satisfies the equation

$$
\begin{equation*}
\mathrm{i} \frac{\mathrm{~d}|\boldsymbol{\Psi}(t)\rangle}{\mathrm{d} t}=\boldsymbol{\sigma} \mathbf{B}_{0}|\boldsymbol{\Psi}(t)\rangle \tag{1}
\end{equation*}
$$

Here, the standard gyromagnetic ratio $\gamma_{\mathrm{n}}=\left|\mu_{\mathrm{n}}\right| / \hbar\left(\mu_{\mathrm{n}}<0\right)$ is included in the field definition. The solution of Eqn (1) is

$$
\begin{equation*}
|\boldsymbol{\Psi}(t)\rangle=\exp \left(-\mathrm{i} \boldsymbol{\sigma} \mathbf{B}_{0} t\right)|\Psi(0)\rangle \tag{2}
\end{equation*}
$$

If $|\Psi(0)\rangle=\left|\mathbf{B}_{0}\right\rangle$, i.e., if the initial state corresponds to the neutron polarization aligned along the field \mathbf{B}_{0}, then (2) reduces to

$$
\begin{equation*}
|\boldsymbol{\Psi}(t)\rangle=\exp \left(-\mathrm{i} B_{0} t\right)|\Psi(0)\rangle \tag{3}
\end{equation*}
$$

It follows that the initial polarization remains unchanged and the wave function acquires only the so-called dynamical phase $\varphi_{\mathrm{d}}(t)=B_{0} t$.

We now imagine that besides the permanent field \mathbf{B}_{0}, which we direct along the z axis, there is also an RF field

$$
\begin{equation*}
\mathbf{b}(t)=b(\cos (2 \omega t), \sin (2 \omega t), 0), \tag{4}
\end{equation*}
$$

[^0]Received 26 May 2012, revised 17 May 2013
Uspekhi Fizicheskikh Nauk 183 (6) 631-632 (2013)
DOI: 10.3367/UFNr.0183.201306e. 0631
Translated by the author; edited by A M Semikhatov

Figure 1. Neutron spin s precesses around the magnetic field \mathbf{B}, which itself slowly rotates about the z axis with a small frequency ω. After the period T, when the magnetic field returns to its original direction, the precession phase of the spin is not the same as the precession phase $\varphi_{\mathrm{d}}=B t$ around the fixed field vector \mathbf{B}. There is an additional term, called the Berry phase, which has the value $\phi_{\mathrm{B}}=\Omega / 2$, where Ω is the solid angle under which the area circumscribed by the end of the vector \mathbf{B} is seen from its beginning.
where the factor 2 is separated for convenience to avoid fractional values in what follows. The total field $\mathbf{B}(t)=\mathbf{B}_{0}+\mathbf{b}(t)$ is a vector of the length $B=\left(B_{0}^{2}+b^{2}\right)^{1 / 2}$, whose end runs along a circle with the period $T=2 \pi / 2 \omega$, as is shown in Fig. 1. Therefore, the vector $\mathbf{B}(t)=\mathbf{B}_{0}+\mathbf{b}(t)$ becomes a generatrix of the cone. We assume that $\omega \ll B_{0}$, i.e., the angular speed of the vector \mathbf{B} rotation is much smaller than the spin precession frequency B around the field \mathbf{B}. In this case, the spin adiabatically follows the moving vector $\mathbf{B}(t)$ of the field. However a question arises: when the vector $\mathbf{B}(T)$ after the period $t=T$ returns to its initial position $\mathbf{B}(0)$, does the phase of the spinor wave function have the same dynamical value $\varphi_{\mathrm{d}}(T)=B T$ as for a fixed \mathbf{B} ? The answer to this question is no. The phase of the spinor wave function after the time period T is $\varphi(T)=\varphi_{\mathrm{d}}(T)+\phi_{\mathrm{B}}$, i.e., it acquires an additional term ϕ_{B}, called the Berry phase [1], which is equal to

$$
\begin{equation*}
\phi_{\mathrm{B}}=\frac{1}{2} \Omega, \tag{5}
\end{equation*}
$$

i.e., to half the solid angle that from the origin of \mathbf{B} subtends the area $S=\pi b^{2}$ encircled by the end of \mathbf{B}. The factor $1 / 2$ is characteristic of spin- $1 / 2$ particles. At small b, expression (5)
reduces to the frequently used form

$$
\begin{equation*}
\phi_{\mathrm{B}}=\frac{1}{2} \frac{\pi b^{2}}{B^{2}} . \tag{6}
\end{equation*}
$$

It is shown in Section 2 that the Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \frac{\mathrm{~d}|\boldsymbol{\Psi}(t)\rangle}{\mathrm{d} t}=\boldsymbol{\sigma} \mathbf{B}(t)|\boldsymbol{\Psi}(t)\rangle \tag{7}
\end{equation*}
$$

in the field $\mathbf{B}(t)=\mathbf{B}_{0}+\mathbf{b}(t)$ is easily solved analytically for arbitrary values of the parameters b, B_{0}, and ω. The solution gives a precise value of the phase $\varphi(T)$, which in the adiabatical case, i.e., at a small parameter $\eta=\omega / B_{0}$, can be expanded in a power series in this parameter η, and the linear approximation in this parameter is just expression (5) for the Berry phase, where the solid angle Ω for arbitrary values of the field b is equal to

$$
\begin{equation*}
\Omega=2 \pi\left(1-\frac{B_{0}}{B}\right) \equiv 4 \pi \sin ^{2} \frac{\theta}{2} \equiv \frac{\pi b^{2}}{B^{2} \cos ^{2}(\theta / 2)}, \tag{8}
\end{equation*}
$$

where θ is the angle between the axis and the generatrix $\mathbf{B}(t)$ of the cone: $\cos \theta=B_{0} / B$. The solution method was originated by Rabi [2], and its form shown here was used, for instance, in [3], and also by many other authors.

2. Solution of the Schrödinger equation

To solve Schrödinger equation (7), we use the identity

$$
\begin{align*}
\boldsymbol{\sigma} \mathbf{b}(t) & =b\left(\sigma_{x} \cos (2 \omega t)+\sigma_{y} \sin (2 \omega t)\right) \\
& =b \exp \left(-\mathrm{i} \omega \sigma_{z} t\right) \sigma_{x} \exp \left(\mathrm{i} \omega \sigma_{z} t\right), \tag{9}
\end{align*}
$$

and substitute $|\boldsymbol{\Psi}(t)\rangle$ in the form

$$
\begin{equation*}
|\boldsymbol{\Psi}(t)\rangle=\exp \left(-\mathrm{i} \omega \sigma_{z} t\right)|\chi(t)\rangle . \tag{10}
\end{equation*}
$$

As a result, the equation becomes

$$
\begin{equation*}
\mathrm{i} \frac{\mathrm{~d}|\chi(t)\rangle}{\mathrm{d} t}=\boldsymbol{\sigma} \boldsymbol{B}|\chi(t)\rangle \tag{11}
\end{equation*}
$$

where $\boldsymbol{B}=\left(b, 0, B_{0}-\omega\right)$ is a vector independent of the time t. The solution of (11) is similar to solution (2) of Eqn (1):

$$
\begin{equation*}
|\chi(t)\rangle=\exp (-\mathrm{i} \boldsymbol{\sigma} \boldsymbol{B} t)|\chi(0)\rangle, \tag{12}
\end{equation*}
$$

and with Eqn (10) taken into account, the solution is

$$
\begin{equation*}
|\boldsymbol{\Psi}(t)\rangle=\exp \left(-\mathrm{i} \omega \sigma_{z} t\right) \exp (-\mathrm{i} \boldsymbol{\sigma} \boldsymbol{B} t)|\chi(0)\rangle . \tag{13}
\end{equation*}
$$

With this given solution, we can find the direction of the neutron spin at any instant t if it is known at $t=0$. The initial spin direction, i.e., the spinor $|\chi(0)\rangle$, can be arbitrary. For convenience, we choose it to be $|\chi(0)\rangle=|\mathcal{B}\rangle$, which means that the initial state is normalized, and its spin is directed along the unit vector $\boldsymbol{B} /|\boldsymbol{B}|$, where $|\boldsymbol{B}|=\left(b^{2}+\left(B_{0}-\omega\right)^{2}\right)^{1 / 2}$. This state is an eigenspinor of the matrix $\boldsymbol{\sigma} \boldsymbol{B}$ with the eigenvalue $|\mathcal{B}|$. The probability amplitude $A(t)$ of finding the same polarization during time t is

$$
\begin{align*}
A(t) & =\langle\boldsymbol{B}| \exp \left(-\mathrm{i} \omega \sigma_{z} t\right) \exp (-\mathrm{i} \boldsymbol{\sigma} \boldsymbol{B} t)|\boldsymbol{B}\rangle \\
& =\exp (-\mathrm{i}|\boldsymbol{B}| t)\langle\boldsymbol{B}| \exp \left(-\mathrm{i} \omega \sigma_{z} t\right)|\mathcal{B}\rangle \\
& =\exp (-\mathrm{i}|\mathcal{B}| t)\left(\cos (\omega t)-\mathrm{i} \sin (\omega t)\langle\boldsymbol{B}| \sigma_{z}|\mathcal{B}\rangle\right) . \tag{14}
\end{align*}
$$

At $t=T$, we have $\omega t=\pi, \sin (\omega T)=0$, and $\cos (\omega T)=$ $-1 \equiv \exp (-\mathrm{i} \omega T)$. Therefore, (14) reduces to the form

$$
\begin{equation*}
A(t)=\exp [-\mathrm{i}(|\mathcal{B}|+\omega) T], \tag{15}
\end{equation*}
$$

i.e., at the end of the rotation cycle, the particle state remains to be polarized along the vector \mathcal{B}, and the only change in the wave function is the phase factor with the phase

$$
\begin{equation*}
\varphi(T)=(\omega+|\boldsymbol{\mathcal { B }}|) T . \tag{16}
\end{equation*}
$$

It differs from the dynamical phase $\phi_{\mathrm{d}}(T)=B T$ by an additional term:

$$
\begin{equation*}
\phi_{\mathrm{B}}=\Delta \varphi(T)=\varphi(T)-\varphi_{\mathrm{d}}(T)=(\omega+|\boldsymbol{B}|-B) T . \tag{17}
\end{equation*}
$$

We note that we have not required ω to be small so far. Therefore, (16) is valid for arbitrary values of the parameters B_{0}, b, and ω. In the case of a small ratio $\omega \ll B_{0}$, the additional phase ϕ_{B} can be represented as

$$
\begin{equation*}
\phi_{\mathrm{B}}=\left(\omega+\frac{|\boldsymbol{B}|^{2}-B^{2}}{|\boldsymbol{B}|+B}\right) T \approx\left(1-\frac{B_{0}}{B}\right) \omega T, \tag{18}
\end{equation*}
$$

where only the term linear in ω was taken into account. Because $\omega T=\pi$, the additional phase can be represented as

$$
\begin{equation*}
\phi_{\mathrm{B}}=\frac{1}{2}\left[2 \pi\left(1-\frac{B_{0}}{B}\right)\right] \equiv \frac{\Omega}{2} \equiv \frac{\pi b^{2}}{B\left(B+B_{0}\right)} \equiv \frac{\pi b^{2}}{B^{2}(1+\cos \theta)} . \tag{19}
\end{equation*}
$$

At $b \ll B_{0}$, we have $\theta \ll 1$, and Eqn (19) reduces to (6).

3. Conclusion

The derivation of the Berry phase presented here is similar to the one published in [4] but is much simpler, accessible even to a student audience. It helps understand the physical meaning of the Berry phase for spin- $1 / 2$ particles. For a more comprehensive coverage of the Berry phase in the case of arbitrary-spin particles, review [5] is recommended. For those to whom the simple derivation seems unpersuasive, we recommend to look at the theoretical justification of the Berry phase with secondary quantization [6] or the one based on the study of topological properties of space [7].

References

1. Berry M V Proc. R. Soc. Lond. A 39245 (1984)
2. Rabi I I Phys. Rev. 51652 (1937)
3. Ignatovich V K The Physics of Ultracold Neutrons (Oxford: Clarendon Press, 1990) [Translated from Russian: Fizika Ul'trakholodnykh Neitronov (Moscow: Nauka, 1986) p. 194]
4. Deguchi S, Fujikawa K Phys. Rev. A 72012111 (2005)
5. Vinitskii S I et al. Sov. Phys. Usp. 33403 (1990) [Usp. Fiz. Nauk 160 (6) 1 (1990)]
6. Wang Sh-J Phys. Rev. A 425107 (1990)
7. Fujikawa K Mod. Phys. Lett. A 20335 (2005)

[^0]: V K Ignatovich Joint Institute for Nuclear Research, ul. Joliot-Curie 6, 141980 Dubna, Moscow region, Russian Federation E-mail: v.ignatovi@gmail.com

