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Abstract. A theoretical model is considered for quasispherical
subsonic accretion onto slowly rotating magnetized neutron
stars. In this regime, the accreting matter settles down subsoni-
cally onto the rotating magnetosphere, forming an extended
quasistatic shell. Angular momentum transfer in the shell oc-
curs via large-scale convective motions resulting, for observed
pulsars, in an almost iso-angular-momentum o ~ 1/ R? rota-
tion law inside the shell. The accretion rate through the shell is
determined by the ability of the plasma to enter the magneto-
sphere due to Rayleigh—Taylor instabilities, with allowance for
cooling. A settling accretion regime is possible for moderate
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accretion rates M < M, ~ 4 x 10'® g s~!, At higher accretion
rates, a free-fall gap above the neutron star magnetosphere
appears due to rapid Compton cooling, and the accretion be-
comes highly nonstationary. Observations of spin-up/spin-
down rates of quasispherically wind accreting equilibrium
X-ray pulsars with known orbital periods (e.g., GX 301-2 and
Vela X-1) enable us to determine the main dimensionless para-
meters of the model, as well as to estimate surface magnetic
field of the neutron star. For equilibrium pulsars, the indepen-
dent measurements of the neutron star magnetic field allow for
an estimate of the stellar wind velocity of the optical companion
without using complicated spectroscopic measurements. For
nonequilibrium pulsars, a maximum value is shown to exist for
the spin-down rate of the accreting neutron star. From observa-
tions of the spin-down rate and the X-ray luminosity in such
pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206 + 54), a lower
limit can be put on the neutron star magnetic field, which in all
cases turns out to be close to the standard value and which
agrees with cyclotron line measurements. Furthermore, both
explains the spin-up/spin-down of the pulsar frequency on large
time-scales and also accounts for the irregular short-term fre-
quency fluctuations, which may correlate or anticorrelate with
the observed X-ray luminosity fluctuations.
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1. Introduction

X-ray pulsars are highly magnetized rotating neutron stars
(NSs) in close binary systems, accreting matter from a
companion star. The companion may be a low-mass star
overfilling its Roche lobe, in which case an accretion disc
forms. In the case of a high-mass early type companion, the
neutron star may also accrete from a strong stellar wind, and
depending on the conditions a disc may be formed or
accretion may proceed quasispherically. The strong mag-
netic field (on the order of 10!>—10'3 G) of the neutron star
disrupts the accretion flow at some distance from the neutron
star surface and forces the accreted matter to funnel down on
the polar caps of the neutron star, creating hot spots. If the
magnetic dipole axis is misaligned with the rotational axis,
then the neutron star pulsates in X-rays. Most accreting
pulsars show stochastic variations in their spin frequencies,
as well as in their luminosities. Many sources also exhibit
long-term trends in their spin-behavior, with the period more
or less steadily increasing or decreasing, and in some sources
spin-reversals have been observed. (For a thorough review,
see, e.g., Ref. [1] and references cited therein.)

The best-studied case of accretion is that of thin disc
accretion [2]. Here, the spin-up/spin-down mechanisms are
rather well understood. For disc accretion, the spin-up torque
is determined by the specific angular momentum at the inner
edge of the disc and can be written in the form [3]
K =~ M\/GMRx, where G is the gravitational constant, M
is the mass of the neutron star, and M =dM/dz is the
accretion rate. For a pulsar, the inner radius of the accretion
disc is determined by the Alfvén radius Ra ~ M7 so
Kg ~ M%7, ie., for disc accretion the spin-up torque is
weakly (almost linearly) dependent on the accretion rate
(X-ray luminosity). In contrast, the spin-down torque for disc
accretion is independent of M in the first approximation:
Ky ~ —u2/R3, where R, = (GM/w*?)'* is the corotation
radius, w* is the neutron star angular frequency, and u is the
neutron star’s dipole magnetic moment. Actually, accretion
torques in disc accretion are determined by complex disc—
magnetosphere interactions (see, e.g., Refs [4, 5] and the
discussion in paper [6]), and correspondingly can have a
more complicated dependence on the mass accretion rate
and other parameters.

Measurements of spin-up/spin-down in X-ray pulsars can
be used to evaluate a very important parameter of the neutron
star, namely its magnetic field. The period of the pulsar spin is
usually close to the equilibrium value P.q whereat the total
torque applied to the neutron star is equal to zero:
K = Ky + Kyg = 0. So, assuming the observed value of the
neutron star spin frequency equal to " =2m/Pe, the
magnetic field of the neutron star in disc-accreting X-ray
pulsars can be estimated if M is known.

In the case of quasispherical accretion, which may take
place in binary systems where the optical star underfills its
Roche lobe and no accretion disc is formed, the situation is
more complicated. Clearly, the magnitude and sign of the
angular momentum supplied to the neutron star from the
captured stellar wind are important for its spin-up or spin-
down. To within a numerical factor on the order of 1 (which
can be either positive or negative; see numerical simulations in
papers [7-9], etc.), the torque applied to the neutron star in
this case should be proportional to MwBRé, where
wp = 21/ Py is the binary orbital angular frequency, Py is
the orbital period of a binary, Rg = 2GM/(V2 +v2,) is the

orb

gravitational capture (Bondi) radius, Vy is the stellar wind
velocity at the neutron star orbital distance, and v, is the
neutron star orbital velocity. In real high-mass X-ray
binaries, the orbital eccentricity is nonzero, the stellar wind
is variable and can be inhomogeneous, etc., so Ky, can be a
composite function of time. The spin-down torque then
appears to be even more uncertain, since it is impossible to
write down for it a simple expression like —u?/R} any more
(R. has no clear meaning for quasispherical accretion; it is
much larger in slowly rotating pulsars than the Alfvén radius
whereat the angular momentum transfer from the accreting
matter to the magnetosphere actually occurs). For example,
using the expression —u?/R3 for the braking torque results in
a very high (2 10'* G) magnetic field for long-period X-ray
pulsars. We think this is a result of underestimating the
braking torque.

Matter captured from the stellar wind can accrete onto the
neutron star in different ways. Indeed, if the X-ray flux from
the accreting neutron star is sufficiently high, the shocked
matter rapidly cools down due to Compton processes and
falls freely toward the magnetosphere. The velocity of motion
of the impinging matter rapidly becomes supersonic, so a
shock is formed above the magnetosphere. This accretion
regime was considered, for example, in Ref. [10]. Depending
on the sign of the specific angular momentum of falling
matter (prograde or retrograde), the neutron star can spin
up or spin down. However, if the X-ray flux at the Bondi
radius is below a certain value, the shocked matter remains
hot, the radial velocity of the plasma is subsonic, and the
source may enter the settling accretion regime. A hot quasi-
spherical shell forms around the magnetosphere [11] (Fig. 1).
Due to additional energy release (especially near the base of
the shell), the temperature gradient across the shell becomes
superadiabatic, and large-scale convective motions inevitably
occur. The convection generates turbulence, and the motion
of a fluid element in the shell becomes quite complicated. If
the magnetosphere allows plasma entry via instabilities (and

Figure 1. A schematic of quasispherical accretion from the stellar wind of
an optical companion OB star (left) onto a magnetized neutron star (right)
in a binary system. In the regime of subsonic accretion, a quasispherical
shell (shaded area) of radius Ra is formed between the bow shock
(parabolic curve) and the rotating magnetosphere. In this shell, large-
scale convective motions develop that may act to withdraw angular
momentum from the magnetosphere. The outer radius of the shell is
determined by the gravitational capture or Bondi radius Rg. The
characteristic velocity of the wind is v, ~ 300— 1000 km s~'. The contour
arrow shows the direction of the orbital velocity v, of the neutron star.
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subsequent accretion onto the neutron star), the actual
accretion rate through such a shell is controlled exactly by
the magnetosphere (for example, a shell can exist in certain
conditions, but accretion through it can be weak or even
absent altogether).

On top of the convective motions, therefore, the matter
acquires a low, on average radial, velocity toward the
magnetosphere, and thus subsonic settling is established.
This type of accretion can work only for relatively small
X-ray luminosities, Lx < 4 x 10*® ergs~! (see Section 2.3 and
Appendix E), and is totally different from that considered in
the numerical simulations cited above. If a shell is present, its
interaction with the rotating magnetosphere can lead to spin-
up or spin-down of the neutron star, depending on the sign of
the difference between the angular velocities of the accreting
matter and the magnetospheric boundary. Thus, both spin-up
and spin-down of the neutron star is possible in the settling
accretion regime, even if the sign of the specific angular
momentum of the captured matter is always prograde. The
shell here mediates the angular momentum transfer to or
from the rotating neutron star.

There are several models in the literature (see especially
papers [12, 13]), from which the expression for the spin-down
torque for quasispherically accreting neutron stars in the
form Kq ~ —MR jw* can be derived. Substituting the
standard expression for the Alfén radius, Ry ~ M 2747,
this torque is transformed to Kyq ~ —u /7 M3/7. In our model,
the matter in the shell settles subsonically as the region close
to the magnetospheric surface cools down, and the Alfvén
radius has a different dependence on the mass accretion rate
and the magnetic field: Ry ~ M 211, 9/11 (see Sections 2.2
and 2.3).

It can be shown that there are two different mechanisms
through which angular momentum can be transferred
through a quasispherical shell. In the first case (we call this
case moderate coupling), angular momentum is withdrawn by
convective motions in the shell. The braking torque in the
regime of settling accretion with convective removal of
angular momentum depends on the accretion rate as
Ky ~ —M3/!! (see Section 4). The characteristic velocity of
the convective motions in this regime is close to the speed of
sound. It is also possible to describe a settling regime where
the angular momentum is removed by shear turbulence in the
shell (the weak coupling regime). In this regime, the character-
istic velocities of the shear flow close to the magnetosphere
are on the order of magnitude of the linear rotational velocity.
In this case, K ~ pu?/R} ~ pw*?/(GM), i.e., in the weak
coupling regime the torque does not depend on the accretion
rate at all.

To stress the difference between the two possible regimes
of subsonic accretion (with moderate and weak coupling), let
us rewrite the expression for the braking torque with due
regard for convection (moderate coupling) in terms of the
corotation radius and the Alfvén radius:

. w w (&)3/2

W= TR\ R

R3R} ¢ \ A
(see further details in Section 3). Because the factor
(RC/RA)3/2 ~ (wg(Ra)/®*), where wg is the Keplerian
angular velocity, can be of order 10 or more in real systems,
using a braking torque in the form of p?/R} may lead to a

strong overestimation of the magnetic field strength for the
neutron star.

The dependence of the braking torque on the accretion
rate in the case of quasispherical settling accretion suggests
that variations of the mass accretion rate (and X-ray
luminosity) must lead to a change in the accretion regime
from acceleration (at high accretion rates) to deceleration (at
low accretion rates) at some critical value of M (or Ry),
which differs from source to source. This phenomenon
(known as torque reversal) is actually observed in wind-fed
pulsars like Vela X-1, GX 301-2, and GX 1+4, which we
shall consider below in more detail.

The layout of this review is as follows. In Section 2, we
present an outline of the theory of quasispherical accretion
onto a neutron star magnetosphere. We show that it is
possible to construct a hot envelope around the neutron
star through which subsonic accretion will occur and act to
either spin up or spin down the neutron star. At the end of
this section, we also discuss the structure of the interchange
instability region, which determines the rate of plasma
entering into the magnetosphere of the rotating neutron
star. In Section 3, the angular momentum transfer to the
magnetosphere is treated. In the next Section 4, we consider
how the spin-up/spin-down torques vary with changing
accretion rate and how to determine the parameters of
quasispherical accretion from observational data. In Sec-
tion 5, we apply our methods to analyzing the specific pulsars
GX 301-2, Vela X-1, GX 1 +4, SXP 1062, and 4U 2206 + 54.
In Section 6, we examine our results and, finally, present our
conclusions in Section 7. A detailed gas-dynamic treatment of
the problem is presented in Appendices A—E, which is very
important for understanding the physical processes proceed-
ing in the shells. This work follows to a large extent the earlier
published paper [14]. However, many additions clarifying and
refining the physical model (especially in Sections 2—4 and in
the Appendices) are included here, and a comparison of the
model with recent observations of several X-ray pulsars is
also made.

2. Quasispherical accretion

2.1 Structure of a subsonic shell

around a neutron star magnetosphere

We shall here look at the torques applied to a neutron star in
the case of quasispherical accretion from a stellar wind. Wind
matter is gravitationally captured by the moving neutron star,
and a bow shock is formed at a characteristic distance
R ~ Rg, where Rp is the Bondi radius. Angular momentum
can be removed from the neutron star magnetosphere in two
ways: either with matter expelled from the magnetospheric
boundary without accretion (the propeller regime [15]) or via
large-scale convective motions in a subsonic quasistatic shell
around the magnetosphere, in which case the accretion rate
onto the neutron star is determined by the ability of the
plasma to extend through the magnetosphere in the regime of
subsonic accretion.

In such a quasistatic shell, the temperature will be high (on
the order of the virial temperature; see paper [11]), and the
important point is whether hot matter from the shell can in
fact enter the magnetosphere. Two-dimensional calculations
in Ref. [16] have shown that hot monatomic ideal plasma is
stable relative to the Rayleigh—Taylor instability at the
magnetospheric boundary, and plasma cooling is thus
needed for accretion to begin. However, a closer inspection
of the three-dimensional calculations in Ref. [17] revealed that
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the hot plasma is only marginally stable at the magneto-
spheric equator (within 5% accuracy of their calculations).
Compton cooling and the possible dissipative phenomena
(magnetic reconnection, etc.) facilitate the plasma penetra-
tion into the magnetosphere. We will show in Section 3 that
spin-down of the neutron star is possible in the case of
accretion of matter from a hot envelope in the subsonic
settling regime.

In a zeroth approximation, we can neglect both rotation
and radial motions (accretion) of matter in the shell and
consider only its equilibrium hydrostatic structure. The radial
velocity u, of matter falling through the shell is lower than the
sound velocity ¢;. Under these assumptions, the characteristic
cooling/heating timescale is much larger than the free-fall
timescale.

In general, both gas pressure and anisotropic turbulent
motions are present in the shell, and therefore Pascal’s law is
violated. Then, the hydrostatic equilibrium equation can be
derived from the equation of motion (A.16) with stress
tensor components (A.19)-(A.21) and zero viscosity (see
Appendix A for more details):

1dp, 1 d(P{R?) 2pt GM
—t L . (1)
p dR  pR dRr pR R

Here, Py = pc2/y is the gas pressure, and P! stands for the
pressure due to turbulent motions:

P = pluj) = pmicl = yPymj, (2)

Pt = plud) = pmic? =

= yPym?, (3)
where (u2) 1+ 2 (u?) is the turbulent velocity disper-
sion, and m‘ anc{ m? are turbulent Mach numbers squared in
the radial and tangential directions, respectively; for example,
in the case of isotropic turbulence one has m‘2 =m? =
(1/3)m?, where m, is the turbulent Mach number. The total
pressure is the sum of the gas and turbulence terms:
Py + P' = Py(1+ym?). The turbulent Mach number in the
shell may, in general, depend on the radius. In our case,
however, we will consider it constant. Furthermore, the
inclusion of turbulent heating (important from a dynamic
point of view; see Appendix E) in real pulsars will change the
estimated parameters by less than a factor of 2 (see
appropriate formulas in Section 4).

We shall consider, to a first approximation, that the
entropy S is constant throughout the shell. For an ideal gas
with adiabatic index 7y and equation of state P =
Kexp (S/cy)p?, the density can be expressed as a function of
temperature: p ~ 7''/0~1_Integrating the hydrostatic equili-
brium equation (1) then yields

RT _y-1GM 1
W 7 R T4ym?=2(—1)(m}—m?)
y—1GM
= y T (’yvrnl)v (4)

where R is the universal gas constant, and p,, is the molecular
weight. (In this solution we have neglected the integration
constant, which is not important deep inside the shell. It is
important in the outer part of the shell, but since the outer
region close to the bow shock at ~ Rg is not spherically
symmetric, its structure can only be found numerically.)

It should be noted that taking turbulence into account
somewhat decreases the temperature within the shell. Most
important, however, is that the anisotropy of turbulent
motions, caused by convection, in the stationary case
changes the distribution of angular velocity of matter
rotation in the shell. We will show below in Appendices B
and C that, in the case of isotropic turbulence, the angular
velocity distribution within the shell is close to quasi-
Keplerian: w(R) ~ R~3/2. In the case of strongly anisotropic
turbulence caused by convection, mH > m?, the distribution
of momentum in the shell may become almost iso-angular:
o(R) ~ R72. In Section 5, we shall see that an analysis of
several real X-ray pulsars favors an iso-angular-momentum
rotation distribution.

Now, let us write down how the density varies inside the
quasistatic shell for R < Rg. For a fully ionized gas with
y = 5/3, we find the law of density change:

p(®) = plra) (2] " (5)

and the law of gas pressure variation:

5/2
P(R) = P(Ry) (12*) . (6)

The above equations describe the structure of an ideal static
adiabatic shell above the magnetosphere. Of course, the
problem becomes essentially nonspherically symmetric at
R ~ Rg, and numerical simulations are required for calculat-
ing the structure of shell’s outer parts.

Corrections to the adiabatic temperature gradient due to
convective energy transport through the shell are evaluated in
Appendix D.

2.2 Alfvén surface

At the magnetospheric boundary (the Alfvén surface), the
total pressure (including isotropic gas pressure and the
possibly anisotropic turbulent pressure) is balanced by the
magnetic field pressure B2/(8n):

B*(Ry)
8t ™)

Py + Py = Py(Rp)(1 +ym) =

The magnetic field at the Alfvén radius is determined by
the dipole magnetic moment of the neutron star and by
electric currents flowing along the Alfvénic surface (in the
magnetopause):

PRy =2 B <R") _ LRT 8)

(1+ym?) 8n i

where the dimensionless coefficient K, takes into account the
contribution from these currents, and the factor 1/(1 + ym?)
is due to the turbulent pressure term. For example, in the
model constructed by Arons and Lea [17] [see their Eqn (31)],
K = (2.75)2 ~ 7.56. At the magnetospheric cusp (where the
magnetic force line is branched), the radius of the Alfvén
surface is about 0.51 times that of the equatorial radius [17].
Below, we shall assume that Ra stands for the equatorial
radius of the magnetosphere, unless stated otherwise.

Plasma is able to penetrate into the magnetosphere mainly
due to the interchange instability. In the stationary regime, let
us introduce the accretion rate M onto the neutron star
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surface. From the continuity equation in the shell we find
M

P(Ra) = 4rur(Ra)R2

©)

Clearly, the velocity of matter absorption by the magneto-
sphere is smaller than the free fall velocity, so we introduce a
dimensionless factor f(u) =u;/\/2GM/R < 1. Then, the
density at the magnetospherlc boundary is given by

p(RA) = (10)

,/2G /Ry R2

Forexample, f(u) ~ 0.1 in the model calculations [17]; in our
case, the value of f(u) at high X-ray luminosities may attain
~ 0.5. If we imagine that the shell is impenetrable and that
there is no accretion through it, M — 0, then u, — 0,
f(u) — 0, while the density in the shell remains finite. In
some sense, matter leaks from the magnetosphere down onto
the neutron star, and the leakage may be either very small
(M — 0) or have a finite nonzero value (M # 0).

Plugging p(R) into formula (8) and using relationship (4)
and the definition of the dipole magnetic moment,

4nf(u

1
n=75ByRg,

(where Ry is the neutron star radius), we find an expression
for the Alfvén radius in the case of quasispherical accretion:

4 QLS w7
0 =1 y,m)(1 +ymd) MV2GM

(11)

A =

It should be stressed that in the presence of a hot shell the
Alfvén radius is determined by the static gas pressure (with a
possible addition of turbulent motions) at the magneto-
spheric boundary, which is nonzero even for a zero-mass
accretion rate through the shell. The dependence of f(u) on
the accretion rate M in the case of a settling shell taking
cooling into account will be derived below [see formula (32)
below]. In the supersonic (Bondi) regime, we obviously have
f(u) = 1. Notice that accretion with subsonic velocity can
take place even in the Bondi regime [18], but with a
significantly lower accretion rate (as compared to the
maximum). In the Bondi regime (i.e., in the adiabatic regime
without gas heating and/or cooling), the choice of solution
depends on the boundary conditions.

2.3 Mean velocity of matter entering

through the magnetospheric boundary

As mentioned in Section 2.2, plasma penetrates into the
magnetosphere of a slowly rotating neutron star mainly due
to the interchange instability. The boundary between the
plasma and the magnetosphere will be stable at high
temperatures 7 > T, but becomes unstable for T < T,
and remains in a neutral equilibrium at 7 = T, [16]. The
critical temperature equals

1 cosy unGM

RTe =
O 2(14+ym?) kRa  Ra

(12)

Here, « is the local curvature of the magnetosphere, y is the
angle the outer normal makes with the radius vector at a given
point, and the contribution from turbulent pulsations in the
plasma to the total pressure is taken into account by the factor

(1+ym?). The effective gravitational acceleration can be
written down as

_oM cosyl 1 r
8eff = Ri X T..)"

The temperature in the quasistatic shell is given by expres-
sion (4), and the condition for the magnetosphere instability
can thus be rewritten as

(13)

K?RA
CoSy

T 2(y—1)(1+ymd)

I Y, m
. . Y (y,m)

<1. (14)

According to work [17], when the external gas pressure
decreases with radius as P ~ R~3/2 the form of the magneto-
sphere far from the %)olar cusp can be described to within 10%
accuracy as (cos4) 2693 (here, 4 is the polar angle counted
from the magnetospheric equator). The instability first
appears near the equator, where the curvature of magnetic
lines is minimal. Near the equatorial plane (4 =0), for a
poloidal dependence of the magnetosphere defined approxi-
mately by (cos 1)0'27, we get for the curvature kp,Rp =
1 + 0.27. The toroidal field curvature at the magnetospheric
equator is k Ra = 1. The tangent sphere at the equator
cannot have a radius larger than the inverse poloidal
curvature; whence it follows that kRpn = 1.27 at A = 0. This
is somewhat larger than the value of kRx =7/(2(y — 1)) =
5/4 =1.25 (for y = 5/3 in the absence of turbulence or for
fully isotropic turbulence), but falls within the calculation
accuracy limit.! The contribution from anisotropic turbu-
lence decreases the critical temperature; for example, we
obtain T/T, ~ 2 for y = 5/3 in the case of strongly aniso-
tropic turbulence my =1, m; =0 at 2 =0, i.e., anisotropic
turbulence enhances the stability of the magnetosphere. Thus,
the plasma-magnetospheric boundary is initially stable, and
after cooling to T' < T, plasma instability sets in, starting in
the equatorial zone where the curvature of the magneto-
spheric surface is minimal.

Let us consider the development of the interchange
instability in plasmas when cooling (predominantly Comp-
ton cooling) is present. The temperature therewith changes as
[20, 21]

dT T—-Tx
= 15
P o (15)
where the Compton cooling time equals
3 R2 2 .
to =~ TEAMCT 0.6 R2M 5] (16)

2/’Lm O’TLX
Here, m, is the electron mass, o is the Thomson cross section,
Lx = 0.1M¢c? is the X-ray luminosity, T is the electron
temperature (which is equal to the ion temperature since the
timescale of electron—ion energy exchange here is the shortest
possible), Tx is the X-ray temperature, and p,, = 0.6 is the
molecular weight of a fully ionized plasma with the solar
chemical composition, and the following notation was
introduced: Ry = R/(10° cm), M4 = M/(10'° g s~!). The
photon temperature is Tx = (1/4) Ty for a bremsstrahlung
spectrum with an exponential cut-off at Ty, so typically
Tx = 3—5keV.

! In Ref. [19], the curvature at the equator was calculated to be
KRA ~ 1.34, still within the accuracy limit.
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The solution to equation (15) reads as follows:

T=Tx+ (Tee — Tx) exp (—i) . (17)

Ic

We note that T, ~ 30keV > Tx ~ 3 keV. It is seen that the
temperature decreases to Tx at t=2tc. In the linear
approximation, the temperature changes as

t
T~ Tcr<l f—).
fe

Plugging this expression into formula (13), we find that the
effective acceleration of gravity increases linearly with time as

(18)

GM t
geff%FZcos;{. (19)

A

Correspondingly, the radial velocity of matter due to the
instability growth increases with time as

Linst GM ¢
Uy = J Gerrdt = —- %“ cos . (20)
0

Here, #inq; 1s the characteristic time of instability development,
which can naturally be expressed in the form

Ko @ _ KO
ok (Ra) u ok (Ra)f(u)

(21)

tinst =

The choice of this expression is due to the fact that, in the case
of rapid cooling, the velocity of matter u; is on the order of the
free-fall velocity ugr, and for slow cooling one has v, < ug. We
have also introduced the notation f(u) = u;/ug < 1, which
will be used in what follows. Kj is a dimensionless constant of
the order of unity.

Plugging finq¢ into formula (20), we find the velocity
acquired by the matter during the timescale of the instability
development:

KZ Ra

2 1 f2(u) )

ur (Linst) = cosy .

Dividing both parts of this equation by ug and solving it for
f(u), we get the expression for f(u):

K2\ /3 1/3
=) (1) o' 23)
C
Here, the expression for the free-fall time was used:
R
te = L = A (24)

“ux(Ra)  V2GM

Then, the characteristic timescale for the instability can be
rewritten in the form

(2K0)1/3 tc 1/3 s
tinst = ———— | — y . 25
From this it follows that for ¢c > #y the timescale for the
instability is much larger than the free-fall time:

tinst 1/3( Ic 173 1/3
At 212(2Ky)Y (—) (cos z)~'/3.

26
tep tr (26)

On the other hand, the timescale of the instability is
shorter than the Compton cooling time:

) P 2/3
=212 (2K,) <7ff> (cosz)™" <1, (27)
C

Ic

which allows us to utilize the linear expansion of temperature
increase as a function of time (18).
The characteristic length of instability growth is defined as

finst 1 GM 13, 1 2
= J uydt = — —— B cogy = — ufing :£K0RA.
A [C 3 3
(28)

In this way, the scale of length of the instability becomes
comparable to the magnetospheric radius during #,4¢, and the
settling velocity turns out to be much smaller than the free-fall
velocity ug. It is apparent that late in the nonlinear stage of the
instability growth the velocity of matter approaches the free-
fall velocity.

We mainly consider the linear stage, since at this stage the
plasma temperature is still high enough (although the entropy
starts decreasing as the radius decreases), and it is in this zone
that a toroidal component of the magnetic field is formed and
effective angular momentum transfer from the magneto-
sphere to the shell takes place. At later stages of instability
growth, the loss of entropy is too strong for convection to
begin.

Let us estimate the accuracy of our approximation by
retaining the second-order terms in the exponent expansion.
Then, the velocity the matter acquired during the instability
time finqq 1S given by

GM 1/3
ur(tinst) = Kg/3 (?) (COS X)l/3

25/6K1/3 P 2/3
X [1 —% (Z—ff> (cosx)_m] . (29)
c

Clearly, the smaller the accretion rate, the smaller the ratio
tir/tc, and the better our approximation.

Notice that for the magnetospheric radius in the form
roughly defined by cos A", we have tan y = ntan A. Therefore,
for n~0.27 close to the equator, cosy ~ 1 with high
accuracy, and in what follows we will ignore this factor. It
should also be noted that cosy ~ 0 in the magnetospheric
cusp region, and in this region matter can barely enter the
magnetosphere at all.

Substituting formula (16) into Eqn (23) and then f(u) into
definition (11), we find at y = 5/3 the expression for the
Alfvén radius in this regime:

5 5 -3/11
Ra ~ 1.55 x 10°K;"" [(1 += mf) 1//<— , mt>]

3 3
3\ 2/11
x (M> [cm],
Mg

where i3y = 11/ (10° G cm?). We stress the difference between
the expression just obtained for the Alfvén radius and the
standard one, Ry ~ u*7/M~2/7, which is derived by equat-
ing the dynamical pressure of free-falling gas to the magnetic
field pressure; this difference comes from the dependence of
f(u) on the magnetic moment of a neutron star and mass
accretion rate in the settling accretion regime.

(30)
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The coefficient appeared due to turbulence, namely

5 5
Kl: (1+§ml2)xﬁ<§,mt>,

is obviously equal to 1 for isotropic turbulence [see
expression (4) for ], and thus of interest only in the case of
strong anisotropic turbulence.

Plugging expression (30) into Eqn (23), we arrive at an
explicit expression for f(u):

(1)

fu) ~ 039K KM g (32)

A necessary condition for removal of angular momentum
from the magnetosphere via convection in the shell is the
condition of subsonic settling (the Mach number for the
settling velocity equals M = u;/us < 1), which fory = 5/3 is
reduced to the inequality f(u) < 1/+/3. Clearly, this condi-
tion is fulfilled for mass accretion rates of around 10'® g s~!
and lower. It is also important to stress that convection in the
shell, as well as the removal of angular momentum,
practically stops working when the mean radial settling
velocity u, of the matter grows higher than the convective
velocity u., i.e., when the convective Mach number
me = ug/cs ~ my becomes smaller than the standard Mach
number M = u;/cs. And conversely, when the Mach number
of the radial flow is smaller than the turbulent Mach number,
M < my ~ me, removal of angular momentum through the
shell may take place.

When the rate of matter accretion through the shell gets
larger than a certain critical value Mt (M > M), the velocity
of the accretion flow close to the Alfvénic surface may become
higher than the speed of sound, and a supersonic flow region
with matter in free fall may form above the magnetosphere. It
is not possible to withdraw any angular momentum from the
rotating magnetosphere through this region. Therefore,
settling accretion is not applicable here. A shockwave forms
above the magnetosphere and plasma interaction with the
magnetosphere is described in the scenario studied, for
instance, in Ref. [10]. Depending on the inhomogeneity
pattern in the captured stellar wind, the specific angular
momentum of matter may be either positive or negative, and
thus alternating episodes of spin-up and spin-down of the
neutron star are possible in the supersonic regime. It is easy to
estimate the critical X-ray luminosity above which the
passage from the subsonic regime (at low X-ray luminos-
ities) to the Bondi-Hoyle—Littleton accretion regime (at high
X-ray luminosities) takes place. Indeed, assuming a limit for
the dimensionless settling velocity equal to f(u) = 0.5 (at
which removal of angular momentum through the shell is still
possible; see Appendix E for details), we find from equation
(32) the maximum possible value of the accretion rate for the
settling regime with a removal of angular momentum:

M~ 2K R (33)
Notice that a similar value of the critical accretion rate can be
found from a comparison of the Compton cooling time to the
timescale for convection close to the Alfvén radius.

To conclude this section, we note that it is not difficult to
perform a similar analysis for the velocity of matter entering
to the magnetosphere due to radiative cooling of the plasma,
for cases where Compton cooling is less effective [22]. This
scenario may be realized in X-ray pulsars at very low

accretion rates, when the shape of the X-ray beam-pattern
changes and the photon beam forms a pencil diagram
illuminating the magnetospheric cusp. In this way, one can
explain the episodic ‘off-states’ (with very low X-ray
luminosity), accompanied with a phase-shift in the X-ray
pulse profile [23], as observed in pulsars like Vela X-1.

3. Transfer of angular momentum
to the magnetosphere

Let us now highlight a quasistationary subsonic shell in which
accretion proceeds onto the neutron star magnetosphere. We
stress that in this regime, i.e., the settling regime, the accretion
rate onto the neutron star is determined by the density at the
bottom of the shell (which is directly related to the density
downstream from the bow shock in the gravitational capture
region) and the ability of the plasma to penetrate the
magnetosphere through the Alfvénic surface.

The rotation law in the shell depends on the treatment of
the turbulent viscosity (see Appendix B for cases where the
Prandtl law and isotropic turbulence are applicable) and the
possible anisotropy of the turbulence due to convection (see
Appendix C). In the latter case, the anisotropy leads to more
powerful radial turbulence compared with perpendicular one.
In this way, as shown in Appendices B and C, we arrive at a set
of quasipower-law solutions for the radial dependence of the
angular rotation velocity in a convective shell. We shall
consider in what follows a simple power-law dependence of
the angular momentum on radius:

o(R) ~R™". (34)
In application to real pulsars we will use in Section 5 a quasi-
Keplerian rotation law with n = 3/2, as well as an iso-angular
momentum distribution with n» =2, which in some sense
represent limiting cases among possible solutions.

When approaching the bow shock, R — Rg, the angular
velocity of matter tend to the orbital velocity: w — wg. Close
to the bow shock, the problem is not spherically symmetric
any more, since the flow becomes very complex (parts of the
flow may cause the hot shell to bend, etc.), and the structure of
the flow can only be studied using numerical simulations. In
the absence of such simulations, we shall assume that the iso-
angular-momentum distribution is established up to the bow
shock front located at a distance from the neutron star which
we shall take equal to the Bondi radius Rg:

2GM

N T
Vw+Uorb

Rp

where V', is the stellar wind velocity at the neutron star orbital
distance, and v, is the neutron star orbital velocity.

This means that the angular velocity w,, of rotation of
matter near the magnetosphere will be related to wg as
follows:

- Rg\"
Wy = OOB| — .
m B RA

Here, the numerical factor @ > 1 takes into account the
deviation of the actual rotational law in the shell from the
value obtained by using the assumed power-law dependence
near the Alfvén radius (see Appendices B and C for more
details).

(35)
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Now, let the NS magnetosphere rotate with an angular
velocity w* =2n/P*, where P* is the neutron star spin
period. The matter at the bottom of the shell rotates with an
angular velocity wy, which is generally different from w*. If
®* > wn, coupling of the plasma with the magnetosphere
ensures transfer of angular momentum from the magneto-
sphere to the shell, or from the shell to the magnetosphere if
o* < wy. In general, the coupling of matter with the
magnetosphere can be either moderate or strong. In the
strong coupling regime, the toroidal magnetic field compo-
nent By is proportional to the poloidal field component By, via
the relation B ~ —By(wm — w*)t, and |B;| can grow up to
~ |Bp|. This regime can be realized in rapidly rotating
magnetospheres, when »* is comparable to or even greater
than the Keplerian angular frequency wg (Rp); in the latter
case, the propeller regime sets in. In the moderate coupling
regime, the plasma can enter into the magnetosphere due to
the development of instabilities on a timescale shorter than
the time needed for the toroidal field to grow to the value of
the poloidal field, and thus B; < Bp.

3.1 Strong coupling case

Let us first consider the strong coupling regime. In this
regime, powerful large-scale convective motions of matter in
the shell may lead to turbulent diffusion of a magnetic field
accompanied by its dissipation. This process is characterized
by the turbulent magnetic field diffusion coefficient #,. In that
case, the toroidal magnetic field (see, e.g., paper [5] and
references cited therein) is written down in the form

RZ
B( =
N

The turbulent magnetic diffusion coefficient is related to the
kinematic turbulent viscosity as #, ~ v. The latter can be
written down as

(0om — ©")Bp . (36)

Vi = (utlt) . (37)
According to the phenomenological Prandtl law, the average
characteristics of a turbulent flow (the rate u, the character-
istic spatial scale of turbulence /, and the shear w,, — »*) are
related in the following way:

u = l|lom — 0. (38)
In our case, the turbulent scale must be determined by the
largest scale of energy supply to the turbulence from the
rotation of the nonspherical magnetospheric surface. This
scale depends on the difference in velocity between the solidly
rotating magnetosphere and the accreting matter that is still
not interacting with the magnetosphere, namely /; ~ Ra,
which determines the turnover velocity of the largest
turbulence eddies. At smaller scales, a turbulent cascade
develops. Substituting this scale into above equations (36)—
(38), we find that B; ~ By, in the strong coupling regime.

The moment of forces due to plasma—magnetosphere
interactions acts on the neutron star and changes its torque
according to

sk BtBP _ % Lz
I — J % as = R0)K: (39)

A

where 7 is the neutron star’s moment~of inertia, w is the
distance from the rotational axis, and K(#) is the numerical

coefficient depending on the angle between the rotational and
magnetic dipole axes. The coefficient K, appears in the above
expression for the same reason as in formula (8). The positive
sign in the right-hand side corresponds to a positive flux of
angular momentum to the neutron star (wm > ©*). The
negative sign corresponds to a negative flux of angular
momentum carried across the magnetosphere (v, < ®*).

At the Alfvén radius, the matter couples with the
magnetosphere and acquires the angular velocity of the
neutron star. It then freely falls onto the neutron star surface
and returns the angular momentum acquired at Ra back to
the neutron star via the magnetic field. As a result of this
process, the neutron star spins up at a rate determined by the
expression

Io* = +zMR} 0", (40)
where z is the numerical coefficient which takes into account
the mean specific angular momentum of the falling matter. If
all the matter falls from the magnetosphere equator, then
z = 1;if it falls strictly along the spin axis, then z = 0. If all the
matter were to fall across the entire magnetospheric surface,
then z = 2/3.

Ultimately, the total torque applied to the neutron star in
the strong coupling regime changes its angular frequency
according to the equation

2
Iir = +R(0)Ky Ls + 2MR} 00"
RA

(41)

Using expression (11), we can eliminate M from the above
equation to obtain in the spin-up regime (g, > ®*):

Io" = LOZ? &
A
49 f (u) Ra\*?
VA D0 md) v Gom) K(O) (&) | @

where R} = GM/w*? is the corotation radius. In the spin-
down regime (0w, < w*), one finds

o KOK
RA
B 4/ (@) Ry
X[l ﬁ(v—l)(lﬂmawmmok(e)<Rc) } w

Notice that, in both cases, Ry must be smaller than R;
otherwise, the propeller effect prohibits accretion. In the
propeller regime, Rp > R., matter does not fall onto the
neutron star, there are no accretion-generated X-rays from
the neutron star, the shell rapidly cools down (see Section 6.1)
and shrinks, and the standard Illarionov—Sunyaev propeller
regime [15], with matter outflow from the magnetosphere, is
established.

During both spin-up and spin-down, the neutron star
angular velocity w* almost approaches the angular velocity of
matter at the magnetospheric boundary: w* — oy (Ra). The
difference between w* and w,, is small, so the second term in
the square brackets in equations (42) and (43) is much smaller
than unity. Also note that when approaching the propeller
regime (Rpn — R.), the accretion rate decreases: f(u) — 0,
the second term in the square brackets vanishes, and the spin
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evolution is determined solely by the spin-down moment of
forces —K(0)u?/R3 . [In the propeller regime, oy, < wk (Ra),
oy < o*,and ®* > wg (Ra).] So, the neutron star spins down
to the Keplerian frequency at the Alfvén radius. In that
regime, the specific angular momentum of the matter flowing
into and out from the magnetosphere is, of course, conserved.

Near equilibrium (w* ~ wp,), relatively small fluctuations
in M across the shell will lead to very strong fluctuations in
w*, since the toroidal magnetic field component can change
its sign by taking values from +B,, to —B,,. If strong coupling
actually occurs in nature, this property would be a distin-
guishing feature of this regime. It is well known (see, e.g.,
Refs[1, 24]) that actual X-ray pulsars sometimes exhibit rapid
spin-up/spin-down transitions not associated with X-ray
luminosity changes, which may be evidence that they
temporarily enter the strong coupling regime. It cannot be
ruled out that the triggering of the strong coupling regime
may be due to the magnetic field frozen into the accreting
plasma that has not yet entered the magnetosphere. Accretion
of magnetized plasma onto neutron stars is studied in detail in
the recent paper [25].

3.2 Moderate coupling case
The strong coupling regime considered above may be realized
in the extreme case where the toroidal magnetic field B,
reaches its maximum possible value ~ B, due to magnetic
turbulent diffusion. Usually, the coupling of matter with the
magnetosphere is mediated by different plasma instabilities
whose characteristic times are too short for substantial
toroidal field growth. As discussed above in Section 2.1, the
shell is very hot close to the magnetosphere boundary, so
without cooling above it the plasma is marginally stable with
respect to the interchange instability (according to the model
calculations in Ref. [17]).

Let us write down the torque due to magnetic forces acting
on the neutron star:

BB,

n (44)

On the other hand, there is a mechanical torque applied to the
magnetosphere from the base of the shell, caused by the
turbulent stresses Wpgg:

J WrpwdS, (45)
where the viscous turbulent stresses can be written down as
(see Appendix A for more details)

ow
WRd) = pV[R a—R . (46)
Having specified the turbulent viscosity coefficient
Vi = (uCA) s (47)

we assume that the characteristic scale of the turbulence close
to the magnetosphere is /; ~ Ra, and that the characteristic
velocity of the turbulent pulsations is determined by the
mechanism of eddy formation in the plasma above the
magnetosphere. If there are strong convective motions in the
shell caused by heating of its base, then u, ~ us, where us is the
speed of sound. If convection is prohibited, there is still
turbulence caused by the shear flow in the shell (w ~ 1/R?;
see Appendix C). In this case, one finds uc(Ra)~ uy(Ra) ~
w*Ra < us. Obviously, the ratio between the stresses for the

different cases turns out to be on the order of w*/wk (Ra),
which for slowly rotating pulsars is around 0.03—0.3.
Equating torques (44) and (45), we get
0w BB,

Ra — —
PUEA TR ™ "an

(48)

We eliminate the density from this expression using the
pressure balance at the magnetospheric boundary (8) and
the expression for the temperature (4), and make the
substitution

ow oy — o
— = 49
OR (RA (49)
Here, we have introduced the dimensionless factor { < 1
characterizing the size of the zone in which an effective
exchange of angular momentum between the magnetosphere
and the base of the shell shows its worth. Hence follows the
relation between the toroidal and poloidal components of the
magnetic field in the magnetosphere:
B Y Ue O — O

By V2(y— 1)K, ur Lok (Ra) 0

Hereinafter, we use the following designations: the free fall
velocity ug = \/2GM /R, the Keplerian frequency wy (Rx) at
the magnetospheric boundary, and the correction coefficient
Ky = (1 +ym2) y(y,m,) due to turbulence. Substituting (50)
into (44), in the case of convection u. = m.us (where we have
introduced the Mach number . for convective motions) we
find that the spin-down rate of the neutron star is governed by
the equation

K, w2 op — o

I =Sl g, B Om — @
{77 R} ox(Ra)

(51)

where K is a constant on the order of unity arising from a
combination of the parameters in formula (50). In that case,
formula (50) can be re-written in the form

B - K| oy — oF

B, = K? TK(RA) , (52)

where the geometrical factors arising from the integration in
Eqn (44) are included in the coefficient K ~ 1.

If the differential rotation at the base of the shell gives rise
to turbulence, u. ~ 1y = w*Ra, then the expression for spin-
down takes the form

L K op? (RA 32 o — 0"
It ="l g Bo(2A) Om — @ 53
YT 2R,§ R ok (Ra) (53)
where
GM\ '/
R. = (m) (54)

is the corotational radius (see also paper [26]). Evidently, the
braking torque turns out in this case to be smaller by a factor
of (Ra/ R.)*/* than when there are convective motions in the
shell. We will call this case weak coupling. It can easily be seen
that in this case both the braking torque and the spin-down
rate of the neutron star are independent of the mass accretion
rate (in the limit @, — 0 we have just Ky ~ u?/R3 [26]). As
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will be discussed later in Section 5.3, the nonequilibrium
pulsar GX 1 +4 shows a negative correlation between * and
luminosity during spin-down [27]. Therefore, we prefer
braking according to law (51) (i.e., with moderate coupling).

Using the definition of the Alfvén radius Ra (11) and the
expression for the Keplerian frequency wg, it is convenient to
present formula (51) in the form

10" = ZMR3 (0 — 0*) . (55)
Here, the dimensionless coefficient Z was introduced:
Ki/{V2(y -1

Sw) 4y

Substituting y = 5/3 and expression (23) into this formula, we
arrive at

Z ~0.363 % KR Mt (57)

Taking into account that the matter falling onto the
neutron star brings in the angular momentum zMRﬁw* [see
Eqn (40) above], we get

16 = ZMRZ (0 — 0*) + zMRi 0" . (58)
It is obvious that for angular momentum removal from the
neutron star through such a shell, the coefficient Z has to be
larger than z. Then, the accreting neutron star can episodi-
cally spin down (we will explain this statement in Section 4 in
more details). And conversely, if Z < z, the neutron star can
only spin up.

If a hot shell is not formed above the magnetosphere (at
high X-ray luminosities or low-velocity stellar winds; see, e.g.,
Ref. [28] and Section 6.1), then the supersonic or Bondi
accretion regime is established and no angular momentum
can be removed from the neutron star. In this case, the
equality Z =z holds true, equation (58) takes the simple
form Io* = ZMRiwm, and the neutron star will spin up to a
frequency on the order of wg (Ra ) regardless of the sign of the
difference w, — w* between the angular velocities of the
matter and the magnetic field lines close to the magneto-
spheric boundary. Due to conservation of the specific angular
momentum, one obtains wy, = wg(Rp/ RA)z. Without the
presence of a shell, the evolution of the angular frequency of
the neutron star can thus be described by the equation

16" = ZMwyR} (59)
where the coefficient Z plays the role of the specific angular
momentum of the matter captured. For example, Z ~ 1/4 in
the model of Ref. [15]. Numerical modeling of Bondi-Hoyle—
Littleton accretion in two-dimensional (e.g., Refs [7, 29]) and
three-dimensional (e.g., Refs [8, 9]) calculations have, how-
ever, shown that, due to inhomogeneities in the stellar wind,
accretion occurs nonstationary and the sign of the captured
angular momentum may change. The sign of Z may thus also
be negative, and we may observe alternating spin-up and spin-
down episodes. Such a scenario is often applied to explain the
observed changes in the sign of the torques in accreting X-ray
pulsars (see the discussion in paper [30]). We stress again that
this picture may completely be realistic for X-ray pulsars at
high luminosities exceeding 4 x 103® erg s~!, when, due to the
strong Compton cooling around the rotating magnetosphere,
no convective quasihydrostatic shell can be formed.

If a hot shell has indeed formed (at moderate X-ray
luminosities less than ~ 4 x 10% erg s~! [see estimate (33)],
the angular momentum from the neutron star magnetosphere
can be transferred outside through the convective shell by
means of turbulent viscosity. Therefore, substituting w,, from
formulas (35) and (58) yields

2—n

) R :

I = ZMawy R} <FA> - Z<1 - %) MRZw" . (60)
B

This is the basic formula that we will use later to describe the
evolution of the spin of the neutron star.

The dimensionless coefficients in this relationship can be
calculated using the factor f(u), which is included in the
expressions for Z and Ra. Thus, K;/( is the only remaining
dimensionless parameter in the model. In Section 5, we will
show how this coefficient can be determined using observa-
tional data from real X-ray pulsars.

4. Spin-up and spin-down of X-ray pulsars

In this section, we will study the dependence of the accelerat-
ing and decelerating torques on the accretion rate M. We
would like to stress, again, that accretion in our case is
subsonic, and the accretion rate is determined by the ability
of matter to enter the magnetosphere through the shell. The
velocity with which the plasma enters the magnetosphere is
then mainly dependent on the density at the magnetospheric
boundary. The density distribution in the shell, on the other
hand, is directly connected to the density of matter in the
shockwave region, and density variations downstream from
the shock are thus rapidly translated into corresponding
variations in the density near the magnetospheric boundary.
This means that variations of the accretion rate onto neutron
stars in binary systems with circular or low-eccentricity orbits
should be essentially independent of the orbital phase, and be
mostly determined by density variations in the stellar wind. In
contrast, possible changes in the capture radius Rp (for
example, due to velocity changes in the stellar wind or
variations in the orbital velocity of the neutron star) have
little effect on the accretion rate through the shell, but
strongly affect the torques applied to the neutron star [see
formula (60)].

Equation (60) can be rewritten in a form explicitly
showing spin-up and spin-down torques:

Tyt — AN/ _ g3/ (61)

For the characteristic value of the accretion rate

Mg = M/(10'° g s71), the coefficients 4 and B (indepen-
dent of the accretion rate) will be given (in CGS units) by

Ki
A~ 422 x10°(0.0388)°"® ?1 K, G g Oren 2

—2n —1
" ‘u(l3—6n)/ll vg Py
30 Nz 10 days) ’

B~ 5.47 x 1032 l_i ﬁK_3/11K9/22M13/11 P -
' z) ¢ £ 100 s

(63)

(62)

(from now on, we will assume y =35/3 in all numerical
estimates). The dimensionless factor 6 < 1 takes into
account the actual location of the gravitational capture
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radius which for a cold stellar wind may be somewhat smaller
than the Bondi radius [31]. The capture radius can also be
reduced due to radiative heating of the stellar wind by the
X-rays from the neutron star (see Section 6.1). To derive
numerical values of the coefficients in formulas (62) and (63),
we used expression (56) for the coefficient Z, and formulas
(32) and (30) for the Alfvén radius.

In Sections 4.1 and 4.2, we will be concerned with the case
of Z—z>0,i.e., B> 0, since in the opposite case only spin-
up of the neutron star is possible.

4.1 Equilibrium pulsars
For equilibrium pulsars, we set ®* = 0, and from Eqn (58) we
get

Zeg(Om — @) +z00" = 0. (64)
Close to equilibrium, we may vary equation (58) with respect
to M. It is convenient to introduce the dimensionless
parameter y = M /Meq, so that y =1 close to equilibrium.
Variations in 8 may, in general, be caused by changes in
density dp and in the velocity év of the stellar wind (and, thus,
the Bondi radius). From the continuity equation and taking
into account dependence (32) of f(u) on M in the shell, we get

70M 3 &
LR 3% (65)
11 M p v

Let us start by studying variations in the density only.
Assuming Ry = const, we find

| 1 2 4

2n
I—| =1—— =— z0'R: +=—Z. w_R}. (66
6M o Meq ay A A ( )

1 11 e

y=I

Using expression (64) for oy, and substituting it into equation
(66) leads to

n—2  I@d*/oM),,
zZ =
n (2n/11)w*R3

3.64 ((0d*/dy),_, pr —4/11 ,6/11 17y —7/11  —12/11
%T< 0 ><100s>K° MR
(67)

Zeg,p —

Now, let us keep the density constant and study changes in the
velocity only. Then, we have from equation (65) that dv/v =
—(7/33) 8M /M. Varying expression (58), we get

S _sn=3 1@ /oM,
,— z=
e 5n (20n/33)w* R}
1.1 /(00" /0y),_, P —4/11 6/11 ' —7/11 —12/11
%7< 1072 )(100 s>K° K Mot

(68)

A majority of neutron stars in X-ray pulsars rotate close
to their equilibrium periods, at which, on average, @* = 0.
Near equilibrium, in the settling accretion regime we get from
equation (61):

c (0077 x (0.0388) " &\ O 3y (VB!
Hyg =~ 1—z/Z 0 t |\ T

U8
gt/ (P10 ) e
16\ Py/10 days '

(69)

This expression can be reversed to give the equilibrium spin
period for a system if the magnetic field is known:

1300 Z \ -1 p2n/11 —3n/11 6n/l1
0.0388 2" <l_zeq>“’ R R Hao.cq

Py - —om/11( V8 o
(a5 (J5) 9

where vg = v/(10% cm s7!). The ratio of the pulsar spin
frequency to the Keplerian frequency at the Alfvén radius is
independent of x:

Py =

(70)

* * _1
) 31 -9 P 9/11 57, —3/11
~ 0.27K;" K, — M . (71
(UK(RA) 0 0 ¢ (100 S> 30 16 ( )

At equilibrium, the ratio between the toroidal and
poloidal magnetic field components at the Alfvén radius [see
Eqn (50)] takes the form

B,
By

_ k= o 10f(u)z o
eq { Zeg ox(Ra) V2K, ox(Ra)’

(72)

Substituting f(«) and ratio (71) into the last formula yields

B KM pa - .
—t %0.7520—< )MS/HMIIE{”.

00 < (73)
b leq K/ \100s)

We stress that, for slowly rotating accreting pulsars, the ratio
between the neutron star spin frequency and the Keplerian
frequency at the Alfvén radius is always smaller than unity.
Therefore, for typical values of f(u) ~ 0.3 and z =2/3, we
have B;/B, < 1.5(w*/wk (Ra)) < 1, and the pulsars are far
from being in the propeller regime (see further discussions in
Section 6.2).

We would like to emphasize that in the important case of
n = 2 (iso-angular-momentum distribution in the shell), the
coefficient of the second term in formula (67) vanishes, and
thus equating Zq to the right-hand side of Eqn (57) we find
the magnetic moment of the neutron star expressed only in
terms of the pulsar equilibrium period and the derivative

(0d>/0y)y:

(0 /0y),, P* <K1) 7][(3/11]({73/7]‘}[1763/11 .

H30,e9 = 10-2  100s\ a4

{

For the case of n =2 and a known Heq> WE obtain the
stellar wind velocity:

—1/4
Vg z —1/11 3/22 *, /11 —3/11
73%0'53(1*@4) Ko RN

L (_P/100s /4
Py /10 days '

(75)

As will be shown in Section 5, z/Zy < 1 for real equilibrium
pulsars, and thus the derived formula gives a correct estimate
of the stellar wind velocity. Notice a weak dependence of the
formula on the dimensionless constants and on the accretion
rate. In the framework of our model, we may, thus, estimate
the stellar wind velocity of the optical component without
resorting to complicated spectroscopic measurements, if
based on the measurements of the equilibrium spin period
P* and the binary period P, and on the estimation of the
neutron star magnetic field p.
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4.2 Nonequilibrium pulsars

First of all, it should be noted that the function c* (M) reaches
a minimum for some M,,. Differentiating equation (61) with
respect to M and equating the achieved expression to zero,
one finds

. B 3 11/(2n)
My =55 .
(A 3+ 2n>

For M = M.,,, the expression @* reaches an absolute mini-
mum (see Fig. 2).
It is convenient to introduce the dimensionless parameter

(76)

M
y=——, (77)
Mg
where Meq represents the accretion rate at which o* = 0:
. B\ /@)
Meq == <Z) . (78)
It is evident that
' ' 3 11/(2n)
M = Meq (m) 3 (79)

in other words, @* goes through a minimum at following
values of the dimensionless parameter

3 11/(2n)
Yer = (2n n 3) <1. (80)
Equation (61) can be rewritten in the form
Id)*:AME(3+2n)/11y(3+2n)/11(1_y—2n/ll). (81)

The minimum of ®* at y = y,, (i.e., the maximum possible
spin-down rate of the pulsar) is defined as

2n

]d):nin _ 7? AMC(S+2n)/11y(3+2n)/ll ] (82)
w*
Vela X-1
GX 301-2
,VCI’ J
0 T
| 1 y= M/Meq
[
|
GX1+4
SXP 1062

Figure 2. An illustration of the dependence of ®* on the dimensionless
accretion rate ¢ [see formula (81)]. In fact, as y — 0, @* approaches some
negative value, since the neutron star enters the propeller regime at small
accretion rates. The figure shows the position in the diagram for
equilibrium pulsars with y ~ 1, and for nonequilibrium pulsars at steady
spin-down with y < ye;.

Now, we vary equation (81) with respect to y:

on* 3 .
Sy = — AM(3+211)/1] —8/11
ay Y 11 eq y

2
% (nTHyh/ll _ 1)8}’

Apparently, depending on whether y > y or y < yer is
fulfilled, correlated changes in d@* with X-ray flux should
have different signs. Indeed, a positive correlation between
the observed 8P* and M was found for GX 1+4 using
CGRO BATSE and Fermi gamma-ray burst monitor (GBM)
data [27, 32]. This means that there is a negative correlation
between 3w* and 8M in this pulsar, suggesting y < y in this
source.

Let us now consider accreting pulsars (GX1+4,
SXP 1062, etc.) in the stage of spin-down. If the pulsar is
spinning down, measurements of the spin-down rate put
limits on the parameters of our model. From the simple fact
that the spin-down is stable, we may obtain using equations
(61)—(63) a lower limit on the NS magnetic field in the case of
quasispherical accretion with ®* < 0:

Idar' =1

(83)

—11/12
z - —1/3 .-1/2
M3 > H30,min ~ 0.1 (1 - z) COll/lzKO / Kt/

y \/_5 11/3Ml/3 P*/lOOs 11/12 (84)
g 16\ Py/10 days

[thus, equation (69) was transformed here into an inequality].
We now make use of the fact that during spin-down there is a
maximum possible braking torque [see Eqn (82)]. Inserting
the values of the coefficients 4 and B from equations (62) and
(63) into formula (82), we find

z 7/4 K vg 3
(’b:d,max ~—L113 x 10_12<1 _§> ? #320 <%)

PN p A
- ad s72].
. (100 s) (10 days> [rad s”]

The maximum braking torque is reached at the accretion rate
M= M,:

11/4 11 11/4
. z _ vg P, /10 days
Mo~ 112(1-2) KK 23 (2] (L2207
6. ( Z) O‘M(ﬁ)<was
(86)

(85)

(notice here the extremely strong dependence of this estimate

on the stellar wind velocity). Then, from the condition

|0k | < |0F ax| follows a more interesting lower limit on
g

the neutron star magnetic field:
K -1/2 v -3/2
10-12rad s72 |\ ¢ NE

pr\7/8 Py ~3/8
X(1005> (10days) '

Of concern to us is the weaker dependence of this estimate on
the stellar wind velocity compared to the estimate determined
by inequality (84).

If the accelerating torque can be neglected, in contrast to
the braking torque (corresponding to the low X-ray luminos-
ity limit of y < 1), then it directly follows from formula (51)

U39 > u3,0,min ~ 0.94

(87)
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that the spin-down rate for accreting pulsars equals

K .
iy ~ —0.55 x 10712 ?‘ AR ey VE/AL

P\ _2
X(lOOS) [rad s77].

From this relationship we obtain a lower limit on the neutron
star magnetic field that neither depends on the parameters of
the stellar wind nor on the binary orbital period:

1/13 <K1>11/13
¢

B o pro\ /13
« KO3/13Kt 9/26M163/13( > .

(88)

.k

p N Wd
B30 > 130 min ~ 1.66 ’m

100 s (89)

Eliminating K, /{ from formulas (51) and (52), we arrive at

B, _r I}y R3
Bp KZ.Hz
W3y —4/11 ,6/11 1 —9/11 1y —6/11
%0'49‘10*T5ads*zﬂ30/ KM kM M (90)

It is seen from the last formula that with decreasing M the
ratio By/B, increases for reasons well understood —the
characteristic cooling time for the plasma increases at low M
and the toroidal component has time to grow to the same
strength as the poloidal. However, B, cannot become larger
than B, due to developing an instability similar to that of a
tightly wound spring. Equating B, = B,, we find from
formula (90) the luminosity value below which the pulsar
enters the strong coupling regime during spin-down (see
Section 3.1):

11/6

“2/3 1 2-3/2
:“30/ KoK, .

%
wsd
10-12 rad s—2

M, ~0.27 ’ 91)

Below this luminosity level in the strong coupling regime, the
spin-down law becomes Kyq ~ u?Ry3 ~ MO/

Wl ~ —2 x 1072 g1 RN [rad 577 (92)

(Notice that when the spin-up torque can be neglected, the
expression does not contain the ever-so-hard-to-determine
velocity of the stellar wind.)

For a further decrease in the accretion rate in non-
equilibrium pulsars, the Alfvén radius will grow to the
corotation radius, and the pulsar may enter a transient state
(the propeller regime). From the condition w* =(GM/R}) 12,
we find the accretion rate for this transition:

. s pr o\ 11/
M3~ 0.0082K, K, ,U330(100 S) .

(93)

The formulas derived above show that the restrictions on
the model become more significant if the neutron star
magnetic field can be measured independently (for example,
utilizing spectral cyclotron lines). We also would like to stress
the fact that measurements of correlated fluctuations of the
spin frequency derivative with luminosity during spin down
(similar to the analysis presented in Section 5.3 for GX 1+4)
allow us to place the source in a ®* — y diagram (see Fig. 2).
To the right of the minimum, y > y and the correlation is

positive. To the left, y < y. and the correlation is negative. In
this way, we may obtain further limits on the parameters of
our model.

5. Application to real X-ray pulsars

In this section, as an illustration of the possible applicability
of our model to real sources, we will consider five particular
slowly rotating moderately luminous X-ray pulsars:
GX 301-2, Vela X-1, GX 1 +4, SXP 1062, and 4U 2204 + 56.

The first two pulsars have spin periods close to those for
the equilibrium rotation of the neutron star, showing spin-up/
spin-down excursions near the equilibrium frequency (apart
from the spin-up/spin-down jumps, which may be, we believe,
due to episodic switch-ons of the strong coupling regime when
the toroidal magnetic field component becomes comparable
to the poloidal one; see Section 3.1).

The third source, GX 1 +4, is a typical example of a pulsar
displaying long-term spin-up/spin-down episodes. During the
last 30 years, it has shown a steady spin-down with frequency
derivative fluctuations anticorrelated with X-ray luminosity
(see paper [32] for a more detailed discussion). Clearly, this
pulsar cannot be considered in equilibrium.

The pulsar SXP 1062 in the Large Magellanic Cloud and
the pulsar 4U 2206+ 54 have only been observed at steady
spin-down.

5.1 GX 301-2

GX301-2 (also known as 4U 1223-62) is a high-mass X-ray
binary consisting of a neutron star and an early type B optical
companion with mass ~ 40M; and radius ~ 60R.. The
binary period covers 41.5 days [33]. The neutron star is a
~ 680-s X-ray pulsar [34] accreting from the strong wind of its
companion (M ~ 107°M/yr [35]). The photospheric
escape velocity of the wind is veee = 500 km s~!'. The semi-
major axis a of the binary system measures approximately
170R, and the orbital eccentricity e ~ 0.46. The wind
terminal velocity was found to be about 300 km s~! [35],
smaller than the photospheric escape velocity.

GX 301-2 exhibits strong short-term pulse period varia-
bility, which, as in many other wind-accreting pulsars, can be
well described by a random walk model [36]. Earlier
observations between 1975 and 1984 revealed a pulse period
of =~ 700 s, while in 1984 the source started to spin up [37]. The
almost 10 years of spin-up were followed by a reversal of spin
in 1993 [38], after which the source has been continuously
spinning down [39-41]. Rapid spin-up episodes sometimes
appear in the Fermi GBM data on top of the long-term spin-
down trend [24]. It cannot be ruled out that these rapid spin-
up episodes, as well as similar ones observed in burst and
transient source experiment (BATSE) data, reflect a tempor-
ary entrance into the strong coupling regime, as discussed in
Section 3.1. Cyclotron line measurements [39] yield a
magnetic field estimate near the neutron star surface of By ~
(5.1-5.8)x 102 G (u=1/2ByR3 = (2.6 —2.9)x10*° G cm?
for the assumed neutron star radius Ry = 10 km).

In Fig. 3 we have plotted the observed frequency
derivative @* as a function of the observed pulsed X-ray flux
(2040 keV) according to BATSE data (see Ref. [41] for more
detail). We will consider the neutron star magnetic field in this
source to be known from observations. An estimate of M can
be inferred from the X-ray flux, provided the distance to the
source is known, which is generally not the case to a great
certainty. We shall assume that near equilibrium a hot
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Figure 3. Torque—luminosity correlation in GX 301-2: @* as a function of
BATSE data (20—40 keV pulsed flux) near the equilibrium frequency (see
Ref. [41]). The assumed X-ray flux at equilibrium (in terms of the
dimensionless parameter y) is also shown by the vertical dotted line.

quasispherical shell exists in this pulsar, and that the accretion
rate is of order 3 x 10'® g s~! i.e., not higher than the critical
value of Mf~4x10" g s7! [see formula (33)]. The
derivative 0@* /0y can be obtained from the »*~X-ray flux
plot, since the accretion rate in the first approximation is
proportional to the observed pulsed X-ray flux. Near
equilibrium (the torque reversal point y = 1 with &* = 0),
we find from a linear fit in Fig. 3 that 0®*/0y =
1.5x 1072 rad s—2.

The obtained parameters (Z, K, /{, etc.) for this pulsar are
listed in Table 1. It is seen that the toroidal component of the
magnetic field is much less than the poloidal (the pulsar
resides far from the strong-coupling limit). The stellar wind

Table 1. Parameters of the discussed pulsars.t
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BATSE flux, cts/s
Figure 4. The same as in Fig. 3 for Vela X-1 [55].

velocity determined by formula (75) is close to the photo-
spheric escape velocity. We also note that the value of the
parameter K;/{ describing the coupling between the plasma
and the magnetosphere is on the order of 14, although by its
physical sense the coefficient K; should be on the order of 1.
This means that the value of the parameter {, which gives the
characteristic relative size of the region in which the transfer
of angular momentum from the shell to the magnetosphere
takes place (or vice versa), has to be around 1/10 (i.e., the
characteristic size of the region where angular momentum
transfer takes place should be approximately 1/10 of the
Alfvén radius).

5.2 Vela X-1
Vela X-1 (=4U 0900-40) constitutes the brightest persistent
accretion-powered pulsar in the 2050 keV energy range, with

Equilibrium pulsars Nonequilibrium pulsars
GX 301-2 Vela X-1 GX 1+4 SXP 1062 4U 2206+ 54
Measured parameters

P*,s 680 283 140 1062 5560

Py, day 41.5 8.96 1161 ~ 300% 19

vy, km s~ 300 700 200 ~ 300§ 350

U3o 2.7 1.2 ? ? 1.7

Mis 3 3 1 0.6 0.2

(00>/dy),_,, rad s7 1.5x 10712 1.2 x 10712 — — —

@y, rad 572 0 0 —2.34 % 107" —~1.63 x 10711 —9.4x 107

Calculated parameters€

f(u) 0.53 0.57

K\ /¢ 14 10 238

Z 3.7 2.6

B./B, 0.17 0.22

Ra,cm 2 % 10° 1.4 x 10°

o* Jok (Ra) 0.07 0.08

Uy, min, km 57! 500 740

130, min Hinin = 4 Hinin, 7 20 Hinin & 3.6
T References for the observed pulsar and orbital parameters, as well as values for the wind velocities from measurements of the optical components, are
given in Section 5. The dimensionless parameters Z, K; /{, and f(u) were derived in Sections 2.3 and 3.
i Estimate from the source’s position in the Corbet P* — Py, diagram.
§ Estimate of typical wind velocity in binary pulsars containing Be-stars.
4] Numerical estimates are given assuming iso-angular-momentum rotation in the shell (n = 2), moderate coupling between the plasma and the
magnetic field, and values of dimensionless parameters d = 1,{ = 1,® = 1, Ky = 1,y = 5/3 in the absence of turbulence in the shell (m; = 0, K, = 1).
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an average luminosity of Ly ~ 4 x 10% erg s=! [37]. It
consists of a massive neutron star (1.88 M [42]) and the
BO0.5Ib super giant HD 77581, which eclipses the neutron star
every orbital cycle of ~ 8.964 days [43]. The neutron star was
discovered as an X-ray pulsar with a spin period of ~ 283 s
[44], which has remained almost constant since the discovery
of the source. The optical companion has a mass and radius of
~ 23M, and = 30R., respectively [43]. The photospheric
escape velocity is vese ~ 540 km s~!. The orbital separation is
a ~ 5S0R., and the orbital eccentricity e ~ 0.1. The primary
almost fills its Roche lobe (as also evidenced by the presence
ofelliptical variations in the optical light curve [45]. The mass-
loss rate from the primary star runs to 107°M, yr—! [46] via a
fast wind with a terminal velocity of ~ 1100 km s~! [47],
which is typical for this spectral class. Despite the fact that the
terminal velocity of the wind is rather large, the compactness
of the system makes it impossible for the wind to reach this
velocity before interacting with the neutron star, so the
relative velocity of the wind with respect to the neutron star
is rather low, namely ~ 700 km s~!.

Cyclotron line measurements [48] yield the magnetic field
estimate By ~3 x 102 G (u=1.5x10* G cm?® for the
assumed neutron star radius of 10 km). We shall assume
that in this pulsar M ~ 3 x 10'° gs~! (again, for the existence
of a shell to be possible).

In Fig. 4, we have plotted ®* as a function of the
observed pulsed X-ray flux (2040 keV) according to
BATSE data [49]. As in the case of GX 301-2, from a linear
fit we find at the spin-up/spin-down transition point that
00 /oy =~ 1.2 x 1072 rad s 2.

The parameters obtained for Vela X-1 are listed in Table 1.
We note that the velocity of the stellar wind as found using
formula (75) is very close to the observed value of 700 km s~ .
As in the case of GX 301-2, the value of the coupling
parameter K;/( is on the order of 10, i.e., the size of the
region for transfer of angular momentum between the plasma
and the magnetosphere comes to about 1/10 of the Alfvén
radius.

53GX1+4

GX 1+4 was the first source to be identified as a symbiotic
binary containing a neutron star [50]. The pulse period covers
~ 140 s, and the donor is an MIII giant [50]. The system has
an orbital period of 1161 days [51], making it the widest
known LM XB with the period exceeding the typical one by at
least an order of magnitude. The donor is far from filling its
Roche lobe, and accretion onto the neutron star proceeds by
capturing the stellar wind of the companion.

The system has a very interesting NS spin history.
During the 1970s, it was spinning up at the fastest rate
(g ~ 3.8 x 10~ rad s—2) among the known X-ray pulsars
at the time (see, e.g., Ref. [37]). After several years of
nondetection in the early 1980s, it reappeared with an
increased spin period, now spinning down at a rate similar
in magnitude to that of the previous spin-up. At present, the
source is steadily spinning down with an average spin-down
rate of @Y ~ —2.34 x 107! rad s=2. The observed spin-
reversal has been interpreted in terms of a retrograde
accretion disc being formed in the system from a stellar wind
[27, 52, 53]. A detailed spin-down history of the source is
discussed in the recent paper [32]. Using our model, this
behavior can, however, be readily explained in the framework
of quasispherical accretion.

As the GX 1+4 pulsar is not in equilibrium, we may
apply one of the three formulas from Section 4.2 to derive
a lower limit on the neutron star magnetic field from
the observed value of @y. From formula (87) we get
130, min ~ 12(K1/C)71/2. Assuming that the coupling para-
meter for nonequilibrium pulsars is similar to that in
equilibrium ones (and, thus, that the size of the region where
the transfer of angular momentum between the plasma and
the magnetosphere takes place is on the order of 1/10 of the
Alfvén radius: { ~ 0.1), we find that uz, .. ~ 4.

In this source, one can also observe anticorrelated
variability in spin-down rate versus X-ray luminosity [27].
According to the latest Fermi GBM data in paper [32], it was
found that —@* ~ LY3. Our model for moderate coupling
yields Ky ~ M3 which is very similar to the observed
relation. It was found in the earlier BATSE observations [27]
that —&* ~ LY*. It cannot be ruled out that the average
luminosity of the source was somewhat lower at that time. In
this case, component B; could have been closer to B, and
then the expected correlation would have had the form
Ky ~ M ~ Ly%*. Note that in the model with a weak
coupling (with the transfer of angular momentum due to
turbulence close to the magnetosphere [26]), the braking
torque is less effective by a factor of (RA/RC)’V2 and not at
all dependent on the luminosity. In low-luminosity pulsars,
the cooling close to the Alfvén radius is less effective, thus
leading to the development of convective motions in the shell
and the establishment of the moderate coupling regime.

Further, we note that the short-term spin-up episodes,
sometimes observed on top of the steady spin-down behavior
(at about MJD 49700; see Fig. 2 in paper [27]), are correlated
with an enhancement of the X-ray flux, in contrast to the
negative frequency—flux correlations discussed above. During
these short spin-ups, the frequency derivative @* is about half
the average w, observed during the steady spin-up state of
NSin GX 1+4upto 1980. The X-ray luminosity during these
episodic spin-ups was approximately five times larger than
the mean X-ray luminosity during the steady spin-down. We
remind the reader that once M > M, a free-fall gap appears
above the magnetosphere, and the neutron star can only spin
up. When the X-ray flux drops again, the subsonic settling
regime is re-established and the neutron star resumes its spin-
down.

5.4 SXP 1062

This recently discovered young X-ray pulsar resides in a
Be/X-ray binary system located in a supernova remnant in
the Small Magellanic Cloud. Its rotational period is
P* ~ 1062 s, and it has a low X-ray luminosity of Lx =
6 x 10% erg s~! [54]. The source exhibits a remarkably high
spin-down rate of ®* ~ —1.6 x 107! rad s2. Its origin is
widely discussed in the literature (see, e.g., Refs [55, 56]),
and a possible presence of anomalously high magnetic field
in the neutron star has been suggested [57]. In the frame-
work of our model, we take advantage of more conservative
limits. Neglecting the spin-up torque (89), we get
U30 > 50 min = 20. This implies that the observed spin-down
can be exblained by a magnetic field on the order of 10"* G,
and thus we believe it is premature to conclude that the source
is an accreting magnetar.

5.5 4U 2204 + 54
This slowly rotating pulsar has a spin period of P* = 5560 s
and exhibits a spin-down rate of @sq =~ —9.4 x 10~ rad s>
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[58]. The orbital period Py, of the binary system covers about
19 days[58], and the measured stellar wind velocity vy, reaches
approximately 350 km s~!, which is abnormally low for an
09.5V optical counterpart [59]. The X-ray luminosity of the
source equals, on average, Lx ~ 2 x 10¥ ergs~!. A feature in
the X-ray spectrum sometimes observed around 30 keV can
be interpreted as a cyclotron line [60-63]. That gives an
estimate of the magnetic field approaching approximately
B~ (30/11.6) x 1.3 x 10> = 3.4 x 10"> G (taking into
account the gravitational redshift close to the surface:
1 4+ z ~ 1.3), and thus 3, ~ 1.7. Utilizing this value of the
magnetic field and neglecting the accelerating torque, from
formula (88) we obtain a lower limit on the parameter
K,/ =z 8, which is very close to the coupling parameter
values for the equilibrium Vela X-1 and GX 301-2 pulsars. If
we consider the NS magnetic field to be unknown (see the
discussion in paper [58]) and apply formula (87), as in the case
of GX 1+4, then assuming moderate coupling with
K, /{ ~ 10, we get the limit pzy > pfy i, ~ 3.6, which is in
agreement with standard neutron star magnetic field values.
Notice that recklessly applying our formulas to equilibrium
pulsars here would give a magnetar value for the magnetic

field [58].

6. Discussion

6.1 Physical conditions inside the shell
For an accretion shell to be formed around the neutron star
magnetosphere, it is necessary that the matter crossing the
bow shock not cool down too rapidly, and thus not start to
fall freely. This means that the radiation cooling time 7o
must be longer than the characteristic time of plasma falling.
The plasma is heated up behind the strong shock to a
temperature

Vw

3 vv% 5
Tps 2~ 1.36 x 10 <m

2
S ) KL o9

The radiative cooling time of the plasma is defined as

3kT

A’ (95)

Tcool =
where p is the plasma density, n. = Y.p/my is the electron
number density (molecular weight u, = 0.6 and lepton
number Y. = 0.8 for fully ionized plasma with solar abun-
dance), and A is the cooling function which can be
approximated as [64, 65]

0, T<10°K,

1.0x 107247035 10* < T< 10°K,
6.2x 10797706 10° < T<4x 10" K,
25%x10777% ) T>4x10"K.

A(T) = (96)

Compton cooling becomes effective from the radius Rx
where the gas temperature 7, determined by the hydrostatic
formula (4), is lower than the Compton X-ray temperature
Tx. The Compton cooling time [see formula (16)] is given by

) R 2
tc = 1060M 4! (m> [s]. (97)

Above the radius where 7x = 7, Compton heating
dominates. Taking the actual temperature close to the

adiabatic one (4), we find Rx ~ 2 x 10'0 cm. It should be
noted that both the Compton and photoionization heating
processes are controlled by the photoionization parameter &
[66, 67]:
L
¢ =X (98)

T neR2

In most part of the accretion flux, the density distribution
follows n ~ R3/2, 50 ¢ ~ R~1/2 and is independent of the
X-ray luminosity if the mass continuity equation is taken into
account. We derive a characteristic value for &:
Ex5x 10°f(u)R,y . (99)
If Compton processes were effective everywhere, this high
value of the parameter ¢ would imply that the plasma is
Compton-heated to keV-temperatures out to very large
distances of order 10'2 cm. At large distances, however, the
Compton heating time becomes longer than the characteristic
time of gas accretion:
e tef (u)ug

= LT 20 £ (w) M R
facer R f( ) 16 10

(100)
which indicates that Compton heating in a falling matter is
ineffective. Consequently, the gas temperature is determined
by photoionization heating only, and the gas can only be
heated up to Tmax =~ 5 x 10° K [66], which is substantially
lower than Tx ~ 3 keV.

The effective gravitational capture radius corresponding
to the sound velocity of the gas in the photoionization-heated
zone is expressed as

26M 2GM T -
= ~35x%x 107 —2 .
Cs2 yRTmax/,um x <5 x 105 K [Cm]
(101)

Ry =

Everywhere up to the bow shock, photoionization maintains
the temperature at a value of ~ Tp,x. The sound velocity
corresponding to Tax reaches approximately 80 km s~!. If
the stellar wind velocity exceeds 80 km s~!, a standard bow
shock is formed at the Bondi radius with a post-shock
temperature given by formula (94). If the stellar wind
velocity is lower than this value, the shock disappears and
quasispherical accretion occurs from Rj.

The photoionization heating time at the effective Bondi
radius of 3 x 10'? cm is given by

(3/2)kTmaX/ﬂm

~ ~2x 10°M ! [s].
(hvesr — Cepr) 1y Oefic % t6 13

pi (102)

Here, hver ~ 10 keV is the characteristic photon energy, (o is
the effective photoionization potential, e ~ 1072* cm? is
the typical photoionization cross section, and n, =
L/ (4TCR2hVeffC) is the photon number density. The photo-
ionization-to-accretion time ratio at the effective Bondi
radius is then equal to

o .
P2 0.07f(u)M g .

taccr

(103)

At stellar wind velocities vy, > 80 km s~!, the bow shock
stands at the classical Bondi radius Rg inside the effective
Bondi radius Ry determined by formula (101). The radiative
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cooling time of the shocked plasma at Ry expressed through
the wind velocity vy, equals

foool A 4.7 x 10* M v [s] . (104)
The photoionization heating time in the post-shock region
can also be expressed through the stellar wind velocity:

toi 3.5 x 10*M v * [s]. (105)
A comparison of these two characteristic timescales implies
that radiative cooling becomes important at low wind
velocities, where the source enters the regime of free-fall
accretion with conservation of specific angular momentum
of a falling matter.

Thus, the plasma behind the shock cools down at low
wind velocities and starts to fall freely. As the cold plasma
approaches the gravitating center, photoionization heating
becomes important and rapidly heats up the plasma to
Tmax = 5 x 10° K. Should this occur at a radius where
Tmax < GM/(RR), the plasma with a constant temperature
Tmax Will continue its free fall down to the magnetosphere,
with the subsequent formation of a shock above the magneto-
sphere. However, if Tiyax > GM/(RR), settling accretion will
work even at low wind velocities.

For high stellar wind velocities, vy, = 100 km s~!, the post-
shock temperature is higher than T7,,x, photoionization
heating is unimportant, and the settling accretion regime in
the shell is established if the radiative cooling time is longer
than the accretion time. From a comparison of these time-
scales, it is possible to find the critical accretion rate as a
function of the wind velocity, the rate below which the settling
accretion regime may come into play:

Mg <0.12032. (106)

Here, we stress the difference between the critical
accretion rates M¥ and M, derived earlier. For M > M1,
the plasma rapidly cools behind the shock in the gravitational
capture region and free-fall accretion begins (unless photo-
ionization heats the plasma to above the adiabatic value at
some radius), while for M > MT ~ 4 x 10 gs~!, determined
by formula (33), a supersonic free-fall gap appears immedi-
ately above the neutron star magnetosphere.

6.2 Possibility of the propeller regime

The very slow rotation of the neutron stars in X-ray pulsars
considered here (GX 1+4, GX 301-2, Vela X-1, SXP 1062,
and 4U 2204+ 56) with w*(Ra) < wk(Ra) (see Table 1)
makes it hard for these sources to enter the propeller regime,
where matter is ejected with parabolic velocities from the
magnetosphere, and the neutron star spins down.

Let us therefore start by estimating the important ratio of
viscous stresses (~ B(B,) to the gas pressure (~ B;) at the
magnetospheric boundary. This ratio is proportional to
By /B, [see formula (72)] and is always much smaller than 1
(see Table 1), i.e., only large-scale convective motions with the
characteristic hierarchy of eddy scales by radius can be
established in the shell. When o* > wg (Ra), a centrifugal
barrier is formed and accretion stops (the propeller regime).
In this case, the maximum possible braking torque applied to
the neutron star is of order —K>u?/R3 due to the strong
coupling between the plasma and the magnetic field. Notice
that the interaction of the plasma with the magnetic field in

the propeller regime is effected by strong coupling, i.c., the
toroidal magnetic field component B; is comparable to the
poloidal component B;,.

It cannot be excluded that a hot iso-angular-momentum
envelope retains in this case as well, which would then remove
angular momentum from the rotating magnetosphere. If the
characteristic cooling time of the gas in the envelope is short
in comparison to the falling time of matter, the shell
disappears, and one can expect the formation of a thin
Keplerian ‘storage’ disc around the neutron star magneto-
sphere [68]. There is no accretion of matter through such a
disc, and the latter only serves to remove angular momentum
from the magnetosphere.

6.3 Hot shell effects in the X-ray spectrum

and a real-time power spectrum

The spectra of X-ray pulsars are dominated by emission
generated in the accretion columns near the NS surface. The
hot optically thin shell produces its own thermal emission, but
even if all gravitational energy of the falling matter were
released in the shell, the ratio of the X-ray luminosity from the
shell to that of the accretion column would be about that of
the neutron star radius to the magnetosphere radius, i.e., one
percent or less. In reality, the luminosity from the shell is
much smaller. The shell should also scatter X-ray radiation
from the accretion column, but for this effect to be
substantial, the Comptonization parameter y must be
around one. The Thomson depth in the shell is, however,
very small. Indeed, from the mass continuity equation and
formulas (30) for the Alfvén radius and (32) for the factor
S (u), we get

Ry .
o = J ne(R)or dR ~ 3.2 x 107345/ 1
Ra

Therefore, for the characteristic temperatures near the
magnetosphere [see formula (4)], the parameter y is as
follows:

4kT 3
Y= TT~24x1077.

€

This means that the X-ray spectrum formed in the region of
energy conversion close to the surface of the neutron star is
not expected to be significantly altered by scattering on
electrons in the hot shell.

Large-scale convective motions in the shell introduce an
intrinsic timescale on the order of the free-fall time, which
could give rise to some features [e.g., quasiperiodic oscilla-
tions (QPOs)] in the power spectrum of variability. QPOs
were reported in several X-ray pulsars (see paper [69] and
references cited therein). However, the expected frequencies
of any QPOs arising in our model would be on the order of
1 mHz— much lower than those reported.

A stronger effect could be the appearance of dynamical
instability in the shell due to enhanced Compton cooling and,
hence, an increased mass accretion rate through the shell.
This might lead to a complete collapse of the shell, triggering
an X-ray outburst with a duration similar to the free-fall
timescale in the shell (~ 1000 s). Such a transient behavior is
observed in the supergiant fast X-ray transients (SFXTs); see
also paper [70]. The possible development of such a scenario
depends on the specific parameters of the shell and needs to be
further investigated.
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6.4 Can accretion (prograde or retrograde) discs

be present in these pulsars?

Our analysis of the sample of pulsars in Section 5 suggested
that in a convective shell above the magnetosphere an iso-
angular-momentum distribution is the most plausible. There-
fore, we shall below consider only this case, i.e., the rotation
law w ~ R 2. As follows from equation (60), the equilibrium
angular frequency of the neutron star at ®* = 0 is

* 1 RB :
Pea =TT 7\RA)

We stress that such an equilibrium in our model is only
possible when a convective shell is present. At high accretion
rates, M > MT ~ 4 x 10 g s~ accretion proceeds in the
free-fall regime (with no shell present).

The equilibrium period for an X-ray pulsar in the quasi-
spherical settling accretion regime can be derived from
formula (70):

(107)

P -
Peq:1300,u3102/“< > )Mm“/”vg‘ s].

10 days
For standard disc accretion, the equilibrium period is
given by

Pega~ Ty M T8, (108)

and the longer periods observed in some X-ray pulsars can,
thus, if a disc is present, be explained only assuming a very
high magnetic field of the neutron star. Retrograde accretion
discs are also discussed in the literature (see, e.g., paper [30]
and references cited therein). Torque reversals produced by
temporary forming retrograde discs during accretion from a
stellar wind can, in principle, lead to very long periods for
X-ray pulsars, even with standard magnetic fields. Such
retrograde discs could be formed as a result of presenting
inhomogeneities in the captured stellar wind [8, 9]. The
scenario could, theoretically, work for pulsars at a high
accretion rate, too high for a hot envelop to form. In the
case of GX 1+4, however, it is highly unlikely that a stable
retrograde disk would be observed on a timescale much
longer than the orbital period of a binary (see a more detailed
discussion of this issue in Ref. [32]). For both GX 301-2 and
Vela X-1 pulsars, the observed positive torque—luminosity
correlation (see Figs 3 and 4) also rules out a retrograde disc in
any of these systems.

To conclude this discussion section, we should mention
that, in reality, all pulsars (including those considered above)
demonstrate a complex quasistationary behavior with dips,
outbursts, etc. These considerations are beyond the scope of
this paper and definitely deserve further observational and
theoretical studies.

7. Conclusions

In recent paper [14] we constructed a theoretical model for
quasispherical subsonic accretion onto slowly rotating
magnetized neutron stars. In this model, the accreting matter
is gravitationally captured from the stellar wind of the optical
companion and subsonically settles down onto the rotating
magnetosphere, forming an extended quasistatic shell. This
shell mediates the angular momentum removal from the
rotating neutron star magnetosphere by large-scale convec-
tive motions. Depending on the angular velocity of the

rotating matter close to the magnetospheric boundary, this
type of accretion can cause the neutron star to either spin up
or spin down.

A detailed analysis and comparison with observations of
the two X-ray GX 301-2 and Vela X-1 pulsars, both
demonstrating positive torque—luminosity correlations near
the equilibrium neutron star spin period, give evidence that
the convective motions are most likely strongly anisotropic,
and the rotational velocities in the shell,  ~ R 2, have a near
iso-angular-momentum distribution. We notice that a statis-
tical analysis of long-period X-ray pulsars with Be-compo-
nents in SMC in paper [71] also favored the rotation law
following @ ~ R~2. The accretion rate through the shell is
determined by the ability of the plasma to enter inside the
magnetosphere. The settling regime of accretion, which
allows angular momentum removal from the neutron star
magnetosphere, can be realized for moderate accretion rates:
M< MF~4x10"° g s7! (X-ray luminosity Lx < L; ~
4 x 10% erg s~!). At higher accretion rates, a free-fall gap
above the neutron star magnetosphere appears due to rapid
Compton cooling, and accretion becomes highly nonstation-
ary.

From observations of the spin-up/spin-down rates (the
angular rotation frequency derivative &* or d* /OM near the
torque reversal) in slowly rotating equilibrium X-ray pulsars
with known orbital periods, it is possible to determine the
main dimensionless parameters of the model, as well as to
estimate the magnetic field of the neutron star. Such analyses
have revealed a good agreement between magnetic field
estimates obtained using our model and those derived from
cyclotron line measurements for the GX 301-2 and Vela X-1
pulsars.

Using measurements of the spin period and the orbital
period, together with an estimate of the neutron star magnetic
field, our model furthermore offers a possibility of estimating
the stellar wind velocity of the companion, without the need
for complex spectroscopic measurements. For nonequili-
brium pulsars there is a maximum possible spin-down rate,
depending on the spin period P*, the orbital period Py, the
neutron star magnetic field y, and the wind velocity vy. For
such pulsars, it is possible to estimate a lower limit on the
neutron star magnetic field using the observed spin-down rate
and X-ray luminosity. For the pulsars GX 1+4, SXP 1062,
and 4U 2206 + 54 investigated here, our estimates are all in
agreement with standard field values and observed cyclotron
line measurements.

In our model for quasispherical subsonic accretion, long-
term spin-up/spin-down episodes, as observed in some X-ray
pulsars, can be quantitatively explained by a change in the
mean mass accretion rate onto the neutron star (and the
corresponding mean X-ray luminosity). Clearly, these
changes are related to the stellar wind properties of the
optical companion in these binaries.

The model also predicts the specific behavior of the
variations in d@*, observed on top of a steady spin-up or
spin-down, as a function of mass accretion rate fluctuations
M. There is a critical accretion rate M, below which an
anticorrelation between 8&* and 8M should occur (the case of
the GX 1+4 pulsar at the steady spin-down state currently
observed), and above which 3&* should correlate with M
fluctuations (the case of Vela X-1, GX 301-2, and GX 1+4
pulsars in the steady spin-up state). The model explains
quantitatively the relative amplitude and the sign of the
observed frequency fluctuations in the GX 1+ 4 pulsar.



April 2013

Quasispherical subsonic accretion in X-ray pulsars 339

8. Appendices

A. Structure of a quasispherical rotating shell
with accretion

A.1 Basic equations

Let us first write down the Navier—Stokes equations in
spherical coordinates R,6,¢. Due to the huge Reynolds
numbers in the shell (~ 10'°—10'® for a typical accretion
rate of 10'7 g s~! and magnetospheric radius ~ 108 cm) there
must be strong turbulence. In this case, the Navier—Stokes
equations are usually called Reynolds equations. Generally,
the turbulent viscosity may depend on the coordinates, so the
hydrodynamical equations take the form:

(1) mass continuity equation

1@
—_— [ — 2 —_— 1
o TRE AR R P) F R a0 S0 p)
1 apu¢_ .
Rsin0 ¢ =0; (A1)

(2) R-component of the momentum equation

Ouy Ouy  uy Ouy ug  Ouy M¢2,+ u§ GM
2 - = N
o T"RYR0 TRsn0op T R RE K
(A.2)
(3) 6-component of the momentum equation
Ouy Oug  up Ouy Ugp Oug Uy — udz, cotd
oy e S = No;
ot TSR TR0 T Rsind 3¢ R 0
(A.3)
(4) ¢-component of the momentum equation
% 6u¢ up 6u¢ ug % urtly + ugtig cot N
or "R TR 90 " Rsin0 0 R T e
(A4)

Here, the force components (including viscous force and gas
pressure gradients) read as follows:

1

pNR:E%(RzWRR)—I— HRaaG(WRosmg)
* sm10R 6?15 Wro = % B % ’ (A-3)

PNo = % % (R*Wor) + sm10R 669 (W sin0)
+ﬁ% W —cote@, (A.6)

PNy = % % (RWor) + 5o R sinO R 660 (Wyosinf)
g (A7)

+sin@R% Wes

The components of the stress tensor include a contribu-
tion from both the gas pressure P, (assumed to be isotropic)
and the turbulent pressure P' (generally anisotropic). In
defining them, we shall follow the classical treatment by
Landau and Lifshitz [72], but with the inclusion of aniso-

tropic turbulent pressure:

0 2
Wrr = —Pg — Ppg + 20V — s —3 M divu, (A.8)

OR
1 aug

Wog = —Pg — Py +2
00 00 T PW(R 30

> - § pvidiva, (A9)

_épvtdiv“’ (A.10)
Wro = PVI(}gaaLg %_%) (A.11)
Wog = <Rsineaabg %%—%?w), (A.12)
WR"’:pv‘(ﬁ%Jraa%_%)‘ (A.13)

In our problem, the anisotropy of the turbulence is such that
Pip = “, and Pj, = P}, = P|. The turbulent pressure
components can be expressed through turbulent Mach
numbers and will be given in Appendix E.

In spherical coordinates, the divergence of vector u is
written out as

1o d 1 ou
iva=— — (R?u, 0 .
divu =23 3r R) + oo 00 %) T Reind 09

(A.14)

A.2 Symmetries of the problem

We shall consider axially symmetric (0/0¢ = 0), stationary
(0/0t = 0), and purely radial (up = 0) gas accretion. Under
these conditions, from continuity equation (A.1) it follows
that

M = 4nR?pu, = const . (A.15)
The constant here is determined by the conditions of plasma
propagation through the magnetosphere.

Let us rewrite the Reynolds equations under the above
assumptions. The R-component of momentum equation
(A.2) becomes

Ou, Uy GM 1 ©
p( oR F) gt g2 ar R e)

+s1n0R GO(WRHSIHH)_T_ R’ (A-16)
the #-component of the momentum equation becomes
uzcotd 1 9
¢ 2
- = — — (R*W,

PR R arE

+— L0 (W, 51n0)—cot9— (A.17)
sin0R 30" " R ’

and the ¢-component of the momentum equation becomes

Oup wup 1 0 5
p(”‘ R TR )T RaRE et G

Wy sin 0) .
(A.18)
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sinf R 60(
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The components of the viscous stress tensor involving
anisotropic turbulence take the form

Wire = —Py — P| % oV (”E - %) : (A.19)
Wy = —Pg — P! +§ pvi <”E = %) , (A.20)
W :—Pg—Pi—F%pvt(%—%), (A21)
Wio = pv, % % : (A.22)
Wop = pwi <% aaig) _ clg)t 0> ) (A.23)
Wre = pvt (%LZ) - %) . (A.24)

The main problem in describing gas-dynamic flows with
developed turbulence consists in finding the kinematic
viscosity parameter v,. As is well known, the viscosity
parameter v in the case of laminar flows is dependent only
on the properties of the medium (liquid or gas). When
turbulence is present, however, this coefficient is also
determined by the macroscopic properties of the flow itself.
There are some empirical relations which, in principle, can be
verified experimentally. Most often, the so-called turbulent
mixing length /; is introduced. Furthermore, Ludwig Prandtl
in his work introduced for plane-parallel shear flows (along
the x-axis, to be specific) the relationship between the
turbulent mixing length /, the velocity u; of the turbulent
flow, and the characteristic shear in the direction perpendi-
cular to the averaged flow (z):

du

Vi = Colt dz

, (A.25)

where Cy ~ 1 is a universal dimensionless constant, the exact
numerical value of which should be determined from a theory
that currently does not exist. In this way, the dependence of
the turbulent stresses on the shear value assumes the
quadratic form:

du\?
W:x = PCO (&) P

and a nonlinearity emerges, which generally makes the
problem a lot more difficult.

First, we consider the generalized Prandtl law for
turbulent viscosity in the case of an axisymmetric flow. In
the case of strong anisotropy, there is one more empirical law
for describing the turbulent viscosity: the Wasiutynski law
(see below), which is not reduced to the Prandtl law in the
conditions of isotropic turbulence. This more general case for
anisotropic turbulence will be discussed separately in Appen-
dix C.

B. Structure of the shell in the case
of turbulent viscosity according to the Prandtl law

B.1 Empirical Prandtl law

for axisymmetric flows with turbulent viscosity

We consider an axisymmetric flow with a very large Reynolds
number. By generalizing the Prandtl law for the turbulent

velocities, inferred for plane-parallel flows, the turbulent
velocity scales as u, ~ /{R(0w/0R). From the similarity laws
of gas dynamics, we assume /; ~ R, so that

o) (B.1)

u = C,R? ik

We notice that the turbulent velocity is determined in our case
by convection, and thus u; < 0.5u (see Appendix D). This
implies that the constant C; scales as
Ut

(ug)

and can be very large, since (ug) < u;. The turbulent viscosity
coefficient reads then as

Cy ~

(B.2)

b (B.3)

— — 3
Vi = (ulll) = CzC]R R .

Here, C; = 1/3 is a numerical factor originating from
statistical averaging. Below, we shall combine C; and C,
into the new coefficient C = C,C,, which can be much larger
than unity.

For such a viscosity prescription, the turbulent stresses
W re can be expressed as

0w 4 (0w 2
Wgrpy = p2R — = pCR*( — | . (B.4)

OR OR

B.2 Angular momentum transport equation
A similar problem (that of a rotating sphere in a viscous fluid)
was solved by Landau and Lifshitz [72]. They showed that the
variables here become separated, and uy(R, 0) = uy(R) sin 6.
Notice that the angular velocity w(R) = u(R)/R is indepen-
dent of the polar angle 6. The setting of our problem is
different from that of the sphere in a viscous fluid in several
respects: (1) there is a force of gravity present; (2) the
turbulent viscosity varies with R and can, in theory, depend
on 0, and (3) there is radial motion of matter (accretion).
These distinctions lead, as will be shown below, to the radial
dependence of the rotational velocity: uy(R) o R™'/2. (We
recall that uy o< R~ for a rotating sphere in a viscous fluid.)
Let us start with solving equation (A.18). First, we note
that for ug(0) ~ sin 0, according to formula (A.23), Wy, = 0.
Further, making use of the continuity equation (E.8) and the
definition of angular velocity, we rewrite equation (A.18) in
the form of angular momentum transfer by viscous forces:

(B.5)

Recasting equation (A.24) in terms of the derivative of the
angular velocity yields

)

OR

Wre = pviR — sin0. (B.6)
Substituting this expression into equation (B.5) and integrat-

ing over R, we get

MoR? = 4mpv R* 6_0) + D,

= (B.7)

where D is an integration constant. This equation for angular
momentum transport by turbulent viscosity is similar to that
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for disc accretion [2], but different due to the spherical
symmetry of our problem.

The left-hand side of equation (B.7) simply governs
advection of specific angular momentum averaged over the
sphere (1/2 J," @R?sin* 0sin0d0 = (1/3)wR?) by the aver-
age motion toward the gravitational center (accretion). The
accretion rate M is then negative, as is 0w/0R. The first term
in the right-hand side of equation (B.7) describes the
transport of angular momentum outwards by turbulent
viscous forces.

The constant D is determined from the equation

K, u? op — o

D=—"K -~
{ 2R3 ok(Ra)

(B.8)

[see formula (51) in Section 3.2]. We consider accretion onto a
magnetized neutron star. When D < 0, the advection term in
the left-hand side of equation (B.7) dominates over viscous
angular momentum transfer outwards. Conversely, when
D > 0, the viscous term in the right-hand side of equation
(B.7) dominates. When M =0 (no plasma enters the
magnetosphere), there is only angular momentum transport
outwards by viscous forces.
Now let us rewrite equation (B.8) in the form

Kl :uz 3 Wm -
D=l RITm T B.9
C 2 R/g A CUK(RA) ( )
and use the pressure balance condition
BX(Ry) Ky u?
P(RA) = Py(Ra)(1 =" =" (B.10
(R) = Pa(Ra)(1 +m0) == 22 =32 G - (B10)

Applying the mass continuity equation in the form

GM

M| = 4nRpf (u)\/
and the expression for the gas pressure (8), we present the
integration constant D/|M| in the form

D _Kiy-l (om — )RR
M|y

NI (1+ym?2). (B.11)

l/j(% ’nl)

Let us consider the case where the neutron star rotates
close to equilibrium with @* = 0. In this case, according to
formula (58), one has

wm—w*:—%w*, (B.12)
and thus using the definition of Z (56), we obtain

D

— = —zRio". (B.13)

|M]|

We would like to stress that the value of the constant D is fully
determined in NS equilibrium rotating by the dimensionless
specific angular momentum of matter at the Alfvén radius z.

B.3 Angular rotation law inside the shell

Let us now use equation (B.7) to find the rotation law w(R).
At large distances R > Ra (we would like to remind the
reader that Ry is the bottom radius of the shell), the constant
D is small compared to the other terms, so we can set D ~ 0.

Thus, when obtaining the rotation law, we shall neglect this
constant in the right-hand side of equation (B.7). Next,
substituting expression (B.3) and the solution for the density
(which, as we shall show below, remains the same as in the
hydrostatic solution)

R\ 2
() = p(r) () (8.14)
into equation (B.7) yields
. R\ 2 ow\*
M|wR? =4np(Ra)(— ) CR'( ) . B.15
o =anp(ra) () or7 (5 (B.15)
After integrating this equation, we find
4 K'?
12 _
20" i3R3/4+D1’ (B.16)
where
M
K= |M] 73 (B.17)
4np(Ra)CR}

and D) is some integration constant. In equation (B.16), we
make use only of the positive solution (the minus sign with
constant D; > 0 would correspond to a solution with the
angular velocity growing outwards, which is possible if the
pulsar has a very long spin period, i.e., barely rotates at all). If
Dy # 0, forlarge R > R (in the zone close to the bow shock)
the solid-body rotation law would lead to w — const =~ wg.
(However, we remind the reader that our discussion is not
applicable close to the bow shock region.) At small distances
from the Alfvénic surface, the effect of the constant D; is
small, and we shall neglect it in the calculations below. Then,
we obtain

4 M Ra\*?
w(R):f% =) (B.18)
9 4np(Ra)CR; \ R
i.e., the quasi-Keplerian law of rotation: w(R) =

a)m(RA/R)3 2. The quantity @y, in the solution given by
equation (B.18) is determined after substituting M from the
continuity equation at R = Ry into equation (B.18):

4 |u(R
wmzd)w(RA)—g(D%.

(B.19)
Here, we have introduced the correction factor @ > 1 to
account for the deviation of the exact solution from the
Keplerian law in the vicinity of Ra.

Because radial velocity u,(Rp) is smaller than the free-fall
velocity, the above formula implies that w,, < wg (Ra), i.e.
lower than the Keplerian angular frequency. For self-
consistency, coefficient C in the Prandtl law may be
determined, according to formula (B.19), from the ratio of
the radial velocity u; to the rotational velocity of matter u:

id) }”r(RA)‘ _
9 meA o

i ~ ’”r(RA)|
9 " ug(Ra)

C= (B.20)

We note that this ratio is independent of the radius R and is
actually constant across the shell. Indeed, the radial depen-
dence of the velocity u, follows from the continuity equation
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with account for the density distribution (B.14):
R\ 12
ur(R) = ur(Ra) (7’*) :

For a quasi-Keplerian law, uy(R) ~ 1/R'2, so the ratio
uy /ugy Temains constant.

Finally, the angular frequency wy, of the rotation of the
shell near the magnetosphere is related to the angular
frequency of the motion of matter near the bow shock as

3 Ry 3/2
WOy = OOB| — .
m B RA

In reality, when approaching Ra, the integration constant D
(which we neglected at large distances R > Rj) should be
taken into account. The rotational law will thus somewhat
differ from a quasi-Keplerian law close to the magnetosphere.

We stress the principal difference between this regime of
accretion and disc accretion. For disc accretion, the radial
velocity of motion of matter is much smaller than the
turbulent velocity, and the tangential velocity is almost
Keplerian and is much larger than the turbulent velocity.
The radial velocity in the quasispherical subsonic accretion is
not determined by the rate of the angular momentum
removal. It is only determined by the ‘permeability’ of the
neutron star magnetosphere to infalling matter. In our case,
we assume that the radial velocity is on the order of the
velocity of convective motions in the shell. The tangential
velocity for the obtained quasi-Keplerian law is much smaller
than the velocity of the convective motions. Note also that in
the event of disc accretion the turbulence can be parametrized
by only one dimensionless parameter, o= u?/u2, with
0<a<1 [2]. The matter in an accretion disc rotates
differentially with a supersonic (almost Keplerian) velocity,
while in our case the shell rotates differentially with a velocity
clearly lower than the subsonic velocity at any radius, and the
turbulence in the shell is essentially subsonic. Also, our case
with an extended shell is, of course, strongly different from
the regime of freely falling matter with a standing shock above
the magnetosphere [17].

(B.21)

(B.22)

B.4 The case without accretion

Now let us consider the case where the plasma cannot enter
the magnetosphere and no accretion onto the neutron star
occurs. This case is similar to the subsonic propeller regime
considered by Davies and Pringle [11]. Equation (B.7) then
takes the form

ow
0 = 4npv R* R (B.23)

(Remember that the constant D is determined by the spin-
down rate of the neutron star: D = I&* < 0.) Solving this
equation as before, we arrive at the rotation law without
accretion:

R 7/4
R) = o | — , B.24
(R = am (") (B.24)
where
. Uy (B.25)

" Tnp(Ra)vi(Ra)RS

From expression (B.3) one finds

7
vi(RA) = 7l ComR3 (B.26)
and, thus, for w,, we obtain
2 I|o* 1/2
O = = L‘S . (B.27)
7\nCp(Ra)RR

Alternatively, wy, is also related to the bow-shock region
parameters as

Ry 7/4
Wy, — WB R_A .

The last relationship can, in principle, be used to further
analyze this case, which we shall not do here.

(B.28)

C. Structure of the shell and angular rotation law
for other turbulent viscosity prescriptions

C.1 Iso-angular-momentum rotation

in the shell for isotropic viscosity

We would like to point out the possibility of having an iso-
angular-momentum differential rotation in the shell,
o = const/R?, for the standard turbulent viscosity prescrip-
tion in the form vy ~ u/, without using the Prandtl law.
Indeed, using the scaling for turbulent pulsations in the hot
quasispherical shell, viz. /, ~ R, u; ~ us ~ R~Y2, as well as
the density dependence p ~ R~3/2 (5), from equation (B.7) it
is easily seen that for M = const and D = const the solution
o(R) ~ 1/R? takes place. In the next section, we will show
that the iso-angular-momentum rotation law can be realized
in the shell for a more complicated form of the stress tensor
components Wpry in the case of anisotropic turbulence.

C.2 Angular rotation law
for turbulent viscosity according to Wasiutynski
Prandtl’s law for viscosity that was used above relates the
scale and velocity of turbulent pulsations with the average
angular velocity and is successfully applied when the
turbulence is generated by the shear flow itself. In our
problem, the turbulence is initiated by large-scale convective
motions in the shell in the gravitational field. Due to radial
convection, strong anisotropic turbulent motions may appear
(the radial dispersion of chaotic motions could be much larger
than the dispersion in the tangential direction), and Prandtl’s
law may thus be inapplicable. Anisotropic turbulence is much
more complicated and remains poorly studied.

As a first step, we may adopt the empirical law for the
component W4 of viscous stress tensor as suggested by
Wasiutynski [73]:

Wre dw d(wR?)] .
b {vt dR—i—(vr ) aR sin @, (C.1)
or
do] .
Wgrp = [2p(—Vi + vr)o + vpR 3R | sin 0, (C2)

where the radial and tangential kinematic viscosity coeffi-
cients are

Vr = CH<‘”\H>R’
v = CL<\ui|>R,
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respectively. The dimensionless constants Cj and C, are of
the order of unity. In the isotropic case, one has v, = v,
Wgre ~ dw/dR, and in the strongly anisotropic case v, > v,
Wre ~ d(wR?)/dR. Using these definitions, let us substitute
expression (C.2) into equation (B.5), and after integration
over R rewrite the latter in the form

sz(l _2CL<|u1|>) ¢, () RatoR®)

] | dR M|

(C.3)

We notice that, due to self-similarity in the shell structure,
uf ~ul ~u; ~R'? and thus the ratios (|ufl)/u; and
(Ju'])/u, are constant. In this case, the obvious solution to
the above equation reads as

LD !
|M| 1 =2C (Jul])/|ul

<w R2 + D ! )
= B _
B M =20 (Jud )/ ||

oR?

R, /(€L )12t )/l
X ( R‘*) (C.4)

[here, the integration constant is defined in such a way that
(}J(RB) = C()B].

Now, let us analyze the equilibrium situation where
@* = 0. In this case, as we remember, the following relations
are valid:

D .2 ( z
— = —z0'R;, om=|(l—%]|o".
|M|
First, let us consider the case of strongly anisotropic,
almost radial turbulence, where (|u}|) = 0. In this case, the

specific angular momentum at the Alfvén radius takes the
form

[uae | /(Cy (e 1))
z Rp I
”mRﬁ{”lz/zKRA) - 1}}

el /(C ' ]))
= xR} (ﬁ> o (C.5)
Ra

From this it is seen that in the case of very weak accretion (or,
in the limit when there is no accretion through the magneto-
sphere at all), the inequality [u:| < C)(|u}[) is satisfied, and an
almost iso-angular-momentum distribution of rotational
velocities in the shell is formed.

The next case relates to situation where the amount of
anisotropy is such that C, (|u'[)/|u;| = 1/2. Then, we have a
strict iso-angular-momentum distribution in the shell:
mei = a)BRé.

If the turbulence is fully isotropic, then

Co(luil) = Clujl) = C{Ju'])

Denoting ¢ = |u;|/(C{|u'])), we obtain

oo - ()}

R 2—e¢
= wyR} (R—’;> . (C.6)

Notice that if ¢ — 0 (and there is no accretion through the
magnetosphere), then w,, — wp, and we are dealing with
solid-body rotation without accretion (cf. the first case
above!). For ¢ =3/2, an almost quasi-Keplerian angular
rotation distribution may be established. We remind the
reader that a similar quasi-Keplerian distribution was
obtained above in Appendix B with making use of the
Prandtl law for isotropic turbulent viscosity. In that case,
this was the only solution. Here, in contrast, the quasi-
Keplerian law governs only one particular case of the general
solution obtained using Wasiutynsky’s prescription for
anisotropic turbulent viscosity.

As we have shown in Section 5, a quasi-Keplerian rotation
law is not favored by observations. We therefore conclude
that the most likely velocity distribution in the shell is the near
iso-angular-momentum one, with anisotropic turbulence
initiated by convection. Notice that for thin accretion discs,
where the vertical height limits the scale of the turbulence, the
Prandtl law for viscosity works very well [2].

D. Corrections to the radial temperature gradient

Here, we shall estimate how the radial temperature gradient
differs from the adiabatic law due to convective motions in
the shell. Multiplying equation (55) by (1/2)(wn — ©*), we
obtain the convective heating rate caused by interaction of the
shell with the magnetosphere:

1_ .. .
LC:EZMRi(wmfw ). (D.1)
Multiplying the same equation (55) by w* yields the rate of
change of the mechanical energy of the neutron star:

Ly = ZMR; 0" (0 — ") . (D.2)
The total energy balance is then written down as
1_ .
Li=Le+Li=5 ZMR} (02, — ™). (D.3)

Notice that the obtained formula for L. is similar to the
equation describing energy release in the boundary layer of an
accretion disc [74].

The convective energy flux is given by

L. ZMR3 (0 — w*)?

T 4nR? 8nR2 (D.4)

qc

On the other hand, the convective energy flux can be
related to the entropy gradient as [75]
ds

ge = —pveI —

= (D.5)

where S is the specific entropy (per gram). Here, v, is the
radial turbulent heat conductivity:

Ve = (uele) = ChucR, (D.6)
where the characteristic scale of convection /. ~ R, the
velocity of convective motions ue ~ ¢s ~ R™1/2 and Cy, is a
numerical coefficient on the order of unity. Thus, one finds

Ve = ve(RA) <£) 1/2-

R (D.7)
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Next, we make use of the thermodynamic identity for the
specific enthalpy H:

dH _1dP, _dS

We remind the reader that the enthalpy can be written out as
dH = ¢,dT,

where

is the specific heat capacity at constant pressure. Expressing
T(dS/dR) from equation (D.5) and making use of hydrostatic
equilibrium equation (4) written as

dp,/p __
dr HmCp

R GM
RZ Y(y,my),

thermodynamic identity (D.8) can be rewritten in the form
dr 1 [GM Zus(RA) Ra 2
R A TR R (o — .
dR~ ¢, | R? Vm) =5 Ry R Ralom =)

(D.9)

By definition, the adiabatic temperature gradient is deter-
mined by the first term in the right-hand side of identity (D.9):
(dT/dR),; = g/cp. Equation (D.9) can be integrated to find
the actual dependence of the temperature on the radius in the
convective shell:
1 [GM
T= cp [ R w(/vml)

Zur(RA)
2VC(RA)

Close to equilibrium (Io* = 0), we make use of formula
(B.12) and write out the dependence required:

Llr(RA) *2 2 22 R
_ WA R Ty )
2GRy A Z " R

(D.11)

1 /(GM
T= a (T W (y,my)

This solution implies that the temperature distribution for
slowly rotating pulsars [i.e., in which @y, < wk(Ra)] in the
whole region between Ra and Ry is closely approximated by
the adiabatic law with a temperature gradient close to the
adiabatic one (4):

y—1GM
Tm/

—— TR (y,my). (D.12)

Here, we have only taken into account energy release due to
the angular frequency difference near the magnetosphere. In
reality, there may be additional sources of energy in the shell
[the heat release during magnetic reconnection and turbu-
lence (see Appendix E), etc.].

E. Dynamics of a stationary
spherically symmetric ideal gas flow
In this appendix, we write down the gas-dynamic equations of

a spherically symmetric ideal gas flow onto a Newtonian
gravitating center. This problem was considered in 1952 in the

classical paper by Bondi [18] for an adiabatic accretion flow.
Adiabatic gas outflows (stellar winds) were studied later by
Parker [76]. A thorough and comprehensible discussion of
such flows can be found in the monograph by V S Beskin [77].
Here, we focus on the role of the cooling/heating processes
near the Alvénic surface, and also take into account the effects
of turbulence and/or convection (anisotropy in general). As
discussed in the main text (see Section 4), the quasistatic shell
at low X-ray luminosities is capable of removing angular
momentum from the rotating magnetosphere via convective
motions. As the accretion rate exceeds some critical value,
strong Compton cooling causes a free-fall gap to appear
above the magnetosphere, and angular momentum cannot
be transferred from the magnetosphere to the shell any more.

Equation of motion (A.16) in the absence of viscosity
reads as

du,  1dp, 1dP| 2(P{—P})
M R = "o dR 3 dR - sk R (E.1)

Here, Py = pc2/y is the gas pressure, and P! is the pressure
due to turbulent pulsations which in general are anisotropic:

(E.2)
(E.3)

Pl = pluf) = pmjjes = yPemj
P! =2p(ul) =2pmic? = 2yPym?,

where (u?) = (uf) +2(u?) is the turbulent velocity disper-

sion, and m? and m? are the parallel and perpendicular
turbulent Mach numbers squared).

From the first law of thermodynamics, we have

dE_Pydp . dS

R, Tar (E-4)

where the specific internal energy (per gram) is defined as

¢
E=cyT= , E.5
-1 (E3)
and the heat capacity is given by
R 1
Cy = — . (E6)
P 7 — 1

From the second law of thermodynamics, the specific entropy
change can be written out through the rate of the specific heat
change dQ/d¢ [ergs™! g '] as

ds do  do/di

2= E.7
dR dR Ur (E.7)
Using the mass continuity equation
M = 4nR’pu; , (E.8)
we arrive at
1 dp 21 du?
_rE__=z_ - ) E.9
p dR R 2u? dR (E9)
Utilizing the relation ¢2 = yR T, we finally obtain
1 de? 2 1 du? dQ/dt
- =(p-D[-=Z-— - . E.10
¢z dR G- ( R 2u? dR * urcyT (E-10)
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Notice that this equation can also be derived directly from the
ideal gas equation of state written in the form

S
Py —Kexp( )p/

where K is some constant.
Making use of equation (E.10), the gas pressure gradient
can be rewritten in the form

1 dP, ¢ dQ/dt  ,( 2 1 du?
Py dR  cyu, T s

(E.11)

(E.12)

Plugging (E.12) into the equation of motion finally yields

11 du? 2 dQ/dt
Eu_rz dR_[ (1+/mH)<R cylly T)
m—m?  GM »

Note also that in the strongly anisotropic case, where
‘ = m > m? 1, the role of turbulence enhdnces in compdr-
ison Wlth the isotropic case, where mH2 =m? = (1/3)m?
We can also introduce the Mach number in the ﬂow,
M = u;/cs. Then, we derive from equations (E.10) and (E.13)
the equation for the Mach number:

M = (14 9m?) dpq2

M?2 dR
2[(r = DM? = (y + 1)(m] —m?)]
B R
M +9(1 4
B y(L+mp) do  (p+ I)GM’ (E.14)
CVT dR chsz

where we have substituted u,(dQ/dR) for dQ/dt. Equations
(E.10), (E.13), and (E.14) can be employed in solving the
dynamics of the accretion flow for pairs of independent
variables (ur,c¢s), (ur, M), or (cs, M). Here, however, we
shall only consider the behavior of the flux near the singular
point. To this end, we can use equation (E.13).

Equation (E.13) has a singular saddle point where the
denominator on its right-hand side vanishes:

2

ul =c2(1+ yml‘z) . (E.15)

The numerator on this side must do likewise, from which we
find the quadratic equation for the flow velocity at the
singular point:

a2 1@ Dmptmt  dg/di
"R l+ymH2 "\ eyT

GM
RZ

=0. (E.16)

Remember that in the adiabatic case (dQ/d¢ = 0) without
turbulence at the saddle point we have simply

GM

=—. E.17
P=cl=32 (E17)

It should be stressed that the presence of turbulence
increases the velocity at the singular point. For example, for
/* 5/3 and strong anisotropic turbulence we find
u? =c2(1+ (5/3)m‘ ); the correction is smaller for isotropic
turbulence u? (1 +(5/9)m?). The transition through

the speed of sound (the sonic point where u? = c2) lies

above the saddle point due to turbulence, and there is no
singularity at the sonic point.

Let us now determine the turbulence heating rate
(dQ/dt); in the quasistatic shell:

do\ " 1 (ud)
(&), =2

where the characteristic time of the turbulent heating is
expressed as
R R

Iy =0 — = o )
Ug nCs

(E.18)

(E.19)

with o, being a dimensionless constant characterizing the
turbulent dissipation energy rate, and the turbulent Mach
number is m? = mH2 +2m?. The turbulent heating rate can
thus be written out as

do\ " ¢
—= == o E.20
( d[ )t 20([R Mt ( )
In the case of Compton cooling, we have
B T—-T
(d_Q) — _LX) 7 (E.21)
dr ) ¢ ic

where 7c is the characteristic Compton cooling time (16).
Equation (E.16) can now be presented in the form

. 2 1+ (y— l)m”ermf 2 &y(yf m?
"R 1—|—ymH2 "u, 2R
u(l—-Tx/T) GM
/. =0. E.22
+ oo 5 (E.22)

As we study the accretion process, the sign of the velocity
u, = dR/dt is negative, so below we shall assume that
uy = —|ug|. Then, for the absolute value of the flow velocity
at the singular point, where the speed of sound is
csfur =—1/(1+ ymﬁ)l/z, we have the quadratic equation:

2 1+ (= Dmf +m? e 1 Py — Dm}
u. — u
"R 1+ ymuz T+ ym”2)1/2 204 R
w0 =Tx/T) oM _ (E.23)
Ytc R2

In this case, the solution to equation (E.16) reads as

| |_R(lfTX/T)
hl= dytc A
[2GM [ 1 R R*(1-Tx/T)*1"?
+ 4 ( 2X/ ) ’ (E.24)
R |44 " 2GM ~ 16y2124°
where we have introduced the dimensionless factor
L4+ (y— Dm2+m? 9y — 1)(m? +2m?)*?
B R e N et (e U N

1+ "/muz 4o (1 4+ ymj 2)1/2
In the case of isotropic turbulence, where m) = m,; =1 / V3,
my = 1, fory = 5/3 the factor A4 takes the value ~ 1.23, and in
the case of strongly anisotropic turbulence, where m =1,
m, =0, mg = 1, this factoris 4 ~ 0.8.
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In units of the free-fall velocity, solution (E.24) assumes
the form

1T T (T ()]
= ugr - 4])A Ic 214 472A2 Ic .
(E.26)

S (u)

With Compton cooling present, the temperature changes
exponentially:

T=Tx + (T — Tx)exp (— ti) (E.27)

(¢
(see Section 2.3). When cooling is slow, #/tc < 1, the critical
point lies below the Alfvén surface, i.e., no transition through
the critical point occurs in the flow before it meets the
magnetosphere, and in this case we expect slow settling
accretion. If this point lies above the Alfvén surface, the rate
of the flow may become supersonic above the magnetosphere,
and in circumstances where flow—magnetosphere interaction
occurs one may expect the formation of a shock. Both
turbulence and rapid cooling shift the location of the critical
point upwards in the flow.

In the case of rapid cooling, one has t/tc > 1, T — Tx,
so again u,/ug ~ 1/2 [cf. formula (E.17) for an adiabatic
flow], but the critical point now lies above the Alfvén surface,
so a free-fall gap above the magnetosphere appears. The ratio
f(u) = |uy|/ugr reaches a maximum at #/7¢c ~ 0.46 (assuming
a typical temperature ratio T,/ Tx = 10), and, depending on
the value of 4 = 0.8—1.23 (anisotropic or isotropic turbu-
lence), it equals f(u) = 0.5—0.6.
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