
Abstract. We discuss the `generalized fluctuation±dissipation
relations (theorems)' introduced for the first time in our work of
1977±1984 as statistical-thermodynamic consequences of time
symmetry (reversibility) of microscopic dynamics. We show, in
particular, that various similar relations, including `fluctuation
theorems' that have appeared since the 1990s, are, in essence,
alternative formulations or special cases of our old results.

1. Introduction

Interest in rigorous theoretical results of nonequilibrium
statistical physics reflecting the fundamental properties of
microscopic motion has been growing explosively during the
last fifteen years. One of reasons for this interest is the
discovery of new possibilities of experimental justification of
the theory on the mesoscopic level. Several important
experiments and aspects of the underlying theory were
recently reviewed in Physics±Uspekhi by Pitaevskii [1].
However, because of its brevity, that paper did not cover

some other aspects of the subject, in particular, those
appearing in the current literature and involving significant
misunderstandings. In this paper, we highlight all that, too.

To point out immediately what we have in mind, we start
with the example considered in [1].

1.1 Jarzynski and Crooks relations
Any use of the presently popular Jarzynski [2, 3] and Crooks
[4±6] equalities or relationsÐexcellently expounded in [1]Ð
presumes that a physical system under consideration has a
definite thermodynamically equilibrium state at an arbitrary
constant value, x � const, of a parameter x of its Hamilto-
nian. For instance, a torsion pendulum in a liquid [1] finds a
definite equilibrium position (with equilibrium fluctuations
around it) at any constant value of the torque x. Any given
x � const then determines a value F�x� of the free energy of
the system as a characteristic of its corresponding equilibrium
state, and we can therefore speak about changes in the free
energy, DF. For example, when the initial equilibrium of the
system at t � 0 is perturbed by some variations of its
parameter x�t�, the Jarzynski and Crooks (JC) equalities
relate the system energy fluctuations in this process to the
quantity DF � F�x�t�� ÿ F�x�0��.

1.2 Peculiarities of open systems
We now assume that the pendulum arm is made movable
(inserted into a bearing), such that the pendulum becomes a
rotor. The resulting systemÐan analogue of the rotary
viscosimeterÐcan stay in equilibrium at the zero value of
the torque only, x � 0. If x 6� 0, this system is driven to a
nonequilibrium (dissipative) state, where the rotor is con-
stantly rotating. In such a state, the system free energy has no
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definite value, merely because it has no general theoretical
definition for thermodynamically nonequilibrium systems.
Consequently, its changes DF are not defined, either.

Similarly, a conducting medium can stay in equilibrium
only at a zero value of its Hamiltonian parameter such as the
electric field, and the aforesaid also concerns this system.
Here, we call such systems `open', while their opposite is
`closed'.

It follows from the above discussion that the JC equalities
can be applied to open systems at exceptional time instants
only, when the condition of a `cyclic process' (the term from
[7]; see Section 1.4) is satisfied: x�t� � x�0� � 0. This fact
makes the JC equalities practically fruitless for nonequili-
brium states (see Sections 2.7 and 2.9).

1.3 Old (fluctuation±dissipation) relations
Exact relations applicable to open systems without any
additional conditions were obtained more than thirty years
ago in our work [8±15]. They are valid at every time instant
regardless of current values of the parameters, and therefore
constantly produce information about a nonequilibrium
state. Obviously, objects such as the free energy changes DF
cannot appear in these relations in principle. Therefore, it is
sufficient for the use of the relations that an equilibrium state
exist at least at one point (x � 0). Hence, they also extend to
closed systems, to which the JC equalities in fact pertain.

This advantage of our relations is that they deal with
fluctuations of not the full energy of a system but the part
without the energy of interaction with the environment
(responsible for the parameters), that is, internal energy,
which is more closely related to dissipation.

1.4 Misunderstandings
The aforesaid explains why the opinion common in the
literature (see, e.g., review article [16] and the related
references in [17]) that our relations are particular cases of
the JC relations (or that the latter `reduce' to ours in
particular cases) is a misunderstanding.

The origin of such misunderstandings can be seen from
Jarzynski's article [7], where the author compares the old
(our) and the new (JC) relations and concludes that they are
equivalent in the special case of `cyclic processes'.1 We can
agree with this statement, but in a purely formal sense only
and only for closed systems, because it was assumed in [7] that
systems under consideration have equilibrium states at any
values of their parameters. In other words, the existence of
open systems was not taken into account in [7]. Hence, the
comparisonmade was superficial, based on the appearance of
DF (see above), which is an important component of the new
(JC) relations but is absent in the old ones (ours). From the
standpoint of [7], this difference looks like a defect in our
theory, which is eliminated in the case of `cyclic processes'
only,2 when DF � 0 in the JC theory. For these reasons, it is
not surprising that the formally neutral conclusion in [7] is
interpreted by the readers of that paper as an indication of the
particular character of our results.

More precisely, there are papers [18, 19] free of such
interpretations, but qualitative differences between the two
types of systems are not accentuated there, either. Therefore,
the subject does require a discussion.

We do not pretend to review generalized fluctuation-
dissipation relationsÐas we think of the subjectÐbut hope
that the following notes will be useful for interested readers.
For simplicity and brevity, we confine our consideration to
classical mechanics, following our remarks in [17] and short
review [1] (it strongly motivated us, for which we are grateful
to its author).

1.5 History of the subject
Preliminarily, we recall that the interest in rigorous results of
statistical mechanics has a very long history. They include the
Kirchhoff law [20], the Einstein relation [21, 22], the Nyquist
formula [23, 24], and the unifying fluctuation±dissipation
theorem (FDT) [20, 25]. Later, Efremov's `quadratic FDT'
[26, 27], Stratonovich's `four-index relations' [28, 29], and his
Markovian nonlinear fluctuation±dissipation theory [29, 30]
appeared. In 1977±1981, we first obtained [8] and investigated
[9±13] the `generalized fluctuation±dissipation relations'
(FDRs), or theorems [11, 12], in a universal way, connecting
probabilities of observation of mutually time-reversed pro-
cesses and changes in the system entropy during these
processes. The first such relation was formula (7) in [8], and
the most general of them is equality (2) in [31]:

P�P�� exp
ÿÿDS�P��� � P�Pÿ� ; �1�

where the symbol P� denotes some process, i.e., a collection
of results of observations and measurements of some sorts
that can be realized in a given system under given conditions
(concerning the initial state and external perturbations of
the system), Pÿ is the time reversal of P� (in this respect,
the reversion applies to both the results and conditions),
P�P�� are the probabilities of the realization of these
processes (to be precise, the results of measurements), and
DS�P�� � ÿDS�Pÿ� is the system entropy change in the
forward process. This formula covers both closed and open
systems, and extends to processes that not only finish in but
also start from thermodynamically nonequilibrium states
(see Section 3.2). In the same studies and in [15, 32±36], we
(and later one of us in [37±42]) considered other forms of
FDRs (first of all, in terms of characteristic functionals) and
their various consequences and applications.

We note that formula (1), published in 1984 as a summary
of our results, exceeds analogous relations, including
`fluctuation theorems' [16, 18, 19, 43] published in 1997 and
later by Jarzynski, Crooks, and their followers. This state-
ment does not reduce the importance of Jarzynski's and
Crooks's work, which introduced new theoretically attrac-
tive and practically useful forms of FDRs (see Sections 2.2,
2.4, 3.2, 3.3) and initiated the current `boom' in this field.

2. Statistical equalities
for nonequilibrium processes

2.1 Hamiltonians, their parameters,
and two types of systems
We speak about Hamiltonian dynamical systems under
external influences. Such systems are described by
parameters x of their Hamiltonians, H�q; p; x� � H�G; x�,

1 ``For the special case of cyclic processes, in which the perturbation is

turned on and then off, Eqns (1) and (2) are equivalent'' [7], p. 496. Here,

equalities (10) and (12) are meant. We compare them from our standpoint

in Sections 2.7, 2.9, and 3.3±3.5.
2 In fact, we never imposed `cyclic' or any other restrictions on time

variations of parameters. This can be easily verified as regards our main

works [8±10], which are easily accessible through the Internet.
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where G � fq; pg are canonical microscopic variables. The
parameters can vary with time in accordance with a given law.
TheG values at an arbitrary instant,G�t�, are in a definite one-
to-one correspondence, determined by the Hamilton equa-
tions of motion, with values at any other instant, for instance,
G�0� � G. According to the Hamilton equations, the system
total energy H�t� � H�G�t�; x�t�� changes only if the para-
meters change, such that

dH�t�
dt
� dx�t�

dt

qH
ÿ
G�t�; x�t��
qx�t� � ÿ dx�t�

dt
Q�t� ; �2�

where Q�t� � Q�G�t�; x�t�� and Q�G; x� � ÿqH�G; x�=qx are
the system internal variables conjugate to the parameters.

If the system is closed, changes in its total energy H�t�
quite reasonably characterize changes in the system state, as is
the case with the JC relations. The openness of a system, in the
sense outlined in the Introduction, presumes that at x 6� 0 it
may accept an unboundedly large amount of energy from its
environment (sources of external influences) even if the
parameters x are kept constant, x � const. However, accord-
ing to (2), the total energy H�t� also stays constant. This
means that changes in one of its partsÐ its internal, or
intrinsic, energyÐare compensated by changes in another
part, the energy of the system interaction with the environ-
ment. Thus, H�t� is no longer a proper characteristic of the
system state, and it is more meaningful to deal instead with
the system internal energy H0�t�.

A typical interconnection between H�t� and H0�t� can be
illustrated with the examples of a torsion pendulum and rotor
in Section 1.2. Evidently, for both of them, the rate of change
of the internal energyH0�t� is nothing but the work produced
by the torque x�t� per unit time,

dH0�t�
dt

� x�t� dQ�t�
dt

; �3�

where Q�t� means the rotation angle. At the same time, the
rate of change ofH�t� is expressed by (2), with Q�t� being the
same rotation angle (see formulas (5) and (25) in [1]). After
subtracting (3) from (2), it follows that the interaction energy
HÿH0 satisfies the equation d�HÿH0�=dt � ÿd�xQ�=dt,
and hence H�t� ÿH0�t� � ÿx�t�Q�t� up to a constant.

It is natural to supplement this with the assumption that
H0�t� � H0�G�t��, that is, the internal energy has no explicit
dependence on x. Then, from the arbitrariness of the function
x�t� and of the phase trajectory G�t�, it follows for both
systems that

H�G; x� � H0�G 0;Q� ÿ xQ � H0�G� ÿ xQ�G� ; �4�

where Q�G� also has no explicit dependence on x. Here, after
the first equality sign, the angle Q is considered an
independent (canonical) variable, and G 0 denotes all the
other variables. In the expression after the second equality
sign, it is assumed that Q can in general be a function of a
different canonical set of variables [then Q�t� � Q�G�t��].
Hamiltonians of form (4) can be termed `bilinear' because
the interaction with the environment is there linear sepa-
rately in the parameters x and the conjugate internal
variables Q.

Clearly, a difference between a pendulum and a rotor is
that the rotor can make an arbitrary number of full turns,
that is, its angle Q�t� can vary over an infinite range. In (4),

this difference is invisible 3 because it is hidden in the
system eigen-Hamiltonian H0�G 0;Q�. It can either include
(for a pendulum) or not include (for a rotor) an elastic
contribution unboundedly increasing as Q increases, for
instance, cQ 2=2 (if the elasticity of the pendulum wire or
ribbon obeys Hooke's law). If it is absent (in the case of a
rotor), then H0�G 0;Q� 2p� � H0�G 0;Q�; therefore, arbitra-
rily large translations of Q can change the Hamiltonian by
an immaterial constant only.

It is obvious that all open systems (OSs) interact with their
environment via such variables, indifferent to shifts, and
therefore Hamiltonians of OSs are naturally bilinear.

We consider differences between OSs and closed systems
(CSs) from the standpoint of statistical mechanics, where the
use of the probability distribution of microscopic states of the
system D�q; p; t� � D�G; t� is indispensable. Following the
principles of the Gibbs statistical mechanics, we have to
represent thermodynamical equilibriums of systems with
constant parameters by the classical canonical distributions

Deq�G; x� � exp

�
F�x� ÿH�G; x�

T

�
; �5�

whereT is the system temperature (in energy units) andF�x� is
the abovementioned free energy, to be determined from the
probability normalization condition

�
D�G; t� dG � 1.

In the case of a torsion pendulum, for instance, with the
Hooke elasticity, it follows from (4) and (5) that DF �
F�x� ÿ F�0� � ÿx 2=2c (formula (26) in [1]). For a rotor,
Hamiltonian (4) becomes a linear function of Q, and the
integral along the Q axis in (5) diverges. At x � 0, the
divergence is linear; therefore, distribution (5) has the
probability-theoretical meaning of the limit of a uniform
distribution along Q. But if x 6� 0, then the divergence is
exponential and expression (5) no longer allows a reasonable
probabilistic interpretation. In other words, at x 6� 0, such a
system has no equilibrium states, and there are no grounds to
speak about its free energy.

2.2 Two types of parameters
and the relations of `old' and `new' results
Of course, not all applications are amenable to simple bilinear
Hamiltonians like (4), first of all, if we are talking about CS or
`mixed' systems that are open with respect to some of their
parameters but closed with respect to others. However, any
Hamiltonian that is a sufficiently `good' function of its
arguments can be written in the form

H�G; x� � H0�G� ÿ h�G; x� ; �6�
with the condition h�G; 0� � 0 ensuring the uniqueness of this
decomposition. The origin x � 0 in the parameter space of a
CS can be defined in any suitable way, e.g., as a point of an
extremum of the free energy, where qF�x�=qx � 0, thus
corresponding to an `unperturbed system'.

It is just for suchHamiltonians that themain results in our
work [8, 11,12] were deduced, as was clearly pointed out
there; for a better visualization of the formulas, however,
most of them were displayed in terms of bilinear Hamilto-
nians.4 Anyway, form (4) or (6) includes systems with

3 Nevertheless, already in 1977, interest in open systems was so great that

explanations of their existence seemed unnecessary at that time.
4 But we note that any `good' Hamiltonian can be represented in bilinear

form (4) if x is a proper set of effective parameters (functions of actual

parameters) and xQ is their contraction (`scalar product') with a

corresponding set of phase functions.
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parameters of the abovementioned type, which can be named
`force parameters' (FPs), or `forces', because they frequently
represent forces in the sense of physical mechanics, or their
potentials, or fields (or their sources if the fields themselves
are a constituent part of a system).

Some additions can be required if decomposing the
Hamiltonian as in (6) becomes unnecessary because H�G; x�
itself already represents the system internal energy, or even
impossible becauseH�G; x� is too singular a function of some
of its arguments.

One example is where x is the position of a movable edge
of a spring immersed in a liquid (thermostat). In experiments
with ribonucleic acids (RNA), well described in [1], the role of
the spring is played by a pack of RNA molecules. In this
system,Q � ÿqH=qx acquires themeaning of the force acting
from the spring on a transmitter of external influence
(`actuator'), and hence (2) is just the external work (per unit
time) against the system.

Another example is given by wine in wineskins, whose
position and deformations serve as parameters of the system.
The singularity of the Hamiltonian (and especially the
Poisson brackets) here, as well as in the previous example,
occurs because changes in the Hamiltonian parameters
simultaneously change its domain in the phase space.

Parameters of this type, which determine the positions of
some elements or boundaries of a system, can be named
`positional parameters' (PPs). They must change in a
continuous way, because their instant change would mean
infinitely fast displacements of some parts of the system. A
decomposition like (6) would be incorrect for such parameters
because the domains ofH�G; x 6� 0� andH�G; 0� �H0�G� are
different.

By contrast, `force parameters' do not have to be varying
continuously and can in principlemake instant jumps because
such jumps do not change the current microscopic state of a
system; instead, theymerely redirect its further evolution. For
example, the force parameter (torque) of a torsion pendulum
can be `switched' instantly in theory and practically instantly
in experiment, due to the possibility of a fast enough
operation with the electric current (in a magnetic field) that
creates the torque (see [1, 44]).

The parameters of OSs certainly belong to this `force'
type. Indeed, if any deviation of a parameter from zero drives
the system into constant motion, then the rate of the
deviations is not essential for its behavior.

From all the aforesaid, it follows that neither the first new
(JC) results (from 1997±1999) nor our (BK) first old results
(from 1977±1979) are quite `all-embracing', and their rela-
tions to reality can be reflected by Table 1.

However, our slightly later relation (1) also fully covers
the last column of Table 1, as well as FDRs (2.25) and (2.26)

in [11], which were intended for CSs and are completely
transferable to the case of PPs because, in fact, they do not
resort to decomposition (6). On the other hand, today's
followers of Jarzynski and Crooks move to the OS column
in Table 1.

2.3 Liouville theorem and statistical equalities
We now compare the `new' and `old' relations. All of them
wholly or substantially result from the Liouville theorem [45]
saying that the Jacobian of a canonical variable transforma-
tion from G � G�0� to G�t� is always equal to unity,
dG=dG�t� � 1 (the phase volume is conserved).

It is convenient to first derive one trivial but significant
statistical identity. Let D1�G� and D2�G� be two probability
distributions, both normalized to unity and nowhere vanish-
ing. We first note that because of the Liouville theorem,�
D2�G�t�� dG �

�
D2�G�t�� dG�t� � 1. Second, dividing and

multiplying the integrand here by D1�G�, we have�
exp

�
ln

D2

ÿ
G�t��

D1�G�
�
D1�G� dG � 1 : �7�

Third, replacing D1 and D2 here with two canonical
distributions (5), D1�G� � Deq�G; a� and D2�G� � Deq�G; b�
with some a and b, we obtain the equality

exp

�
F�b� ÿ F�a�

T

��
exp

�
ÿH

ÿ
G�t�; b�ÿH�G; a�

T

��
a

� 1 ;

�8�

where the angular brackets denote averaging over the
canonical distribution of the initial conditions G � G�0� of
the phase trajectory G�t�:

h. . .ix �
�

. . . Deq�G; x� dG ; �9�

with the subscript indicating the parameters of the initial
distribution.

Identities like (8) or (25) in Section 3.2 below are satisfied
regardless of the magnitudes and rates of time variations of
the parameters and the degree of nonequilibrium induced by
them; therefore, such identities indicate the existence of
universal relations (just what we call `FDRs') between the
characteristic (average or most probable) direction of the
system evolution and the accompanying nonequilibrium
fluctuations.

2.4 Jarzynski equality
We set a � x�0� and b � x�t� in identity (8). It then turns into
the `Jarzynski equality' (JE) [1, 2]:

exp

�
DF�t�
T

��
exp

�
ÿW�t�

T

��
x�0�
� 1 ; �10�

where DF�t� � F�x�t�� ÿ F�x�0�� and W�t� is the change of
the system total energy during the observation time. Accord-
ing to (2),

W�t� � H
ÿ
G�t�; x�t��ÿH

ÿ
G; x�0�� � ÿ � t

0

dx�t 0�
dt 0

Q�t 0� dt 0 ;
�11�

with Q�t� � Q�G�t�; x�t�� and Q�G; x� � ÿqH�G; x�=qx �
qh�G; x�=qx.

Table 1. Applicable areas * of the results of JarzynskiëCrooks (JC) and
BochkovëKuzovlev (BK).

Authors Publication
years

Open
systems

Closed systems

FP** PP***

JC

BK

1997 ë 1999

1977 ë 1979

ì

Yes

Yes

Yes

Yes

ì

* `Yes' in a cell means the applicability in general; the dash means
applicability under special conditions only.
** Force parameters.

*** Positional parameters.
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The Jarzynski equality is applicable to any CS, including
the case of a PP (see Section 2.2). But for OSs, it makes sense
only if x�0� � 0 and, in addition, also x�t� � 0 at the current
instant (i.e., external influences disappear), because in the
case of an OS with x�0� � a 6� 0, the canonical initial
distribution required in (8) does not exist, and with
x�t� � b 6� 0, the required free energy F�b� is not defined. At
x�t� � x�0� � 0, when the JE is meaningful, it coincides with
our equality (12).

2.5 Bochkov±Kuzovlev equality
We now set a � b � 0 in (8). In the case of an OS, as we
already know, this is the only allowable choice. Then identity
(8) implies�

exp

�
ÿE�t�

T

��
0

� 1 ; �12�

where E�t� � H0�G�t�� ÿH0�G� is a change in the internal, or
intrinsic, energy of the system during its observation. By the
Hamiltonian equations of motion,

E�t� �
� t

0

dG�t 0�
dt 0

qh
ÿ
G�t 0�; x�t 0��
qG�t 0� dt 0 : �13�

If the Hamiltonian is bilinear, Eqn (4), this expression is
simplified, in accordance with (3), to

E�t� �
� t

0

x�t 0� dQ�t
0�

dt 0
dt 0 : �14�

Here, x�0� 6� 0 in general, that is, external forces are not
assumed to be absent at the beginning of observation.

Equality (12) appeared for the first time in [8] from more
general relations that involved a time-reversed evolution (see
Section 3). Evidently, just this equality wasmentioned in [1] as
the `Bochkov±Kuzovlev equality' (BKE).

In contrast to the JE, the BKE is freely applicable to OSs
at any instant, independently of the current values of
parameters x�t�, and to steady nonequilibrium (dissipative)
states. As regards CSs, the BKE is freely applicable to them in
the case of FPs, but in the case of PPs under special conditions
only, x�t� � x�0� � 0 [because otherwise the domain of G�t�
in (8) would be different from that of G�0�, and the latter
would differ from the domain of H0�G�]. Then the BKE
coincides with the JE.

2.6 Physical interpretation
of statistical equalities and jumps of external forces
The subscript x�0� at the angular brackets in JE (10)
emphasizes that the parameters of the initial (at t � 0)
canonical distribution of microstates of a system coincide
with parameters of its Hamiltonian at the initial instant.
Usually, this goes without saying, and it is thought that the
JE applies to a system that before t � 0 was in equilibrium,
with constant parameters equal to x�0�.

But, in fact, the parameters of the initial distribution in no
way affect the behavior of one concrete phase trajectory or
another, either before or after t � 0. Therefore, first, the
inequality x�0� 6� a in (8) is possible and by itself does not say
that at t � 0 there is a jump of Hamiltonian parameters from
a to x�0�. Second, the system equilibrium before t � 0 is an
additional independent assumption not implied automati-
cally by the subscript. Without it, just the same canonical

distribution can appear in theory in the role of model
characteristics of nonequilibrium states (see Section 2.10).

On the other hand, testing the JE or BKE experimentally
(see Section 2.8) indeed requires practical realization of the
mentioned additional condition, that is, the relaxation to
equilibrium, or `thermalization', of the system (at t < 0) being
governed by a Hamiltonian with parameters equal to a
[otherwise, it would be unrealistic to organize a sampling of
experiments properly corresponding to Deq�G; a�]. Then,
jumps x�0� 6� a acquire a literal sense. But as we underlined
in Section 2.2, this is quite rightful behavior of FPs, because
their jumps do not destroy the continuity of the time
evolution of (canonical) microscopic variables.

For these reasons, cases of discontinuities, or jumps, of
the force parameters (FPs)Ð such as x�0� 6� a in (8) or
x�0� 6� 0 in (12)Ðare no less important for the theory and
its applications5 than the case x�0� � a assumed in the JE.
Here, a quantum mechanical analogy is relevant as follows:
when considering the evolution of a system with a time-
dependent Hamiltonian H�t�, it would be absurd in general
to confine consideration to the initial system states (at t � 0)
that are eigenstates ofH�0� or to the initial densitymatrix that
commutes with H�0�. If, nevertheless, jumps of FPs seem
unrealistic in some application of the theory, then this
indicates the necessity of revising the system model, but not
depriving the FPs of their natural rights. Indeed, in any
physically correct model, characteristic temporal scales of
the system response to external perturbations must be
determined by the system itself, not by outside `censorship'.
Hence, abandoning the FP jumps would be as senseless as
abandoning the Heaviside step function or Green's functions
and other useful idealizations.

We note in addition that in the case of PPs, the same can
be said about their time derivatives dx�t�=dt, which can also
make jumps [that is, x�t� can be piecewise continuous linear
functions of time].

2.7 Comparison between JE and BKE
According to Sections 2.4 and 2.5, it remains only to consider
the CS±FP case. We do this at x�0� � 0, where the JE and
BKE apply to the same statistical ensemble, the one defined
by the initial distribution Deq�G; 0�. We then merely have to
compare the random (fluctuating) quantitiesW�t� andE�t� in
the exponents in (10) and (12). Forming their difference, from
(11) and (13) or (14), we have

W�t� ÿ E�t� � h
ÿ
G; x�0��ÿ h

ÿ
G�t�; x�t��

� x�0�Q�0� ÿ x�t�Q�t� ; �15�

with the last expression corresponding to bilinear Hamilto-
nians. Hence, with x�0� � 0, we can rewrite BKE (12) in a
form convenient for comparison:�

exp

�
ÿW�t� � x�t�Q�t�

T

��
0

� 1 ; �16�

5 A variation of jump-like (piecewise constant) dependences x�t�, along
with variational differentiation in respect to x�t�, helps transform general-

ized FDRs (statistical equalities) like (1) or (12) into various relations

between linear and nonlinear response functions (Green's functions,

susceptibilities, conductances, etc.) and irreducible second-, third-, and

higher-order statistical correlations (cumulants) of fluctuations (see [8, 9,

31, 34±38] for the examples).
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where the random term ÿx�t�Q�t� replaces the nonrandom
F�x�t�� ÿ F�0�.

Thus, JEs and BKEs deal with essentially different
random quantities (functionals of the system history) and
therefore mutually supplement one another. Differences
between them disappear at the special instants when x�t� �
x�0� � 0. But, obviously, it would then be wrong to say that
one of the two equalities `reduces' to the other.

Moreover, the statement that the JE and the BKE are
`equivalent' for `cyclic processes' [7] (see Section 1.4) is not
quite correct either. This can be seen from the following
thought experiment. We assume that a parameterÐ for
instance, the pendulum torqueÐsmoothly changes from
x�0� � 0 to x�t0� � x0 6� 0 and then rapidly (during a time
dt much shorter than characteristic time scales of the
pendulum motion) returns to the initial value: x�t0 � dt�� 0.
It is clear from (14) that the quantity E barely changes
during this return: E�t0 � dt� ÿ E�t0� / dt. Simultaneously,
according to (11) and (15), the quantity W achieves the
coincidence W�t0 � dt� � E�t0 � dt� by means of the jump
W�t0 � dt� ÿW�t0� � x0Q�t0� practically independent of dt.
We can therefore say that in essence the coincidence ofW and
E after `cycling' of the process is nothing but an artifact
having no relation to the actual physical contents of these
quantities.

It is also useful to consider two more special experiments.
Let the torque increase from x�0� � 0 so slowly (the
observation time be so long) that the process can be
considered adiabatic. Then W�t� in JE (10) is almost
(asymptotically) free of fluctuations and merely reduces to
the constant DF�t�. Accordingly, BKE (16) becomes

exp

�
ÿDF�t�

T

��
exp

�
ÿ x�t�Q�t�

T

��
adiabatic

� 1 ;

which attests to the fact that fluctuations are quasi-equili-
brium in such a process, i.e., D�G; t� � Deq�G; x�t�� .

Now, by contrast, let the torque sharply switch on at the
very beginning of the observation and later stay constant:
x�t > 0� � x � const. Then W�t > 0� � ÿxQ�0� � const,
where Q�0� � Q�G�0�� obeys the probability distribution
Deq�G; 0�. Therefore, the JE degenerates into the bare F�x�
definition, thus giving no information about actual changes in
the system at t > 0. At the same time, the BKE gives�

exp

�
ÿ x
ÿ
Q�t� ÿQ�0��

T

��
" x��! � 1 : �17�

Here, the arrows symbolically represent the assumed time
dependence of the parameter. This is a nontrivial equality,
because its power expansion (or differentiation) with respect
to x leads to the `Green±Kubo formulas' and, moreover, if the
elasticity of the pendulumwire (or ribbon) is not of theHooke
type, or the viscosity of the liquid is `non-Newtonian', and
fluctuations are non-Gaussian, to additional `nonlinear'
relations between fluctuations and dissipation. We thus see
that general differences between BKEs and JEs are much
more interesting than special cases of their `equivalence'.

2.8 Experimental tests of exact results of the theory
If the authors of experiments described in [44] (also see [1])
had known about our old results, they would have been able
to test some of them, including BKE (12), along with JE (10)
and the Crooks equalities (we have to emphasize once again

that for CS±FP, old and new equalities are valid simulta-
neously and independently of one another at any values of
parameters), or to test equality (16) equivalent to the BKE in
application to a torsion pendulum. From (16), it is clear that
this does not even need additional measurements. Especially
simple for testing is the particular case (17) of jump-like (step-
like) torque switching on, which does not even require
integrating the measured data.

The same can be said about relations between probabil-
ities of mutually time-reversed processes (see Section 3). In
parallel with the Crooks equality [1, 4, 5], with the help of a
torsion pendulum, we can also test the relation

P�E; x� exp
�
ÿE

T

�
� P�ÿE; ~x� ; �18�

where P�E; x� is the probability density distribution of
E � E�t� for a given parameter trajectory x � x�t�
�0 < t < t�, ~x�t� � Ex�tÿ t� �E � �1�, and initial micro-
states on both sides are described [as in (12), (16), and (17)]
by the distribution Deq�G; 0�.

This relation is a direct consequence of the abovemen-
tioned formula (7) in [8] or other FDRs for probability
functionals (see Sections 3.2±3.4). In the example of a
pendulum, E � 1 and, using the notation in [1], x �M,
Q � Y, and E�t� � � t0 M�t 0� dY�t 0�, where M and Y are the
torque and rotation angle.

We consider two particular cases. In the first, the torque
switches on by a jump, and is then constant, as at the end
of Section 2.7. Thus, equality (18) can be written similarly
to (17):

P�E; " M
���!� exp�ÿE

T

�
� P�ÿE; " M

���!� ; �19�

where E is merely E�t� � �Y�t� ÿY�0��M. We note that in
this case, both the forward and reversed processes begin from
the zero torque, that is, they are identical in the statistical
sense. Nevertheless, both processes are `noncyclic' because t
represents an arbitrary time slice. But if the instant t is fixed
beforehand, then we can make the processes formally `cyclic'
by replacing " M

��!
with " M

��! #, all the more so because
such a replacement does not affect E�t� (see Section 2.7).

In the second case, we let the torque grow with time
linearly. Then, in an analogous symbolic notation, formula
(18) yields

P�E; %� exp
�
ÿE

T

�
� P�ÿE; "&� ; �20�

where forward and reverse processes are now nonidentical.
Here, the reversed process begins with a jump and looks
cyclic, while the forward one is not [although, again, it can be
made cyclic, by a jump back to zero, because E�t� is
indifferent to this operation and hence P�E;%#� �
P�E;%�]. Possibly, this is an interesting scenario for experi-
mental testing.

Anyway, we note that the practical verification of
principles and the exact results of statistical mechanics are
at the same time the verification of the validity of one model
of the system under consideration or another. For example,
the mechanical external excitation of a torsion pendulum is
performed with the help of an electric current that flows
inside it and a magnetic field that pierces all the system.
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Therefore, interpreting experiments in terms of the torque
and the rotation angle only means the implicit assumption
that all possible collateral effects of the current and the field
are either weak enough or statistically independent of the
observed mechanical motion of the pendulum. More pre-
cisely, their disregarded addition E 0�t� to E�t�, calculated
from measurements of the torque and angle, is statistically
noncorrelated with E�t�, whence hexp �ÿ�E� E 0�=T �i �
hexp �ÿE=T �ihexp �ÿE 0=T �i and hexp �ÿE 0=T �i � 1. Simi-
larly, a description of the experiments with RNA has invoked
a Hamiltonian with a PP, namely, the position of a movable
`bead' (see [1]), although factually the system is governed by
FPs, such as a voltage drop in a piezoelectric actuator. Again,
either the weakness or the statistical independence of
collateral channels of an actuator-mediated external pertur-
bation of the system is assumed.

The `independence' in these examples is nothing but the
hypothesis that the microscopic phase volume is conserved
separately in different channels (those considered or ignored)
of the system interaction with its environment. In reality, of
course, this may be a quite wrong assumption for non-
equilibrium processes (see, e.g., [31]).

2.9 BKE for open systems, or when the JE does not work
After a transition from a CS to an OS, for example, from a
torsion pendulum to a rotor, for the reasons expounded in
Sections 1.2, 2.1, and 2.4, the JE generally loses its meaning.
The difference betweenW�t� in (11) in the JE and E�t� in (14)
in the BKE discussed in Section 2.7 becomes dramatically
aggravated. We consider it in practically important situa-
tions, to which Eqns (17) and (19) were addressed. The
symbol " can now denote either a sharp switching on of the
FP (torque) x � const or a smooth switching on during the
time interval dt, smaller than the rotor period of revolution
for a given x.

Now, E�t� � xDQ�t�, and DQ�t� � Q�t� ÿQ�0� increases
with time without a bound, approximately linearly on
average, if the external force is balanced by viscous resistance
of the liquid. In this regard, E�t� � xDQ�t� represents the
energy dissipated by the system in a (quasi-)steady non-
equilibrium state. Analogous dissipative states arise, for
example, when x is an electric potential applied to a
conductor, or the force (electric field) acting on a particle
(charge carrier) in an unbounded medium (in the thermo-
dynamic limit), while DQ�t� is the transported charge or
particle displacement. In all such situations, BKE (12) or
(17) reveals definite rigid connections between generally
nonlinear dissipation (rheological properties of a liquid,
current±voltage characteristics of a conductor, particle
mobility, etc.) and statistical characteristics of fluctuations
of dQ�t�=dt (the angular velocity of a rotor, electric current,
particle velocity, etc.), while E�t� continuously accumulates
new experimental information for these connections.

By contrast, the quantity W�t > dt� � ÿxQ�0� � const,
as in Section 2.7, remains constant in time, giving no
information about nonequilibrium processes in the system
[moreover, even about Q�0�, because in OSs any value Q�0�
can be made the reference point forQ�t� by settingQ�0� � 0].
To extract a portion of the information about the dissipated
energy E�t� fromW�t�, at least for a single time instant, as in
Section 2.7, we have to retract the force x to zero for a time,
i.e., arrange an artificial `cyclic process' and thus disturb the
state under investigation.Moreover, according to Section 2.7,
because of the continuous growth of DQ�t� / t with time, the

return to zero becomes a less and less correct operation,
requiring a more and more precise measurement of x, with an
error� T=hDQ�t�i � xT=hE�t�i. An attempt to continuously
extract information about the dissipative state fromW�t� and
the JE would result merely in the elimination of this state
(which is the genuine price of the `equivalence' of JEs and
BKEs in `cyclic processes'!).

2.10 Evolution of nonequilibrium states
and thermodynamic inequalities
We consider a CS that at t � 0 is in a nonequilibrium state.
We can try to model the corresponding distribution
D�G; t � 0� by an equivalent `quasi-equilibrium' one,

Dqe�G;X � � exp
n
bF 0�X � ÿ �bH0�G� � XQ�G��o ; �21�

where b � 1=T,H0�G� is an eigen-Hamiltonian of the system
(in the absence of external perturbations), Q�G� is a suitable
set of its individual or collective variables, X is the conjugate
set of parameters (`thermodynamic forces') characterizing the
system nonequilibrium, and the `free energy' F 0�X � is
determined by the normalization condition. The equivalence
means that the average values of all theQ�G� over the factual
and quasi-equilibrium distributions coincide. This require-
ment determines all X. The variables Q�G� can represent
spatial inhomogeneities of the densities of particle numbers,
mass, charge, momentum, energy, etc. The motivation for
such a quasi-equilibrium model is that distribution (21)
provides the information entropy maximum in the system
with the given mean values of Q�G�.

To extend this model to other time instants, that is, to the
system evolution, it is natural to rely on formally exact
statistical equalities. One of them, similar to BKE (12),
follows from identity (7) with D1�G� � D2�G� � Dqe�G;X �.
Namely, with the possible influence of external forces (fields)
conjugate to some of the variables Q�G�, we obtain


exp
ÿÿDS�t��� � 1 ; �22�

where angular brackets stand for averaging over the quasi-
equilibrium initial distribution and

DS�t� � bE�t� � X
ÿ
Q�t� ÿQ�0��

�
� t

0

ÿ
bx�t 0� � X

� dQ�t 0�
dt 0

dt 0 : �23�

This quantity can usually be treated as a change, or
increment, of the entropy of the system in the course of its
evolution.

In [10±13, 32], it was shown that statistical equalities and
FDRs associated with quasi-equilibrium ensembles of micro-
states form a reliable base for nonlinear nonequilibrium
thermodynamics. This is evident already from their simple
consequences such as `thermodynamic inequalities'.

It is well known that for any random quantity A, the
inequality hexpAi5 exp hAi holds. Replacing A byÿE here,
with E from (13) or (14), and combining this inequality with
(12), it is not difficult to conclude that hEi5 0 . Hence, if a
system was initially in equilibrium, it always on average (over
a statistical ensemble) takes (from sources of external forces)
and absorbs a positive amount of energy.

We now let a system be initially nonequilibrium, as above.
Then equality (22) implies the inequality hDSi5 0. It allows
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negative values of the mean hEi, and therefore the system is
able to produce (useful) work against its environment, with
ÿhEi > 0. Then the inequality hDSi5 0 together with (23)
establishes a constraint on the value of this work, dependent
on the degree of the system initial nonequilibrium.

We next proceed to statistical equalities, including time-
reversed processes, and demonstrate that they also obey the
comparative characterization presented in Section 2.2 of `old'
(our [8, 9, 11]) and `new' (Crooks [4±6]) results.

3. Time reversibility of microscopic dynamics
and generalized fluctuation±dissipation relations

3.1 Time reversal
In classical mechanics, time reversibility ofmotionmeans that
any phase trajectory of a system can be traced backward in
time, if at some time instant y the signs of all momenta
(velocities) are reversed. In a nonautonomous system, time
dependences of external forces and conditions must also be
reversed and the signs of some of them (`odd' parameters)
must be reversed; in particular, the sign of the magnetic field
and, under observations in a rotating frame (e.g., on Earth's
surface), the sign of the Coriolis force. The parities E � �1 of
the corresponding Hamiltonian parameters with respect to
time reversal are determined by the requirement that
H�G; x� � H�G; Ex�, where G � fq;ÿpg. If it is satisfied and
the `forward' time dependence of a current microscopic state
of the system, G�t�, on its initial state G�0� and on external
conditions is expressed by a functionalG�t� � T tfG�0�; x�t�g,
then in the time-reversed view, G�t� � T yÿtfG�y�; Ex�yÿ t�g.
Equivalently, G�yÿ t� � T tfG�y�; Ex�yÿ t�g, where t repre-
sents the reversed time counted backward from the `turning
point' y.

Accordingly, the observation of any variable Q�G� that
has a definite parity, Q�G� � eQ�G� �e � �1�, instead of
Q�t� � Q�G�t�� on a forward trajectory, gives Q�G�yÿ t�� �
eQ�yÿ t� on the reversed trajectory.

3.2 Generalized fluctuation±dissipation relations
We let FfG�t�g be some functional of phase trajectories of a
system, and consider its mean value in the ensemble of
trajectories, defined by canonical initial distribution (5) with
parameters x � a:


F
�
G�t�	�

a; x�t� �
�
F
�
G�t�	Deq�G; a� dG :

Here, the subscript at the angular brackets reminds us about
the initial distribution and external conditions at which the
system evolves. Along with this mean, we consider�

F
�
G�t�	 exp�ln Deq

ÿ
G�y�; b�

Deq�G; a�
�
Deq�G; a� dG

�
�
F
�
G�t�	Deq

ÿ
G�y�; b� dG : �24�

The integrand here differs from the one in the left-hand side of
(8) by the extra factor FfG�t�g only. In the right-hand side of
(24), as in Section 2.3, we pass from G to new integration
variables G�y�, and then from them to G�y�, and apply the
Liouville theorem. After that, we express the phase trajectory
via G�y� while going to the reversed time, as was described in

Section 3.1. Moreover, we change the notation for the
integration variable G�y� to G and take into account that
Deq�G; b� � Deq�G; Eb�. As a result, we obtain the equality�

F
�
G�t�	 exp�ÿH

ÿ
G�y�; b�ÿH�G; a�

T

��
a; x�t�

� exp

�
ÿF�b� ÿ F�a�

T

�

F
�
G�yÿ t�	�Eb; Ex�yÿt� : �25�

At Ff. . .g � 1, it reduces to identity (8).
By choosing the shape of the functional Ff. . .g and

parameters a and b in a proper fashion, it is easy to transform
(25) into various FDRs for characteristic and probability
functionals or statistical moments of the system variables. In
view of the arbitrariness of Ff. . .g, equality (25) by itself is
equivalent to a visually similar relation for the density of the
probability measure in the space of phase trajectories
described with sufficient completeness (specification). This
presumes that a set of variables V�t� � V�G�t�� used in a
`coarse-grained' description allows expressing the difference
H�G�y�; b� ÿH�G; a� (although it can otherwise be arbitrarily
small or rough in comparison with G�t�). In addition, it
follows from Section 2.2 that the parameters a and b must
be chosen in accordance with Table 2.

In the case of CS±FP, any a and b are allowed, but
nevertheless, as in Sections 2.4 and 2.5, for the JE and BKE
derivations, we confine our consideration to the two
particular variants from neighboring entries of Table 2.

Thus, when considering CSs and taking a and b from the
third column of Table 2, instead of (25) we can write

P�V; x� exp
�
ÿW�y�

T

�
� exp

�
ÿDF�y�

T

�
P� ~V; ~x� ; �26�

where P�V; x� is the density of the probability distribution of
possible observations (trajectories) of V�t� with given
variations of the parameters x�t� �04t4y�, DF�y� �
F�x�y�� ÿ F�x�0��, ~V�t� � eV�yÿ t�, ~x�t� � Ex�yÿ t�, and
the quantity W�y� [change (11) of the system total energy] is
assumed to be expressed in terms ofV�t�, that is, the variables
Q�t� conjugate to x�t� are contained in the set V�t� or are
functions of V�t�. This formula is equivalent to the Crooks
equality [1, 4±7].

When considering OSs, we have to take a and b from the
first column of Table 2, which leads from (25) to

P�V; x� exp
�
ÿE�y�

T

�
� P� ~V; ~x� : �27�

Here, P�V; x� has the same meaning as above, and the
quantity E�y� [change, (13) or (14), of the system internal
energy] is also assumed to be expressed in terms of V�t�. For
this, it is more than sufficient that the Hamiltonian of the
system±environment interaction ÿh�G; x� be written in the
formÿh�V�G�; x� [for instance, in the bilinear case in (4),Q�t�

Table 2. Permissible parameter values for open and closed systems.

Open system Closed system

FP PP

a � b � 0 Any a, b a � x�0�, b � x�y�
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are again either some ofV�t� or some functions of them]. This
formula is equivalent to formula (7) in [8] and some formulas
in [9, 11, 12].

The probabilities in (26) and (27) are denoted by different
symbols because equalities (26) and (27) pertain to different
statistical ensembles and different types of systems in general.
Among themselves, they relate nearly like the JE and BKE do
(see Section 2.7). Namely, (26) can be applied toOSs, and (27)
to CS±PP, under the condition x�y� � x�0� � 0 only, and
then they formally coincide with one another. In the CS±FP
case, the two equalities work simultaneously and supplement
one another, although they are mutually connected (as we
show in Section 3.3).

It is easy to generalize equality (27) to the quasi-
equilibrium statistical ensemble described in Section 2.10 by
substituting distribution (21) in place of (5) in (24). As a result,
in addition to (22), we obtain

P�V; x;X � exp ÿÿDS�y�� � P� ~V; ~x; ~X � ; �28�

with DS�t� defined in (23) and with ~X � eX.
All three relations (26)±(28) can be unified into a single

relation of form (1) if in the first of them we introduce
DS � E=T, in the second DS � �Wÿ DF �=T, in both of
them P� � fV; xg, Pÿ � f ~V; ~xg, and introduce P� simi-
larly for (28). Moreover, for the `mixed' systems defined in
Section 2.2 (or systems having the FP and PP simultaneously)
we have to (or can)write a clearmix of equalities (26) and (27).

3.3 From old to new relations and back
In the CS±FP cases, the variables V�t� in the `new' and `old'
relations (26) and (27) can always be identified. The difference
between (26) and (27) then reduces to the difference in
probability distributions of the initial point V0 � V�0� of
trajectories V�t�. This means that

P�V; x� � P�V jV0; x� Deq

ÿ
V0; x�0�

�
; �29�

P�V; x� � P�V jV0; x� Deq�V0; 0� ;

whereP�VjV0; x� is the conditional probability distribution of
trajectories V�t� common to (26) and (27) with a given initial
point, and

Deq�V; a� �
�
d
ÿ
Vÿ V�G��Deq�G; a� dG �30�

are possible equilibrium distributions of the variables V.
Indeed, in view of the completeness of these variables, it
follows from (5) and (30) that

Deq�V; a� � Deq�V; 0� exp F�a� ÿ F�0� � h�V; a�
T

; �31�

where h�V; a� is the interaction energy from (6) expressed in
terms of V [see the comment after (27)]. Using this equality
together with decomposition (29) in both sides of (26), after
elementary manipulations subject to (15), we arrive at (27).
Conversely, going from Eqn (27) the same way but in the
opposite direction, we obtain equality (26).

Thus, from a purely formal standpoint, in the field of
CSÿFP; old and new relations are absolutely equivalent at
any time variations of parameters. But from the standpoint of
practical applications or tests, they differ from each other as
strongly as the JE and BKE do (see Sections 2.7±2.9).

A literal practical realization of each of the two variants of
time reversal presumed in (26) and (27) requires preliminary
preparation of the system, that is, its thermalization with the
corresponding Hamiltonian parameters from Table 2. In
variant (27), transition from the preparation of the system
to the observation of its evolution can involve jumps of
Hamiltonian parameters at the beginning of observation [at
least, at the beginning of the reverse process, similarly to
example (20)]. But we know from Sections 2.2 and 2.6 that
this is entirely legitimate for the FPs, which is especially useful
in the case of OSs, when the theory and its applications can
practically operate with only the `old' variant of time reversal
and old FDRs (27).

3.4 Other fluctuation±dissipation relations
for probabilities and fluctuation theorems
If the variablesV do not form a complete set, it can be formed
merely by adding the integralW �W�y� or E � E�y� to them
as a whole. Then, instead of (26) and (27), equality (25)
implies

P�V;W; x� exp
�
ÿW

T

�
� exp

�
ÿDF

T

�
P� ~V;ÿW; ~x� ; �32�

P�V;E; x� exp
�
ÿE

T

�
� P� ~V;ÿE; ~x� ; �33�

where joint probability distributions of V�t� and W �W�y�
or E � E�y� appear, and we take into account that values of
W and E in mutually time-reversed processes differ by signs
only (it is easy to verify this with the help of `time reversal
rules' in Section 3.1).

Integration of (32) and (33) over all trajectories ofV yields
the relation

P�W; x� exp
�
ÿW

T

�
� exp

�
ÿDF

T

�
P�ÿW; ~x� �34�

and relation (18) for marginal probability distributions of
W �W�y� andE � E�y�. Then, dividing (32) by (34) and (33)
by (18), we obtain the relations

P�V jW; x� � P� ~V j ÿW; ~x� ; P�V jE; x� � P� ~V j ÿ E; ~x� �35�

for conditional distributions of V�t� at fixed values
W �W�y� or E � E�y�, which here play the role of addi-
tional external conditions for observing V�t�.

Relations of form (18) and (34) are currently very
popular and are usually termed `fluctuation theorems'
(FTs) [16, 18, 43]. Sometimes they are presented as a big
step forward from `old' results, although it is quite evident
that equality (18) is the simplest consequence of (27)
produced by (mental) integration of (27) over all V�t�
trajectories (Q�t� trajectories in [8]) with a fixed value
E � E�y�. Similarly, equality (28), or (1), implies the FT for
entropy increments: P�DS; x;X � exp �ÿDS� � P�ÿDS; ~x; ~X �.

We in our time wrote and used such relations in slightly
different forms more convenient in applications of interest to
us, taking into account that the actually measured quantities
are usually not E�t� but dQ�t�=dt, DQ�t�, or others conjugate
to external forces. Below in Sections 3.6 and 3.8, it is
demonstrated how FT (18) was applied by us to open systems
in 1979 in [9] and later.

We note in addition that in application to OSs in (quasi-)
steady nonequilibrium states, variant (19) of FT (18) can be
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rewritten as a symmetry relation P�s� exp �ÿsy� � P�ÿs� for
time-averaged entropy production s � E�y�=Ty, and that
this kind of relations can appear in non-Hamiltonian
dynamic models of dissipative processes [43, 46]. From the
standpoint of Hamiltonian statistical mechanics, this is an
advantage of such a model, although not a proof of its
legitimacy.

3.5 Markovian fluctuation±dissipation relations
A set of variables V�t� � V�G�t�� represents a Markovian
random process if their current values determine the prob-
abilities of their future values uniquely and independently of
their past. The generalized FDRs are formally compatible
with assumptions about Markovian behavior of one set of
variables or another, although in a rigorous sense it never
occurs (unless V�G� coincides with G). This allows formulat-
ing general recipes for constructing Markovian `stochastic
models' that fully take all FDRs into account and thus
automatically agree with both the time reversibility of
microdynamics and the principles of (statistical) thermody-
namics of irreversible processes [8, 9±15, 33]. For closed
systems with constant parameters, this was already done by
Stratonovich [30] (see also [29] and the references therein and
in [8, 9, 15]) based on the principle of detailed balance. In [8],
we showed that his results can be extended to nonconstant
(time-dependent) parameters.

The corresponding `old' results wholly contain the Crooks
theory presented initially as a Markovian one [4, 5].

To verify this, we recall that a Markov process is
completely determined by its probabilities of transition from
V0 � V�0� to Vy � V�y� in an infinitesimally small time
y! 0. We consider them using the notation P�VyjV0; x�.
We note that, first, due to the completeness of V�t� (see
Section 3.2), at small y in (26), W�y� ! ÿdx�y�Q0, where
dx�y� � x�y� ÿ x�0� / y andQ0 � Q�0� [withQ�t� from (11)]
are functions of V�0� or components of V�0�. Second, it
follows from (5) and (31) that

Deq�Vy; x�y�� ! Deq�Vy; x�0�� exp DF�y� � dx�y�Q0

T
:

Inserting these expressions, together with (30), into (26), we
see that the exponentials in (26) cancel up to the second order
of y, and hence the equality

P�VyjV0; x�Deq�V0; x� � P�eV0jeVy; Ex�Deq�eVy; Ex� �36�

holds, with x � x�0� � x�y�. It coincides with the principle of
detailed balance (PDB) for systems with constant parameters.
This just means that the `Crooks equality' is in essence a time-
nonlocal formulation of the `old' Markovian theory.

In its time-local formulation,

P�VjV0; x� !
�
1� yK�V;H; x�� d�Vÿ V0� ;

where H � q=qV and transition probabilities in (36) are
replaced by the `kinetic operator' K�V;H; x� and the kinetic
equation

_D�V; t� � K
ÿ
V;H; x�t��D�V; t� ; �37�

in whichD�V; t� is the current probability density distribution
of theMarkovian variables. Here, the role of equality (26) for
CSs, that is, the role of PDB (36) is played by the operator-

valued symmetry relation

K�V;H; x�Deq�V; x� � Deq�V; x�K y�eV; eH; Ex� ; �38�

which accumulates all the consequences of microscopic
reversibility and FDRs. Here, y is the symbol of conjuga-
tion, or transposition, in the Sturm±Liouville sense. The
operator K can be a differential operator (for example, in
Fokker±Planck equations) or an integral operator (for
example, in Kolmogorov equations). We note that FDRs, in
combination with the causality principle, forbid any K
dependence on time variations of parameters except an
instant one, i.e., the dependence on their current values only
(but in no way on past values) [8].6 Stationary solutions of
kinetic equation (37) (at constant parameters) are equilibrium
distributions Deq�V; x� in (30).

In 1978±1981, we suggested generalizing this Markovian
theory to open systems [9, 11±15, 33]. Of course, the general-
ization must be guided by relation (27) [or (28)]. In the
simplest Markovian models of OSs, the set of variables
V�t� � V�G�t�� is complete, and they therefore allow expres-
sing the dissipated power (energy dissipated by the system per
unit time), i.e., the integrand in (13) or (14) [for which even a
single variable, e.g., I�t� � dQ�t�=dt, may be sufficient]. Then,
instead of (38), we obtain an essentially different operator-
valued relation,

K�V;H; x�Deq�V; 0� � Deq�V; 0�
�
K y�eV; eH; Ex� �N�V; x�

T

�
;

�39�

whereN�V; x� represents the dissipated power [possibly in the
form N�V; x� � xI�V�].

Now, the stationary solution (with x � const) of kinetic
equation (37) is in equilibrium [equals Deq�V; 0�] at x � 0
only. If x 6� 0, the stationary solution of (37) describes the
above steady nonequilibrium state (see Sections 2.9 and
3.4) with the permanent entropy production hsi �
hN�V; x�=T i 6� 0 as E�t�=t! Thsi, and fluctuations of E�t�
and other quantities are characterized by a violation of the
balance of mutually time-reversed processes.

Of course, from (38) and (39), we can respectively return
to (26) and (27). We note once again that for `mixed' systems,
i.e., those having parameters of both closed and open types,
instead of equalities (38) or (39), it is necessary to write their
obvious hybrid.

3.6 Fluctuation±dissipation relations
for transport processes
To demonstrate one possible application of the FDRs
[particularly, (19) and (27)], we consider charge transport
through a conductor under a constant voltage drop x (after
switching on at t � 0). Here, the dissipated energy is
E�y� � xDQ�y�, with DQ�y� � Q�G�y�� ÿQ�G� representing
the charge transported through the conductor during the
observation time.

We combine the exact FDRs and a simple stochastic
model of the system. The FDRs are now represented by
relation (FT) (18) written in the form

P�DQ; x� exp
�
ÿ xDQ

T

�
� P�ÿDQ; x� ; �40�

6 In general, the causality principle is also a very useful tool for the analysis

of consequences of generalized FDRs [8, 9, 11].
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factually used in [9], where the probability distribution P is
now related to the charge. As regards the model, we assume
that our conductor is a contact (like a pÿn-junction), and
charge is therefore transported through it by discrete portions
�e forming two opposite Poissonian random flows. This
means that the mean value of the electric current
�I�x� � hDQi=y and the spectral power density of the current
noise S�x� � �hDQ 2i ÿ hDQi2�=y are expressed by the for-
mulas

�I � e�n� ÿ nÿ� ; S � e 2�n� � nÿ� ; �41�

in which n� � n��x� are mean numbers of the elementary
charge portions transferred per unit time in the forward and
backward directions.

Clearly, FDRs establish a connection between n��x� and
nÿ�x�. In [9], it was extracted from relations for the
characteristic function of DQ equivalent to (40). Here, we
can merely surmise that relation (40) is valid not only for DQ
as a whole but also for elementary transfer events:

n��x� exp
�
ÿ ex

T

�
� nÿ�x� : �42�

From here and from (41), we obtain the following relation
between the power of nonequilibrium noise and the mean
current (current±voltage characteristic):

S�x� � e�I�x� coth ex

2T
: �43�

At ejxj5 2T, it reduces to the Nyquist formula for `thermal
noise', while in the opposite case it reduces to the formula for
`shot noise'.

In this way, FDRs help reveal universal connections
between the dissipative nonlinearity of a transport process
�I�x��, its noise characteristics �S�x��, and the type of its
statistics. For the Gaussian statistics, instead of (43), we
would obtain S�x� � 2T �I�x�=x. More complicated examples
of this kind can be found in [9±13, 31, 37±39]. We note that
measurements of �I�x�, S�x�, and higher-order cumulants of
DQ are, in principle, noworse a way of experimental testing of
the exact theoretical results in (12), (18), and (40) than the one
discussed in [1] and in Section 2.8.

3.7 Fluctuation±dissipation relations for 1/f-noise
The stochastic model just considered has a fundamental
defect: in it, elementary random events have the a priori
prescribed relative frequency (time-averaged number of
events per unit time, or their `probability per unit time')
n��x�, independent of the concrete realization of the experi-
ment, i.e., independent of the phase trajectory of the system,
although, as was shown by Krylov many years ago [47],
statistical mechanics gives no grounds for such assumptions.

This statement can already be understood on the intuitive
level. Indeed, the mentioned assumption would be likely if the
system remembered a number of past events and compen-
sated its deviations from the `norm' by means of an opposite
deviation of a number of later events. But this is impossible if
the system forgets about events soon after they occur. Then it
does not distinguish between `norm' and `deviation' and
therefore produces fluctuations in the number of events
proportionally to its `normal' (mean) value. This means that
the relative frequency of events (`probability per unit time')

undergoes low-frequency fluctuations with a 1/f -type spec-
trum.

A similar reasoning was first suggested and mathemati-
cally formulated in [35, 36, 48] and later confirmed on the
basis of statistical mechanics in [37±39, 42, 49±55] and other
work, first of all in application to random walks (`Brownian
motion') of atomic-size particles.

We emphasize that fluctuations (`1/f-noise') of relative
frequencies by their very nature do not violate the existing
balance (which would set in anyway) or definite disbalance of
mutually time-reversed events (processes). Therefore, as
follows from the generalized FDR [35±37, 39], various
particular FDRs like (42) also hold for fluctuating relative
frequencies and all derived `kinetic' quantities. For example,
the Einstein relation D � Tm between the diffusivity D and
mobility m of a walking particle can be extended to their
fluctuations [37] (as well as the Nyquist formula can be
extended to fluctuations of conductance and fluctuations of
`instant' spectral power density of `white' electric noise [35,
39]). To substantiate such statements, relation (40) (formula
(A4) from [37]) is quite sufficient.

Therefore, it is possible, as was already suggested in [48],
to separate fast fluctuations (white noise) and low-frequency
fluctuations (1/f-noise) using primitive phenomenological
language but keeping in mind its rigorous statistical-mechan-
ical equivalent. We next consider the statistics of random
walk of a probe (`marked') gas particle in this way, based on
the results in [37, 41, 51±53].

3.8 Fluctuation±dissipation relations
and molecular Brownian motion
In relation (40) ((A4) in [37]), we now let DQ denote the
displacement, or the path, of a `Brownian particle' (BP). LetR
be the projection ofDQ on the direction of the external force x
applied to the BP (a probe gas atom). In the widely known
simplest stochastic model of Brownian motion, FDR (FT)
(40) is satisfied by the Gaussian distribution

P�R; x� � Pm�R; x� � exp
�ÿ�Rÿ mxt�2=4Tmt��������������

4pTmt
p : �44�

Here, it is assumed, of course, that the observation time t is
much longer than the BP velocity relaxation time or the mean
free path time t.

However, honest consideration of the exact Bogoliubov ±
Born ±Green ±Kirkwood ±Yvon (BBGKY) equations for an
infinite chain of many-particle distribution functions of a
fluid shows that expression (44) is incompatible with the
absence of (single-time) statistical correlations between the
BP and gas atoms at a long distance from it. The true
expression (first obtained in [51] and then by a different
method in [42, 52]) can be represented by a superposition of
Gaussian distributions with various values of the BP
mobility:

P�R; x� �
�1
0

Pm�R; x�Ut�m� dm ; �45�

Ut�m� � �m 2

m 3
exp

�
ÿ �m
m

�
X
�
Tm
v 20 t

�
; �46�

where X��� is a `cut-off' function that rapidly vanishes at
infinity and is equal to unity at zero, X�0� � 1, and v0 is the
characteristic thermal velocity of gas atoms (speed of sound).
Hence, for variances of the BP path and the dissipated energy
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E � xR, we have

hR;Ri � 2T�mt� ��mxt�2 F
�
ln

t

t

�
; �47�

hE;Ei � 2ThEi � hEi2 F
�
ln

t

t

�
; �48�

with F�z� � z. Here and below, the angular brackets with n
commas inside denote the joint �n� 1�th-order cumulant of
n� 1 random quantities separated by the commas (`Mala-
khov's cumulant brackets' [54]). The second terms in (47) and
(48) respectively describe 1/f-fluctuations of mobility and
dissipated power. At x � 0, a similar asymptotic expression
characterizes the fourth-order cumulant of R, thus reflecting
identical fluctuations of the BP diffusivityD � Tm [35, 39, 48±
50].

The function Ut�m� in (46) is the effective BP mobility
probability distribution. Its long power-law tail is typical for
distributions accompanying 1/f-noise [36, 48±50]. At
hEi � �mx 2t0T, this cubic tail manifests itself in path
distribution (45) on the right (if x > 0): P�R; x� � hRi2=R 3

for R > hRi. Accordingly, a similar tail appears in the
distribution of dissipated energy in (18): P�E; x� � hEi2=E 3

for E > hEi. Hence, the probabilities of `large deviations' of
the path and dissipated energy are highly maintained in
comparison with those predicted by Gaussian model (44).
Such distributions have been observed many times in
experiments with nonstationary photocurrents (charge injec-
tion currents) [55].

It is interesting that the shortest way to these results is to
use the FDR [42] (although they can also be easily derived
from explicit virial expansions of nonequilibrium partition
functions [53]). In (25) with a � b � 0, we set

F
�
G�t�	 � d

ÿ
Q�t� ÿ R

�
d�Q�

Y
k

ÿ
1� f�qk�

�
;

where f�q� is some function of atom coordinates and the
product is taken over all gas atoms (except the BP itself). Then
the left-hand side of (25) characterizes the influence of the
initial spatial nonuniformity of the gas on the BP walk, while
the right-hand side describes statistical correlations between
the BP path (during the entire observation time) and the
current microstate of the gas (in configuration space).
Further, choosing the function f�q� properly, we can extract
the relation

n
qP�R; x�

qn
� P�R; x�

��
n�rjR; x� ÿ n

�
d3r �49�

from (25), where n is the mean particle number density in the
gas and n�rjR; x� is the conditional mean value of gas density
at the distance r from the BP at a given path.

It follows from (49) that

q lnP�R; x�
q ln n

> ÿnO ; �50�

where O is the characteristic spatial volume to which
correlations of the gas with the BP extend. On the other
hand, in Gaussian model (44) with the known dependence
m / D / 1=n, we have

q lnPm�R; x�
q ln n

� 1

2
ÿ hEi

4T

��
R

hRi
�2

ÿ 1

�
:

Comparing this expression with inequality (50), we see that
they are incompatible if the `correlation volume' O is
bounded above by a finite number. Hence, if the gas stays
indifferent to (forgets about) the outcome R of the BP walk,
it is unable to suppress large values of R as categorically as
law (44) requires.

At the same time, laws (45) and (46) are compatible with
(50) atO � 2=n. Of course, this (or another) value ofO cannot
be obtained from FDRs themselves only: its calculation
requires the whole BBGKY hierarchy [37, 51] or equivalent
means (see [52, 53] and the references in [53]).

3.9 Variance of dissipation fluctuations
The preceding paragraph gave an example of large fluctua-
tions of dissipation whose magnitude, according to (48), is of
the order of the mean dissipation value. Another such
example was considered in [38]. If energy is dissipated
through not one but many �N4 1� degrees of freedom, then
the variance of dissipation fluctuations, along with the
magnitude of the power-law tail of their distribution, is
approximately N times smaller. For systems with Hamilto-
nians of type (4), we can obtain [38] the exact FDR

hEi � 1

T

�
1>2

x�1�
I�1�; I�2��
x�t� Z�tÿ2� x�2� d1 d2 ; �51�

hE;Ei � 2ThEi � 2

T

�
1>2>3

x�1� x�2�

� 
I�1�; I�2�; I�3��
x�t� Z�tÿ3� x�3� d1 d2 d3 ; �52�

where the numbers replace literal time arguments (and their
indices), I�t� � dQ�t�=dt are `currents' conjugate to the
external forces x�t�, and Z�t� is the Heaviside step function.
Its presence means that in second- and third-order cumulants
in the integrands, the earliest (right-hand) values of the
`currents' I�t� [i.e., I�2� and I�3�, respectively] belong to a
still undisturbed (equilibrium) system. These equalities follow
from the general FDR for cumulants [9, 11] (importantly, as
we already mentioned in Section 2.2, paper [11] contains two
variants of such FDRs, which together cover both types of
systems and both types of parameters).

In many applications, the third-order cumulant in (52) (or
the result of its integration) can be assumed to vanish at
x � 0. Then, under a weak perturbation,

hE;Ei � 2ThEi � 2

T

�
2>3;4
1>4

x�1� x�2�

� 
I�1�;G�2; 3�; I�4��
0
x�3� x�4� d1 d2 d3 d4 ; �53�

whereG�2; 3� � �dI�2�=dx�3��x�0 is the dynamical differential
linear response (introduced at the level of microscopic
dynamics) of the currents to the forces [38], the first term is
proportional to x 2, and the second to x 4. But the second term
does not reduce to a mere small correction if it grows with the
observation time faster than linearly. For instance, in (48), it
increases roughly proportionally to t 2. Then the integral in
(53) describes the contribution from equilibrium 1/f-fluctua-
tions of kinetic coefficients of the system. As can be seen from
(53) (and was demonstrated in [38, 56]), they are naturally
related to fluctuations of the differential response
dI�2�=dx�3� , characterizing the exponential instability of
system phase trajectories with respect to their small perturba-
tions [45, 47, 57].
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4. Conclusion

We have presented our view of the generalized fluctuation±
dissipation relations (FDRs), or theorems, first introduced by
us in 1977, in comparison with analogous results that
appeared in 1997 and later. They all manifest the conserva-
tion of phase space volume under microscopic dynamic
motion and its time symmetry (reversibility), both essentially
determining statistical and dissipative properties of thermo-
dynamically nonequilibrium physical systems.7

The comparison gave us sufficient reasons to say, in
contrast to the misunderstandings observed in related
literature (see the Introduction), that `new' results have not
introduced a principal novelty or greater generality, in essence
appearing as alternative formulations of the `old' results. Our
approach suggested in our time (and reflected in this paper)
has a more general character, allowing us to note and use
qualitative peculiarities of different types of systems, first of
all on the level of their Hamiltonians and statistical
ensembles, and then their stochastic models. In the frame-
work of our approach, it is easy to see inter-connections of the
new and old results, possibilities of choosing the most
appropriate form of FDRs for concrete application, and the
derivation of new variants of FDRs not considered pre-
viously.

On the whole, generalized FDRs deliver all the necessary
tools for the construction of thermodynamically correct
models of real nonequilibrium processes and systems.
Regardless of the degree of complexity or roughness of a
model, observance of FDRs at its level ensures its qualitative
agreement with rigorous statements of statistical mechanics
(and sometimes even closely leads to quantitative agreement,
as was demonstrated, in particular, by the examples in
Section 3). This useful potential of FDRs will not likely
become exhausted some day.
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