
Abstract. Convective motions in moist saturated air are accom-
panied by the release of latent heat of condensation. Taking this
effect into account, we consider the problem of convective
instability of a moist saturated air layer, generalizing the for-
mulation of the classical Rayleigh problem. An analytic solution
demonstrating the fundamental difference between moist con-
vection and Rayleigh convection is obtained. Upon losing stabi-
lity in the two-dimensional case, localized convective rolls or
spatially periodic chains of rollers with localized areas of up-
ward motion evolve. In the case of axial symmetry, the growth
of localized convective vortices with circulation characteristic of
tropical cyclones (hurricanes) is possible at the early stages of
development and on the scale of tornados to tropical cyclones.

1. Introduction

Convective motions in liquids and gases subject to the field of
gravity are generated if their density (temperature) is spatially
inhomogeneous. Various forms of convective motion are
observed in Earth's atmosphere, which can be considered to
be composed of dry air and water vapor. If the water vapor is
unsaturated, motions in the atmosphere are described with
high accuracy by standard heat convection equationsÐ the
Boussinesq equations [1, 2]. The situation changes radically
when the vapor is saturated. Because the saturation density
decreases with height, the water vapor in rising moist air
parcels experiences condensation, accompanied by the release
of latent heat of condensation and precipitation. Condensa-
tion heating, augmenting the Archimedes buoyancy force,
plays an important role in processes of the formation of
convective cloudiness in the atmosphere [3±5]. Tropical
cyclones or hurricanesÐ large-scale atmospheric vortices
forming over the tropical ocean Ð furnish one more vivid
example of perturbations driven by latent heat release.
According to the estimates in Ref. [6] based on the precipita-
tion balance, a condensation heat source in the central part of
a hurricane operates at a power of 4� 108 MW, exceeding
that of all US power plants by a factor of 103.

A detailed description of moisture phase transition
processes is a rather complex problem of cloud microphy-
sics. In studies of the dynamics of moist convection, a
simplified approach is typically used based on including a
volume latent heat source in the equations of heat convection,
which is proportional to the vertical velocity in the ascending
branch of circulation, but is absent (zero) in the descending
ones. This representation corresponds to the release of latent
heat in rising moist air, but to the absence of heat absorption
in droplet evaporation in descending air (owing to the absence
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of droplets). Numerous papers have dealt with generalized
statements of the classical Rayleigh problem with the volume
latent heat source taken into account, exploring the stability
of mechanical equilibrium in a layer of moist saturated air.
Because of the nonanalytic (piecewise linear) dependence of
the source on the vertical velocity, the analysis was confined
to either separate numerical simulations [7±15] or particular
solutions for an inviscid atmosphere (lacking thermal con-
ductivity) [16±19]. In this paper, based on the results in
Refs [20±23], we propose an analytic solution of the
problem, which demonstrates the principal distinctions of
moist convection from the Rayleigh convection. The most
prominent distinctions are related to the structure of
perturbations evolving upon the loss of stability. For
instance, in two dimensions, there is a parameter range (for
the Rayleigh and Taylor numbers) where localized perturba-
tions corresponding to an isolated convective roll show the
fastest growth. For other parameter values, periodic struc-
tures related to spatially periodic systems of convective rolls
with narrow (concentrated) regions of ascending motion are
the most rapidly growing. The intensification of localized
axisymmetric structures in a rotating atmosphere illustrates
the possibility of spontaneous growth of hurricane vortex
perturbations.

The results presented can, in our opinion, be helpful to a
broad community of readers interested in particular problems
of nonlinear dynamics as well as in general questions about
the theory of self-organization (the theory of structure birth)
in dissipative media.

2. Conditions for the onset of convection
in an ideal (inviscid and lacking thermal
conductivity) atmosphere

We begin with known facts related to the stability of an
atmospheric column in a homogeneous gravity field. We
assume that the thermodynamical parameters p, r, and T
(pressure, density, and temperature), linked by the equation
of state p � RarT, depend only on the vertical coordinate z
(directed opposite to the field of gravity) and satisfy the
hydrostatic balance equation

dp

dz
� ÿgr ; �1�

where g is the acceleration of gravity and Ra is the gas
constant. The stability of equilibrium state (1) can be judged
by considering adiabatic displacements (without heat
exchange) of air parcels between two different levels. As is
known [3, 4], the temperature in a rising parcel decreases at
the adiabatic lapse rate ga � g=cp. Here, cp is the specific heat
at constant pressure in dry air and ga � 1K/100m. If the
condition g > ga is satisfied, where g � ÿdT=dz is the
temperature gradient of ambient air (the convention in
meteorology is to take gradients with the negative sign), the
parcel is warmer and lighter than its surroundings and
continues moving away from its initial position. Such a state
is convectively unstable. By contrast, for g < ga, the gravity
force returns the colder parcel to its initial position. Hence, in
a stable state, the temperature decreases with height more
slowly than ga, i.e., the condition g < ga must hold. We note
that this condition also follows from the general statement
that the entropy must increase with height in a stable state [1].
Using Eqn (1) and the explicit expression for the entropy of

dry air Z � cp lnTÿ �Ra=cp� ln p� const [3], we obtain
dZ=dz � cpT

ÿ1�ga ÿ g� > 0 for g < ga.
The consideration above pertains to dry air containing

unsaturated water vapor. If the water vapor is in a saturated
state, the amount of moisture that can be carried by an air
parcel decreases with height. As this parcel rises, its water
vapor condenses and, because of the latent heat release, the
rate at which the parcel temperature decreases with height
turns out to be smaller than ga. The corresponding lapse rate
is conventionally called the moist adiabatic lapse rate gm.
From the second law of thermodynamics, it follows for this
quantity that [3±5]

gm � ga �
Lv
cp

dsm
dz

; �2�

where Lv is the specific heat of condensation and sm is the
mass fraction of saturated vapor (a function of temperature
and pressure). When considering convection in the atmo-
sphere, it is commonly assumed that all the condensed
moisture precipitates. It then follows that the notion of
moist adiabatic lapse rate pertains only to rising air masses.
As a parcel moves down, its temperature changes at the dry
adiabatic lapse rate ga (no heat is lost to evaporate droplets).

As regards the gradients ga and gm, meteorologists
distinguish between the absolutely unstable temperature
stratification g > ga > gm, the moist unstable, but dry stable
(conditionally stable) stratification ga > g > gm, and the
moist stable stratification ga > gm > g. For the conditionally
unstable stratification, particles displaced downward return
to their initial position, but those displaced upward continue
moving away. This principal dependence on the direction of
vertical displacement is one of the main distinctive features of
the dynamics of convective processes in moist saturated air.

3. Statement of the problem of convective
instability in a layer of moist saturated air

In Section 2, we neglected the dissipative factors (viscosity
and thermal conductivity). Here, we consider the statement of
the problem of the stability ofmechanical equilibrium, similar
to the statement of the classical Rayleigh problem [1, 2]. There
is a layer of rotating viscous and heat conducting atmosphere
of thickness h, saturated with water vapor and bounded by
two rigid horizontal surfaces. The surfaces are kept at
constant temperatures, and hence the temperature distribu-
tion at equilibrium is a linear function of the vertical
coordinate. We need to explore the stability of the equili-
brium state, with the release of latent heat of condensation in
ascending motions of saturated air taken into account.

We analyze stability in the framework of the system of
equations that is traditionally used to numerically simulate
atmospheric convection [24, 25]. In this system, the molecular
coefficients of viscosity and thermal conductivity are replaced
by their turbulent analogs (which model the effect of small-
scale stochastic convection). Additionally, we assume that the
turbulent exchange is anisotropic, differing in the horizontal
and vertical directions. With these assumptions, the behavior
of small perturbations of the equilibrium state obeys the
system of equations

ut � f k� u � ÿHp� gyk� mDu� nuzz ; div u � 0 ;

yt � Gw � mDy� nyzz �Q ;
�3�
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which is to be augmented with the Rayleigh boundary
conditions (the slip conditions) on the horizontal bound-
aries,

uz � vz � w � y � 0 ; z � 0; h : �4�

Here, u is the velocity vector with the respective components
u, v, andw along the horizontal x and y axes and the vertically
directed z axis, p � p 0=�r, y � aT 0, where p 0 and T 0 are the
deviations of pressure and temperature from their equili-
brium distributions, a is the thermal expansion coefficient, �r
is a constant reference density, G� a�gaÿ g� is the stratifica-
tion parameter, g � ÿd �T=dz is the temperature gradient in
the equilibrium, m and n are the turbulent exchange coeffi-
cients in the horizontal and vertical directions, f is the
Coriolis parameter, D is the two-dimensional (horizontal)
Laplace operator, k is a unit vertical vector, andQ � aM=cp,
M [W kgÿ1] is the heat source intensity. Letter subscripts are
used here and below to denote partial derivatives.

The source related to the release of latent condensation
heat is represented as M � ÿLvw�dsm=dz� for the ascend-
ing saturated air and M � 0 for the descending flow [7±19].
In terms of the Heaviside function �H�w� � 1;w > 0;
H�w� � 0;w < 0�, the source can be written as

M � cp�ga ÿ gm�wH�w� ; �5�

where the moist adiabatic gradient gm is given by expres-
sion (2). As mentioned above, representation (5) implies that
water vapor condensation occurs in ascending air masses,
while all the condensate precipitates as rain. The moist
adiabatic gradient depends in general on the temperature
and pressure of the equilibrium state. This dependence is
neglected in this paper, and gm is treated as constant.

We note that the continuity equation is written in
system (3) for an incompressible fluid. The approximation
of incompressibility is valid for describing convection in
shallow atmospheric layers. Its applicability conditions are
given, e.g., in Ref. [24].

System (3) with source (5) belongs to the class of systems
with nonanalytic (piecewise-linear or `jumping') nonlineari-
ties. This nonlinearity does not allow linearization, even in
principle. The presence of a nonlinear source is a distinctive
mathematical feature of this problem.

We seek a solution of problem (3)±(5) in the quasistatic
approximation. In this approximation, the vertical projection
of themomentum equation reduces to the hydrostatic balance
pz � gy. The quasistatic variant of system (3) with boundary
conditions (4) allows a separation of variables: both the
solution and the source can be expanded in series in
eigenfunctions cos �pnz=h� and sin �pnz=h� of the operator
d2=dz 2. We consider the case n � 1 (the first vertical mode)
and assume that

�u; v; p� � �~u; ~v; ~p� cos pz
h
; �w; y;Q� � �~w; ~y; ~Q� sin pz

h
;

where the parentheses combine amplitudes that are indepen-
dent of z. Eliminating the pressure using the hydrostatic
equation, we arrive at a system of three equations for ~w, ~y
and the vertical component of vorticity ~o � ~vx ÿ ~uy. As scales
for the variables t, x, y, ~w, and ~o, we select d 2=n,

��������
m=n

p
d,��������

m=n
p

d, gd 2=m, and ng=�m f d �, where d � h=p. Suppressing
the tilde in what follows, we write the system of equations for

the dimensionless amplitudes:

wt ÿ Dw� w� o� Dy � 0 ; ot ÿ Do� oÿ Tw � 0 ;

yt ÿ Dy� y� Rw � Q ; Q � RmwH�w� ; �6�

which contains three dimensionless parameters

R � ag�ga ÿ g�d 4

mn
; T � f 2d 4

n 2
; Rm � ag�ga ÿ gm�d 4

mn
:

�7�
Here, Rm is the parameter characterizing the intensity of
latent heat release andR is an analog of the Rayleigh number.
In expression (7) and below, T is an analog of the Taylor
number. We note that the form of the Rayleigh number used
here differs from the traditional one [1, 2] by its sign and the
factor p4 in the denominator. The Ekman number E � 1=

����
T
p

can often be conveniently used instead of the Taylor number.
The goal of the subsequent analysis lies in determining the
critical values of the parameters R and T marking the
boundary for the emergence of unstable solutions of system
(6) when the external parameter Rm is fixed, and in exploring
their structure.

We note that the quasistatic approximation does not
interfere with the main mathematical aspect of the problem
related to the source nonlinearity. This approximation is also
frequently adopted in atmospheric numerical models; it is
valid under conditions of strong anisotropic exchange m4 n.

4. Critical values for `dry' convection

We begin by seeking critical values of parameters in dry
convection. For Rm � 0, system (6) reduces to the single
equation

�qt ÿ D� 1�2w� Twÿ RDw � 0 : �8�

Seeking exponentially increasing solutions of Eqn (8) in the
form w � exp �kt� exp �i�k1x� k2y��, we find the growth
increment

k1; 2 � ÿ�k 2 � 1� �
����������������������
ÿRk 2 ÿ T
p

; k 2 � k 2
1 � k 2

2 :

Setting k1 � 0, we find the critical value for the Rayleigh
number associated with a given value of the wave vector
modulus k: R � Rcr�k;T �� ÿ��1� k 2�2�T �=k 2. Perturba-
tions grow for R < Rcr�k;T � and decay for R > Rcr�k;T �. A
physical meaning is given to the maximum value
R � Rcr�k;T � attained at some k � kcr�T � and related to
the most dangerous perturbation

R � Rcr�T � � ÿ2
ÿ ������������

1� T
p � 1

�
; k 2

cr �
������������
1� T
p

: �9�

The curve R � Rcr�T � in the parameter plane �T 1=2;R�
separates regions of stability and instability (Fig. 1). Values
T 1=2 < 0 are associated with f < 0. The most dangerous
perturbation is given by a system of convective cells with the
horizontal size S � p=kcr.

For comparison, we present the critical values obtained
without the quasistatic approximation. It can be easily shown
that in the absence of background rotation, the full system (3)
(with the same normalization) leads to Rcr�k;T � �
ÿ�1� k 2�2�1� ek 2�=k 2, where e � n=m. For the most
rapidly growing perturbation and isotropic exchange e � 1,
we recover the classical result of Rayleigh [1, 2]: Rcr � ÿ27=4
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and kcr �
���
2
p

=2. The respective values (9) in the quasistatic
approximation become Rcr � ÿ4 and kcr � 1, i.e., differ by a
factor of more than one and a half. However, if the exchange
is anisotropic, e5 1, we obtain Rcr � ÿ4�1� 2e� and
kcr � 1ÿ e and, accordingly, the quasistatic approximation
then leads to asymptotically exact results.

5. Green's function. Integral equation
for the vertical velocity amplitude

We can try to construct solutions of nonlinear system (6)
separately in dry �w < 0� andmoist �w > 0� regions, and then
match them at the boundary of the regions. Such an approach
results in cumbersome computations. More efficient is the
approach comprising two stages, as proposed in Refs [20±23].
At the first stage, the Green's function for the problem with a
given heat source is constructed. Then, in the formula for the
vertical velocity, which represents the convolution of the heat
source with the Green's function, the heat source Q is
substituted in form (6), which yields an integral equation for
the vertical velocity amplitude. The analysis of this integral
equation allows finding both the structure and the increment
of unstable perturbations dependent on the problem para-
meters.

To construct the Green's function, it is convenient to
rewrite system (6) in the vector±matrix form [26]

qt � ADq� Bq � F ;

A �
ÿ1 0 1
0 ÿ1 0
0 0 ÿ1

 !
; B �

1 1 0
ÿT 1 0
R 0 1

 !
;

�10�

where q � �w;o; y�tr and F � �0; 0;Q�tr (the superscript here
denotes transposition). Seeking exponentially increasing
solutions q � exp �kt� q�x; y� and F � exp �kt�F�x; y�, we
reduce Eqn (10) to the stationary equation

Dqÿ Cq � Aÿ1F ; C � ÿAÿ1�B� kI � ; �11�
where I is the identity matrix. The eigenvalues l2j of thematrix
C are different,

l21; 2 � 1� k� R

2
�

����������������������������������������
R 2

4
� R�1� k� ÿ T

r
; l23 � 1� k ;

�12�

and therefore a matrix U exists that diagonalizes C.
Inserting q � Ur into Eqn (11) and multiplying by Uÿ1,
we obtain the system of three Helmholtz equations
Dsj ÿ l2j sj � ~Fj, where the right-hand sides ~Fj are linear
functions of the heat source Q. Solutions of these equations
are convolutions of ~Fj with the well-known Green's functions
of the Helmholtz equation. Performing the inverse linear
transformation, for each of the components w, o, and y of
the vector q, we obtain expressions that are convolutions of
the heat source with the corresponding Green's functions,
which are linear combinations of the Green's functions of the
Helmholtz equation. The substitution of the source
Q � RmwH�w� in the expression for w results in the sought
integral equation for the vertical velocity amplitude. If w
depends only on the coordinate x (the planar geometry of the
problem), the equation takes the form

w�x� � Rm

�
w>0

G�xÿ x 0�w�x 0� dx 0 ; �13�

G�x� � 1

l21 ÿ l22

�
l1 exp

ÿÿl1jxj�ÿ l2 exp
ÿÿl2jxj�� : �14�

In general, we have the equation

w�x; y� � Rm

��
w>0

G�xÿ x 0; yÿ y 0�w�x 0; y 0� dx 0 dy 0 ; �15�

G�x; y� � 1

2p�l21 ÿ l22�
ÿ
l21K0�l1r� ÿ l22K0�l2r�

�
; �16�

r �
����������������
x 2 � y 2

p
;

where K0�r� is the cylindrical Macdonald function. We stress
that the integration in Eqns (13) and (15) ranges the regions
w > 0, which are a priori unknown and have to be found in
the solution process.

We detail the structure of the Green's function for vertical
velocity (14), which is dependent on the eigenvalues l21; 2. We
set

R1;2�k;T � � �2
� �����������������������

1� k 2 � T
p

� �1� k�
�
:

It follows from Eqn (12) that the eigenvalues l21; 2 are
positive for R > R1�k;T �, negative for R < R2�k;T �, and
complex-conjugate for R2 < R < R1. In the case of positive
eigenvalues l21; 2, the Green's function is localized in the
vicinity of the heat source, G�0� � 1=�l1 � l2� > 0. On the
semiaxis x > 0, it changes sign only once, passing through
the point xG � �l1 ÿ l2�ÿ1 ln �l1=l2�, and monotonically
decays at infinity. The complex-conjugate values l21; 2 are
written as l1; 2 � x2 � ix1, where x2 � 0:5

���������������
Rÿ R2

p
and x1 �

0:5
���������������
R1 ÿ R
p

. The corresponding Green's function

G�x� � d exp
ÿÿx2jxj� cos ÿx1jxj � w

�
;

with d � �x 2
1 � x 2

2 �1=2=�4x1x2� and tan w � x2=x1, manifests
oscillations and changes its sign infinitely many times. The
curve R � R1�0;T � separating the domains with different
Green's function behaviors is shown in Fig. 1. The curve
R � R2�0;T � coincides with the critical curve (9) for the
Rayleigh convection (curve 2 in Fig. 1). As this curve is
approached, G�x� ! 1 and the spatial period of the Green's
function oscillations 2p=x1 tends to that of the most
dangerous perturbations for the dry Rayleigh convection,
Eqn (9), while spatial decay disappears. As the Rayleigh

1

2

20ÿ2ÿ4

ÿ4

ÿ8

4

R

4 T 1=2

Figure 1. 1Ðthe curve R � R1�0;T � separating domains with different

structures of the Green's function. 2Ðthe curve R � Rcr�T � in the

parameter plane � ����Tp � Eÿ1;R�; the instability domain of the dry

Rayleigh convection is below the curve.
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number approaches the boundary R � R1�0;T � dividing the
regions with different behaviors of the Green's function, the
spatial period of the Green's function oscillations tends to
infinity, and the boundary is traversed in a continuous way.

By its physics, the Green's function for the componentsw,
o, and y describes the circulation created by a point-like
horizontal heat source. Because ascending motions are
accompanied by latent heat release, it is apparent on the
physical level that the structure of most unstable perturba-
tions in a moist atmosphere must derive from the spatial
structure of the Green's function for the vertical velocity. In
the case of localized Green's function and for the heat release
(the value of Rm) sufficiently large, most rapidly growing
perturbations are localized. If the Green's function oscillates,
the most rapid growth is experienced by spatially periodic
structures, whose period of spatial oscillations is determined
by that of the Green's function. The analysis in what follows
substantiates these assumptions with rigorous mathematical
results.

In Section 6, we construct localized and periodic solutions
of Eqn (13). In constructing periodic solutions with a period
2L�, Green's function (14) is replaced, for convenience, by the
periodic Green's function

GL� �x� �
1

2�l21 ÿ l22�

�
�
l1 cosh

ÿ
l1
ÿ
L� ÿ jxj

��
sinh �l1L�� ÿ l2 cosh

ÿ
l2
ÿ
L� ÿ jxj

��
sinh �l2L��

�
: �17�

This function is a linear combination of the Green's functions
for boundary value problems with the periodicity conditions
s 00j ÿ l2j sj � ~Fj, sj�ÿL�� � sj�L��, and s 0j �ÿL�� � s 0j �L��.
Green's function (14) is the limit of (17) as L� ! 1.

6. Convective instability
under two-dimensional planar perturbations.
Periodic and localized structures

6.1 Periodic solutions
We seek periodic solutions (with the period 2L�) of Eqn (13)
with kernel (17) in the class of even functions satisfying
conditions of sign-definiteness w5 0, x 2 �0; x0�; w4 0,
x 2 �x0;L��. To find w�x� in the moist domain x 2 �0; x0�,
we use Eqn (13) to obtain the equation

w�x� � Rm

� x0

0

ÿ
GL� �xÿ x 0� � GL� �x� x 0��w�x 0� dx 0 ; �18�

with the obvious boundary condition w�x0� � 0. After the
solution in the moist region is found, the expression for w�x�
in the dry region x 2 �x0;L�� is obtained by integration in
Eqn (18). Equation (18) differs from the classical Fredholm
equation because its solution is subject to a rather strong
constraint of sign definiteness and the parameter x0 (the
radius of the precipitation region) has to be determined in
the course of solving.

In the region x 2 �0; x0�, system (6) can be reduced to a
single fourth-order linear differential equation for w�x�.
Because the solution of Eqn (18) belongs to the class of even
functions, we seek it (up to a factor) in the form

w�x� � cos �p1x�
cos �p1x0� ÿ

cos �p2x�
cos �p2x0� ; 0 < x < x0 ; �19�

with real-valued coefficients p1 and p2 undefined at this stage.
The boundary condition is automatically satisfied in this case.
The substitution of Eqn (19) in Eqn (18) leads to terms
proportional to cos �pjx� and cosh �ljx� in the right-hand
side. Equating the coefficients with cos �pjx� in the left- and
right-hand sides, we obtain the equation for pj,

p 4
j � �l21 � l22 ÿ Rm� p 2

j � l21l
2
2 � 0 ; j � 1; 2 :

Assuming, for definiteness, that p2 > p1, we find

p1;2 � 0:5
�������
Rm

p ÿ �����������
1ÿ l
p

�
�������������
1ÿ l0

p �
;

l � �l1 ÿ l2�2
Rm

; l0 � �l1 � l2�2
Rm

; �20�

l1; 2 � 0:5
�������
Rm

p ÿ �����
l0

p
�

���
l
p �

:

In the plane of parameters l0 and l, which play an
important role in what follows, the real values of p2 > p1 are
associated with the region l4l0 4 1. The quantities l1; 2 are
real-valued in the region 04l4l0 4 1 and are complex
conjugate for 04l0 4 1, l < 0.

Equating the coefficient with cosh �ljx� in Eqn (18) to
zero, we obtain the equations

p2 tan �p2x0�ÿ lj tanh �ljL�
p 2
2 � l2j

ÿ p1 tan �p1x0�ÿ lj tanh �ljL�
p 2
1 � l2j

� 0 ;

j � 1; 2 ;

where L � L� ÿ x0. They can be conveniently solved for
tan �p1; 2x0�:
tan �p1x0�� 0:5�B1ÿ B2�; tan �p2x0�� ÿ0:5�B1� B2� : �21�

Taking the last relations in (20) into account, for l5 0, we
have

B1�
���������������
lÿ10 ÿ 1

q �
tanh

ÿÿ ���
l
p
�

�����
l0

p �
Z
�� tanh

ÿÿ �����
l0

p
ÿ

���
l
p �

Z
��
;

B2�
���������������
lÿ1ÿ 1

p �
tanh

ÿÿ ���
l
p
�

�����
l0

p �
Z
�ÿ tanh

ÿÿ �����
l0

p
ÿ

���
l
p �

Z
��
;

Z � 0:5
�������
Rm

p
L : �22�

For l < 0, passing from hyperbolic to trigonometric func-
tions, we obtain

B1 � Dÿ1
����������������
lÿ10 ÿ 1

q
sinh

ÿ
2
�����
l0

p
Z
�
;

B2 � Dÿ1
������������������
1� jljÿ1

q
sin
ÿ
2
�����
jlj

p
Z
�
; �23�

D � cos2
ÿ �����
jlj

p
Z
�� sinh2

ÿ �����
l0

p
Z
�
:

Further analysis reduces, in fact, to finding the solvability
conditions for Eqns (21) and verifying that the sign-definite-
ness condition holds for their solutions. As follows from the
analysis, for complex-valued p1 and p2, Eqns (21) are
necessarily incompatible [this, in particular, was the ratio-
nale for form (19)].

Equations (21) lead to the relations

p1x0 � arctan
ÿ
0:5�B1 ÿ B2�

�� pn ; �24�
p2x0 � ÿ arctan

ÿ
0:5�B1 � B2�

�� pm ;

where n andm are some natural numbers. BecauseB1 > 0 and
p2 > p1, it should certainly bem > n. In what follows, we refer
to the solutions that correspond to different n and m as the
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modes. Taking Eqns (20) into account and adding Eqns (24),
we arrive at

x0 � 1���������������������
Rm�1ÿ l�p �

�n�m�p� arctan
ÿ
0:5�B1 ÿ B2�

�
ÿ arctan

ÿ
0:5�B1 � B2�

��
: �25�

Eliminating the parameter x0 from Eqn (25), we obtain the
equation

F�l0; l;Z� � pmÿ arctan
ÿ
0:5�B1 � B2�

�
ÿ

�����������
1ÿ l
p � �������������

1ÿ l0
p�����������

1ÿ l
p ÿ �������������

1ÿ l0
p

�
pn� arctan

ÿ
0:5�B1 ÿ B2�

�� � 0 ;

�26�

which defines a functional dependence between the para-
meters l0, l, and Z and ensures the existence of nontrivial
periodic solutions of integral equation (18). For each mode in
the parameter plane �l0; l�, dependence (26) defines a one-
parametric curve family l � f �l0;Z� (with the parameter Z)
such that a solution exists at each point on the curves. For a
fixed Z, the curve corresponds to a periodic solution with
L � 2Z=

�������
Rm

p
and the value of x0 given by expression (25).

6.2 Localized solutions
The localized solutions can be obtained similarly by replacing
the periodicGreen's functionGL� in Eqn (18) with theGreen's
functionG for a point-like heat source, Eqn (14). On the other
hand, localized solutions can be treated as periodic ones with
an infinite period, which is realized at Z � 1. If Z � 1, it
follows from Eqns (22) and (23) that B1 � �lÿ10 ÿ 1�1=2 and
B2 � 0, and Eqns (21) reduce to

tan �p1x0� �
����������������
lÿ10 ÿ 1

q
; tan �p2x0� � ÿ

����������������
lÿ10 ÿ 1

q
:

Hence, instead of (24)±(26), we have

p1x0 � arctan

����������������
lÿ10 ÿ 1

q
� pn ; �27�

p2x0 � ÿ arctan

����������������
lÿ10 ÿ 1

q
� pm ;

x0 � p�n�m����������������������
Rm�1ÿ l�p ; �28�

l � f �l0� � 1ÿ �1ÿ l0�

�
�
mÿ n

m� n
ÿ 2

p�m� n� arcsin
�������������
1ÿ l0

p �ÿ2
: �29�

Dependence (29) ensures the existence of localized solutions
of Eqn (18). The parameters n and m are selected so as to
satisfy the condition of sign definiteness.

6.3 Mode existence regions in the plane (k0, k)
Finding these regions allows determining the instability
domain in the plane of initial problem parameters. A detailed
analysis of the behavior of curves l � f �l0;Z� for different
modes is performed in Refs [20±23]. For each mode in the
region 04l4l0 4 1, which corresponds to real-valued l1; 2,
the curves l � f �l0;Z� drawn for different Z do not intersect
and are located to the left of the curve l � f �l0� for the
localized mode Z � 1. Figure 2 plots these curves for the
mode n � 0, m � 1. In the domain l < 0 that corresponds to
the complex-conjugate l1; 2, the curves l � f �l0;Z� for
different Z multiply intersect each other. For a fixed Z, the

curve l � f �l0;Z� winds around the curve l � f �l0�, as
shown in Fig. 3 for the mode n � 0, m � 1. We call the
intervals of the curve l � f �l0;Z� lying to the right of
l � f �l0� crests, and those to the left, troughs. For every
curve, we enumerate the crests and troughs in the order from
top down. Crests and troughs with a fixed number form one-
parametric families withZ as a parameter. We find envelopes
of these families in the plane �l0; l�. The equations for
envelopes are obtained by eliminating the parameter Z from
the systems of equations F�l0; l;Z� � 0 and FZ�l0; l;Z� � 0.
Using Eqns (26) and (23), it can be readily shown that
FZ�l0; l;Z� � 0 for

Z � p j

2
�����jljp ; j � 1; 2; . . . : �30�

It follows from Eqn (23) that B2 � 0 on the envelopes.
Substituting the values Z found above in Eqns (23) and (26)
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Figure 2. Curves l � f �l0;Z� for various Z in the region 04l4l0 4 1

for the mode n � 0, m � 1. AB is the curve l � f �l0� for the localized

mode n � 0, m � 1.
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Figure 3. Curve l � f �l0;Z� for Z � 1:5 for the mode n � 0,m � 1 (thick

solid line); ABC is the curve l � f �l0� for the localizedmode n � 0,m � 1.
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results in equations for the envelopes

arctan

� ����������������
lÿ10 ÿ 1

q
tanh �ÿ1�

j

�
j p

�����
l0
p

2
�����jljp ��

� p
2

 
�mÿ n� ÿ �n�m�

���������������
1ÿ l0
1� jlj

s !
: �31�

It can be easily verified that the envelopes are smooth
continuations of curves l � f �l0� for the corresponding
localized modes into the region l < 0. In Eqns (30) and (31),
j � 1 pertains to the envelope of the first crests, j � 2 to that
of the second troughs, etc. For eachmode, the envelope of the
first crests j � 1 lies to the right of all other envelopes in the
plane �l0; l�. For the mode n � 0, m � 1, it has the
asymptotic form

l0 � 1

2
; l! ÿ1 : �32�

Figure 4 shows the envelope BD of the family of the first
crests � j � 1� and the envelope BE of the family of the second
troughs ( j � 2, the dashed curve); it also plots several curves
l � f �l0;Z� for the mode n � 0, m � 1 for illustration. The
curve AB is l � f �l0� for this mode in the region l > 0.
Among the dashed curves, PM is the envelope of the first
crests � j � 1�, PH the envelope of second troughs � j � 2�, and
AP is the curve l � f �l0� for the mode n � 0, m � 2 in the
region l > 0.

Relation (30) implies that the envelope is touched at the
point l by the curve l � f �l0;Z�, with the parameter Z in
(30). Thus, each point l of the envelope is associated with the
solution for which

L � j p������������
Rmjlj

p ;
x0
L
� n�m

j

������������������
1� jljÿ1

q ; x0 � �n�m�p������������������������
Rm

ÿ
1� jlj�q :

�33�

6.4 Sign-definiteness and spatial structure of modes
We analyze the structure of localized solutions and the
solutions that correspond to envelopes, for different modes.
Because B2 � 0, it follows from Eqns (24) and (27) that
cos �p2x0� ��ÿ1�mÿn cos �p1x0�. Thus, in the region
x2�0; x0�, up to a positive factor, w�x� � �ÿ1�n�cos �p1x��
�ÿ1�mÿn�1 cos �p2x��. Using this relation, together with
Eqns (24) and (27), it can be readily shown that the condition
of sign definiteness in the moist domain w5 0, x 2 �0; x0� is
only satisfied for modes n � 0, m � 1 and n � 0, m � 2.
Solutions that correspond to these two cases are respectively
referred to as the first and the secondmode. The localized first
and second modes are sign definite in the dry region
x0 < x <1 for l5 0 on the respective curves l � f �l0� and
sign indefinite for l < 0. This follows from the fact that the
Green's function G is oscillating for l < 0. The periodic first
and second modes are sign definite in the dry domain
x0 4x4L� only on the envelopes of first crests � j � 1� and
second troughs � j � 2� of these modes. For these modes on
the curves l � f �l0;Z� at a fixedZ, the solution becomes sign
indefinite (in the dry region) immediately after the curve
touches the envelope of the second troughs. For modes
n > 0, w�x� fails to satisfy the condition of sign definiteness
not only on the envelopes but also everywhere on the curves
l � f �l0;Z�.

Hence, the existence domain for the problem solutions
coincides with the corresponding domain for the first mode.
On the plane �l0; l�, the boundary of the solution existence
domain is curve AD in Fig. 4. It consist of two curves
smoothly matching each other at l � 0: the curve l � f �l0�,
Eqn (29), for the first localized mode n � 0, m � 1 in the
region l5 0 and envelope (31) of the first crests j � 1 of this
mode in the region l < 0. Curve AD is denoted as l � c�l0�
in what follows. At each point on the curve l � c�l0�, the
spatial structure of both localized and periodic solutions in
the moist domain is given by Eqn (19), which can be
conveniently rewritten as

w�x�� cos

�
p
2

x

x0

�
cos

�
p
2

��������������
1ÿ l0
1ÿ l

r
x

x0

�
; 04 x4 x0 : �34�

For localized solutions in the dry domain, after integration in
Eqn (18), we have

w�x� � ÿ
��������������������������������
�1ÿ l��1ÿ l0�

l

r
sinh

�
p
2

������������
l

1ÿ l

r
xÿ x0
x0

�
� exp

�
ÿ p
2

������������
l0

1ÿ l

r
xÿ x0
x0

�
; x > x0 : �35�

For periodic solutions, which correspond to the envelope, we
similarly obtain

w�x� � ÿL cosh

 
p
2

������
l0
jlj

s �
1ÿ xÿ x0

L

�!
sin

�
p
2

xÿ x0
L

�
;

x0 < x4L� ; �36�

L �
��������������������������������
�1ÿ l��1ÿ l0�

jljl0

s
sin

�
p
2

��������������
1ÿ l0
1ÿ l

r �
sinhÿ1

 
p
2

������
l0
jlj

s !
:

In relations (34)±(36), x0 andL are defined by expressions (28)
and (33), and l and l0 are linked by the equation l � c�l0�.
On passing through the point l � 0, the spatial structure of
the solution that corresponds to the domain boundary
l � c�l0� varies continuously. The existence boundary for
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Figure 4. The domain in the plane �l0; l� where the problem solutions

exist. The boundary of domain ABD is the curve l � c�l0�.
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the second mode n � 0, m � 2 is organized similarly and is
located in the plane �l0; l� to the left of the curve l � c�l0�.
The existence domains for periodic sign-definite modes n � 0,
m > 2 are located even further to the left (for these modes,
sign-definite localized solutions and sign-definite solutions
corresponding to envelopes do not exist).

Given the distributions w�x�, we can uniquely find the
velocity components u and v by noting that the vortex
component v arises in this case owing to the Coriolis force.
Plots of the w�x� distributions for the first and second
localized modes are shown in Fig. 5. A schematic of
streamlines in the xz plane, corresponding to the first mode,
is presented in Fig. 6. The modes found describe localized
convective rolls exponentially growing with time. The
structure of circulation in the convective rolls corresponds
to the air inflow onto the symmetry axis in the lower half of
the layer and outflow in the upper one. The rise of air in the
vicinity of the axis is accompanied by condensation and
precipitation. The circulation is respectively cyclonic or
anticyclonic in the lower or upper half of the layer.

Figure 7 plots w�x� profiles that correspond to envelopes
of the first crests and second troughs for modes n � 0, m � 1
and n � 0, m � 2. The solution corresponding to the
boundary segment BD in Fig. 4 describes a spatially periodic
ensemble of cloud rolls (banks) separated by the distance
2L � 2p=

������������
Rmjlj

p
(Fig. 8). Each separate cloud roll consists of

two circulation cells (the right and the left ones), and
x0=L � �1� jljÿ1�ÿ1=2 within each of them. As l! 0, the
ratio x0=L! 0, which means that a notable asymmetry exists
in the distribution of sizes of regions with ascending and
descending motions. Because there is no net mass flux within
the cells, the intensity of rising motions by far exceeds the
intensity of downward motions. Such distributions are
frequently called `peak' structures in the literature.

6.5 Domain of moist convective instability
in the plane of defining parameters
We pass from the parameter plane �l0; l� on which the
solutions have already been obtained to the plane of the
original parameters � ~Eÿ1 � Eÿ1=Rm, ~R � R=Rm�. Expres-
sing Eÿ1 � ����

T
p

and R in terms of l21 and l22 from (12) and

normalizing by Rm, we find

~R � 0:5�l0 � l� ÿ s ; ~Eÿ1 � 0:25

��������������������������������
�l0 ÿ l�2 ÿ 4s 2

q
; �37�

where s � 2�1� k�=Rm. For given values of ~R and ~Eÿ1, the
fastest growth is exhibited by the solutions that correspond to
the curve l � c�l0� in the plane �l0; l�. Indeed, for given ~R
and ~Eÿ1 and a fixed l < 1, the magnitude of k increases with
l0. For solutions showing the fastest growths, the parameters
l0 and l are related by the dependence l � c�l0�, and
therefore relations (37) provide a parametric representation
(with the parameter l) of the curve s � const in the plane
� ~Eÿ1; ~R�. When s is fixed, drawing such a curve only requires
using the part of the dependence l � c�l0� that satisfies the
conditionÿ1 < l4lmax�s�, where lmax�s� is the root of the
equation

l0 ÿ l � 2s : �38�

For different values s5 0, the curves in the plane � ~Eÿ1; ~R� fill
the domain O shown in Fig. 9. In accordance with (37),
�l � 0, s � s � � 0:5l�0� corresponds to the point � ~Eÿ1 � 0,
~R � 0�, where l�0 � 0:646 is the root of the equation
f �l0� � 0. Thus, the curve s � � 0:323 passes through the
coordinate origin. Obviously, the instability region, i.e., the
regionwhere increasing solutions exist, is a part of the domain
O bounded from above by the curve s � 2=Rm �k � 0�. The
instability domain coincides withO in the limitRm !1. For
a fixed Rm, the curves s � const are the isolines of the
increment of most rapidly increasing perturbations,
k � sRm=2ÿ 1.

The dashed lines in Fig. 9 correspond to the curves
l � const; their equations can be easily derived in explicit
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Figure 5. Spatial distributions of the vertical velocity w�x� for the first (1)
and second (2) localized modes.
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Figure 6. Schematic for the streamlines of the first localized mode in the xz
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Figure 7. Spatial distributions of the vertical velocity w�x� that correspond
to the envelope of the first crests (solid curves) and second troughs (dashed

curves) for (a) the first and (b) the second modes. The interval BD of the

curve l � c�l0� in Fig. 4 is related to the distribution w�x� shown by the

solid line in panel a.
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form by eliminating s from relations (37). The curve l � 0
passes through the origin and divides the domain O into two
subdomains. For the point of intersection of the curves l � 0
and s � 0, we find ~Eÿ1 � 0:25l�0 � 0:16 and ~R �
0:5l�0 � 0:32 from Eqn (37). The subdomain 04l4 1 is
hatched. The instability domain contains a part of the
hatched domain if the condition s4s � or Rm 5R �m �
2=s � � 6:19 is satisfied. Within the hatched subdomain of
the instability domain, the first localized mode has the fastest
growth rate. As an example, the instability domain of the first
localized mode is plotted separately in Fig. 10 for Rm �
1:2� 104. Instead of curves s � const, the curves k � const
are shown. For a fixed Rm > R �m, the curves l � const are
such that the spatial structure of the localized mode does not
change along them and is defined by relations (28), (34), and
(35). In particular, the radius x0 � p=

���������������������
Rm�1ÿ l�p

of the
region with ascending motion of the localized mode does
not change. In the subdomain of the instability domain
considered here, the maximum value lmax�s� is attained by l
at the upper point S of the instability domain, which
corresponds to s � 2=Rm. From Eqn (38), for Rm 4 1 we
obtain the asymptotic expression lmax � 1ÿ �p=Rm�2=3.
Hence, inside the subdomain of the instability domain
considered here, x0 ranges from its minimum value x0 min �
p=

�������
Rm

p
on the curve l � 0 to its maximum value

x0 max � p 2=3=R
1=6
m at the upper point of the instability

domain. The corresponding dimensional values are obtained
by multiplying by

��������
m=n

p
h=p. The instability increment

reaches the maximum value kmax � Rm=R
�
m ÿ 1 at the point

of the instability domain that corresponds to the coordinate
origin. The dimensional e-folding time is obtained by multi-
plying the quantity 1=kmax by the time scale h 2=�p2n�.

In the lower subdomain of the instability domain, which
embraces the entire instability domain for Rm < R �m � 6:19,
the first periodic mode corresponding to the envelope of

first crests is the most rapidly growing. For fixed Rm,
the curves l � const are those on which the spatial
structure of the periodic mode does not change, being
defined by relations (33), (34), and (36). In particular, the
quantities x0 � p=

������������������������
Rm�1� jlj�

p
, L � p=

������������
Rmjlj

p
, and x0=L

stay constant. The transition from periodic solutions to
localized ones on crossing the curve l � 0 (the boundary
between the subdomains) occur continuously.

The conditionRm > R �m � 6:19 is necessary and sufficient
for the existence of the upper subdomain of the instability
domain, where the localized perturbations realize the fastest
growth rate. For Rm < R �m, only spatially periodic structures
can be unstable.

For a fixed value of Rm, the upper boundary of the
instability domain (the curve s � 2=Rm) determines the
dependence of the critical Rayleigh number on the Taylor
(Ekman) number R � Rcr�T �. We find its limit form as
Rm ! 0. To find the curve s � 2=Rm, we take the fragment
of the dependence l � c�l0� satisfying the condition
l4lmax. Because the curve l � c�l0� has the l! ÿ1
asymptotic value l0 � 1=2, Eqn (32), it follows from
Eqn (38) that lmax � 1=2ÿ 4=Rm. Hence, for the entire
fragment of the curve l � c�l0�, we have jlj4 1 and
l0 � 1=2. Eliminating l from relations (37) and multiplying
by Rm, we obtain the dependence R � Rcr�T � in (9) for the
dry Rayleigh convection. Simultaneously, we find Rmjlj �
4
������������
T� 1
p

from Eqn (37), whenceL � p=�2�T� 1�1=4�. Taking
the limit of the periodic solution in (33), (34), and (36) gives
w � cos �ax�, a � p=�2L� � �1� T �1=4 up to a constant
factor, which coincides with the most dangerous perturba-
tion in Rayleigh model (9). Thus, for Rm ! 0 we observe a
smooth transition from moist convection to the dry Rayleigh
convection. The dependences R � Rcr�T � for various values
of Rm are shown in Fig. 11.

We write the main results in the case without rotation,
~Eÿ1 � 0, which is of interest in and of itself. This case is
associated with the upper point of the instability domain, for
which Eqn (37) gives ~Rmax � lmax. With the asymptotic value
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Figure 9. The domain O in the parameter plane � ~Eÿ1; ~R�. The instability
domain is bounded above by the curve s � 2=Rm.
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lmax found above, we obtain the asymptotic form of the
critical Rayleigh number Rcr in the absence of background
rotation:

Rcr � ÿ4� Rm

2
; Rm 5 1;

�39�

Rcr � Rm

 
1ÿ

�
p
Rm

�2=3
!
; Rm 4 1 :

ForRm � R �m, obviously,Rcr � 0. This relation, as well as the
second relations in (39), can be rewritten in an alternative
forms

gcr� ga ; Rm� R �m; �40�

gcr� gm� �gaÿ gm�
�

p
Rm

�2=3

; Rm4 1 :

We stress that for the upper subdomain of the instability
domain, the value gcr always lies in the interval gm < gcr 4ga,
which corresponds to the conditionally unstable stratifica-
tion. Neutral solutions corresponding to Rcr are localized for
Rcr 5 0 �Rm 5R �m� and are periodic for Rcr < 0. For neutral
solutions, Eqns (28) and (33) lead to x0 � p=

�������������������
Rm ÿ Rcr

p
and

L � p=
����������jRcrj

p
, where second relation pertains to only

periodic solutions. For localized neutral solutions, we have
the asymptotic formula x0� p 2=3=R

1=6
m , Rm 4 1. For

Rm� R �m, we have x0 � p=
�������
R �m

p
. For periodic neutral

solutions, we obtain the asymptotic formulas x0 �
�1ÿ Rm=16�p=2 and L � �1� Rm=16�p=2, Rm 5 1. As can
be seen, already for Rm 5 1, taking phase transitions in the
Rayleigh model into account deforms the symmetric dry
convective cell such that the region of downward motions
becomes wider than the region of risingmotions, while the cell
size L� � x0 � L remains the same in the first approximation.

The instability domain of the second mode is structured
similarly. It lies within the instability domain of the first mode
and is qualitatively similar. For the second mode, the

corresponding value is R �m � 8:75, and the mode always
unfolds more slowly than the first mode.

We note that the radius L of the region of descending
motions for the most unstable first periodic mode coincides
with that for the oscillating Green's function G: L � LG �
p=

������������
Rmjlj

p
. This underlies the mechanism whereby the spatial

structure of the oscillating Green's function influences the
structure of the most unstable spatially periodic solution.

We briefly summarize this section. Taking phase transi-
tions of moisture into account leads to principle distinctions
between the moist convection and the dry Rayleigh convec-
tion. In the parameter plane, the region of moist convective
instability generally consists of two subdomains, in one of
which the fastest growth is exhibited by localized convective
rolls, and in the second by spatially periodic systems of
convective rolls with narrow (concentrated) regions of rising
motions.

7. Localized axisymmetric structures
(convective vortices)

In this section, we construct localized axisymmetric solutions
of integral equation (15)Ðanalogs of the localized convec-
tive rolls considered in Section 6. These solutions describe
convective vortices with various spatial scales, in the range
from a single cloud to a tropical cyclone.

For axisymmetric perturbations w � w�r� satisfying the
condition of sign definiteness w�r�5 0, r 2 �0; r0�; w�r�4 0,
r > r0, Eqn (15) reduces to the equation

w�r� � Rm

� r0

0

G�r; r�w�r�r dr ; �41�

G�r; r� � 1

l21 ÿ l22

� l21K0�l1r� I0�l1r� ÿ l22K0�l2r� I0�l2r� ; r < r ;

l21K0�l1r� I0�l1r� ÿ l22K0�l2r� I0�l2r� ; r > r ;

(
with the obvious boundary condition w�r0� � 0. Here, In�r�
and Kn�r� are the modified Bessel functions. The eigenvalues
l21; 2 defined by formula (12) are considered real-valued and
positive in what follows.

Solutions of Eqn (41) are sought in a form analogous to
Eqn (19):

w�r� � J0�p1r�
J0�p1r0� ÿ

J0�p2r�
J0�p2r0� ; 0 < r < r0 ; �42�

where Jn�r� is the Bessel function. Substituting Eqn (42) in
Eqn (41) and equating the coefficients at J0�pj r� in the left-
and right-hand sides, we arrive, as previously, at expressions
(20) for the parameters p2 > p1. The requirement that the
coefficient at I0�lj r� in the right-hand side be zero leads to
two equations, which after simple rearrangement can be
written as

J1�pj r0�
J0�pj r0� � Aj

K1�l1r0�
K0�l1r0� ÿ Bj

K1�l2r0�
K0�l2r0� ; j � 1; 2 ; �43�

where

Aj �
l2�p 2

j � l21�
pj�l21 ÿ l22�

; Bj �
l1�p 2

j � l22�
pj�l21 ÿ l22�

:

Rm � 1,0

Rm � 3,5

Rm � 6,19

Rm � 10

Rm � 20

10
Eÿ1
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ÿ3

ÿ9

ÿ15
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R

Figure 11. Boundaries of moist convective instability domains in the plane

Eÿ1 � ����
T
p

;R for various values of Rm. The dashed line is the respective

curve for the dry Rayleigh convection �Rm � 0�. Hatched is the subdo-

main of the instability domain for Rm � 20, where localized solutions

demonstrate the fastest growth.
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Because pj and lj can be expressed in terms of l0 and l using
relations (20), Eqns (43) form a system that connects the three
parameters l0, l, and Z0 � 0:5Rmr0. Eliminating the para-
meter Z0 from Eqns (43) formally leads to a functional
dependence l � f �l0�. As for plain localized modes, this
dependence furnishes the existence of a nontrivial solution
and is used in analyzing the instability domain.

We can derive the asymptotic form of the dependence
l � f �l0� assuming that pjr0; ljr0 4 1. Using the asymptotic
representation for the Bessel function, we find the equations
tan �p1; 2r0 ÿ p=4� � ��lÿ10 ÿ 1�1=2 from Eqns (43); hence,

p1r0 ÿ p
4
� arctan

����������������
lÿ10 ÿ 1

q
� pn ;

�44�
p2r0 ÿ p

4
� ÿ arctan

����������������
lÿ10 ÿ 1

q
� pm ;

where n5 0, m > n. Adding Eqns (44) gives

r0 � p�n�m� 1=2����������������������
Rm�1ÿ l�p : �45�

Eliminating the parameter r0 from Eqns (44) leads to the
functional dependence

l � f �l0� � 1ÿ �1ÿ l0�

�
�

mÿ n

n�m� 1=2
ÿ 2

p�n�m� 1=2� arcsin
�������������
1ÿ l0

p �ÿ2
; �46�

which breaks into a set of branches and is analogous to
dependence (29) for plane localized modes.

To accurately find the branches of the dependence
l � f �l0�, a suitable numerical algorithm was proposed
in Ref. [22]. Setting x1 � p1r0 and x2 � p2r0 and using
relation (20), we rewrite system (43) in the form

J1�xj� � Fj�xj; l0; l�J0�xj� ; j � 1; 2;
x1
x2
� p1�l0; l�

p2�l0; l� ; �47�

where the expressions for Fj directly follow from Eqns (43).
For given l0 and l, each of the first two equations has
a countable set of roots, xn

1 ; x
n
2 , n � 1; 2; . . . ; enumerated

in ascending order. It can be shown that xn
1 2 �m �1�nÿ1; m

�0�
n � and

xn
2 2 �m �0�nÿ1; m

�0�
n �, where m �0�i and m�1�i are zeros of the Bessel

functions of the zeroth and first order for i 6� 0,
m �0�0 � m �1�0 � 0. For a fixed l 2 �0; 1�, for every 1 > l0 > l,
the roots x1 � xn

1 from the interval with the number n and
x2 � xm

2 from the interval with a number m > n have been
determined, which corresponds to selecting a certain branch
of the dependence l � f �l0�. The value of l0 for which
x1=p1 � x2=p2, together with the value of l, defines the
branch of the dependence. Simultaneously, the value of
r0� x1=p1 is also automatically determined. Expressions
(45) and (46) give the asymptotic form of r0 and of the
branches as l! 0.

Examination of the sign definiteness of the solution is
carried out by resorting to the explicit expression for the
solution

w�r� �
J0�p1r�
J0�p1r0� ÿ

J0�p2r�
J0�p2r0� ; 0 < r < r0 ;

p 2
2 ÿ p 2

1

l21 ÿ l22

�
K0�p1r�
K0�p1r0� ÿ

K0�p2r�
K0�p2r0�

�
; r > r0 ;

8>>><>>>:

and the information obtained on the localization of roots
x1; 2 � p1; 2r0. The analysis shows that the condition
w�r�5 0, r 2 �0; r0� is only satisfied for p1r0 2 �0; m �0�1 �,
p2r0 2 �m �0�1 ; m �0�2 �. Hence, in contrast to the two-dimensional
problem with planar geometry, there is only a single localized
symmetric mode that satisfies the conditions formulated
above. It is characterized by n � 0, m � 1 in asymptotic
relations (44)±(46). A given w�r� distribution for this mode
uniquely defines the distributions of radial u�r� and tangential
v�r� velocity components, and, as previously, the tangential
velocity component occurs only because of the torsion action
of the Coriolis force. The mode obtained describes a
convective vortex with a structure characteristic of tropical
cyclones at their earlier development stage [6]: there is a
cyclonic circulation with mass inflow onto the axis of the
vortex in the lower half of the layer replaced by an anti-
cyclonic circulation and outflow in its upper half.

The curve l � f �l0� for the axisymmetric localized mode
in the plane �l0; l� everywhere except the point l0 � l � 1 lies
to the right of the curve l � f �l0� for the first plane localized
mode. Therefore, for fixed problem parameters, the fastest
growth is attained by the localized axisymmetric mode. Its
instability region can also be found using the dependence
l � f �l0� and relations (37), which define a map to the plane
of normalized parameters ( ~Eÿ1, ~R). This region only exists for
Rm > 5:04 and is qualitatively similar to that of the first
localized plane mode (see Fig. 10) that lies everywhere inside
the instability region of the localized axisymmetric mode. For
the axisymmetric mode, the curves l � const are those along
which the mode spatial structure does not vary; in particular,
the radius r0 of the region of ascending motions remains the
same. The maximum value of r0 is reached at the upper point
of the instability region; for Rm 4 1, the radius is
r0max � �2m �1�1 �1=2�lnRm�ÿ1=4. The minimum value of r0
corresponds to the curve l � 0; from Eqn (49), taking n � 0,
m � 1, we have r0min � 3p=�2 �������

Rm

p �.
In general, the instability region in the parameter plane

� ~Eÿ1; ~R� should be continued below the curve l � 0 for the
axisymmetric localized mode. Apparently, in the lower
subdomain of the instability region (for Rm > 5:04), the
maximum growth rate is shown by cell structures whose
spatial period tends to infinity as the boundary between the
subdomains l � 0 is approached and the radius of the
ascending motion region inside the cell tends to r0min.

8. Numerical estimates for localized modes

For Rm 4R �m, the dimensionless radii of the region of
ascending motion for localized modes, x0max and r0max,
depend on Rm very weakly, and the corresponding dimen-
sional value is largely determined by the combination h

��������
m=n

p
.

We take a set of parameters characteristic of the troposphere
to make estimates [3, 4]: f � 10ÿ4 sÿ1, a � 3�10ÿ3 Kÿ1,
ga � 10ÿ2 K mÿ1, and gm � 6:4� 10ÿ3 K mÿ1. In numerical
models of large-scale motions (with a size comparable to that
of a tropical cyclone), it is commonly assumed [6] that
h � 104 m, m � 105 m2 sÿ1, and n � 10 m2 sÿ1. In this case,
Rm � 1:2� 104 and ~Eÿ1 � 10ÿ2, which practically corre-
sponds to the absence of background rotation, Rcr � Rm

and gcr � gm. In dimensional form, we have x0min � 10 km,
x0max � 140 km, r0min � 15 km, and r0max � 300 km. The
selected value for the horizontal viscosity m corresponds to
motions with the scale x0max, r0max. Therefore, for the
parameter values specified above, a localized axisymmetric
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vortex exponentially growing with time has the structure and
size of a tropical cyclone at its early development stage, while
a localized convective roll can be regarded as its plane analog.
For motions with the scale x0min, r0min, the selected value of m
is excessively high. We consider motions with the size of an
isolated cloud h � 103 m and m � 102 m2 sÿ1, and keep the
other parameters unchanged. We then have Rm � 1:2� 103

and ~Eÿ1 � 10ÿ3, and in the dimensional form, x0min � 100m,
x0max � 700 m, r0min � 150 m, and r0max � 1:5 km, which
correspond to the horizontal scales of convective clouds by an
order of magnitude.

9. Some experimental data
and results of numerical simulations

The solutions obtained above describe only the initial stage of
instability development, because we dropped the nonlinear
advective terms in the system of dynamical equations.
Numerical simulations of moist convection with the full
equations have been performed in numerous papers [7±15];
the simulations consisted in separate numerical experiments.
A comparison with numerical results indicates that the main
features of analytic solutions carry over to the full nonlinear
models.

As a demonstrative example, we mention Ref. [12], which
dealt with the full two-dimensional system of equations of
thermal convection with a latent heat source of condensation
taken into account in form (5). The spectral method was used
to work out the system, with periodic boundary conditions at
the horizontal boundaries of the computational domain.
Varying the stratification parameter g, the author of Ref. [12]
studied the process of the onset and equilibration of moist
convection in a layer of the atmosphere with the thickness

h � 1 km, triggered by a random temperature perturbation at
the initial instant. Figure 12 displays horizontal distributions
of the vertical velocity obtained in Ref. [12] for successive
instants for gÿ ga � 3� 10ÿ3 K mÿ1. It is clearly seen how
narrow regions of intense rising motions are formed as the
convection process is unfolding, being separated by broad
regions of downward motions of practically zero velocity.
With the advective terms taken into account, the convective
`peak' structures evolve into a stationary regime, the equili-
bration time being from two to ten hours. Some distinctions
in peak heights in Fig. 12 are most probably of numerical
origin.

A physicallymore rigorousmodel ofmoist convection has
been considered in Ref. [14]. This model dealt with a rather
complex structure of the convective boundary layer compris-
ing a thin surface layer with constant fluxes, a layer of free
convection, and a cloud layer proper with unstable stratifica-
tion. The latent heat source in the model in Ref. [14] was
`switched on' only when the ascending air reached the level of
condensation (it stayed equal to zero for downwardmotions).
The results of one simulation from Ref. [14] are presented in
Fig. 13. It can be seen that in these simulations, periodic cloud
structures (cloud banks) also form with narrow concentrated
regions of ascending motions.

We briefly discuss some results ofmeteorological observa-
tions. The processes of moist convection are most prominent
in the boundary layer over the surface of oceans and seas, in
particular, during so-called cold outbreaksÐoutflows of
cold polar air over the surface of warm Nordic seas. Satellite
images of this area show various ordered structures in the
form of periodic cloud rolls: open or closed spatial convective
cells (respectively with ascending or descending convective
motions at the cell center). It was long ago that the
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discrepancy between the observed parameters of cloud
structures and the Rayleigh model predictions was estab-
lished. The first discrepancy concerns the aspect ratio of a
convective cell, i.e., the ratio of its horizontal size to the
vertical one. While this ratio is 2 to 3 in the Rayleigh model
(depending on the form of the boundary conditions), it can be
an order of magnitude larger for the observed cloud
structures [11, 12, 27]. The other apparent discrepancy is
related to the observed asymmetry between ascending and
descending motions: the area covered by clouds or the area of
ascending motion can make up less than 10% of the entire
area involved in ordered convection [12, 27]. As shown above,
at least at a qualitative level, these discrepancies are explained
by the impact of phase transitions involving moisture in
convection.

10. Conclusions (brief summary)

Convective motions in moist saturated air are accompanied
by the release of latent condensation heat. Taking this effect
into account, we considered the problem of convective
instability in a layer of moist saturated air, which generalizes
the classic Rayleigh problem. We presented an analytic
solution of the problem that demonstrates the principal
differences between moist convection and Rayleigh convec-
tion. In general, the instability domain in the plane of control
parameters consists of two subdomains; in one of them, the
fastest growth rate is realized for localized convective rolls
(planar geometry of the problem) or localized axisymmetric
vortices with the structure of a tropical cyclone at its early
development phase. Depending on the parameter values, their
spatial scale ranges from the scale of an isolated cloud to that
of tropical cyclones.We have found a necessary and sufficient
condition for the existence of this subdomain. In the second
subdomain, the fastest growth is realized for nonlinear
structures that are periodic in space, their spatial period
tending to infinity on the boundary between the subdo-
mains. They are characterized by essential localization of the
regions of ascendingmotions within each convective cell, such
that the fraction of the atmosphere area covered by clouds is
strictly less than unity and tends to zero as the boundary
between the subdomains is approached.We demonstrated the
transition to Rayleigh convection in the hydrostatic approx-
imation.

11. Conclusions (future tasks)

We mention some questions still awaiting further theoretical
analysis. In the framework of the model discussed here, they
include the question of the spatial structure of three-
dimensional convective cells of the fastest growth, and the
question of stability of the solutions found. A more accurate
description of the formation of small-scale cloud structures
can only be obtained with a model that does not resort to the
hydrostatic approximation. In the absence of background
rotation, such a model was recently developed in Ref. [28].
Just as for the Rayleigh convection, exploring supercritical
nonlinear regimes of convection based on the corresponding
amplitude equations is of principal importance.

The authors thank E A Kuznetsov for the interest in this
work and the invitation to present the results at the annual
session of the Nonlinear Dynamics Council of RAS.

References

1. Landau L D, Lifshitz E M Fluid Mechanics (Oxford: Pergamon

Press, 1987) [Translated from Russian: Gidrodinamika (Moscow:

Nauka, 1986)]

2. Gershuni G Z, Zhukhovitskii E M Konvektivnaya Ustoichivost'

Neszhimaemoi Zhidkosti (Convective Stability in Incompressible

Fluids) (Moscow: Nauka, 1972)

3. Gill A E Atmosphere-Ocean Dynamics (New York: Academic Press,

1982) [Translated into Russian (Moscow: Mir, 1986)]

4. Matveev L T Kurs Obshchei Meteorologii. Fizika Atmosfery (A

Course of General Meteorology. Atmospheric Physics) (Leningrad:

Gidrometeoizdat, 1984)

5. Emanuel K A Atmospheric Convection (New York: Oxford Univ.

Press, 1994)

6. Khain A P Matematicheskoe Modelirovanie Tropicheskikh Tsiklo-

nov (Mathematical Modeling of Tropical Cyclones) (Leningrad:

Gidrometeoizdat, 1989)

7. Asai T, Nakasuji I J. Meteorolog. Soc. Jpn. II 60 425 (1982)

8. Asai T, Nakasuji I J. Meteorolog. Soc. Jpn. II 55 151 (1977)

9. Bretherton C S J. Atm. Sci. 44 1809 (1987)

10. Yamasaki M J. Meteorolog. Soc. Jpn. II 52 365 (1974)

11. Yamasaki M J. Meteorolog. Soc. Jpn. II 50 465 (1972)

12. van Delden A Beitr. Phys. Atmos. 58 202 (1985)

13. Huanq X-Y Tellus A 42 270 (1990)

14. Chlond A Beitr. Phys. Atmos. 61 312 (1988)

15. Huang X-Y, K�all�en E Tellus A 38 381 (1986)

16. Haque S M Quart. J. R. Meteorolog. Soc. 78 394 (1958)

17. Kuo H L Tellus 13 441 (1961)

18. Lilly D KMon. Weather Rev. 88 1 (1960)

19. Gill A, in Intense Atmospheric Vortices (Eds L Bengtsson, J Light-

hill) (Berlin: Springer-Verlag, 1982) [Translated into Russian

(Moscow: Mir, 1985) p. 130]

20. Shmerlin B Ya, Kalashnik M V Izv. Atmos. Ocean. Phys. 25 307

(1989) [Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 25 421 (1989)]

21. Shmerlin B Ya, Kalashnik M V Izv. Atmos. Ocean. Phys. 25 599

(1989) [Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 25 810 (1989)]

22. Kalashnik M V, Shmerlin B Ya Izv. Atmos. Ocean. Phys. 26 577

(1990) [Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 26 787 (1990)]

23. Kalashnik M V, Shmerlin B Ya Izv. Atmos. Ocean. Phys. 26 759

(1990) [Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 26 1034 (1990)]

24. Gutman L N Vvedenie v Nelineinuyu Teoriyu Mezometeorologiches-

kikh Protsessov (Introduction into the Nonlinear Theory of Meso-

scale Meteorological Processes) (Leningrad: Gidrometeoizdat,

1969)

25. Belov P N Prakticheskie Metody Chislennogo Prognoza Pogody

(Practical Methods for Numerical Weather Forecast) (Leningrad:

Gidrometeoizdat, 1967)

26. Kalashnik M V, Ingel L Kh Izv. Akad. Nauk SSSR Fiz. Atmos.

Okeana 24 1327 (1988)

27. Agee E A Dyn. Atmos. Oceans 10 317 (1987)

28. Shmerlin B Ya, Kalashnik M V, Shmerlin M B JETP 115 1111

(2012) [Zh. Eksp. Teor. Fiz. 142 1265 (2012)]

May 2013 Rayleigh convective instability in the presence of phase transitions of water vapor 485


	1. Introduction
	2. Conditions for the onset of convection in an ideal (inviscid and lacking thermal conductivity) atmosphere
	3. Statement of the problem of convective instability in a layer of moist saturated air
	4. Critical values for 'dry' convection
	5. Green's function. Integral equation for the vertical velocity amplitude
	6. Convective instability under two-dimensional planar perturbations. Periodic and localized structures
	6.1 Periodic solutions
	6.2 Localized solutions
	6.3 Mode existence regions in the plane (\lambda_0, \lambda)
	6.4 The sign-definiteness and spatial structure of modes
	6.5 Domain of moist convective instability in the plane of defining parameters

	7. Localized axisymmetric structures (convective vortices)
	8. Numerical estimates for localized modes
	9. Some experimental data and results of numerical simulations
	10. Conclusions (brief summary)
	11. Conclusions (future tasks)
	 References

