
Abstract. Relativistic flying mirrors in plasmas are thin, dense
electron or electron±ion layers accelerated by high-intensity
electromagnetic waves to velocities close to the speed of light
in the vacuum; in nonlinear media, refractive index modulations
are induced by a strong electromagnetic wave. The reflection of
the electromagnetic wave from the relativistic mirror results in
its energy and frequency changing. In the counter-propagation
configuration, the frequency of the reflected wave is multiplied
by the factor proportional to the gamma-factor squared. This
scientific area promises the development of sources of ultrashort
X-ray pulses in the attosecond range. The expected intensity
will reach the level at which the effects predicted by nonlinear
quantum electrodynamics start to play a key role. In the co-
propagating configuration, the energy of the electromagnetic
wave is transferred to the ion energy, providing a highly efficient
acceleration mechanism.

1. Introduction

The sources of electromagnetic radiation from microwaves
to X-rays and gamma rays are in high demand for various
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applications, as well as due to fundamental interest.
Currently, the brightest X-ray radiation is generated by
synchrotron sources during ultrarelativistic electron motion
in a magnetic field. A new generation of free-electron lasers,
which use ultrarelativistic electrons produced by linear
accelerators of charged particles, can emit X-ray photon
beams with a brightness several orders of magnitude higher
than that of X-rays produced by synchrotrons. The Linac
Coherent Light Source (LCLS) at Stanford University uses
14GeV energy electrons from the kilometer-long linear
electron accelerator. In the process of electron beam
interaction with the ondulator (a system of periodically
located magnets), electrons emit pulses of coherent X-ray
radiation with the photon energy equal to 8 keV, the pulse
length from 1 to 200 fs, and the intensity of the order of
1020 W cmÿ2.

The maximal energy of charged particles that can be
achieved under conditions on Earth is 7 TeV, which is the
energy of protons accelerated by the Large Hadron Collider
(LHC) at CERN. With a size of 27 km, the LHC can provide
the hadron beam luminosity (the reaction rate divided by the
cross section) equal to 1034 cmÿ2 sÿ1, which exceeds the
luminosity of beams generated by the previous generation of
accelerators by two orders ofmagnitude. Such luminosity was
one of main reasons that allowed the discovery of the Higgs
boson.

Each new generation of accelerators aimed at basic
research is characterized by parameters greatly exceeding
the ones of the previous generation. However, ultimately,
there are questions of the accelerator size and cost. As regards
the question of the maximum achievable size (and the
maximum energy of charged particles), Enrico Fermi
pointed out in the middle of the 1950s that the maximum
energy would be approximately 1015 eV for an accelerator
length equal to the circumference of Earth's equatorÐ the
maximal accelerator size on Earth. This follows from the
requirement that the amplitude of the accelerating electric
field not cause a vacuum breakdown.

In the middle of the 1950s in the USSR, Ya B Fainberg,
A M Budker, and V I Veksler proposed several methods of
collective acceleration of charged particles. These methods
are based on the idea of using electric fields excited in plasma
media, which can provide a substantially higher acceleration
rate, in turn resulting in a decrease in the accelerator size. In
particular, Veksler considered the charged particle accelera-
tion by the radiation pressure of a strong electromagnetic
wave acting on an electron±ion bunch [1].

The idea of transferring the electromagnetic wave
momentum to matter was formulated by Lebedev and
Eddington [2, 3]. There is also a strong analogy between the
radiation acceleration of charged particles and the `light sail',
proposed by Zander for propulsion of spacecraft intended for
interplanetary and interstellar travel [4].

The work by Veksler had a strong influence on the
development of plasma physics and charged particle accel-
eration methods (see, e.g., [5]). For a plasma target with a size
smaller than the electromagnetic wave length, the radiation
pressure force acting on it is proportional to the square of the
electric charge of the target. When an electromagnetic wave
interacts with a substantially large target, the radiation
pressure force does not depend on the electric charge and
becomes equal to the radiation pressure times the irradiated
surface area. In the limit of relativistic ion energies, the
acceleration process is similar to light interaction with a

receding relativistic mirror. Due to the double Doppler
effect, the energy of the reflected light is much lower than
the energy of the wave incident on the mirror. The electro-
magnetic energy is therefore transferred to the ions with high
efficiency. A compact ion accelerator of this type finds
application in nuclear physics [6], controlled fusion [7], and
medicine [8].

As a result of the electromagnetic wave reflection by a
counter-propagating relativistic mirror (in the head-on wave±
mirror collision configuration), the reflected electromagnetic
pulse is compressed in the longitudinal direction and its
carrier frequency is upshifted, as was shown by Einstein [9],
i.e., in this case, the mirror transfers momentum to the
electromagnetic field. This regime is of substantial interest
for developing compact sources of coherent radiation in the
ultraviolet and X-ray range of photon energies.

There are a number of publications discussing various
aspects of light interaction with relativistic mirrors, begin-
ning with papers on the interpretation of the Michelson±
Morley experiments and on radiolocation problems and
ending with those devoted to quantum field theory. As an
example, we note articles by Davies and Fulling on the
calculation of the properties of radiation emitted by an
accelerated mirror [10], on a discussion of its relation to the
Hawking effect [11] and Unruh radiation [12], and paper [13]
on the nonstationary Casimir effect. As regards applications,
the electromagnetic field intensification and the frequency
upshift are attractive for research on the development of
sources of radiation with tunable parameters. It is therefore
not surprising that the question of relativistic mirror
formation in laboratory conditions has been raised repeat-
edly in the past [14±16]. Currently, it is also attracting much
attention. First of all, relativistic electron beams [17, 18] and
ionization fronts propagating with a relativistic speed [19±
25] have been considered as candidates for such mirrors.

Experimental results on relativistic mirror realization in
the case of ionization waves propagating in configurations
with a static inhomogeneous electric field have been reported
in a number of papers. During the interaction with the static
electric field, the ionization wave is converted into an
electromagnetic wave [23]. In the experiments presented in
Refs [24, 25], the frequency of the emitted wave is in the
terahertz range (the 1 THz frequency corresponds to the wave
period equal to 10ÿ12 s). The frequency upshift of the
radiation reflected by the ionization front formed by the
oblique incidence of the ionizing radiation on the target was
observed in Ref. [26]. The authors of Ref. [27] discuss the
possibility of radar detection of ultra-high-energy cosmic rays
by using electromagnetic wave reflection at the front of the
ionized region produced by extensive air showers generated
by cosmic rays.

The typical parameters of relativistic electron beams and
ionization wavesÐ the front width and the electron den-
sityÐ realized in experimental conditions were such that the
electromagnetic wave frequency corresponded to the micro-
wave range. For the reflection of electromagnetic radiation
in the optical range of the wave frequency, the electron
density has to be significantly higher than the density that
can be achieved in electron beams from conventional
accelerators.

The question arises as to whether it is possible to generate
a relativistic mirror of a sufficiently high quality for efficient
reflection of light, which canmove with large velocity in order
to provide a significant frequency upshift to the photon
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energy in the X-ray range. The answer to this question can be
found in the field of the physics of nonlinear processes in
relativistic laser plasmas.

Progress in laser technologies resulted in the development
of laser facilities providing laser radiation with an intensity
ensuring the relativistic regime of laser±matter interaction,
which allowed developing compact sources of hard electro-
magnetic radiation and compact accelerators of charged
particles that are used, in particular, for studying funda-
mental physics and processes of key importance for astro-
physics. Discussions of the results obtained in these fields can
be found in numerous recently published review articles (see,
e.g., [28±33]).

Under the conditions typical for the interaction of high-
intensity electromagnetic waves with plasmas, the nonlinear
character of this interaction results in the formation of
electron density modulations in the form of high-density
bunches and thin layers moving with a relativistic velocity.
Interaction of the electromagnetic radiation with these
relativistic objects can be regarded as the wave reflection by
relativistic mirrors [34, 35], which is accompanied by a
relativistic frequency shift and change in the reflected wave
amplitude. This is the underlying mechanism of high-order
harmonic generation in relativistic collisionless plasma,
which is based on the oscillating relativistic mirror concept
[36] (see review article [37] and the references therein), of the
generation of attosecond pulses of electromagnetic radiation
[38±40], and of frequency upshift andwave intensification [35,
41±46]. The ultimate goal of these studies is the development
of a compact source of high-intensity X-ray radiation, which
is required by a broad range of applications, from molecular
imaging [47], which is of high interest for medicine and
biology, to the diagnostics of thermonuclear plasmas and
experiments on laboratory astrophysics [48] and the experi-
mental study of nonlinear effects of quantum electrody-
namics [49].

2. Reflection of an electromagnetic wave
from a relativistic mirror

2.1 Uniformly moving mirror
The change in the frequency and amplitude of an electro-
magnetic wave reflected by amoving mirror occurs due to the
double Doppler effect. The corresponding theory of light
reflection from a mirror moving in the vacuum with an
arbitrary (subluminal) velocity vM (vM < c, where c is the
speed of light in the vacuum) is formulated in Einstein's paper
on the special theory of relativity [9]. It presents a classic
illustration of an application of the Lorentz transformation
formalism for solving problems of electrodynamics.

The process of an electromagnetic wave reflection from a
relativistic mirror is characterized by several remarkable
features. According to Ref. [9] (see also [50]), the frequency
of a reflected wave depends on the incidence angle and the
mirror velocity as

or � o0
1� 2bM cos y0 � b 2

M

1ÿ b 2
M

; �1�

where o0 and or are the frequency of the light incident on the
mirror and the frequency of reflected waves, y0 is the
incidence angle, and bM � vM=c is the mirror velocity
normalized to the speed of light in the vacuum. The reflection

angle yr is related to the incidence angle as

sin yr � o0

or
sin y0 � �1ÿ b 2

M� sin y0
1� 2bM cos y0 � b 2

M

: �2�

During the wave±mirror interaction, the ratio of the ampli-
tude of the electric field to its frequency is constant:

Er

or
� E0

o0
: �3�

Here and below, indices `0' and `r' denote the parameters of
the radiation incident on the mirror and reflected in the
laboratory frame.

Depending on whether the wave and mirror are co-
propagating �bM < 0� or counter-propagating �bM > 0� in
the laboratory frame, we have either frequency downshift or
frequency upshift, stretching or compression of the electro-
magnetic pulse, and a decrease or increase in the wave energy.
In the simplest configuration of normal incidence of the wave
on the mirror �y0 � 0�, expression (1) yields

or � o0
1� bM
1ÿ bM

� o0�1� bM�2g 2M ;

where gM � �1ÿ b 2
M�ÿ1=2 is the relativistic gamma-factor of

the mirror. In the ultrarelativistic limit gM 4 1, the reflected
wave frequency is higher (lower) by a factor � 4g 2M. The
reflected wave energy changes accordingly.

2.2 Accelerated mirror
We consider the wave reflection from an acceleratedmirror in
the case of normal incidence. The incident and reflected waves
are described by the transverse component of the vector
potential A�x; t� � A0�tÿ x=c� � Ar�t� x=c�. The mirror
coordinate at time t is determined by the equation
M�x; t� � const, i.e., the mirror is located at the point
x � xM�t� (Fig. 1a).

The solution of the wave equation with the boundary
conditions A�xM�t�; t� � 0 at x � xM�t� can be written in the
form [51]

A�x; t� � A0

�
exp �ÿio0v� ÿ exp

�
ÿi
� u

or�u� du
��

; �4�

where the coordinates u and v are

u � tÿ x

c
; v � t� x

c
: �5�
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Figure 1. (a) Mirror coordinates �x; t� as functions of the variable

u � tÿ x=c, with v � t� x=c. b) The electric field of the wave reflected

from the oscillatingmirror withO=o0 � 1 and a � 10. The inset shows the

oscillating mirror position in the �x; t� plane.
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The reflected-wave phase cr�u� �
� u or�u� du is given by

cr�u� � o0�2t�u� ÿ u�, which follows from Eqns (5) and
the relation cr�u�=o0 � 2t�u� ÿ u � u� 2x�t�u��=c. From
Eqns (5), we obtain the dependence of the time t�u� on the
coordinate u of the intersection of lines u � const and
v � const, with the mirror trajectory given by t�u� �
u� xM�t�u��=c. Here, xM�t�u�� is the coordinate of the
intersection point (see Fig. 1a). From these relations, it also
follows thato0v � cr�u�. Differentiating this expression with
respect to time, we find

c 0r�u� � o0
1� bM�u�
1ÿ bM�u�

; �6�

where bM�u� � dxM�t�u��=c dt is the mirror velocity normal-
ized to c. The derivative of the phase with respect to u in
Eqn (6) is nothing more than the frequency of the reflected
wave, or.

Differentiating expression (4) with respect to time, we can
find a relation between the electric field E � ÿ�qA=qt�=c in
the incident and reflected waves:

Er � ÿE0
1� bM�t�
1ÿ bM�t�

; �7�

where bM�t� � bM�u�t��, which corresponds to relation (3).
In the case of a mirror moving with a constant velocity,

i.e., for xM�t� � vMt, expressions (6) and (7) are equivalent to
Eqn (1) for y0 � 0 and Eqn (3) for the electric field.

When the mirror moves with a uniform acceleration wM,
the dependence of its coordinate on time is given by
xM�t� � �c=wM��m 2c 2 � w 2

Mt 2�1=2 [52]. In this case, the
frequency of light reflected from the uniformly accelerated
mirror, in the limit t!1, increases proportionally to the
square of the time of positive acceleration, wM > 0, and
decreases inversely proportional to the square of the time of
negative acceleration, wM < 0:

or � o0

���������������������������
m 2c 2� w 2

Mt 2
q

� wMt���������������������������
m 2c 2� w 2

Mt 2
q

ÿ wMt
�

t!1

4o0w
2
Mt 2

m 2c 2
; wM > 0 ;

o0m
2c 2

4w 2
Mt 2

; wM < 0 :

8>>><>>>:
�8�

The amplitude of the reflected wave increases (decreases) in a
similar way. In Refs [45, 53], these dependences were
respectively obtained by integrating the wave equation along
the characteristics and by using the Rindler transformation to
the accelerated frame of reference.

2.3 Oscillating mirror
When a wave is reflected from a relativistic mirror, its
frequency spectrum extends to the high-frequency range [36]
and the wave breaks up into short wave packets. According to
Eqn (6), the wave frequency increases by a factor approxi-
mately equal to 4g 2

M. The maximum electric field increases by
the same factor according to Eqn (7).

As an illustration of this process, we consider a thin
electron layer oscillating under the action of a linearly
polarized electromagnetic wave with the electric field parallel
to the y axis:

Ey � E0 cos

�
O
�
t� x

c

��
:

The second electromagnetic wave is reflected from the
electron layer as from the mirror. To describe the electron
layer motion, we use the results of an exact solution of the
problem of electric charge dynamics in the field of an
electromagnetic wave [52], which yields parametric depen-
dences of the charge coordinates andmomentum components
on time:

x � a 2
0

4�2� a 2
0 �

sin 2Z ; y � a0������������������
1� a 2

0 =2
q cos Z ;

�9�

t � Z� a 2
0

4�2� a 2
0 �

sin 2Z ; px � a 2
0

4
������������������
1� a 2

0 =2
q cos 2Z ;

py � a sin Z ; z � 0 ; pz � 0 :

Here, the coordinates and time are normalized to c=O and
Oÿ1, Z � Ov, themomentum ismeasured inmec units, and the
normalized amplitude of the wave is a0 � eE0=meOc.

Using solution (9), we can calculate the phase and
frequency of the reflected wave and find the electric field
Er�t� � oÿ10 c 0r�t� cos �cr�t��, which is shown in Fig. 1b in the
case of a constant-amplitude incident wave. The reflected
radiation is given by a sequence of wave packets with the
frequency approximately equal to o0a

2
0 =2 in the limit a0 4 1

and with the wave packet duration � 2p=Oa0. Here, we
assume that the second wave propagates in the direction
opposite to the direction of the wave that drives the mirror
oscillations.

If the second wave and the wave driving the mirror
oscillations propagate in the same direction, then the electric
field in the reflected wave is given by a sequence of short
pulses with the width � p=a0O with no high-frequency
component. We note that the generation of ultrashort
electromagnetic pulses under similar conditions was
observed in computer simulations of the relativistically
strong electromagnetic wave interaction with an overdense
plasma target [38].

3. Fundamentals of the parametric
Doppler effect theory

If the mirror moves not in the vacuum but in a continuous
medium, then the Doppler effect acquires novel properties,
first of all due to the frequency dispersion of the medium.

The parametric Doppler effect corresponds to the media
that are not moving, in which the electromagnetic radiation is
reflected from or scattered by the moving inhomogeneities of
themedium [54, 55]. Themedium dispersion effects in the case
of a moving source and detector lead to the complex Doppler
effect, found by Frank [56]. For a moving mirror, this means
that several frequencies in the reflected radiation can
correspond to a single frequency in the incident wave. The
Doppler shift of the wave reflected from the shock wave front
has been analyzed in Refs [57, 58]. Finally, in [59], the authors
considered the problem of the Doppler transformation of the
frequency of relatively weak radiation reflected by a high-
intensity pulse of self-induced transparency in the gas of
three-level atoms.

In this section, we present a detailed discussion of the
parametric Doppler effect for a small-amplitude wave
reflection from medium modulations moving with a relativis-
tic velocity [57, 60±66]. We consider the propagation of weak
radiation in a nonstationary medium with the dielectric
permittivity e and the magnetic permeability m, both depen-
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dent on time and coordinates. We assume that the modula-
tions move with the velocity vM in the positive �vM > 0� and
negative �vM < 0� direction along the x axis.

Fast moving (relativistic) modulations can be induced in
nonlinear media by high-intensity laser pulses or by temporal
solitons. The fast-response medium with a cubic nonlinearity
can be considered as an example. In fact, we can disregard the
specific origin of a moving inhomogeneity and analyze the
linear problem of weak radiation reflection from a given
inhomogeneity. This approximation is valid if we can neglect
the energy depletion of the high-intensity pulse driving the
inhomogeneity.

We further assume that the electromagnetic radiation is
linearly polarized, with the electric and magnetic fields given
by E � Eey and H � Hez, where ey and ez are unit vectors
along the y and z axis. In this case, the Maxwell equations
reduce to the form

qxH � ÿ 1

c

qD
qt

; qxE � ÿ 1

c

qB
qt

; �10�

where D � E� 4pP � êE and B � H� 4pM � m̂H are the
electric and magnetic inductions. The operator form of ê and
m̂ reflects the dependence of the dielectric permittivity e and
the magnetic permeability m on frequency (this is the
frequency dispersion). At the discontinuities of the medium
modulations moving with the velocity vM � cbM, we have
boundary conditions corresponding to the continuity of the
functions [69]

Eÿ bMB ; Hÿ bMD : �11�
In the medium regions where the dielectric permittivity

and the magnetic permeability do not depend on the
coordinate, Maxwell equations (10) have a solution in the
form of plane waves. Below, we consider regimes in which the
radiation field consists of several monochromatic plane
waves with complex wave numbers k and frequencies o (the
meaning of a complex frequency is explained below). The
dispersion equation, which gives a relation between the wave
number and the wave frequency, can be written in the
standard way:

k 2c 2 � o2em : �12�
To find the wave number from Eqn (12), we must specify

the sign of the square root.When the wave has the energy flux
averaged over the optical period (the Poynting vector) along
the positive direction of the x axis and the field components
are proportional to exp �ikxÿ iot�, we have

kc � omY ; �13�
where we introduce the inverse impedance

Y �
����
e
m

r
; ReY5 0 : �14�

In these relations, the dielectric permittivity e and the
magnetic permeability m of the medium can also be complex
functions. Evidently, for a wave carrying the energy in the
opposite direction, the wave number has the sign opposite to
that in (13).

3.1 Asymptotic behavior of the field
and the Doppler frequency shift
We assume that the inhomogeneity is localized in space. In
this case, there is no inhomogeneity in the region of the

medium at x! ÿ1, where the medium is homogeneous and
the radiation has the form of a superposition of incident and
reflected plane waves. In what follows, we distinguish
between the cases of counter-propagating and co-propagat-
ing interaction. We show that in order to find the frequency
shift under the conditions of the parametric Doppler effect, it
suffices to know the dispersion properties of the medium in
the homogeneous region and the velocity of the inhomogene-
ities.

3.2 Regime of homogeneous plane waves
We assume that the field configuration is given by a plane
monochromatic wave propagating in the direction normal to
the inhomogeneity, which is moving along the x axis. Indices
0 and r denote the incident and reflected waves. In the
homogeneous region, at x!1, the asymptotic representa-
tion of the radiation fields has the form

E � E0 exp
�
i�k0xÿ o0t�

�� Er exp
�
i�ÿkrxÿ ort�

�
;

H � Y0E0 exp
�
i�k0xÿ o0t�

�ÿ YrEr exp
�
i�ÿkrxÿ ort�

�
;

D � e0E0 exp
�
i�k0xÿ o0t�

�� erEr exp
�
i�ÿkrxÿ ort�

�
;

B � n0E0 exp
�
i�k0xÿ o0t�

�ÿ nrEr exp
�
i�ÿkrxÿ ort�

�
:

�15�

Here, we use the inverse impedance given by Eqn (14) and
introduce the refractive indices n0; r � m0; rY0; r, assuming that
e0; r m0; r > 0 for incident and reflected waves, as well as the
wave numbers of these waves k0; r � �o0; r=c�n0; r. The wave
frequencies are different due to the Doppler effect. We first
consider the case of a head-on interaction where the wave
number of the reflected wave kr is positive.

Expressions (15) are valid up to the inhomogeneity
boundary moving with the velocity vM. It is convenient to
use a step function to approximate the inhomogeneity profile.
At the boundary of the first step, i.e., at x � xb � vMt, the
functions determined by Eqns (11) are continuous. Their
continuity implies that at x � vMt, the exponents in
Eqns (15) should be the same. This yields a relation between
the frequencies in the incident and reflected waves:

o0�1� bMn0� � or�1ÿ bMnr� : �16�

In Eqn (16), the incident wave frequencyo0 and the refractive
index value n0 at this frequency are known.Using this fact, we
can use Eqn (16) to find the frequency of the reflected waveor

for which we should additionally specify the velocity of the
inhomogeneity motion vM and the dispersion, i.e., the
dependence nr�or�. But it is more convenient to rewrite
Eqn (16) in the form

bM �
o0 ÿ or

o0n0 � ornr
: �17�

In this equation, with an arbitrary dispersion, it suffices to
vary the reflected wave frequency or and to find the velocity
of the inhomogeneity motion vM. Although the function
vM�or� is single-valued according to Eqn (17), the inverse
function or�vM� can be multi-valued, which corresponds to
the complex Doppler effect. In that case, the equation for the
frequency corresponding to a certain value of the velocity of
the inhomogeneity motion can have several solutions or no
solutions at all.
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To illustrate our results, we consider an unmagnetized
medium with the magnetic permeability m � 1 and the
frequency dispersion corresponding to the collisionless
plasma in the transparency domain:

e�o� � 1ÿ o2
pe

o2
; o2 > o2

pe : �18�

In the case under consideration, the refractive index is less
than unity, n�o� � ���������

e�o�p
< 1, i.e., the phase velocity

vph�o� � c=n�o� is greater than the speed of light in the
vacuum c in all the transparency domain. We can write
Eqn (17) in the form

bM �
o0 ÿ or�������������������

o2
0 ÿ o2

pe

q
�

�������������������
o2

r ÿ o2
pe

q ; o2
0; r > o2

pe ; �19�

whence it follows that for the frequency or ranging in the
transparency domain from ope to 1, the velocity vM
decreases monotonically from

vM;max � c

��������������������
o0 ÿ ope

o0 � ope

r
< c �20�

to ÿc, vanishing at or � o0. The inverse dependence or�vM�
in this frequency range is also a single-valued function
corresponding to a monotonic decrease of the reflected
radiation frequency. At the same time, there is a subluminal
interval of the velocities of the inhomogeneity motion

vM;max 4 vM < c ; �21�

to which no real frequency value corresponds. For the
velocity in the range given by Eqn (21), Eqn (19) does not
have a real-valued solution or. In other words, under
condition (19), or o0 < omin, where

omin �
1� b 2

M

1ÿ b 2
M

ope ; vM > 0 ;

ope ; vM < 0 ;

8><>: �22�

the reflected radiation is not a monochromatic wave with a
real-valued frequency. A straightforward calculation shows
that under this condition, the reflection with a complex-
valued frequency does not exist either (see the discussion
below).

The dependence of the reflected radiation frequency on
the frequency of the incident wave for a given velocity of the
inhomogeneity motion is given by

bMor � 1

1ÿ b 2
M

h
�1ÿ b 2

M�o0 ÿ 2bM
�������������������
o2

0 ÿ o2
pe

q i
; �23�

o0 > omin :

According to Eqn (23), the reflected radiation frequency or

monotonically increases with the increase in the incident wave
frequency o0.

In Fig. 2, we show domain I in the plane of parameters
�bM;o0=ope�, which corresponds to the above regime of
head-on interaction. This regime can be realized for arbitrary
negative and for not very large positive values of the
inhomogeneity velocity. As the analysis in Ref. [67] shows,
when the inhomogeneity motion velocity and the incident
wave frequency enter domain II (see Fig. 2), the `reflected'
wave is characterized by a negative value of the wave number
kr, i.e., the energy flux of this wave is in the same direction as

the incident radiation. The upper limit of the inhomogeneity
velocity in this regime is determined by the condition
vM=c � �1ÿ o2

pe=o
2
0�1=2. Above this limit, there are no

solutions describing the monochromatic wave reflection
from a moving inhomogeneity. The `no-reflection' regime
corresponds to domain III in Fig. 2.

The physical meaning of `exotic' regimes can be eluci-
dated if we consider the reflection of a quasimonochromatic
radiation, i.e., the reflection of a finite-length optical pulse
carrying a large number of optical oscillations [67] (see
Section 3.3 below) instead of the monochromatic wave
interaction with a moving inhomogeneity.

The co-propagating reflection regime (corresponding to
domain II in Fig. 2) occurs because the carrier frequency of
the pulse decreases during reflection of the wave from the
receding inhomogeneity, which for the dispersion given by
(18) results in a decrease in thewave group velocity to the limit
below the velocity of the inhomogeneity motion.

Next, the `no-reflection' regime corresponding to
domain III in Fig. 2 is realized when the group velocity of
the incident wave is less than the velocity of the inhomo-
geneity. In this case, the incident electromagnetic pulse does
not catch up with the moving inhomogeneity region. It is
obvious that this conclusion is valid for the reflection of the
main part of the wave packet, because a finite-length pulse
always contains a small contribution from the high-
frequency radiation reflected by a moving inhomogeneity.
We note that the superluminal inhomogeneity emits
Vavilov±Cherenkov radiation [68]. Under the conditions of
weak dissipation, this leads to the optical phase conjugation
phenomenon [69].

In the foregoing, we neglected the effects of spatial
dispersion, i.e., the refractive index dependence on the
coordinates (on the wave number). These effects become
important in the limit where the refractive index of the
medium vanishes, which corresponds to the inhomogeneity
velocity vM � vM;max. Taking the spatial dispersion effects
into account, we can describe phenomena such as the
longitudinal (plasma) wave generation and Landau damping
in collisionless plasmas. We note that in the case of oblique

1.0

0.8

0.6

0.4

0.2

0
1 2 3 4 o0=ope

bM
III

II

I

Figure 2. Subdivision of the plane of parametersÐ the inhomogeneity

motion velocity bM � vM=c and the incident wave frequency o0=ope Ð

into three domains corresponding to different regimes of the wave

reflection: I, reflection in the counter-propagating configuration;

II, reflection in the co-propagating configuration; III, the `no-reflection'

regime.
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incidence configurations, a transformation of the transverse
wave energy into the energy of plasma waves accompanied by
electromagnetic wave absorption becomes possible [70].

3.3 Regime of inhomogeneous plane waves
Here, in contrast to the previous subsection, we allow the
wave number of plane waves to be complex, which can be
realized either in dissipative media or in an optically
transparent medium in the regime of total internal reflec-
tion, e.g., in the limit of a sufficiently low frequency for wave
dispersion (18). We use a complex form of the field
representation with the time dependence exp �ÿiot�. We
consider the case where the inhomogeneity region is localized
at x > xb � vMt. Then in the region x < xb where themedium
is homogeneous, the dependence on time and the coordinate
of the incident wave is given by exp �ik0xÿ io0t�. The
reflected wave is described by exp �ÿikrxÿ iort�. Here, the
wave numbers k0; r � k�o0; r� are determined from Eqns (13)
and (14).

A condition for the exponents similar to that in Eqn (16)
follows from the requirement of the continuity of the electric
and magnetic field combinations determined by Eqns (11).
This is equivalent to the condition that the phases of the
incident and reflected waves are equal to each other at x � xb:

krvM � o0 ÿ or ÿ k0vM : �24�
The condition equivalent to (17) now has a complex form
resulting in two equations

vM � Re
o0 ÿ or

k0 � kr
; Im

o0 ÿ or

k0 � kr
� 0 : �25�

Taking Eqns (11) and (12) into account, we conclude that
expressions (25) are the equations for the reflected wave
frequency or. Squaring Eqn (24), we obtain

�1ÿ b 2
Mn 2

r �o2
r ÿ 2�o0 ÿ k0vM�or � �o0 ÿ k0vM�2 � 0 : �26�

Equations (26) and (17) allow determining the reflected wave
frequency or. But these two equations are not equivalent to
each other, because the solution of Eqn (26) contains extra
roots. Hence, a solution of Eqn (26) must be proved to be
relevant, e.g., by using conditions (25).

The possibility of a complex frequency of the reflected
wave, which follows from Eqn (26), is an important property
of the parametric Doppler effect, whose physical meaning is
elucidated by analyzing the time dependence of the wave
amplitude. On the boundary of a moving inhomogeneity, the
wave is given by

exp
�ÿvM Im �k0�t

�
exp

�ÿio0t� vM Re �k0�t
�
: �27�

The real parts of the incident, A0, and reflected, Ar, waves at
the boundary are proportional to the first exponential in
Eqn (27). Accordingly, they exponentially decay if vM > 0,
taking into account that Im k0 > 0, or increase with time if
vM < 0. This can be explained as follows. In the regime of
inhomogeneous waves propagating in an unbounded med-
ium, the wave amplitude A0 increases as x!1 unlimitedly.
Amore realistic formulation of the problem under considera-
tion requires taking a finite length of the medium with
dispersion into account, i.e., considering, for example, wave
incidence from the vacuum region on the medium boundary
located at x � x0 < xb. At the boundary, we can assume the
amplitude of the wave penetrating into the medium with

dispersion to be equal to A0; 0 � A0�x � x0�. But inside the
medium, the amplitudeA0 exponentially decreases with x due
to the wave absorption and/or total internal reflection.
Hence, the wave amplitude at the medium boundary
x � xb � vMt exponentially decays for vM > 0 (the distance
between the boundary of the inhomogeneity region and the
position where the wave enters the medium increases) or
exponentially increases for vM < 0 (the distance between the
boundary of the inhomogeneity region xb and the position
where the wave enters the medium decreases).

3.4 Pulse reflection
If the incident radiation can be represented by a pulse with a
narrow frequency spectrum with a carrier frequencyo0, then,
in the regime of counter-propagation, the reflected wave
frequency or is determined by Eqn (16), the pulse propaga-
tion velocity is equal to the group velocity vg �
1=�dk=do�jo�o0

, and the ratio of the reflected to the incident
pulse lengths is

q � dor

do0

����
o�o0

� 1

1ÿ b 2
M

�
1� b 2

M ÿ 2bM

�
1ÿ o2

pe

o2
0

��
: �28�

This expression is obtained for dispersion equation (18).
Equation (28) shows the possibility of a substantial short-
ening of the electromagnetic pulse length, accompanied by an
upshift of its carrier frequency.

3.5 Reflection coefficient
The coefficient of wave reflection from a moving inhomo-
geneity is essentially determined by the inhomogeneity spatial
profile. The differential equations for the amplitudes of waves
propagating in opposite directions have been obtained in
Refs [61] and [62], where the wave cross-scattering on the
medium inhomogeneity regions was taken into account. It
follows from these equations that the amplitude coefficient of
the wave reflection from a weak inhomogeneity with the
inverse impedance Y is given by

r � 1

Y
���
0 � Y

�ÿ�
0

1ÿ bMn
���
0

1� bMn
�ÿ�
0

�
� �1
ÿ1

Y ����x� exp �i�k ���0 � k
�ÿ�
0 �x

�
dx

� i
k
���
0 � k

�ÿ�
0

Y
���
0 � Y

�ÿ�
0

1ÿ bMn
���
0

1� bMn
�ÿ�
0

�
� �1
ÿ1

dY ����x� exp �i�k ���0 � k
�ÿ�
0 �x

�
dx ; �29�

where the index `0' denotes the characteristics of an
unperturbed homogeneous medium and the indices `�' are
used for incident and reflected waves. The last expression in
Eqn (29) was established for a localized inhomogeneity,
which has the inverse impedance values Y ����ÿ1� �
Y �����1� and dY ����x� � Y ����x� ÿ Y ����1� ! 0 at
x! �1. For example, in the case of a medium inhomogene-
ity with the inverse impedance variation equal to
dY ����x� � dY ���0 coshÿ2 �x=ls� and with the width ls,
Eqn (29) yields

r � ip
��k ���0 � k

�ÿ�
0 �ls

�2
sinh

�
p�k ���0 � k

�ÿ�
0 �ls=2

� dY ���0

Y
���
0 � Y

�ÿ�
0

1ÿ bMn
���
0

1� bMn
�ÿ�
0

: �30�
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The first fraction in the right-hand side of Eqn (30) describes
the decrease in the reflection coefficient due to the finite width
of the front. As we see, the reflection coefficient decreases
exponentially if the inhomogeneity width w is much larger
than the wavelength of the incident wave l0 �
2p=�k ���0 � k

�ÿ�
0 �. The second fraction corresponds to the

well-known Fresnel reflection from a sharp boundary
inhomogeneity, r / de=e0. For the conditions under consid-
eration, this factor is small. Finally, the third fraction
represents a resonance growth of the reflection coefficient
when the inhomogeneity velocity approaches the phase
velocity of the wave in the medium.

Relativistic flying mirrors can be formed not only in
collisionless plasmas but also in various nonlinear optical
media. In particular, they can be generated in media with a
fast-response Kerr nonlinearity, when the refractive index is
proportional to the radiation intensity I. As an example, we
can consider a high-intensity laser pulse or a soliton
propagating with a velocity vM. The electromagnetic pulse
induces a refractive index modulation propagating with the
same velocity vM. For a counter-propagating weak electro-
magnetic wave, the refractive index inhomogeneity plays the
role of a relativistic flying mirror. In such a configuration of
the `optical collider', the frequency and intensity of the weak
electromagnetic wave can be upshifted significantly due to the
parametric Doppler effect.

To conclude this section, we note that if a high-intensity
laser pulse induces a frequency-dependent inhomogeneity of
the dielectric permittivity ê and the magnetic permeability m̂
movingwith a relativistic velocity, then the reflected relatively
weak radiation undergoes a Doppler frequency shift. Due to
the frequency dispersion, the refractive index depends on the
wave frequency, nr � nr�or�. Equation (16) is an implicit
equation [as opposed to explicit equation (18)], from which
the frequency of the reflected wave or can be found. The
incident wave can propagate either in the direction of the
inhomogeneity motion or in the opposite direction. In
general, the equation may not have a solution or may have
several different solutions. This phenomenon corresponds to
the parametric Doppler effect [56], when, for a given incident
wave frequency, several reflected waves with different
frequencies can exist or regimes can be realized where the
reflection of a monochromatic wave is impossible [56].

We note that in the case of inhomogeneous electromag-
netic waves with a complex wave number, due to wave
absorption or due to total internal reflection, the reflected
wave frequency can be complex. This corresponds to the
exponential growth or decay of the wave amplitude. There is a
possibility of the wave frequency upshift by a factor much
larger than unity, not only in relativistic plasmas but also in
optical media with fast-response nonlinearities. The reflection
coefficient value can be significantly enhanced due to the
Bragg effect in the course of reflection from a periodic
sequence of isolated inhomogeneity regions [71].

4. Nonlinear electromagnetic and plasma waves

This section contains a summary of the properties of non-
linear electromagnetic and plasma waves in collisionless
plasmas, which are to be used below.

Small-amplitude electromagnetic and plasma waves can
be described in the linear approximation framework as waves
propagating in the plasmawithout interacting with each other
and with their frequencies independent of the wave ampli-

tude. The longitudinal (plasma) wave frequency ope ���������������������
4pne 2=me

p
does not depend on the wave vector, whence it

follows that its group velocity vanishes. The phase velocity of
the plasma wave is given by vph � ope=k, while the group
velocity is vg � qo=qk � qope=qk � 0. The dispersion equa-
tion giving the relation between the frequency and the wave
number of the transverse (electromagnetic) wave is o �
�k 2c 2 � o2

pe�1=2, whence for the phase and group velocities
we have vphvg � c 2 (see Ref. [72]).

For finite-amplitude waves, an exact solution describing
wave propagation in cold collisionless plasmas was found in
Ref. [72]. The use of the hydrodynamics approximation for
describing the electron and ion component dynamics and
Maxwell equations for a self-consistent electromagnetic field
allowed deriving the system of equations for coupled
electromagnetic and plasma waves. This system of equations
has the form [72±75]

q2A
qt 2
ÿ DA� qHj

qt
� nava ÿ neve ; �31�

Dj � ne ÿ na ; �32�
qnb
qt
� nbHvb � 0 ; �33�

qPb

qt
� ÿH�rbj� gb� � vb � H� Pb ; �34�

where the indices e and a denote the electron and ion
components, and the index b can be either e or a. The
generalized momentum Pb and the relativistic gamma-factor
gb are related to the particle momentum pb and the vector
potential A as Pb � pb � rbA and gb � �1� jpbj2�1=2. The
parameter rb is equal to ema=eame. The velocity of an electron
(ion) fluid element is vb � pb=gb. In this system of equations,
the variables are normalized as follows. The units of length
and time are c=ope and oÿ1pe , velocity is normalized to c,
momentum to mbc, the vector and electrostatic potential to
mec=e, and density to n0.

In an ansatz corresponding to one-dimensional geometry,
the dependence of all functions on the time t and coordinate x
is assumed to be of the form X � xÿ vgt and t � tÿ vgx,
which corresponds to a plane wave propagating with a
constant velocity. For simplicity, we assume below that
ea � jej, i.e., rb � ÿr � ÿme=ma. Equations for the electro-
magneticAy� iAz�a�X� exp �iot� and electrostatic j�j�X�
potentials can be rewritten in the form [72±75]

j 00 � bg
1ÿ b 2

g

�
ce

Re
ÿ ca

Ra

�
; �35�

a 00 � o2a � a
bg

1ÿ b 2
g

�
1

Re
ÿ r
Ra

�
; �36�

where the prime denotes differentiation with respect to X and
bg � vg=c is the group velocity of the electromagnetic wave
normalized to the speed of light in the vacuum c, equal to the
phase velocity of the plasma wave. We have also introduced
the functions

ce � Ge � j ; ca � Ga ÿ rj ;

Re �
����������������������������������������������
c 2
e ÿ �1ÿ b 2

g ��1� a 2�
q

;

Ra �
���������������������������������������������������
c 2
a ÿ �1ÿ b 2

g ��1� r 2a 2�
q

;

where the constants Ge and Ga are determined by the
boundary conditions. For example, if the field has a constant
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amplitude �a � a0, j � 0� and the plasma is at rest at
x! �1, then Ge� �1� a 2

0 �1=2 and Ga� �1� r 2a 2
0 �1=2.

The density and the relativistic Lorentz factors of the
electron and ion components �b � e; a� are equal to

nb � bb
cb ÿ bbRb

Rb�1ÿ b 2
g �
; gb �

cb ÿ bgRb

1ÿ b 2
g

: �37�

System of equations (35) and (36) has the integral [75]

1ÿ b 2
g

2
�a 0 2 � o2a 2� � 1

2
j 0 2 � bg

1ÿ b 2
g

�
Re � Ra

r

�
� const :

�38�

4.1 Transverse electromagnetic waves
For a transverse wave with a circular polarization, there is a
solution of Eqns (35) and (36) for a constant-amplitude wave
with a�X� � a0 and j � 0, i.e., Ay � a0 cos �ot� and
Az � a0 sin �ot�. From Eqn (35), the dependence o2 �
g 2g �1=Ge � r=Ga� of the wave frequency on the amplitude
follows, where gg � �1ÿ b 2

g �ÿ1=2. Using the relation between
the phase and group velocity, vphvg � c 2, and introducing the
wave number k for which vph � o=k, we can write the
dispersion equation for the frequency and wave number of
the relativistically intense electromagnetic wave in non-
normalized units:

o2 � k 2c 2 � o2
pe

 
1��������������

1� a 2
0

q � r�������������������
1� r 2a 2

0

q !
: �39�

As we see, the relativistic effects change the wave frequency,
but they do not lead to the appearance of higher-order
harmonics in the frequency spectrum. In the field of a
circularly polarized electromagnetic wave, electrons rotate
with frequency (39). The electron energy is equal to
mec

2�1� a 2
0 �1=2. The longitudinal component of the electron

momentum vanishes, and the transverse component ismeca0.
In a linearly polarized electromagnetic wave, the trans-

verse and longitudinal components of the electromagnetic
field and of the electron momentum are coupled to each other
[72, 76]. In a wave of a small but finite amplitude, the
transverse component of the electric field oscillates with the
frequency o � kc� �o2

pe=2kc��1ÿ a 2
0 =2� and the longitudi-

nal component oscillates with the doubled frequency, having
an amplitude of the order of a 2

0 .
Equations describing a plane electromagnetic wave take a

particularly simple form if we make the Lorentz transforma-
tion to the reference frame moving with the group velocity. In
this reference frame, the wave group velocity vanishes and the
phase velocity �vph � �o=�k, by virtue of the relation vphvg � c 2,
becomes equal to infinity, and hence the wave number also
vanishes. This means that all the values depend only on time
in this reference frame [77]. Harmonic oscillations with the
frequency

�o � ope
1��������������

1� a 2
0

q � r�������������������
1� r 2a 2

0

q
0B@

1CA
1=2

correspond to a circular-polarization wave. Here, the bar
denotes the values in the boosted reference frame. A linearly
polarized electromagnetic wave is described by a system of
equations of coupled nonlinear oscillators. Oscillations in the
longitudinal direction occur at odd harmonics of the funda-

mental frequency and the frequency spectrum of transverse
oscillations comprises the even harmonics.

The circular and linear polarizations are isolated cases:
there is no change in the polarization and there is no rotation
of the polarization plane. In a relativistically strong wave with
elliptical polarization, which also has a longitudinal compo-
nent of the electric field, rotation of the polarization plane
occurs due to the nonlinearly induced birefringence [78, 79].
This process is similar to the Faraday rotation of the
polarization plane of the electromagnetic wave propagating
through a magnetized medium.

4.2 Longitudinal plasma waves
For a given function a�X �, Eqn (35) describes longitudinal
waves excited by an electromagnetic pulse. In particular, if
a � a0 � 0, this equation describes free Langmuir oscilla-
tions. If we neglect the influence of ions for simplicity, the
dependence of the relativistic Lorentz factor ge of the
electrons in the wave on the coordinate, which we redefine
for plasmawaves asX � xÿ vpht because their group velocity
is equal to zero, can be represented implicitly as

1���
2
p X � bph

��gm � 1�1=2E�Cjk� ÿ �gm � 1�ÿ1=2F�Cjk��
ÿ �gm ÿ ge�1=2 : �40�

Here,

F�Cjk� �
�C

0

�1ÿ k sin2 y�ÿ1=2 dy ;

E�Cjk� �
�C

0

�1ÿ k sin2 y�1=2 dy

are the elliptic integrals of the first and second kinds [80],

C � � arcsin
���������������������������������������gm ÿ ge�=�gm ÿ 1�p

is the amplitude, k �
�gm ÿ 1�=�gm � 1� is the modulus, and gm is the maximum

gamma-factor value of electrons in the wave. The wavelength

of longitudinal plasma waves is given by

lp � 25=2vph
ope

�
�gm � 1�1=2 E

�
gm ÿ 1

gm � 1

�
ÿ �gm � 1�ÿ1=2 K

�
gm ÿ 1

gm � 1

��
; �41�

where K�k� and E�k� are the complete elliptic integrals of the
first and second kinds [80]. In the limit of a large amplitude,
the wavelength dependence on the parameters is given by
lpjgm!1 � 25=2g 1=2m c=ope, which is equivalent to the depen-
dence of the frequency of plasma oscillations

op

���
gm!1

� p
ope

23=2g 1=2m

; op

���
gm! 1

� ope

�
1ÿ 3

�
pm
mec

�2�
�42�

in the respective limits of large and small values of the
amplitudes. Here, the maximum value of the momentum of
the electrons in the wave, pm, is related to the maximum
gamma-factor gm as pm � mec�g 2m ÿ 1�1=2.

4.3 General properties of plasma wave breaking
The amplitude of steady-state plasma waves for a given value
of the phase velocity vph cannot be arbitrarily large. It follows
from Eqn (40) that the maximum value of the Lorentz factor
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gm associated with the maximum momentum of the electrons
in the wave pm satisfies the condition

gm �
��������������������
1� p 2

m

m 2
e c

2

s
4gph �

1����������������������
1ÿ v 2ph=c 2

q : �43�

This means that the velocity of the particles cannot exceed the
phase velocity of the wave. When gm ! gph, a singularity
occurs at which the particle density becomes infinite. The
conservation of integral (38) implies the relation
E 2 � 2ge�meopec=e�2 � const between the electric field and
the electron energy, which in turn imposes a constraint on the
electric field in a nonlinear plasma wave:

EAP � meopec

e

���������������������
2�gph ÿ 1�

q
; �44�

which is often referred to as the Akhiezer and Polovin limit
value of the field [72].

Because strongly nonlinear wake waves play a key role in
the concept of a flying relativistic mirror, we discuss the wave
breaking effect below in more detail.

4.4 Breaking of plasma waves due to phase mixing
Nonlinear plasma waves break according to a completely
different scenario than finite-amplitude acoustic waves or
gravity waves on the surface of water (see Refs [81, 82]). For
simplicity, we assume that the amplitude of the plasma wave
is nonrelativistic and the ion component is immobile.
Equations (35) and (36) in the one-dimensional approxima-
tion result in the equations for the electron velocity and the
self-consistent electric field,

qv
qt
� v qv

qx
� ÿ eE

me
; �45�

qE
qt
� v qE

qx
� 4pen�ex�v : �46�

In these equations, the density of immobile ions n�ex� is
assumed weakly inhomogeneous with e5 1. Although the
transformation to the Lagrangian variables gives a solution
of this system in quadratures for arbitrarily large amplitude
waves, we solve it by using the perturbation method, in order
to find whether harmonics of different orders that appear in
higher orders of the perturbation theory are in resonance with
each other.

Expanding v�x; t�, E�x; t�, and n�ex� in power series in the
small parameter e, we have

v � ev �1� � e 2v �2� � . . . ;

E � eE �1� � e 2E �2� � . . . ; �47�
n � n0 � en 00x� . . . :

In the first order in the small parameter, the solution of
Eqns (45) and (46) is given by

v �1� � vm sin �opetÿ kx� ; �48�

E �1� � ÿmevmope

e
cos �opetÿ kx� ; �49�

where vm is the maximum value of the electron velocity in the
wave. In the second order in the small parameter, the

equations for v �2� and E �2� that follow from (45) and (46) are

qv �2�

qt
� e

E �2�

me
� v

2
mk

2
sin
�
2�opetÿ kx�� ; �50�

qE �2�

qt
ÿ 4pen0v �2� � mev

�2�
m opek

2e

n
1ÿ cos

�
2�opetÿ kx��o

� 4pen 00xvm sin �opetÿ kx� : �51�

They have the solution

v �2� � ÿ v 2mk

2ope

n
1ÿ cos

�
2�opetÿ kx��o

� n 00xvm
4n0

�
2opet cos �opetÿ kx� ÿ sin �opetÿ kx�� ; �52�

E �2� � ÿmev
2
mk

2e
sin
�
2�opetÿ kx��

� pen 00xvm
ope

�
2opet sin �opetÿ kx� ÿ cos �opetÿ kx�� : �53�

As can be seen, the plasma wave harmonics are not in a
resonance in a uniform plasma with n � const, which means
that n 00 � 0. This follows from the fact that the group and
phase velocities of the plasma wave are not equal to each
other. The group velocity of the plasma wave in cold plasma
vanishes, while the phase velocity is finite and equal to the
ratio vph � ope=k. In a homogeneous plasma, the plane
plasma wave breaks if its amplitude vm is so large that the
inequality vm > vph is satisfied. In an inhomogeneous plasma
with n 00 6� 0, the plasma wave, being a wave with a continuous
spectrum, breaks for an arbitrarily small but finite amplitude
due to phase mixing, leading to an increase in the wave
number with time. Formally, the increase in the wave
number is described by the second terms in the right-hand
sides of Eqns (52) and (53), containing the terms proportional
to the time, which corresponds to the resonance between the
first and second harmonics. It is easy to show that the
subsequent harmonics are also in resonance. This leads to
nonlinear steepening of the wave profile and eventually to its
breaking.

Phase mixing has a simple explanation. In general, the
wave can be represented as v � vm exp �ic�, wherec�x; t� is its
phase or eikonal. The wave number and frequency are
respectively equal to the derivative of the eikonal with
respect to the coordinate �k � qc=qx� and to minus the
derivative with respect to time �o � ÿqc=qt�. The equality
of mixed partial derivatives q2c=qt qx � q2c=qx qt implies
the equation

qk
qt
� ÿ qo

qx
: �54�

In a stationary but inhomogeneous medium, the solution of
this equation is given by the expression that describes the
growth of the wave number k � k0 ÿ o 0t, where k0 is its
initial value. Because plasma waves can be represented as an
ensemble of noninteracting oscillators, the oscillators have
different frequencies in a medium with inhomogeneous
parameters, which leads to the growth of the phase difference
between them. This phenomenon is called phase mixing. As a
result of phase mixing, the wave profile is modulated such
that the wavelength asymptotically decreases to the limit
where the effects of dissipation, dispersion, or nonlinearity
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become significant. Nonlinear effects become important
when the displacement of electrons in the wave approaches
the wavelength value. In a collisionless plasma, neighboring
electrons overtake each other, which corresponds to wave
breaking, also referred to as the particle trajectory self-
intersection. Phase mixing occurs not only due to the
inhomogeneity of the plasma but also because of the non-
one-dimensional geometry [83]; in the limit of relativistic
energies of the electron oscillations, phase mixing occurs due
to the plasma wave amplitude inhomogeneity [84].

Here, we analyze the breaking of an arbitrarily large-
amplitude plasma wave. In the hydrodynamic approxima-
tion, the plasma waves are described by the equations

qn
qt
� rÿs

q�r snv�
qr

� 0 ; �55�

qp
qt
� v qp

qr
� ÿE ; �56�

qE
qt
� vrÿs q�r

sE �
qr

� v �57�

for the density, the electron momentum, and the electric field.
Here, s takes the values 1, 2, 3 for planar, cylindrical, and
spherical waves. Planar nonlinear plasma waves are consid-
ered in Refs [85, 86], cylindrical in [87], and spherical in
Ref. [44]. The nonrelativistic case has been studied inRef. [83].
The velocity is related to the electron momentum as
v � p=�1� p 2�1=2. It is normalized to the speed of light in
the vacuum c, and the momentum unit is mec. The electron
density n is normalized to the density of immobile ions n0. The
time and coordinate units are respectively oÿ1pe and c=ope.

Passing from the Euler variables �r; t� to the Lagrange
variables �r0; t�, with the derivatives transforming as�

q
qt

�
L

�
�
q
qt
� v q

qr

�
E

;

��
qr
qr0

�ÿ1 q
qr0

�
L

�
�
q
qr

�
E

;

where the indices `L' and `E' denote the Lagrange and the
Euler variables, allows solving Eqn (55) for the electron
density,

n � r s0
�r0 � x�s�1� qx=qr0� ; �58�

and Eqn (57) for the electric field,

E � 1

s� 1

�
r0 � xÿ r s�10

�r0 � x�s
�
: �59�

Here and below, x�r0; t� is a displacement of the electron fluid
element from its intial position r0. It determines the relation
between the Lagrange and the Euler coordinates,
r � r0 � x�r0; t�. Using Eqns (58) and (59), equations of
electron motion (56) can be rewritten in the Hamiltonian
form with the Hamiltonian

H�p; x� � �1� p 2�1=2 �P�x� ; �60�

where the potential function P�x� is equal to �r0 � x�2=2
for s � 0, �r0 � x�2=4� �r 20 =2� ln �r0� x� for s � 1, and
��r0 � x�2=2� r 30 =�r0 � x��=3 for spherical waves with s � 2.

Using the above relations and the fact that the Hamilto-
nian in Eqn (60) is independent of time,H � h, allows writing

the solution of Eqns (55)±(57) in quadratures:

t �
� x

x1

ÿ
hÿP�s��ds���������������������������������ÿ
hÿP�s��2 ÿ 1

q : �61�

To find the period of nonlinear oscillations, we integrate the
right-hand side of Eqn (61) over a whole cycle. In the case of a
spherical wave, it is shown in Ref. [44] that the oscillation
period in the limit pmax 4 1 is equal to T � 2

������������
6pmax

p
. In

general, the period, and hence the frequency, depends on the
coordinate r0, which means that the plasma oscillations are
waves with a continuous spectrum.

The wave breaking of nonlinear plasma waves corre-
sponds to the vanishing of the Jacobian of the transforma-
tion from the Euler to the Lagrange coordinates, which is
equal to

J � �r0 � x�s
r s0

�
1� qx

qr0

�
: �62�

The vanishing condition is qx=qr0 � ÿ1. As follows from
Eqn (58), the electron density tends to infinity as J! 0. To
estimate the characteristic time of wave breaking, we note
that each element of the electron fluid undergoes periodic
oscillations, and represent the periodic function describing
the electron displacement in the form of a Fourier series [88]:

x�r0; t� �
X1
j�1

xj�r0� exp
ÿ
i jO�r0�t

�
; �63�

with the frequency O that depends on the coordinate r0. The
dependence O�r0�, as mentioned above, can be due to the
plasma inhomogeneity and/or inhomogeneity of the wave
amplitude. Differentiating expression (63) with respect to the
coordinate r0 and time t, we obtain the displacement
derivatives

qx�r0; t�
qr0

�
X1
j�1

�
qxj�r0�
qr0

� it
qO�r0�
qr0

j xj�r0�
�
exp

ÿ
i jO�r0�t

�
;

�64�
qx�r0; t�

qt
�
X1
j�1

O�r0� j xj�r0� exp
ÿ
i jO�r0�t

�
: �65�

In the limit t!1, these equations yield an asymptotic
relation between the space and time derivatives of x:

qx�r0; t�
qr0

� t
q lnO�r0�

qr0

qx�r0; t�
qt

: �66�

It follows that the gradient of the displacement qx=qr0
increases with time, which corresponds to the phase mixing
discussed above. In relativistically strong plasma waves, the
electron velocity qx=qt changes periodically from c in one
half-cycle, to ÿc in another, and remaines roughly constant
during each half cycle. It hence follows that the dependence of
the displacement on time has the form of a sawtooth
oscillation: the displacement varies from ÿxmax to xmax,
being a linear function of time during the half-cycle,
x�t� � �ct. This gives the relation O � pc=2xmax between the
amplitude of the oscillations and their frequency. As a result,
we find the onset of wave breaking corresponding to the
condition qx=qr0 � ÿ1:

tbr �
�

c

q lnO�r0�=qr0

�ÿ1
: �67�
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The weaker the inhomogeneity of the wave parameters is, the
longer the wave-breaking time.

4.5 Wake wave at the threshold of breaking
Relativistic plasma waves can be excited in plasma in various
ways. One of the most widely used methods involves a
relatively short high-intensity laser pulse with a length less
than or approximately equal to the plasmawavelength, with a
sufficiently large normalized wave amplitude (see Ref. [89]).
Such a laser pulse propagating in collisionless plasma excites
the plasma waves in a wake behind it.

Plasma wakefield excitation by a short laser pulse can
also be described by systems of equations (35) and (36). We
assume for simplicity that the laser pulse is given, i.e., it
propagates in a plasma with a constant speed without
changing shape. The solution of Eqn (36) has the form of
a wave in which all functions depend on the independent
variables x and t in the combination X � xÿ vpht. Equation
(36) under the assumption of fixed ions results in an
equation for the longitudinal component of the electron
momentum,

�ge ÿ pbph�00 �
p

gebph ÿ p
; �68�

where the prime denotes differentiation with respect toX. The
electron relativistic gamma-factor ge depends on the long-
itudinal and transverse components of the electron momen-
tum with respect to the wave propagation direction, a and p,
as ge � �1� a 2 � p 2�1=2. Here, it is taken into account that
the transverse component of the electron momentum is
proportional to the corresponding component of the vector
potential a�X �, due to the homogeneity of the configuration
under consideration along the transverse direction. Equation
(68) becomes singular when the denominator in the right-
hand side vanishes. The singularity corresponds to the case
where the electron velocity p=ge becomes equal to the wave
phase velocity bph, which means wave breaking. In a
stationary wave, the singularity occurs at the maximum of
the electron velocity vm � pm=gm.We letXm denote the wave-
breaking coordinate.

To find the structure of the singularity, we expand the
electron momentum and the gamma-factor near the singular-
ity at dX � Xÿ Xm ! 0, assuming dp � pm ÿ p to be small.
We write the electron momentum in the form

p � pm � dp�O�dp 2� ; �69�

where pm � bph��1� a 2
m�=�1ÿ b 2

ph��1=2 and dp=j pmj5 1.
Here, am � a�Xm� is the vector potential value at the wave-
breaking point. Keeping the leading terms on both sides of
Eqn (68), we obtain

�dp 2�00 � ÿZ 2 1

dp
; �70�

with Z 2 � 2bphg
2
ph�1� a 2

m�. Multiplying the left- and right-
hand sides of the equation by �dp 2�0 and integrating over X,
we find

dp
ÿ
2dp �dp 0�2 � Z 2

� � f 2 ; �71�

where f is the integration constant. We note that because
Eqn (70) has a singularity at dX � 0, the integration constant
can take different values in the regions dX < 0 and dX > 0. In

general, the properties of a function at a singular point are
different depending onwhether the product dp dp 0 vanishes in
the limit dp! 0.

If the product dp dp 0 tends to zero as dp! 0, which
requires the vanishing of the right-hand side of Eqn (71),
then this equation with f � 0 implies that

dp � ÿ
�

3

23=2
Z dX

�2=3

� ÿbphg 3ph
�
3
��������������
1� a 2

m

p
2bph

dX
�2=3

: �72�

For the electron velocity, we then have

v � bph ÿ
bph
gph

�
3�1� a 2

m�1=4
2bph

dX
�2=3

: �73�

In catastrophe theory, this type of singularity is called the
`cusp catastrophe' [90, 91]. In local coordinates, it can be
written as the mapping y1 � x1, y2 � x 3

2 � x1x2.
Although the electron density tends to infinity in the

vicinity of the singularity as

n � bph
bph ÿ v

� gph

�
3�1� a 2

m�1=4bph
2 dX

�2=3

; �74�

the singularity is integrable, and hence the breaking plasma
wave contains a finite number of particles.

4.6. Transverse wake wave breaking
The wave breaking regimes considered above were found in
the framework of the one-dimensional approximation, under
the condition that the transverse inhomogeneity scale sub-
stantially exceeds both the wavelength of the wake wave and
the value of the electron displacement in the wakefield.
Nonlinear wave breaking acquires new features in the three-
dimensional geometry, where the relativistically strong laser
pulse is relatively narrow in the transverse direction or/and in
the case of a wake wave excited inside a plasma channel, e.g.,
inside a plasma-filled capillary. Spatially inhomogeneous
wake waves have the shape of paraboloids (see Figs 3 and 4)
[92, 93]. Paraboloidal structures enhance the accelerated
charged particle focusing and can be used for the electro-
magnetic radiation focusing [35]. The curvature of con-
stant-phase surfaces, 1=R, increases with the distance from
the driver laser pulse. The curvature radius R decreases to
the value at which it becomes equal to the value of the
electron displacement in the wakefield, xwf. After that,
electron trajectory self-intersection occurs, which is equiva-
lent to wave breaking. This process results in the injection
of part of the electrons into the accelerating phase of the
wakefield.

Transverse inhomogeneity of a wake wave appears due to
a transverse inhomogeneity of the wake wave frequency owf,
which is due to its dependence on the amplitude of a
relativistically strong wave, which is in turn determined by a
transverse inhomogeneity of the driver laser pulse and/or the
transverse inhomogeneity of the plasma density when the
laser pulse propagates inside a plasma channel [94, 95]. The
coordinate dependence of the wake wave frequency near the
axis can be approximated by the expression owf �
owf�0� � dowf�r=S�2, where dowf is the difference between
the values of the frequency on the channel axis and outside. It
is equal to dowf � owf�0� if the wakewave is generated by a
high-intensity laser pulse with the amplitude a4 1. The
dependence of the wave phase on coordinates and time is
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given by (see Ref. [96])

xÿ vpht� c�x; r; t� vph
owf�0� �

r 2

2R
: �75�

Actual localization of constant-phase surfaces in a
nonlinear wake wave compared to those in a linear wave
differs by the value of the electron displacement xwf. We
can conclude that when the curvature radius R becomes
equal to the displacement amplitude xwf, the wave breaks.
This corresponds to the scenario of transverse wave
breaking [96]. From Eqn (75), it is easy to see that the
curvature radius decreases with the distance from the laser
pulse (see also Fig. 4d). Taking this fact into account, we
find that the distance between the laser pulse and the
position where the first wave breaking occurs is equal to
owf�0�S 2=�2dowfxwf�. The number of cycles of a regular wake
wave is Nwf � o2

wf�0�S 2=4pc dowfxwf.
Figure 3 schematically illustrates the electron trajectory

self-intersection in the course of transverse wake wave
breaking. The ponderomotive pressure of ultrashort laser
pulses pushes the electrons away in the forward direction and
transversely, forming a cavity in the electron density [96, 97].
The attracting force of the electric field, appearing due to the
electric charge separation, pulls the electrons into the cavity.
The dashed curves show the position of constant-phase
surfaces calculated in the linear approximation.

Following Refs [96, 98], we assume that the electron
displacement direction is perpendicular to the constant-
phase surfaces obtained in the linear approximation. For the
coordinates of a new position of the surface of constant phase
in the �x; r� plane, we can write

x � x0 � xwf�r0�R�����������������
R 2 � r 20

q ; r � r0 ÿ xwf�r0�r0�����������������
R 2 � r 20

q ; �76�

where x0 � r 20 =2R and r0 are the constant-phase surfaces
obtained in the linear approximation, which are assumed to
have the shape of paraboloids of revolution. Different
scenarios of transverse wave breaking can be realized
depending on the particular form of the function xwf�r0�.
For generic xwf�r0�, the singularities formed during the wave
break are structurally stable because they have topological
properties corresponding to fundamental catastrophes [90,
91]. In the case of a homogeneous displacement xwf, the map
�x0; r0� ! �x; r� given by Eqn (76) transforms the paraboloid
of revolution into a surface `parallel' to it. For xwf 5R, the
cross section of this surface has a singularity corresponding to
the `swallow tail' catastrophe, which is shown in Fig. 3d. In
the three-dimensional space with local coordinates
�x1; x2; x3�, a catastrophe of that type is related to the surface
on which the polynomial y 4 � x1y

2 � x2y� x3 has multiple
roots [90, 91].

In Fig. 3, we also present the results of computer
simulations of the electromagnetic pulse interaction with a
plasma target, which illustrates the formation of the discussed
singularity. Here and below, the simulations are performed
using the relativistic electromagnetic code REMP [99] based
on the particle-in-cell (PIC) method. In the simulations, a
laser pulse with the amplitude a � 3 corresponding to the
radiation intensity 1:93�1019��0:8=l �mm��2 W cmÿ2 and
15l� 50l in size propagates in a plasma slab with a thickness
of 145l and the density n � 3� 1017 � �0:8=l �mm��2 cmÿ3.
Figure 3c shows the electron density distribution in the

�x; y� plane. We see a region where the swallow tail
singularity is formed in the cavity behind the laser pulse.
Also, the initial stage of the electron bunch injection into the
wakefield is shown.

4.7 Bow wave
Wake plasmawave generation by a laser pulse provides one of
the examples of realization of a general physical phenomenon
well known in other fields of physics. For example, a moving
ship leaves wake waves behind it, known also as Kelvin waves
[81, 100]. In addition to these waves, the front part of the ship
emits a bow wave, which, in particular, determines the outer
boundary of the ship wake wave. Bow waves are well known
in observations of fluid motion under conditions on Earth
and in space plasma. A bow wave is formed on the day side of
Earth's magnetosphere under the action of the solar wind
[101]. The largest observed bow waves come from colliding
galaxies [102].

Continuing the analogy between the processes specific to
the dynamics of continuous media and the nonlinear
interaction of intense electromagnetic radiation with
plasma, it would be natural to find an analogue of the bow
wave forming at the front of a laser pulse [103]. The clearest
bow wave of this kind can be seen in the interaction of a
strong narrow electromagnetic pulse with collisionless low-
density plasma.

In Fig. 5, we present the results of PIC simulations of bow
wave formation in the three-dimensional geometry. A linearly
polarized laser pulse with the amplitude a � 6:62 and size
10l� 10l� 10l interacts with plasma. The electron concen-
tration is n � 1:14� 1018 � �1=l �mm��2 cmÿ3.

Excitation of a high-amplitude wake wave by a laser pulse
is accompanied by the formation of a cavity in the electron
density in the first cycle (see Figs 5 and 6).

As can be seen in Fig. 6, the longitudinal electric fieldEx is
localized in the region with a size much larger than the waist
of the laser pulse and that of the cavity. As a result, the
electrostatic potential value j is larger than in the case where
it corresponds to only the cavity size. We also note that the
cavity length is much larger than its width.

Transverse wake wave breaking leads to the emission
of electron bunches in the radial directions in other cycles
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of the wake wave, enhancing the electrostatic potential
there.

The form of the cavity in the electron density behind the
laser pulse can be found from the fact that in a strong bow
wave, all electrons in the way of the laser pulse are pushed
aside, forming a multi-stream configuration in the collision-
less plasma. The plasma inside the cavity is positively
charged. It attracts those electrons from side regions that
have not experienced the ponderomotive force action. The
transverse radial component of the electric field near the axis
is linearly proportional to the radius, E? � 2pn0er. Under the
action of this field, electrons from the outer region are drawn
into the cavity. It is easy to show that for a laser pulse with a
radius of the order of or smaller than 2pca=ope, the electrons
moving inwards remain nonrelativistic. The dependence of
their coordinate on time is given by r�t�� r�0� cos �opet=

���
2
p �.

For the time equal to t � p=
���
2
p

ope, the electrons reach the
cavity axis. As a result, the cavity boundary is determined by
the surface

r � w0 cos
ope�tÿ x=vph����

2
p ; �77�

where w0 is the laser pulse waist.
A bow wave in the laser plasma is a complex nonlinear

electromagnetic object (a more detailed discussion is given in
Ref. [103]). The locationwhere the bowwave is detached from
the cavity boundary, clearly seen in Figs 5 and 6g, deserves
more attention. The �x; r� cross section of this region shows a
strong modulation of the electron density, whose shape
corresponds to a cusp-like singularity [90, 91]. We note that
a bow wave was observed in the experiment presented in
Ref. [104].

4.8 Wave breaking in finite-temperature plasma
The laser plasma temperature in the case of ultra-short,
femtosecond laser pulses is determined by the parameters of
the prepulse and pedestal interaction with the irradiated
target during the time before the arrival of the main pulse.
In the case typical formulti-terawatt laser radiation, plasma is
formed in the process of photoionization [49, 105]. In such
plasmas, the electron temperature is of the order of the quiver
energy of electrons moving in the ionizing radiation, i.e., it
does not exceed the keV level, which is much lower than the
energy of electrons moving in the field of the main pulse,
which is above the MeV level. The electron energy distribu-

tion does not correspond to theMaxwell distribution and can
be approximated in the framework of the `water bag' model,
which, under circumstances different from those stated
above, would be considered too artificial.

In the water bag model, the distribution function is
constant, fe�p; x; t� � const, in the phase-plane domain
bounded by the curves p��x; t� and pÿ�x; t�, and vanishes
outside this domain (see, e.g., Ref. [106]). The constant is
proportional to the electron density and inversely propor-
tional to the width of the distribution in themomentum space,
which is related to the electron temperature.

The distribution function evolution is described by the
Vlasov equations

qfe
qt
� v qfe

qx
ÿ E

qfe
qp
� 0 ; �78�

qE
qx
� 1ÿ ne ; �79�

where all the variables are written in the dimensionless form
using standard normalization. Equation (78) describes an
incompressible fluid flow in the phase space.

Taking the first moment, we obtain the electron density
ne�x; t�� ge� p��x; t� ÿ pÿ�x; t��. Here, the constant ge �
n0=�p�; 0 ÿ pÿ; 0� is the ratio of the initial density value to the
initial width of the distribution, which is assumed to be
uniform.

It follows from Eqns (78) and (79) that the functions
p��x; t�, pÿ�x; t�, and E�x; t� satisfy the system of equations

qp�
qt
� p���������������

1� p 2�
p qp�

qx
� ÿE ; �80�

qpÿ
qt
� pÿ��������������

1� p 2ÿ
p qpÿ

qx
� ÿE ; �81�

qE
qx
� 1ÿ ge�p� ÿ pÿ� : �82�

For waves propagating with a constant velocity vph, i.e., for
the solutions of Eqns (80)±(82) in terms of the independent
variable X � xÿ vpht, this system can be reduced to

h 0� � ÿE ; �83�

E 0 � 1ÿ p��h�� ÿ pÿ�h� ÿ bphDp0�
Dp0

; �84�
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where the prime denotes the differentiation with respect to X,
h�� �1� p 2

��1=2ÿ bph p�, Dp0� p�; 0 ÿ pÿ; 0, and bph� vph=c.
Equations (83) and (84) can be written in the Hamiltonian

form. For a symmetric initial distribution with p�; 0 � ÿpÿ; 0,
the Hamiltonian function is given by [107]

H�E; h�� � E 2

2
� g 2phh� ÿ

W�gphh�� ÿW
ÿ
g��h� � bphDp0�

�
2Dp0

;

�85�

where

W�z� � z
�������������
z 2 ÿ 1
p

ÿ ln
ÿ
z�

�������������
z 2 ÿ 1
p �

: �86�
In the limit z! 1, this function tends to zero as W�z� �
�4 ���

2
p

=3��zÿ 1�3=2, and in the limit z!1, W�z� �
z 2 ÿ ln �2z�. In Fig. 7, we plot constant-value contours of
Hamiltonian (85) in the �E; h�� plane for bph � 0:8 and
Dp0 � 0:1.

The solutions of Eqns (83) and (84) in the limit h� ! gÿ1ph

become singular, as follows from expression (85) and from the
behavior of the Hamiltonian system trajectories seen in
Fig. 7a. At the singularity, the electron momentum on the
upper bounding curve tends to

p� ! p�;m �
bph���������������
1ÿ b 2

ph

q ; �87�

which corresponds to wave breaking when the velocity of
the electrons with the momentum p� becomes equal to the
phase velocity of the wave. At the point of wave breaking,
the electron momentum on the lower bounding curve is
equal to

pÿ;m � p�;m ÿ bphg
2
phDh0 ÿ

������������������������������������
g 2phDh

2
0 ÿ 2g 3phDh0

q
;

where

Dh0 �
�����������������
1� p 2

�; 0
q

ÿ
�����������������
1� p 2

ÿ; 0
q

ÿ bph�p�; 0 ÿ pÿ; 0� :

The effects of a finite temperature of the plasma
decrease the value of the maximum electric field [108±110]
in a stationary wave compared with the value EAP given by
Eqn (44). For Dp0 5 1=bphgph, the maximum field is equal
to

Em � EAP ÿ
2�bphgph�3=2
3
���������������
gph ÿ 1

p ��������
Dp0

p
: �88�

In the limit Dp0 ! 2bphgph, it vanishes (Fig. 7b).
In Figs 7c±e, we show the nonlinear wave structure: the

phase plane, the electron density, and the electric field for
bph � 0:995 and Dp0 � 0:25.

In contrast to the wave breaking in cold plasma, the
density at the wave-breaking point remains finite in a finite-
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temperature plasma,

ne;m � g 2phbph

 �����������������������������
1� 2

bphgphDp0

s
ÿ bph

!
: �89�

In the vicinity of the wave-breaking point X � Xm, the
density dependence on the coordinate can be represented
in the form [111]

ne�X�
���
X!Xm

� ne;m ÿ
���������������
ne;mg

3
ph

q
Dp0

jdX j ; dX � Xÿ Xm ;

corresponding to nonlinear waves called `peakons' (see
Fig. 7d). Among the best-known peakons are Stockes waves
on a water surface [100].

5. Interaction of charged particles
and electromagnetic waves
with nonlinear wake waves

A number of publications have been devoted to the study
of the interaction of charged particles and photons with
plasma waves. Most of the publications are related to the
problem of electron acceleration by wake plasma waves,
which has been proposed in Ref. [89] (see also review
article [33]). The interest in this problem stems from the
development of a compact accelerator of high-energy
electrons and positrons [33]. As demonstrated in Refs [34,
35, 44, 112, 113], wake plasma waves can also be used as
mirrors moving with a relativistic velocity. This process is
related to a range of problems associated with the interaction
of electromagnetic waves with plasma waves, which, from a
more general standpoint, includes the study of the transfor-
mation of waves of different types, parametric instabilities,
and Raman scattering (see Refs [114±116] and the references
therein). A detailed discussion of these problems is far
beyond the scope of this paper. Below, we consider only
those aspects of the electron and photon interaction with
wake waves that have a direct relation to relativistic plasma
mirrors.

5.1 Electron acceleration by wake waves
Nonlinear plasma waves with an amplitude close to the
wave-breaking threshold play equally important roles in
studying the problems related to relativistic moving mirrors
and to high-energy electron acceleration. It is also impor-
tant that the registration of ultrarelativistic electron beams
in experimental studies of relativistic mirrors is an indica-
tion of reaching the threshold of wake wave breaking,
providing the electron injection into the acceleration phase.
In addition, the analysis of the energy spectrum of
accelerated electrons gives information about the para-
meters of the wave [112, 113].

Electrons in the wake wave oscillate in a regular way. In a
plasma with the electron density well below the critical one
�ne 5 ncr � meo2=4pe 2�, the wake wave phase velocity vph is
close to the speed of light in the vacuum, which corresponds
to a large value of the relativistic Lorentz factor, gph 4 1. The
group velocity of the wake wave is equal to zero and the phase
velocity vph is equal to the group velocity of the laser pulse,
vg; las � c�1ÿ o2

pe=o
2
0�1=2, which in the limit ne 5 ncr is

approximately vg; las � c�1ÿ o2
pe=2o

2
0�. From these expres-

sions, it is easy to obtain a relation between the electro-

magnetic pulse wavelength l0 and the wavelength lw of the
wake field:

lw � l0

�
o0

ope

��
1ÿ o2

pe

o2
0

�1=2

� l0gph :

Assuming that the characteristic change in the electron
density in the wake wave is of the order of the plasma density
and considering the weakly nonlinear wave that is of interest
to the discussed concept of a laser electron±positron collider
[33], we can estimate the amplitude of the electrostatic
potential in the wave as jw � mec

2=e. The energy of
electrons accelerated by the wake wave is �1ÿ v 2

ph=c
2�ÿ1

times greater than ejw, i.e., the electron gamma-factor is
ge � 2g 2ph. The electron acceleration length is

lacc � pc=ope

1ÿ vph=c ;

which is equivalent to the expression lacc � l0g 3ph, which we
use to obtain the relation between the acceleration length, the
laser wavelength, and the energy of fast electrons:
lacc � l0g

3=2
e . For the laser wavelength l0 � 1 mm and the

electron energy 1 TeV, i.e., for ge � 2� 106, we find that the
acceleration length (the accelerator size) should be 1 km.

We present a description of the electron dynamics in the
wake wave, limited to the one-dimensional approximation
[117], for the geometry where all functions depend on the time
t and one coordinate x. In the framework of classical
electrodynamics, one-dimensional motion of electrons in the
fields of an electromagnetic and wake plasma wave is
described by the Hamiltonian

H �
������������������������������������������������������������������������
m 2

e c
4 � c 2P 2

k �
ÿ
cP? � eA?�x; t�

�2q
ÿ ej�x; t� ; �90�

where Pk and P? are the components of the generalized
momentum, A? is the vector potential of the laser pulse,
and j is the wakefield scalar potential. Neglecting the
influence of dispersion on the propagation of electromag-
netic waves, we assume that A? and j depend only on the
variable X � xÿ vgt. It is assumed here that the group
velocity of the laser pulse vg satisfies 0 < vg < c. The
Hamiltonian in Eqn (90) has a symmetry corresponding to
the Lie group with the generators vg q=qx� q=qt, q=qy, and
q=qz. The Noether theorem implies that there are integrals
of motion

Hÿ pvg � mec
2h0 ; P? � P?; 0 ; �91�

where constants h0 and P?; 0 are determined by the
initial conditions. Using the dimensionless variables
introduced above, bph � vg=c, F�X� � ej�X�=mec

2, a�X� �
eA?�X�=mec

2, and px � Pk=mec, we write the first integral of
motion as

h�px;X� �def
�������������������������������
1� p 2

x � a 2�X�
q

ÿ j�X� ÿ bph px � h0 : �92�

It then follows that the kinetic energy acquired by an electron
on the trajectory interval from X0 to X is

E � g 2ph
h
j�X� ÿ h0

� bph

�����������������������������������������������������������������ÿ
j�X� ÿ h0

�2 ÿ gÿ2ph

ÿ
1� a 2�X��q i

ÿ 1 ; �93�
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where the plus sign corresponds to the coordinate X
increasing with time and the minus sign corresponds to
decreasing X.

The behavior of the system with the Hamiltonian given by
Eqn (92) is illustrated in Fig. 8, which presents the phase
portrait for electrons with P?; 0 � 0. The wake wave is excited
by a short electromagnetic pulse of circular polarization with
the envelope given by

a�X� � a0

�
exp

�
ÿ 4 ln �2�X 2

l 2p

�
ÿ 1

16

�
y
ÿ
lp ÿ jX j

�
;

where a0 � 2, lp � 10l, and y�x� is the Heaviside function,
equal to 1 for x5 0 and 0 for x < 0. The scalar potentialj�X�
satisfies Eqn (35), in the right-hand side of which the vector
potential is assumed to be a given function.

Each electron trajectory fX�t�; px�t�g in the �X; px� plane
corresponds to a level line of the function h�X; px� in (92). The
phase plane consists of the domains containing the trajec-
tories of particles trapped in the wakefield and two domains
corresponding to the transition particles. These areas are
separated by singular trajectories, called separatrices, which
merge at the singular points, which are located on the curve
px�X� � bphgph

���������������������
1� a 2�X�p

. On this curve, the radicand
in the right-hand side of (93) vanishes: �j�X� ÿ h0�2 �
gÿ2ph �1� a 2�X��.

We consider an electron moving along the separatrix,
whose trajectory originates at a singular point Xs. Its kinetic
energy reaches amaximum Em when the electron position is at
the crest of the separatrix at the point Xt. For a sufficiently
short laser pulse with lp < lwf=2, the points Xs and Xt in the
first cycle of the wake wave correspond to a local minimum
and a local maximum of the potential: jmin � j�Xs� and
jmax � j�Xt�. Hence, the maximum value of the energy
acquired by the electron moving along the separatrix is

Em � g 2ph

�
�jmax ÿ jmin�

� bph
��������������������������������������������������������������������������
�jmax ÿ jmin�2 � 2gÿ2ph �jmax ÿ jmin�

q �
� Einj ; �94�

where Einj � gph ÿ 1 is the electron energy at the point Xs. In
the limit gph 4 1, the electron energy is given by

Em � 2g 2ph�jmax ÿ jmin� � gph ÿ 1 : �95�

The lowest value of the scalar potential is at the point of the
maximum of the electron density in the wake wave with
jmin 5 ÿ 1� 1=gph.

The value h�X; px� � 1=gph ÿ jmin corresponds to the
separatrix separating the first-cycle trajectories of the

2

1

0

4

3

2

1

700
400

100

10

50

10

1

0
ÿ2

ÿ20 ÿ10 0 10 20

12

10

8

Em

8 10

dN=dE, arb. units

F

Ex

px

�ma=me��na ÿ 1� � 1

Xf

Xs Xt Xp

Xph
p

X=lpe

kkc
ope

Xp Xf

a

ne

Calm
plasma

a

b

c

d

Ef

Electron

Photon

Figure 8. (a) Wake wave excited by a short laser pulse. Dependences of the dimensionless quantities F, a, and Ex on the coordinate X � xÿ vgt; Xf is the

coordinate of the laser pulse front. (b)Normalized density of electrons and ions. (c) Electron phase plane.Xs,Xt, andXp are the respective coordinates of a

singular point of the separatrix, its crest, and the point of intersection of the separatrix branches. The top right inset shows an enlarged fragment of Fig. c,

the domain where the ponderomotive force of the laser pulse acts on electrons. The bottom inset shows the energy spectrum of the electron beam dN=dE,
which consists of the contributions from the particles at the separatrix crest and from the particles that have overtaken the laser pulse; Em is the maximum

energy of an electron accelerated at the front of the laser pulse. (d) Photon phase plane. The bold lines represent the separatrix and the thin lines show

other trajectories in Figs c, d. Curves in Fig. c and the upper inset correspond to the dependence px � bphgph
���������������������
1� a 2�X�p

, and in Fig. d, to the dependence

kxc � bphgphope�X�.

446 S V Bulanov, T Zh Esirkepov, M Kando, A S Pirozhkov, N N Rosanov Physics ±Uspekhi 56 (5)



electrons trapped by the wakefield from the electron
trajectories reflected by the potential at the point Xs. As a
result of reflection, the electron acquires a speed greater than
the phase velocity of the wake wave and overruns the wake
wave and the laser pulse. Asymptotically as X! �1, the
electron energy tends to

Ef � g 2ph
�
jjminj � bph

�����������������������������������������
jjminj2 � 2gÿ2ph jjminj

q �
� Einj : �96�

If the wakefield is excited by a strong laser pulse with a4 1,
thenjmin tends to its lowest valueÿ1� 1=gph, which gives the
electron energy Ef;m � 2�g 2ph ÿ 1�.

We conclude that in a weakly nonlinear wakefield, the
maximum energy of the accelerated electrons is related to the
electron density in the plasma by

Em � gemec
2 � 2mec

2g 2ph ; �97�
where gph � o0=ope � lp=l0 � �ncr=n0�1=2. The acceleration

length is lacc � lpg 2ph, i.e., lacc � l0g 3ph. It is related to the

electron energy as lacc � 2l0g
3=2
e , which can be represented as

Em � mec
2

�
lacc
2l0

�2=3

� 0:3

�
lacc �km�
l0 �mm�

�2=3

�TeV� : �98�

As noted above, in the mid-1950s, Enrico Fermi formu-
lated the question about the highest particle energy that can
be obtained in standard accelerators, considering an accel-
erator size of the order of the circumference of Earth's
equator, and found the limit of 1 PeV �1015 eV). Substituting
lacc � 40;000 km for the acceleration length in expression (98),
we obtain an energy of the same order. The use of a multi-
stage wakefield accelerator [33] may increase the electron
energy by several orders of magnitude.

Here, we discuss the shape of the energy spectrum of
electrons accelerated by the wakefield [117, 118]. We assume
that the electron beam is injected with the parameters that
provide the conditions for entering a neighborhood of the
point Xs in the phase plane. Then the electrons move along
the separatrix with the distribution of their density given by a
function N�X�, which leads to a broadening of the spectrum
from the initial energy E0 to the maximum energy Em,
corresponding to the top of the separatrix. In addition, the
electron energy spectrum has a singularity at the energy Ef
(see the lower inset on the right in Fig. 8). Near the top of the
separatrix, the dependence of the energy of the beam
particles on the coordinate X can be approximated by a
parabola:

E�X� � Em
�
1ÿ �Xÿ Xt�2

l 2acc

�
; �99�

where lacc � g 2phlwf is the acceleration length. This implies that
the spectrum of the electrons collected in the detector, equal
to the integral over time, is given by

dN

dE
����
E!Emÿ0

� N�X�
jdEm=dX j �

N �Xt� lacc
2
������������������������Em�Em ÿ E�

p �100�

if E < Em. If electrons are injected in the vicinity of a singular
point on the separatrix in other cycles of the wake wave, then
the resulting energy spectrum contains a superposition of
peaks given by Eqn (100) with different values of the
maximum energy in general.

The contribution of electrons overtaking the laser pulse
can be found from Eqn (93). It was shown in Ref. [117] that
the spectrum is then described by the expression

dN

dE
����
E!Ef�0

� N�Xf�Xf

E ÿ Ef ; �101�

where Ef is determined by Eqn (96).
In experiments on laser wakefield acceleration by laser

pulses of a multi-terawatt power, the achieved energy of
electrons is of the order of 1 GeV [119] and 2 GeV [120],
with the plasma size of a few centimeters. The spectrum has a
quasi-mono-energetic form in the vicinity of the maximum
energy.

5.2 Photon accelerator
To describe the propagation of a sufficiently short packet of
electromagnetic radiation through plasma, we can use the
geometrical optics approximation for the coordinate x (the
center of the wave packet) and the momentum (wave vector).
The equations can be written in the Hamiltonian form with
the Hamiltonian

o�x; k; t� �
�������������������������������������������
k 2c 2 � o2

pe�xÿ vpht�
q

: �102�

This expression is nothing more than a dispersion equation
for the dependence of the wave frequency on the wave vector
k 2 � k 2

k � k 2
?. In the same way as above in describing the

electron motion, passing to the variable X � xÿ vpht allows
obtaining the Hamiltonian for photons:

W�x; kx� �
������������������������������
k 2
x c

2 � o2
pe�X�

q
ÿ bphkxc : �103�

Here, we use the conservation of the transverse momentum
k? and assume for simplicity that it is equal to zero.

Level lines of Hamiltonian (103), which are trajectories in
the phase plane, are shown in Fig. 8d. Due to the obvious
similarity between the photon phase plane and the phase
plane of electrons in Fig. 8c, the process of increasing the
frequency of electromagnetic radiation of a short wave packet
during its interaction with wake plasma waves is called
`photon acceleration' [121±126]. We note that in the case of
excitation of the wake plasma wave by a short electron beam,
the phase portrait of a photon is topologically equivalent to
the phase portrait of a positron. On the trajectory corre-
sponding to a fixed value of Hamiltonian (103),W�X; kx� �
w0 � o0 ÿ bphkx; 0c, the dependence of the photon frequency
on the coordinate X is given by

o � g 2phw0

"
1� bph

�
1ÿ o2

pe�X�
w 2
0 g

2
ph

�1=2
#
: �104�

A photon with the initial frequency and wave number
values equal to o0 and kx; 0 in the process of the reflection by
the first or second maximum of the electron density in the
wake wave undergoes a frequency upshift:

~o � �2g 2ph ÿ 1�o0 ÿ 2bphg
2
phkx; 0c : �105�

The maximum value of the photon frequency ~omax reflected
by the wakewave corresponds to the trajectory that lies on the
separatrix separating the transient photons from the reflected
ones. For that separatrix, we have w0 � ôpe=gph, where
ôpe � ope�Xs� is the maximum plasma frequency, reached at

May 2013 Relativistic mirrors in plasmas. Novel results and perspectives 447



the points of maximum electron density. From Eqn (103), we
find that

~omax � gph
�
ôpe � bph

������������������������
ô2

pe ÿ o2
pe; 0

q �
; �106�

where ope; 0 � ope�1� is the plasma frequency in the region
far ahead the laser pulse. In the limit ôpe 4ope; 0 and bph ! 1,
the maximum photon frequency is ~omax � 2gphôpe.

6. Electromagnetic wave reflection
from caustics in the electron density distribution
in nonlinear plasma waves

As has been noted above, the concept of relativistic moving
mirrors is based on the idea that an electromagnetic wave can
be reflected by nonlinear plasma waves near the threshold of
wave breaking with small but nonexponentially small
reflectivity. Below, we discuss the reflection of electromag-
netic waves from the electron density maxima with a
singularity in the density distribution. Following the widely
used terminology, we call these singularities (singularities of
the Lagrangian map) the caustics. To calculate the reflection
R and transmission T coefficients, we consider the interaction
of electromagnetic waves with a strongly nonuniform dis-
tribution of the electron density in a plasma wave [127]. Let
the electromagnetic wave be described by the z component of
the vector potential Az�x; y; t�, which satisfies the wave
equation

q2Az

qt 2
ÿ c 2

�
q2Az

qx 2
� q2Az

qy 2

�
� o2

pe�X�Az � 0 ; �107�

where o2
pe�X� � 4pe 2n�X�=megph is the plasma frequency

with the relativistic gamma-factor equal to gph.
We perform the Lorentz transformation to a boosted

reference frame moving with the phase velocity of the plasma
wave. In this frame, Eqn (107) takes the form

d2a�z�
dz 2

� ÿs 2 ÿ n�z�� a�z� � 0 ; �108�

where s 2 � �o 0=c�2 ÿ k 2
y , z � gph�xÿ vpht�, t 0, k 0, ando 0 are

respectively the square of the wave number, coordinate, time,
and frequency in the boosted reference frame, and
n�z� � o2

pe�z�=c 2. The vector potential is normalized to
mec

2=e, and its dependence on the time t 0 and coordinates z
and y is

a�z� � eAz�z�
mec 2

exp
�ÿi�o 0t 0 ÿ kyy�

�
: �109�

We represent the solution of Eqn (108) in the form

a�z� � b��z� exp �isz� � bÿ�z� exp �ÿisz� ; �110�

where the unknown functions b��z� and bÿ�z� are the
amplitudes of the reflected and transmitted waves. In the
limit z! ÿ1, the function b��z� is equal to the amplitude of
the incident wave, which is set equal to unity, and
bÿ�ÿ1� � r is the amplitude of the reflected wave. For
z! �1, the function b��z� is equal to the amplitude of the
transmitted wave t, and bÿ�z� vanishes. Therefore,
jb��ÿ1�j2 � 1, jbÿ�ÿ1�j2 � R, and jb���1�j2 � T,
bÿ��1� � 0.

Because we introduced two unknown functions, b��z� and
bÿ�z�, instead of one, a�z�, it is necessary to impose an
additional condition on them. We choose it in the form of
the requirement that the derivative da=dz be equal to

da

dz
� is

�
b��z� exp �isz� ÿ bÿ�z� exp �ÿisz�

�
; �111�

i.e.,

db�
dz

exp �isz� � ÿ dbÿ
dz

exp �ÿisz� : �112�

Substituting expression (110) in Eqn (108) and taking
Eqns (111) and (112) into account, we obtain a system of
equations for b��z� and bÿ�z�, which can be conveniently
written in the form (see also Ref. [128])

d

dz
b�
bÿ

� �
� in�z�

2s

ÿ1 ÿ exp �ÿ2isz�
exp �2isz� 1

� �
b�
bÿ

� �
:

�113�

We assume that the amplitude of the reflected wave is
small compared with the amplitude of the incident wave,
R5 1, which, in particular, is satisfied if s 2 4 n�z�. We seek a
solution of system (113) within the approach corresponding
to the known approximation in quantummechanics, with the
potential energy considered a perturbation [129]. As a result,
we find

r � i

2s

� �1
ÿ1

n�z� exp �ÿ2isz� dz : �114�

We consider the electron density distribution typical for a
plasma wave near the wave-breaking threshold. In accor-
dance with the above analysis of the properties of breaking
plasma waves, it can be approximated by the function

n�X� � n0G2=3

k
2=3
p �l 2 � X 2�1=3

: �115�

In this expression,G2=3 is a dimensionless coefficient and l is a
quantitative measure of the closeness to the wave breaking
threshold, which corresponds to l � 0. In the reference frame
where the mirror is at rest, this leads to the dependence
n�z� � g2=3=js 2 � z 2j1=3 with g2=3� G2=3k

4=3
p gÿ1=3ph . From

Eqn (74), it follows that

G2=3 �
�
2

9

�1=3

�1� a 2
m�1=6gph ;

i.e.,

g2=3 �
�
2

9

�1=3

�1� a 2
m�1=6k 4=3

p g 2=3ph :

Calculating integral (114) with this integrand, we find

r2=3�s; l � �
ip1=2g2=3

s 7=6l 5=6G�1=3� K1=6�2sl � ; �116�

where G�z� is the gamma-function and Kn�z� is the modified
Bessel function of the second kind [80]. In the limit of a
relatively large l, sl4 1, the overbarrier reflection is exponen-
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tially small:

r2=3�s; l � �
ip

s 5=3l 2=3G�1=3� exp �ÿ2sl � : �117�

In the opposite limit sl! 0, we have nonexponentially weak
reflection:

r2=3�s� �
i31=2G�1=3�g2=3

�2s�2 : �118�

Accordingly, the reflection coefficient is equal to

R2=3�s� �
3G 2�1=3�g 2

2=3

�2s�4 : �119�

We emphasize that these expressions are obtained in the
comoving reference frame. In the laboratory frame, expres-
sion (119) has the meaning of the reflection coefficient in
terms of the number of photons.

7. Thin electron layer as a relativistic mirror

The interaction of a sufficiently wide electromagnetic pulse
with a thin foil, in the case where the ponderomotive force of
the pulse significantly exceeds the force caused by the electric
field that occurs due to electric charge separation, can result
in the formation of a dense electron layer moving in the
direction of electromagnetic wave propagation. The second
counter-propagating electromagnetic pulse can be partly
reflected from a thin electron layer, which, due to the above-
mentioned double Doppler effect, should lead to the
compression of the reflected pulse and to its frequency
upshift [41].

To describe the acceleration of a thin electron layer by a
laser pulse, we use the known exact solution of the equations
of motion of a charged particle in the field of a plane
electromagnetic wave [52]. For a plane wave propagating
along the x axis and described by the vector potential
A0�tÿ x=c�, the transverse component of the generalized
momentum of a particle is conserved:

p? ÿ
e

c
A? � const : �120�

The integral of motion

mec
2ge ÿ pkc � const ; �121�

which is a combination of the parallel component of the
electronmomentum and its energy, is also conserved (pk is the
longitudinal component of the particle momentum). Here,me

and c are the electron mass and the speed of light in the
vacuum. We note that integral (121) is the Hamiltonian of a
one-dimensional system describing a particle with the
momentum pk and coordinate u � tÿ x=c. In the reference
frame where the electron layer is at rest before the wave
arrival, the constant in the right-hand side of (121) should be
set equal to mec

2. The solution of Eqns (120) and (121) gives
the electron kinetic energy Ekin � mec

2�ge ÿ 1� and the
momentum

Ekin � 1

2
mec

2
��a?�u���2 ; �122�

p? � meca?�u� ; pk � 1

2
mec

��a?�u���2 : �123�

In these expressions, a?�u� � eA?�u�=mec
2 is the normalized

vector potential of the wave.
The velocity of the electron motion along the x axis is

vk �
pk
meg
� c

��a?�u���2
2� ��a?�u���2 : �124�

Generally, the particle coordinate is defined by implicit
equations given in Ref. [52] [see also (9)]. For a
circularly polarized wave, for example, with a?�u� �
a�u��ey cos �ou� � ez sin �ou��, the coordinate x is to be
found from the equation� tÿx=c

0

�
2� ��a�u���2� du � 2t : �125�

If the laser pulse amplitude is constant, Eqn (125) yields the
dependence of the particle position on time:

x�t� � x0 � c
jaj2

2� jaj2
�
tÿ x0

c

�
; �126�

where x0 is the coordinate value at the instant of arrival of the
laser pulse, t0 � x0=c. The thickness of the electron layer is
decreased by the factor �2� jaj2�=2.

To find the distribution of electrons within the layer, it is
necessary to solve continuity equation (33) for the electron
velocity given by Eqn (124). It is easy to find that

n�u� � n0
1ÿ bM�u�

� n0

�
1�

��a?�u���2
2

�
; �127�

where bM�u� � vk�u�=c. As a result of the interaction with a
constant-amplitude laser pulse, the density increases by the
factor �2� jaj2�=2, in accordance with the conclusion above
that the layer is longitudinally compressed.

Using the expression for the electron velocity in Eqn (124),
we find the corresponding gamma-factor of the relativistic
mirror:

gM�u� �
1���������������������������

1ÿ v 2
k �u�=c 2

q � 2� ��a?�u���2
2

�������������������������
1� ��a?�u���2q : �128�

It can be seen that in the limit of a large-amplitude
electromagnetic wave, when ja?�u�j ! 1, the gamma-factor
is proportional to the first power of ja?j. We note that in
Refs [130, 131], where the configuration consisting of two
electron layers was considered, it was concluded that the use
of a two-layer configuration can significantly increase the
mirror gamma-factor.

In the case where the electron layer is accelerated by a
linearly polarized electromagnetic wave, we can find the
parameters of the second wave reflected from the layer using
the approach in Section 2.2. According to relations (6), (7),
(122), and (123), the phase of the reflected wave is given by

cr�u� � o0

�
u� a 2

0

2
uÿ a 2

0

4O
sin 2Ou

�
�129�

in the configuration of a head-on collision of the wave with a
mirror. The wave frequency and amplitude vary from o0 and
E0 too0�1� a 2

0 � andE0�1� a 2
0 �. In the reference framewhere

the mirror is at rest on average, the reflected radiation has the
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form of a train of short high-frequency pulses, shown in
Fig. 1b.

If the second wave propagates in the direction of motion
of the electron layer (which interacts with the receding
mirror), the reflected wave phase is given by

cr�v� �
o0

O

arctan
� ��������������

1� a 2
0

q
tanOv

�
��������������
1� a 2

0

q : �130�

The wave frequency and amplitude are proportional to
�1� a 2

0 sin
2 Ov�ÿ1, and hence vary from o0 and E0 to

o0�1� a 2
0 �ÿ1 and E0�1� a 2

0 �ÿ1. The electric field has the
form of a sequence of short pulses with the width � p=a0O.

We find the reflection coefficient of the electromagnetic
radiation from a thin electron layer similarly to how this is
done in the classical scattering problem (see, e.g., Ref. [132]).
We take the electron density distribution to be proportional
to the Dirac delta function:

n�X� � n0ld�X� ; �131�

where l is the electron layer thickness. This approximation
was used in Ref. [35] to calculate the reflection coefficient
from the electron density maxima in the wake wave. Here, we
use the fact that in the nonlinear wakefield, approximately
half of the electrons have the speed about vph, concentrated
near the maximum density, while the other half moves in the
opposite direction.

In the reference frame moving with the velocity vph,
Eqn (107) can be written as

d2a

dz 2
� ÿs 2 ÿ gdd�z�

�
a � 0 ; �132�

where gd � k 2
p l. Integrating this equation over z in the interval

ÿe < z < e and setting e to zero, we obtain the condition for
the jump of the derivative da=dz at the boundary z � 0:

da

dz

����
�0
ÿ da

dz

����
ÿ0
� gda�0� : �133�

The function a�z� is continuous at the point z � 0. The
solution of Eqn (132) describing the wave reflection from a
thin layer can be represented as

a�z� � const
exp �isz� � r exp �ÿisz� ; z5 0 ;

t exp �isz� ; z < 0 ;

�
�134�

where r and t are related to each other by equations following
from boundary condition (133):

1� r�s� � t�s� ; �135�
is
ÿ
1ÿ r�s� ÿ t�s�� � gdt�s� : �136�

As a result, the reflected wave amplitude is

r�s� � ÿ gd
2is� gd

� t�s� ÿ 1 : �137�

From this expression, we obtain the reflection coefficient for
the number of photons:

Rd � g 2
d

4s 2 � g 2
d

: �138�

For large values of the electron surface density n0l, i.e., for
g 2
d 4 4s 2, the reflection coefficient is close to unity. In the

opposite limit, we can neglect g 2
d compared with 4s 2 in the

denominator in the right-hand side of (138) and obtain

Rd � g 2
d

4s 2
� �n0ll0re�

2

g 2e
: �139�

It follows that the reflection coefficient is proportional to the
square of the electron density in the surface layer, � �n0l �2,
i.e., the reflection is coherent. In a nonlinear wake wave,
where the energy of the electrons is equal to ge � gph � k0=kp
and the effective layer thickness l is half the wavelength
l � 2

���������
2gph

p
=kp, the reflection coefficient is inversely propor-

tional to the cube of the parameter ge: Rd � 1=2g 3ph [35].
As shown in Ref. [43], sufficiently homogeneous laser

pulses are required in order to form thin electron layers
continuous in the transverse direction. When this condition
is not satisfied in the interaction of laser radiation with a thin
foil, a cloud of ultrashort electron bunches (a swarm of
electron bunches) is formed (see also Refs [133, 134]).

8. Interaction of electromagnetic waves
with a receding relativistic mirror.
Ion acceleration by the radiation pressure of light

In the process of interaction of a laser pulse with a receding
relativistic mirror, the back-reflected electromagnetic pulse
has an energy negligibly small compared to that incident on
the mirror. Hence, the radiation energy is almost completely
converted into the energy of ions. In this section, we
consider the problem of a receding relativistic mirror,
motivated by a common interest in the collective accelera-
tion of ions and the potential for realizing a relativistic
mirror for the efficient generation of hard X-rays, discussed
in Section 9.

The acceleration of ions in the regime of domination of the
radiation pressure of light [1] (the history of this work can be
found in [4]) in the relativistic limit has the highest efficiency
among the known mechanisms of laser acceleration of
charged particles [135]. This ion accelerator also has the
names photon sail and laser piston. This acceleration regime
can be realized under the conditions where a thin target
irradiated by laser light and pushed forward by the radiation
pressure moves as a whole, i.e., electrons and ions move with
the same average velocity. In the relativistic limit, due to the
smallness of the ratio of the electron mass to the ion mass, the
kinetic energy of the ions is greater than the kinetic energy of
the electrons by the factor ma=me.

8.1 Simple model of radiation pressure acceleration
We consider the interaction of electromagnetic waves with a
plasma layer in the geometry where an electromagnetic wave
incident on a layer propagates in the direction of its motion.
Obviously, the closer the velocity of the layer vM is to the
speed of light c, the less the layer is transparent to radiation. If
the frequency of the radiation and the plasma density in the
laboratory reference frame are o0 and n0, then in the co-
moving reference frame, where the layer is at rest, the
frequency and the density are

�o � o0

�
1ÿ bM
1� bM

�1=2

; �n � n0�1ÿ b 2
M�1=2 : �140�
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In the limit bM ! 1 we have �o � o0=2gM and �n � n0=gM,
where gM � �1ÿ b 2

M�ÿ1=2.
The plasma opacity condition is �o < �ope, where �ope �

�4p�ne 2=me�1=2, because �o / gÿ1M and �ope / gÿ1=2M , is satisfied
better and better in the limit gM !1.

It hence follows that a dense ion±electron layer moving at
a relativistic speed almost fully reflects the incident electro-
magnetic pulse and can be regarded as a perfectly reflecting
mirror. Interaction with such a relativistic mirror reduces the
energy of the reflected electromagnetic wave by a factor of
� 1=4g 2M. As a result, the laser pulse energy transferred to the
mirror is approximately Elas�1ÿ 1=4g 2M�. Because the energy
of the electromagnetic radiation is converted into the kinetic
energy of the ions in this process, it provides a very high
efficiency of this mechanism compared with other mechan-
isms of laser ion acceleration.

In Fig. 9, in order to illustrate the acceleration of ions in
the regime of domination of the radiation pressure of light,we
show the results of computer simulation by the PICmethod of
the radiation acceleration of ions in a three-dimensional
configuration. As can be seen, in the course of interaction
with a thin plasma layer, the laser pulse forms a thin shell,
enclosing the laser pulse like a cocoon. The thin plasma shell
holds the electromagnetic radiation inside, preventing its
spreading. Ions in the front part of the shell are accelerated
to an energy exceeding GeV, and have a quasi-mono-
energetic spectrum (Figs 9c).

The combination of the radiation pressure acceleration
and the Coulomb explosion mechanisms using a two-layer
target can significantly increase the energy of the accelerated
ions [136]. This allows achieving higher ion energies using a
laser of a lower power and a higher repetition rate, which is of
interest for the development of laser acceleration methods for
generating ion beams with the parameters required in the
hadron therapy of cancer [8].

Indications of the realization of the radiation-dominant
regime in the interaction of laser radiation with matter were
obtained in an experiment dedicated to the study of the
formation of dense plasma jets ejected from a solid target
irradiated by intense laser pulses [137].

8.2 Equations of motion of a deformable shell
In this section, we derive the relations required for the
analysis of the acceleration and stability of a thin foil
moving under the action of the radiation pressure of light
[138, 139]. In describing the electromagnetic wave interac-

tion with a foil, the foil is considered an ideally reflecting
mirror.

In the laboratory frame, the equation of motion of a
surface element of a perfectly reflecting mirror can be written
as

dp

dt
� P m

s
; �141�

where p is the momentum of the surface element, v is a unit
vector directed along the normal to the mirror surface, P is
the relativistically invariant pressure of light, and s � nl is the
surface area density (n and l are respectively the plasma
density and the foil thickness). We assume that the foil
acceleration and curvature radius are small compared with
the values corresponding to the electromagnetic wave
frequency and wavelength. The laser±foil interaction geome-
try is illustrated in Fig. 10.

It is convenient to introduce the coordinates Z and z
related to the independent variables x, y, z as x � x�Z; z; t�,
y � y�Z; z; t�, z � z�Z; z; t�. The coordinates Z and z are
markers of the surface element of the shell. We consider the
surface element Ds containing the number DN � sDs of
particles. This number remains constant during the motion
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of the shell. The position and shape of the shell are given by
the equation of the surface,

M �M�Z; z; t� � �x�Z; z; t�; y�Z; z; t�; z�Z; z; t�	 : �142�

Following the rules of differential geometry [140], we
find that at a regular point of the surface, the surface
element and the unit normal vector are given by mDs �
qM=qZ� qM=qz dZ dz and

m � qM=qZ� qM=qz
jqM=qZ� qM=qzj : �143�

The particle number conservation gives sDs � s0Ds0, where
s0 � n0l0. Hence, it follows that

s � s0
jqM=qZ� qM=qzj : �144�

Using these relations, we can write equations of motion (141)
in the form

s0
qpi
qt
� Pei j k qxj

qZ
qxk
qz

; �145�

qxi
qt
� c

pi

�m 2
a c

2 � pkpk�1=2
; �146�

where ei j k is the unit totally antisymmetric tensor, i � 1; 2; 3,
and summation over repeated indices is assumed.

The radiation pressure on the shell irradiated by a
circularly polarized electromagnetic wave propagating along
the x axis with the amplitude E � E�tÿ x=c� is

P � E 2

2p
1ÿ b
1� b

� E 2

2p
�m 2

a c
2 � p 2

x �1=2 ÿ px

�m 2
a c

2 � p 2
x �1=2 � px

: �147�

8.3 Parameters of accelerated ion beams
Assuming that the shell moves along the x axis, with the initial
conditions determining a flat mirror uniform in the y; z
directions, and y�0� � Z, z�0� � z, we can write the equation
for the x-component of momentum (147) as

dp
�0�
x

dt
� E 2

0

2ps0

macg�0� ÿ p
�0�
x

macg�0� � p
�0�
x

; �148�

where p
�0�
x depends only on the time t. The relativistic gamma-

factor is equal to g�0� � �1� �p �0�x =mac�2�1=2.
The solution of Eqn (148) is formally equivalent to the

solution to the problem of the motion of a charged particle
pushed by the radiation pressure of an electromagnetic wave
[52]. For the electromagnetic wave with a constant amplitude
E0 � const and for the initial value of the particle momentum
equal to zero, the momentum dependence on time can be
written in implicit form as (see also Ref. [135])�

p
�0�
x

mac

�3

�
"
1�

�
p
�0�
x

mac

�2
#3=2
� 3

2

p
�0�
x

mac
ÿ 1 � t ; �149�

where t � E 2
0 t=2ps0mac is the normalized time. In the limit

t!1, we have

p �0�x �t� � mac

��
3t
4

�1=3

ÿ
�
6

t

�1=3

� . . .

�
: �150�

In the case of a finite-length electromagnetic pulse, the electric
fieldE0 on amoving shell, i.e., at x � x�t�, depends on time as
E0�tÿ x�t�=c�. In this expression, the function x�t� should be
found from Eqn (146). We introduce the new variable
c � o0�tÿ x �0��t�=c�, equal to the phase of the electromag-
netic wave at x � x �0��t�. Differentiating c with respect to
time, we find

dc
dt
� o0

macg�0� ÿ p
�0�
x

macg�0�
: �151�

Changing the variable from t to c and using the integral
density of the electromagnetic wave energy flux (also referred
to as the fluence of the electromagnetic wave)

w�c� �
� c

0

R�c 0�
2l0

dc 0 ; �152�

where R�c� � E 2
0 �c�=s0mao2

0, allows representing the solu-
tion of Eqn (148) in the simple form

p �0�x �c� � mac
2w�c�ÿw�c� � 1

�
2w�c� � 1

: �153�

It follows from expression (151) that the relation between
t and c is

c�
� c

0

ÿ
2w�c 0� � w 2�c 0�� dc 0 � o0t : �154�

In the case of a constant-amplitude electromagnetic wave
with R � R0 � E 2

0 =2s0mao2
0, expressions (152) and (154)

yield

w�c� � R0

l0
c ; 3c� 3

R0

l0
c 2 � 2

�
R0

l0

�2

c 3 � 3o0t : �155�

It follows that in the limit o0t4 l0=R0, the x-component of
the momentum of the surface element, p

�0�
x , depends on time

as

p �0�x � mac

�
3R0o0

l0
t

�1=3

; �156�

in agreement with Eqn (150).
We note here that the proportionality of the ion energy to

time to the power one third, t 1=3, has been observed in three-
dimensional computer simulations of thin foil acceleration by
extremely intense electromagnetic pulses (see Ref. [135]).

It follows from Eqn (154) that the energy of accelerated
ions reaches the value

Ea � mac
2

�
1� 2w 2

1� 2w

�
: �157�

The efficiency of transformation of the laser radiation energy
to the energy of fast ions (equal to the ratio of the ion beam
energy to the absorbed laser energy) is

keff � 2w

1� 2w
; �158�

which tends to unity �keff ! 1� in the high-fluence limit
�w!1�. From this, the energy per ion is equal to the ratio
of the laser pulse energy Elas to the total number of accelerated
ions Ntot. In the opposite, nonrelativistic, limit for the ion
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energy, the acceleration efficiency is

keff � 2w � a 2
0

llas
l0

�
o0

ope

�2
me

ma
: �159�

In regard to problems of controlled thermonuclear fusion
within the concept of fast ignition of fusion targets by laser
accelerated ions, the required acceleration efficiency should
be no less than 10% if the ion energy is of the order of several
tens ofMeV. For that, 100 kJ laser radiation with an intensity
of 1021 W cmÿ2 is required.

It is convenient to present the dependences obtained
above in dimensional form. The ion energy dependence on
the laser pulse parameters in the nonrelativistic limit
Ea=mac

2 5 1 is given by

Ea � 10

�
1011

Ntot

�2
mp

ma

�Elas
1 J

�2

�MeV� ; �160�

where mp is the mass of the proton; in the ultrarelativistic
case, where Ea=mac

2 4 1, we have

Ea � 100
1011

Ntot

Elas
1 kJ

�GeV� : �161�

The acceleration length in the limit of an ultrarelativistic
ion energy, Ea=mac

2 !1, is

lacc � llas
1ÿ va=c � 2

� Ea
mac 2

�2

llas : �162�

It depends on the laser pulse duration llas=c and on the final
energy of accelerated ions Ea.

Discussing the ion beam accelerator for applications in
high-energy physics, we come to the conclusion that its
parameters must satisfy several conditions, in addition to
the requirement of achieving the maximum energy of the
particles. In particular, an important parameter such as the
luminosity of the beam characterizes the number of particles
produced in reactions by colliding beams in the accelerator.
We note that controlling the transverse shape of colliding ion
beams [138, 141] allows enhancing the beam luminosity value.

It is easy to find that the luminosity of the beam of ions
accelerated in the radiation-pressure-dominated regime is
given by

L � 1034
f

10 kHz

�
Ntot

1012

�2�
10ÿ4 cm

s?

�2

�cmÿ2 sÿ1� : �163�

Here, Ntot is the number of particles in each beam, s? is the
transverse size of the beam, and f is the laser repetition rate.
The product of the luminosity and the reaction cross section
gives the reaction rate. As we can see, the luminosity can be
increased by increasing the number of particles per bunchNtot

and/or by increasing the laser repetition rate f, or by
decreasing the transverse size of the ion beam s?.

8.4 Instability of an accelerated shell
The accelerated thin shell is unstable with respect to the
development of a mode corresponding to the well-known
Rayleigh±Taylor instability [142, 143]. This instability plays a
fundamental role in space plasmas and in applications to
problems of inertial confinement fusion. In space plasmas and
in laser plasma, the Rayleigh±Taylor instability affects the

scenario of the interaction of intense radiation withmatter. In
the case of a thin shell, it can cause its breakup into individual
clumps [144, 145].

The thin-shell stability [139] can be analyzed using system
of equations (145), (146). Linearizing these equations around
the unperturbed solution given by Eqns (148), (149), and
(153), we obtain

q
qc

�
p �0�x

qx �1�x

qc

�
� R�c�

2p

�
qx �1�y

qZ
� qx �1�z

qz

�
; �164�

q
qc

�
1

p
�0�
x

qx �1�y

qc

�
� ÿ R�c�

2pmac

qx �1�x

qZ
; �165�

q
qc

�
1

p
�0�
x

qx �1�z

qc

�
� ÿ R�c�

2pmac

qx �1�x

qz
; �166�

where the perturbations x �1�x �Z; z;c�, x �1�y �Z; z;c�, and
x �1�z �Z; z;c�, leading to shell deformation in the transverse
direction, are assumed to be small. We seek the solution in the
framework of the WKB approximation. We represent the
functions x �1�i �Z; z;c� in the form

x �1�i �Z; z;c� / exp

�� c

0

G�c 0� dc 0 ÿ iqZÿ irz
�

�167�

under the assumption of a slow dependence of the growth rate
G�c� on c: �qG�c�=qc�=G 2�c�5 1. Substituting dependence
(167) in system (164)±(166) and solving the algebraic disper-
sion equation, we obtain the instability growth rate

G�c� � �q 2 � r 2�1=4
�
R�c�
2p

�1=2

: �168�

Using expression (155), we find that for a constant-
amplitude electromagnetic wave, the perturbations depend
on time as

x �1�i �Z; z; t� / exp

��
t

tr

�1=3

ÿ iqZÿ irz
�
; �169�

where the characteristic time of the instability development in
the ultrarelativistic limit is

tr � oÿ10 �2p�3=2
R

1=2
0

6�q 2 � r 2�3=2l20
:

Taking into account thatR0 � E 2
0 =�2s0mao2

0�, we see that the
characteristic time of the instability is proportional to the
square root of the ratio of the radiation pressure to the ion
mass. In other words, the higher the ion mass is, the faster the
instability develops, and the higher the radiation pressure is,
the slower the perturbations grow.

The expansion of plasma in the transverse direction along
the surface of the shell can lead to a slowdown in the nonlinear
stage of instability, characterized by the formation of cusp
singularities and of high-density plasmoids.

Nonlinear evolution of the instability of a thin shell is
illustrated in Fig. 11, which presents the results of computa-
tional experiments. A thin plasma slab with a width of 25l0
and thickness of 0:5l0 with the density corresponding to the
ratio ope=o0 � 16 is irradiated by an s-polarized laser pulse
with the electric field directed along the z axis. The laser
radiation is a superposition of a `Gaussian' pulse and a
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wide, relatively weak pulse whose intensity is sinusoidally
modulated in the y-direction. The dimensionless amplitude
of the laser pulse is a0 � 320, which for the wavelength
l0� 1 mm corresponds to the intensity I � 1:4�1023 W cmÿ2

�Rmax=l0 � 200�. This corresponds to the parameters that
are expected for the extremely high-power lasers like ELI
(Extreme Light Infrastructure) and HiPER (High Power
laser Energy Research facility) [146±148].

The Rayleigh±Taylor instability, which develops in a thin
foil under the action of radiation pressure, was observed in
the experiment in [149]. It manifested itself in the modulation
of the energy spectrum and the spatial distribution of
accelerated ions.

8.5 Regime of `unlimited' acceleration
The expansion of the plasma along the surface of the shell
(notably, it may be a result of the instability discussed in
Section 8.4) can lead to a substantial increase in the energy
of ions accelerated by the radiation pressure [138, 141]
because, due to the shell expansion, the number of ions in
the region of interaction with the electromagnetic pulse is
reduced, which leads to an increase in their energy. To show
this, we consider the case where the shell moves in the
longitudinal direction with a momentum px=mac4 1, with
relatively small transverse components of the momentum
corresponding to expansion of the shell, py=px 5 1 and
pz=px 5 1. Using these conditions, we seek the solution of
Eqns (145) and (146) assuming that the transverse coordi-
nates and momenta are linear functions of the Lagrangian
coordinates Z and z:

y � Ly�t�Z ; z � Lz�t�z ; �170�
py � p�0�y Z ; pz � p�0�z z : �171�

Relations (171) with constant p�0�y and p�0�z describe the free
expansion of the shell with uniform deformation and
correspond to the local approximation of solutions in the
near-axial region. It follows fromEqn (146) that the functions
Ly and Lz satisfy the equations

dLy

dt
� p�0�y

mag
;

dLz

dt
� p�0�z

mag
�172�

with the initial conditionsLy�0� � 1 andLz�0� � 1. Here, the

ion gamma-factor is g � �1� �px=mac�2�1=2. For simplicity,

we assume that Ly � Lz � L and p�0�y � p�0�z � p�0�. The

surface density changes according to the relation

nl � n0l0=L2. Substituting these expressions in Eqn (145) for

the longitudinal component of the momentum and changing

the variable to c, we obtain the equation for the deformation

parameter L�t�:
d2L

dc 2
� h 2L2 : �173�

If a solution of this equation is known, we can find the
longitudinal component of the momentum by integrating the
equation

dpx
dc
� mav

2
E

o0l0

macg
macg� px

L2 ; �174�

where v 2E � E 2=2pn0ma and h 2 � E 2p�0�=2pn0l0m 2
a o

2
0c.

We assume that the laser pulse with a duration tlas
has a constant amplitude equal to E0 in the interval
0 < c < o0tlas � cm and zero outside it, i.e., the coefficient
h in Eqn (173) is constant inside this interval. The solution of
Eqn (173) is then given by the Weierstrass elliptic function
}�u; fg2; g3g� [80]:

L�c� � }ÿ ~c � ÿ ~c; fg2; g3g
�
; �175�

where we set ~c � 61=2c=h and g2 and g3 are constant, g2 � 0
and g3 � 1ÿ L 0�0�. The value ~c � is determined by the
minimal positive solution of the equation }� ~c �; f0; g3g� � 1.
The Weierstrass elliptic function }�u; fg2; g3g� � z gives the
value of z for which [80]

u �
� z

ÿ1

dt

�4t 3 ÿ g2tÿ g3�1=2
: �176�

We discuss the limit cases. For the shell that is not
expanding, i.e., for L � 1, it follows from Eqn (174) that
asymptotically as t!1, the ionmomentumdepends on time
as

px�t� � mac

�
t

t1=3

�1=3

� . . . ; �177�

which corresponds to expression (156). Here, t1=3 �
4l0c=�3v 2E�. It is easy to show that for a shell that expands

along only one axis, the dependence of the longitudinal

momentum on time is given by px�t� � mac�t=t1=2�1=2 � . . . ;

with t1=2 � �mal0c=3v
2
Ep
�0�
y �1=2. For expansion along both axes,

Eqn (174) yields the dependence px�t� � mac�t=t 3=5�3=5 � . . . ;

where t3=5 � �48m 2
a l0c=125v

2
E�p�0��2�1=3. It can be seen that the

surface density decreases as nl / tÿ4=5, and the longitudinal

component of the momentum, px / t 3=5, increases more

rapidly than in the case of a shell that is not expanding or

expanding along only one direction.
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Figure 11. Ion density distribution in the xy plane at the time (a) t � 75 and (b) t � 92. (c) Ion phase plane �x; px�.
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We calculate the value of the phase c (the coordinate of the

ions relative to the electromagnetic pulse), equal to the

integral

c � o0

� t

0

�
1ÿ px�t 0�

macg�t 0�
�
dt 0 : �178�

Substituting the dependence of the momentum on time in the
integrand in the form px�t� � mac�t=tk�k, which for k � 1=3,
1=2, and 3=5 corresponds to the relations found above, we
obtain

c
o0tk

� t

tk
ÿ �t=tk�

1�k

1� k
2F1

"
1� k

2k
;
1

2
;
1� 3k

2k
; ÿ
�
t

tk

�2k
#
;

�179�
where 2F1�a; b; g; z� is the Gauss hypergeometric function
[80]. Asymptotically, in the limit as t!1, it follows from
this expression that

c
o0tk

! �t=tk�
1ÿ2k

2�1ÿ 2k� �
1

p1=2
G
�
2kÿ 1

2k

�
G
�
k� 1

2k

�
: �180�

For k � 1=2, Eqn (180) gives the dependence

c
o0t1=2

! tÿ ���������������������
t�t� t1=2�

p
t1=2

� ln
t 1=2 � ���������������

t� t1=2
p
t 1=21=2

; �181�

and hence the phase tends to infinity logarithmically with
time.

If the index k is larger than 1=2, then in the limit t!1,
the first term in the right-hand side of (180) tends to zero and
the phase tends to a finite value equal to the second term.
When the ion momentum dependence on time is given by
px�t� � mac�t=t3=5�3=5 � . . . ; the index is k � 3=5. In this case,
we have

c !
t!1 2:804o0t3=5 :

As can be seen, the phase shift between the position of the ions
and the laser pulse does not increase. In a long laser pulse, the
ions become trapped, and their energy increases formally
without a bound due to the decreasing number of accelerated
particles. We note here that the examples of unlimited

acceleration are well known for electrons accelerated by an
electromagnetic wave propagating along a magnetic field in
the autoresonant regime [150], when an electron is trapped in
an electrostatic wave propagating perpendicularly to the
magnetic field [151±154], and in the case of an electron
acceleration by a wake wave in an inhomogeneous plasma
[28, 29]. To satisfy the conditions of the trapping of ions in the
accelerating phase, the laser pulse must be sufficiently long,
with tlas > 2:804t3=5.

Figure 12 shows the results of a computer simulation of
the interaction of strong laser radiation with an ellipsoidal
target 1:0l0 � 7:5l0 in size. The initial plasma density
corresponds to the ratio ope=o0 � 6. A laser pulse
25l0 � 25l0 in size with the amplitude a0 � 125 compresses
the target in the longitudinal direction. The target expands
transversely, and, as a result, the radiation pressure of the
laser pulse accelerates the target in accordance with the
scenario described above. The wavelength of the reflected
light increases with time, as it should for a wave reflected from
a receding mirror that moves with acceleration. At the initial
stage of the interaction, the plasma density increases due to
the longitudinal compression of the target, and then it
decreases monotonically. For the time t � 600, the ion
energy reaches 14 GeV, and the electron energy becomes
equal to 27 GeV. For a target not extending in the transverse
direction, the ion energy would be equal to 3 GeV. In the inset
in Fig. 12b, which shows the energy spectrum of ions at
t � 600, the spectrum is seen to have a quasi-mono-energetic
form.

9. Model of a double-sided relativistic mirror

An accelerated double-sided mirror (Fig. 13) allows increas-
ing the value of the coefficient of reflection of counter-
propagating electromagnetic waves compared with other
approaches for making a relativistic mirror. The role of the
mirror is played by a thin layer of dense plasma accelerated to
relativistic velocities by the radiation pressure of a laser pulse
[135], in accordance with the scenario presented above. The
relativistic plasma layer interacting with a counter-propagat-
ing electromagnetic wave exhibits properties of flying,
oscillating, and sliding relativistic mirrors [36, 38], not only
compressing the reflected wave in the longitudinal direction
but also generating higher-order harmonics, whose frequency
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The inset shows the energy spectrum of ions at t � 600.
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due to the Doppler effect increases by the same factor of
approximately 4g 2.

Computer simulations [45] of the interaction of an intense
laser pulse with a thin foil (Fig. 13 a) show that the foil is
accelerated to relativistic energies, as can be seen from the
energy spectrum of the ions in Fig. 13b. The accelerated
plasma layer reflects the counter-propagating electromag-
netic pulse, which is compressed in the longitudinal direc-
tion, and its frequency spectrum becomes modulated
(Fig. 13c). As the mirror velocity cb increases, the frequency
of the reflected wave increases in accordance with the
dependence o0�1� b�=�1ÿ b�. This leads to a more and
more modulated profile of the reflected laser pulse (Fig. 14a).

The frequency spectrum of the reflected radiation has a
complex structure. It comprises not only the frequency of the
fundamental mode, increased in accordance with the instan-
taneous mirror velocity value, but also higher-order harmo-
nics. In Fig. 14b, we show the modulus of the spectrum jIo�t�j
calculated for the Ez component of an electromagnetic wave
propagating along the x axis for each instant of time. The
frequency spectrum of the reflected wave is modulated as a
result of the accelerated motion of the mirror, as shown in
Fig. 14b.

When the speed of the mirror exceeds a certain threshold
in the comoving reference frame, where the mirror is at rest,
the average distance between the electrons becomes larger
than the wavelength of the incident radiation. As a result, the
reflection loses its coherence, and the intensity of the reflected
wave is no longer proportional to the square of the number of
electrons in the mirror. Instead, it becomes linearly propor-

tional to the number of particles. But even in this less
favorable regime, the interaction of electromagnetic waves
with a relativistic mirror can provide a high efficiency of
X-ray generation in the process of nonlinear backward
Thomson scattering, due to the large number of electrons in
a solid target.

We estimate the brightness of the reflected light from the
mirror in the two limit cases: for a relatively small, but
relativistic velocity, and in the limit of large velocities. When
the condition 2g < �nl3s �1=6 is satisfied, the coherent regime of
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reflection is in effect. The brightness is given by

BM � Es��hor�3ls
4p5�h 4c 3

; �182�

where �hor is the energy of a reflected photon and Es is the
energy of an electromagnetic pulse incident on the mirror.
For large values of g, the interaction becomes incoherent.
Assuming that the electromagnetic radiation is generated by
Thomson scattering, we find that the brightness is

BT � adEs��hor�2rel2s
8p4�h 3c 2l3d

: �183�

For example, when an electromagnetic pulse incident on a
mirror with a wavelength ls � 0:8 mm, i.e., �hos � 1 eV, has
the energy Es � 10 J, then the reflected light has the
brightness BM � 0:8� 1040 photon/mm2 mrad2 s, which is
orders of magnitude greater than the brightness of any
existing X-ray sources or sources proposed in a terrestrial
laboratory [155]. For the same parameters of the electro-
magnetic pulse incident on a mirror and for the driver pulse
parameters ld � 0:8 mm, ad � 300, i.e., I � 1023 W cmÿ2

and �hor � 10 keV �g � 40�, we obtain BT �
3� 1032 photon/mm2 mrad2 s.

10. Compact source of high-brightness X-rays
based on the mechanism
of a relativistic flying mirror

10.1 Relativistic flying mirror in nonlinear wake waves
The use of relativistic flying mirrors produced in the
interaction of short laser pulses with subcritical-concentra-
tion plasmas was suggested in Refs [34, 35] (Fig. 15). In the
framework of this concept, relativistic mirrors are related to
the thin layers of relativistic electrons generated in nonlinear
plasma waves, which are excited in plasma by a short strong
laser pulse. Constant-density surfaces in the wake of non-
linear waves have the form of paraboloids of revolution. The
counter-propagating laser pulse is partially reflected by these
relativistic mirrors. This results in a frequency upshift of the
reflected pulse, shortening in the longitudinal direction, and
focusing by paraboloidal mirrors in the transverse direction,
providing an intensification of reflected radiation, despite the
fact that the reflection coefficient is relatively small (Fig. 16).
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A relativistic flying mirror with a sufficiently large
reflection coefficient for counter-propagating radiation is
formed in the process of wake wave breaking. The phase
velocity of the wake wave vph equals the group velocity of
the driver laser pulse vg � qo=qk, which, in accordance
with the dispersion equation o � �k 2c 2 � o2

pe�1=2 for
transverse (electromagnetic) waves, is given by vg �
c�1ÿ �ope=o0�2�1=2. In a low-density plasma, where the laser
frequency o0 is much higher than the Langmuir frequency,
o0 4ope, the group velocity of electromagnetic waves is close
to the speed of light in the vacuum. At the threshold of wave
breaking, the velocity of the electrons in the wake wave
becomes comparable to the wake wave phase velocity vph,
which is equivalent to the condition for the electron energy
Ee � mec

2ge and the relativistic gamma-factor corresponding
to vph. Wave breaking occurs if

ge 5gph �
�
1ÿ v

2
ph

c 2

�ÿ1=2
� o0

ope
: �184�

As a result of plasma wave breaking, a singularity in the
electron density distribution occurs, which breaks the geome-
trical optics approximation and increases the reflection
coefficient [34, 35]. If there is no wave breaking, the
reflectivity is exponentially weak.

In the simplest model where the singularity is approxi-
mated by a delta function, the reflection coefficientRd is given
by formula (139). In terms of the number of photons, it
depends on the plasma density as

Rd � 1

2
g 3ph �

�ope=o0�3
2

� �n=ncr�
3=2

2

in the limit gph 4 1.
With the pulse compression in the transverse direction as a

result of focusing by a parabolic mirror with the diameter D0

taken into account, we obtain the reflected wave intensity

Ir � 32I0

�
D0

l0

�2

g 3ph : �185�

Accordingly, the energy and power are Er � 2E0=gph and
Pr � 8P0gph.

As an example, we consider the parameters required to
achieve the Schwinger limit for an electromagnetic wave
reflected by a flying mirror. We assume that a laser pulse of
the amplitude a0 � 15 interacts with plasma with a density of
1018 cmÿ3. The relativistic gamma-factor gph associated with
the wake wave and determined by Eqn (184) equals 45, which
corresponds to the frequency upshift by a factor of 810. The
intensity and the transverse size of the exciting wake wave
laser pulse are assumed to be 4� 1020 W cmÿ2 and 40 mm.For
the counter-propagating laser pulse with the intensity
2� 1019 W cmÿ2 and beam diameter D0 � 40 mm, the
intensity of the radiation partially reflected from the mirror
according to Eqn (185) is of the order of 5� 1028 W cmÿ2,
which corresponds to the Schwinger limit. These parameters
correspond to the laser pulse energies of 10 kJ and 50 J. Laser
systems capable of generating short pulses of tens of kilo-
joules of energy are under development in the framework of
the ELI project [146].

If such intensity values are achieved, this will allow
producing electron±positron pairs from the vacuum. We
note that the effects of transverse inhomogeneity of the
electromagnetic wave in the focal region and the effects of

nonmonochromaticity can significantly increase the electron±
positron pair creation probability in the vacuum (see, e.g.,
Ref. [30]).

The Kerr constant of a nonlinear vacuum, given by
Eqn (195), for radiation with a wavelength of 1 mm is
approximately 10ÿ27 cm2 ergÿ1. Nonlinear effects of quan-
tum electrodynamics lead to a mutual focusing of two
electromagnetic beams propagating in opposite directions
[156, 157]. The critical power corresponding to this process,
Pc � cE 2

QEDD
2
0 =4p, is given by

Pc � 45

14

cE 2
QEDl

2
0

a
: �186�

It follows from this expression that for l0 � 1 mm, the
threshold power is Pc � 2:5� 1024 W. Taking into account
that a pulse reflected from a relativistic mirror has a
wavelength that is shorter by a factor of 4g 2ph and its power
is higher by a factor of 8gph than those of a wave incident on
the mirror, we find that the effects of the nonlinear quantum
electrodynamical vacuum can occur for laser pulses with a
power of 50 PW.

The use of spherical Langmuir waves as a relativistic

mirror can allow a much higher intensiécation of the

reêected radiation [44]. Owing to the spherical geometry, the

reêected wave with a wavelength � l0=4g 2ph is focused in the

volume l30=48g
6
ph, which gives the radiation intensity

Ir � I0g 4ph for the reêection coefécient R2=3 � 1=g 4ph and

Ir � I0g 5ph for Rd � 1=g 3ph.

10.2 Experimental demonstration
of a relativistic flying mirror
Proof-of-principle experiments on the flying relativistic
mirror concept were reported in Refs [112, 113], where the
generation of soft X-rays with a narrow energy spectrum was
observed. The frequency upshift factor reached the value 100.

In the first experiment that demonstrated the concept of a
`relativistic flying mirror' in a laser plasma, two short laser
pulses collided at an angle of 45� in a supersonic gas jet [112].
The configuration of the experiment is shown in Fig. 17. The
laser used in this experiment generates radiation pulses with
the wavelength 820 nm, energy 210 mJ, and duration 76 fs;
hence, it has 2.75 TW of power.

The horizontally polarized driver laser pulse is focused by
an off-axis parabolic mirror with a focal length of 645 mm in
the supersonic gas jet, ejected out of the nozzle of a
rectangular cross section with the size of the long side equal
to 10 mm, and with the short side equal to 1.26 mm. The laser
pulse propagates along the direction of the short side of the
nozzle. The second pulse (the source pulse) is focused by a
plano-convex lens with a focal length of 200 mm, which is
placed on a five-axle movable lens holder, which provides a
spatial overlay with the first pulse driver. The source pulse
propagates at the angle y � 45� in order to avoid laser
damage by the radiation propagating in the opposite
direction relative to the pulse driver. The driver pulse has a
1=e2 focus diameter equal to 27 mm and an intensity of
5� 1017 W cmÿ2. The source pulse energy is 6.3% of the
driver energy, which corresponds to the intensity
� 1017 W cmÿ2.

During the interaction of the driver laser pulse with the
gas jet, the gas is ionized. The driver excites the wake plasma
wave that accelerates the electrons to ultra-relativistic
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energies (see the discussion of electron wakefield acceleration
in review article [33] and in the references therein). A
permanent magnet is used to bend the relativistic electron
beam, which forms an image on a phosphor screen, showing
the electron energy spectrum measured by using a CCD
(charge-coupled device).

In the configuration of the counter-crossing of two laser
pulses at the angle y � 45�, the frequency of the light
reflected from the relativistic mirror should be increased
by the factor or=os � 3:4g 2ph. The plasma density in the
target is approximately 5� 1019 cmÿ3. For this plasma
density, the wake wave gamma-factor is gph � 6:5 and the
theoretically predicted frequency upshift factor is 140.

For the above parameters of laser radiation and the target
plasma, the driver pulse excites a wake wave with an
amplitude large enough to exceed the wave-breaking thresh-
old. However, the excess over the wave-breaking threshold is
not too great, and the regular wake wave structure is not
destroyed. Evidence of this regime is the observation of quasi-
mono-energetic spectra of ultrarelativistic electrons with an
energy of 20 MeV accelerated by the wake wave. In
accordance with the theory of wakefield acceleration whose
results are presented in Section 4, the injection of electrons
into the accelerating phase of the wakefield is the result of
nonlinear plasma wave breaking leading to a multi-stream
electron flow. At the next stage, the electrons are accelerated
by the electric field of the wake wave, forming a narrow band
in the vicinity of the separatrix in the phase plane (long-
itudinal coordinate x, longitudinal momentum px), which
results in the characteristic shape of the electron energy
spectrum (see Fig. 8).

Another indication of the nonlinear character of the wake
is the detection of upshifted and downshifted maxima in the
frequency spectrum of radiation scattered at an angle of 60�,

corresponding to the stimulated backward Raman scattering
(SRS). In addition, an analysis of the interferogram reveals
channel formation in the plasma density, which, in accor-
dance with the wake excitation by an electromagnetic wave, is
also unstable against relativistic self-focusing, which leads to
a redistribution of the electron density.

Further development of the theory of the relativistic flying
mirror and experiments with laser light of a higher power
[158] have allowed the demonstration of high-efficiency
regimes that can allow developing highly effective sources in
the energy range corresponding to hard X-rays. In this case, a
laser with an energy of 0.5 J and a power of 15 TW is used.
Here, in contrast to the experiments discussed above, the
configuration of two colliding pulses was realized, which
provided an increase of several orders of magnitude in the
number of reflected photons in the spectral range correspond-
ing to soft X-rays. To detect the reflected radiation, the
spectrometer had a relatively large aperture for collecting a
sufficiently large number of photons from a representative
solid angle. Various methods were used to ensure the collision
of pulses to occur at a location predetermined with high
accuracy at the desired time. A detailed description of the
experiment can be found in [113, 158, 159]. The observed
spectrum in the extreme ultraviolet region is presented in
Fig. 18b.

The number of photons of hard electromagnetic radiation
registered in the experiment allows us to conclude that
agreement with theoretical predictions for the reflection
coefficient defined by formula (119) was achieved.

In addition to the problem of relativistic mirror reflectiv-
ity, it is of particular interest to determine whether the mirror
has a high-quality reflective surface, i.e., whether it is smooth
enough. In the experiment presented in Ref. [158], the
observed radiation in the wavelength range 12 to 20 nm
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within the observation angles in the range 9� to 17� (Fig. 19)
had a sufficiently smooth spectral distribution. Because the
frequency upshift factor depends on the angle at which the
reflected light propagates and on the local angle of reflection
from the mirror surface, this shows that the radiation is

reflected from a smooth surface has a curvature. This is also
consistent with the predictions of the theory, which is
important for further research aimed at the demonstration
of the sharp focusing of X-rays in order to reach the high
limits of their intensity.
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11. Other schemes to develop
a compact high-intensity X-ray source
based on the use of relativistic mirrors

There are several other schemes to develop compact X-ray
sources of high intensity based on the use of relativistic
mirrors formed in the process of nonlinear interaction of
laser radiationwith plasma, whose implementation will create
exciting opportunities for experiments on nonlinear electro-
dynamics of continuous media in the relativistic regime.
Nonlinear interaction of Langmuir waves with regular non-
linear structures in collisionless plasma, such as relativistic
electromagnetic solitons, electron vortices, and plasma
waves, are considered in Refs [38, 43] as a way toward
generating ultra-short electromagnetic pulses of high ampli-
tude. These X-ray pulses are generated due to a partial
reflection of a low-frequency electromagnetic field from a
relativistic mirror. This process is accompanied by a
frequency upshift due to the double Doppler effect. This
effect also leads to a strong field compression and to
electromagnetic pulse formation on a scale much smaller
than that of the original nonlinear structure.

Dense electron layers accelerated to a relativistic velocity
by laser radiation interacting with a thin plasma foil are also
considered as relativistic mirrors capable of generating
beams of coherent X-ray and gamma radiation of high
brightness [41].

12. Parameters characterizing
the interaction of strong electromagnetic
radiation with matter

The purpose of further studies of the physical processes
associated with relativistic mirrors is to design and build a
compact source of hard electromagnetic radiation with a
photon energy and intensity large enough to conduct
experiments in previously inaccessible regimes of interaction
of electromagnetic fields with matter. In this section, we
present the parameters that characterize the main regimes of
laser±matter interaction, depending on the intensity of the
electromagnetic wave.

In this review, we consider the nonlinear electrodynamics
of plasma in the limit of relativistic particle energies. The
behavior of an electron in the field of an electromagnetic wave
is determined by the dimensionless parameter a � eE=meoc,
which is the normalized wave amplitude. This value is
associated with a relativistic invariant, as is clearly seen
from its representation in the form

a � e

������������
AmAm

p
mec 2

: �187�

If a > 1, the electron energy becomes relativistic. Its long-
itudinal momentum exceeds the transverse momentum by a
factor of a=2. Therefore, the relativistic limit is reached at the
values of the dimensionless amplitude of the wave

a0 � eE0

meo0c
� eE0lÿ0

mec 2
�188�

of the order of unity, which corresponds to the intensity
I � 1:37� 1018 W cmÿ2 for the radiation wavelength l0 equal
to one micron. The electric field of such a wave is able to
produce work equal to mec

2 over the distance lÿ0 �
c=o0 � l0=2p.

When a long enough electromagnetic pulse propagates in
plasma, the average longitudinal momentum of electrons is
equal to zero. The solution of the problem of the nonlinear
electromagnetic wave dynamics in collisionless plasmas
obtained by Akhiezer and Polovin in Ref. [72] shows that
the transverse component of the momentum and the kinetic
energy of the electron in the wave are respectively equal to
meca0 and mec

2��1� a 2
0 �1=2 ÿ 1�.

With a further increase in the electromagnetic wave
intensity, its interaction with a sufficiently dense plasma is
characterized by radiation loss effects [160±163]. The energy
loss rate by an electron rotating in the field of a circularly
polarized wave is given by

_E �ÿ� � eradmec
2o0a

2
0 �1� a 2

0 � ; �189�

where we introduce the dimensionless parameter

erad � kp
re
lÿ0

�190�

characterizing the radiation losses. The coefficient kp depends
on the electromagnetic wave polarization. For circular
polarization, it is equal to 3=8, while for linear polarization,
it is 1/8. In expression (190), re � e 2=mec

2 � 2:8� 10ÿ13 cm is
the classical electron radius.

Because the electromagnetic wave cannot transfer energy
to the particle with a rate greater than

_E ��� � eE0c � mec
2o0a0 ; �191�

we can use the condition of the balance between incoming and
radiated energy per unit time, _E ��� � _E �ÿ�, to find the
threshold value of the amplitude of the electromagnetic
wave above which the influence of radiation losses cannot
be ignored. In dimensionless form, the threshold amplitude of
the wave is

arad � eÿ1=3rad : �192�

For a circularly polarized wave with l0 � 0:8 mm, it is
equal to a c

rad � 408, which corresponds to the radiation
intensity I c � 4� 1023 W cmÿ2 and a l

rad � 713 with I l �
7� 1023 W cmÿ2, if the wave is linearly polarized.

When the intensity threshold I � 1025 W cmÿ2 is
exceeded, which corresponds to the normalized amplitude

aQM � e 2mec

�h 2o0

; �193�

it is necessary to consider quantummechanical processes such
as the recoil effect in Compton scattering [162], leading to the
phenomenon of `quantum diffusion', known in the physics of
particle accelerators, and to electron±positron pair creation in
the interaction with an electromagnetic wave of gamma
photons emitted by ultra-relativistic electrons [163±169].
These processes principally alter the scenario of the interac-
tion of laser radiation with plasmas.

When the limit intensity I � 1029 W cmÿ2 is reached, the
electric field of the laser radiation becomes comparable in
magnitude with the critical field of quantum electrodynamics

Es � mec
2

elÿC
; �194�
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where lÿC � �h=mec is the Compton wavelength. The condition
implied by (194) means that the electric field Es over a length
equal to the Compton wavelength lÿC produces work equal to
mec

2. This electric field, first mentioned in Refs [170±172],
corresponds to the dimensionless amplitude as � mec

2=�ho0.
In the limit when the laser field approaches Es, nonlinear
effects of quantum electrodynamics lead to the creation of
electron±positron pairs in the vacuum, and the vacuum
therefore behaves as a nonlinear optical medium with a
refractive index that depends on the electric field strength
[173]. The effective value of the Kerr constant of the vacuum
is (the refractive index in a Kerr nonlinear medium can be
represented in the form n � n0 � l0KjEj2)

KQED � 7alÿ3C
90pmec 2l0

; �195�

where a � e 2=�hc is the fine structure constant.
Expression (193) corresponds to the electric field

EQM � em 2
e c

2=�h 2 � aEs, i.e., it is less than the critical field
of quantum electrodynamics by a factor of approximately
1=137.

The creation of electron±positron pairs in the vacuum
can occur for an intensity of the electromagnetic wave well
below 1029 W cmÿ2 due to the multi-photon Breit±Wheeler
process [167, 169, 174]. Here, we do not discuss the
theoretically and experimentally well-established process of
pair creation in collisions of electrons with nuclei and
positrons [173, 175], on which much attention was focused
in regard to the problems of laser-produced plasmas [176±
178]. In our case, pairs are generated due to the interaction
of sufficiently high-energy gamma rays with an electromag-
netic wave. The probability of this process is determined by
the dimensionless parameter

wg �
��������������������
�F mn�hkn�2

q
mecEs

� a
�h 2oog

m 2
e c

4
; �196�

which is a relativistic invariant. In this expression, Fmn is the
four-tensor of the electromagnetic field, kn is the four-vector
of the photon, og is its frequency, o is the frequency of the
electromagnetic wave, and a is its amplitude. For small values
of this parameter, the pair production probability is exponen-
tially suppressed. In a high-intensity laser field, the electron
emits high-energy photons as a result of multi-photon
Compton scattering. This process is characterized by the
relativistically invariant parameter

we �
�����������������
�F mnpn�2

q
mecEs

� 1

Es

���������������������������������������������������������
geE�

p� B

mec

�2

ÿ
�
pE

mec

�2
s

; �197�

which is approximately

we �
E

Es

p?
mec

;

where p? is the component of the electron momentum. In the
limit we 4 1, the electron emits photons for which we � wg.
Hence, the condition of an avalanche-type regime of pair
production requires the condition we 4 1, which can be
satisfied in the limit of the intensity values above
1025 W cmÿ2. This threshold may be decreased if a laser
beam interacts with pre-accelerated ultra-relativistic elec-
trons. In the experiments in [174], positrons were registered

in the collision of a 50GeV beam of electrons with a laser
pulse with an intensity of the order of 1017 W cmÿ2.

To conclude this section, we note that the peak value of
laser intensity reached by now is greater than 1022 W cmÿ2

[179].

13. Conclusion

In the framework of the relativistic flying mirror concept, it is
possible to develop a compact source of high-brightness,
ultrafast X- and gamma rays with a tunable energy of
photons. In laser plasma, when the infrared photons of laser
light are reflected by a mirror, their energy is in the ultraviolet
or X-ray range. In other words, this is a high-power X-ray
laser. As a part of this concept, the possibility of developing a
compact high-energy ion accelerator based on high-power
laser interaction with a receding mirror is also considered.

These facts significantly expand the range of applications
of laser relativistic plasma toward applications requiring a
large number of photons in a short pulse, on the one hand,
and short bunches of high-energy ions, on the other hand.

The development of this scientific field will create new
areas of research and new applications, opening up new
horizons for nuclear physics [6], laboratory astrophysics [48,
180, 181], controlled thermonuclear fusion [7], biology and
medicine [47], and fundamental physics [29, 135].
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