
Abstract. This paper discusses in detail the percolation models
of turbulent diffusion that help establish nontrivial relations
among theoretical concepts used in the theories of turbulence,
dynamical systems, transport, etc. This approach is particularly
important due to the need to describe turbulence in the presence
of coherent structures, flow reconstructions, and drift and dis-
sipation effects. In such regimes, the conventional quasilinear
description is inconsistent with experimental results, necessitat-
ing the search for fundamentally new models and approaches.
Most attention is given to the scaling concept, an important and
widely used tool among theoreticians and experimentalists.

1. Introduction

Turbulent transport is a fundamental physical phenomenon
of immense practical significance. Nevertheless, years of
active research have not yet proposed a rigorous physical±
mathematical picture of turbulent transport. On the one

hand, this opens up broad new avenues for researchers; on
the other hand, it creates serious difficulties in resolving
particular issues. Indeed, transport phenomena in turbulent
flows can very seldom be successfully described with classical
diffusion models. The main reason is the complexity of
disordered motions intrinsic to turbulent flows. The lack of
order in the flow field, manifested in the random character of
fluid particle velocities (not defined by the macroscopic flow
description), necessitates the wide use of correlation models
and the concept of scaling [1±3]. A developed turbulent flow is
spawned by a hierarchical set of eddies in which the largest
eddy formations reach a size comparable to that of the
domain under consideration, while small eddies reside at the
`viscous' scale. Under such circumstances, choosing the
characteristic correlation length and time that define the
transport of particles in turbulent flows is highly nontrivial.
Here, the correlation characteristics of the flow velocity field
must be taken into account together with its `topological'
features, which are not always directly related to small-scale
turbulent motions [3±5]. Additionally, the description of
turbulent transport requires attention to `competing' factors
such as seed (molecular) diffusion, reconnection of stream
lines, and stochastic instability [6±9].

Similar problems arise in plasma physics in relation to the
motion of charged particles in a stochastic magnetic field,
condensed-matter physics in relation to transport in amor-
phous semiconductors, and in numerous systems where the
law describing diffusion essentially deviates from the classical
behavior [10±12]. In spite of substantial progress in explaining
anomalous transport, many aspects of papers already deemed
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classical in this area are still relevant. For instance, already in
the early phase of exploring turbulent diffusion processes, it
was proposed to use the correlation functions, a modification
of the classical diffusion equation, renormalization methods,
etc. [13±15]. Presenting the development of all these research
concepts in this review does not seem possible. Our attention
is confined to the ideas of scaling, which are an important and
rather universal instrument used by both theoreticians and
experimentalists [2±4]. The approach based on scaling ideas
allows straightforwardly handling the problem statements
and tasks in various branches of modern physics related to
turbulence.

Seventy years have already passed since the publication of
the fundamental work byKolmogorov andObukhov propos-
ing a scaling description of well-developed turbulence [16, 17].
And yet, the fundamental question of the character of eddy
interactions in turbulent flows is still open [3, 18]. In fact,
scaling remains, as previously, the main instrument of
analysis. Quite naturally, we face the same issues concerning
turbulent transport under the conditions of strong turbu-
lence. Coherent structures emerging at large Reynolds
numbers substantially complicate the description of effective
transport. The methods developed for weak turbulence lead
to results that contradict those obtained both experimentally
and numerically [19±21].

In the absence of a universal analysis method for
transport effects in structured turbulence, it is natural to
concentrate on particular but sufficiently general approaches,
choosing a specific shape of eddy structures forming the
relevant class of turbulent flows as a basis. In this review, we
concentrate on percolation models of random two-dimen-
sional flows. The idea of using the percolation theory to
describe anomalous transport in two-dimensional turbulent
flows was proposed by Kadomtsev and Pogutse [22] in 1978.
On the one hand, this approach allowed applying the phase
transition theory to describe self-organization in turbulent
media. On the other hand, it prompted the use of fractal
concepts (scaling) to describe the geometric characteristics of
the objects being studied. The unconventional idea by
Kadomtsev and Pogutse attracted the attention of Zel'do-
vich, who noted that ``the percolation formulation of the
problem supplements the problem of linkage of field lines
developed in detail by Moffat and others'' [24]. Later, the
percolation method was repeatedly used in analyzing trans-
port phenomena in both hydrodynamical and plasma
turbulence [24±27].

2. Turbulent diffusion and scaling

In this section, we briefly recapitulate the already classical
results pertaining to turbulent transport, whose research
history has already surpassed the 100-year mark. The reader
can consult numerous monographs and reviews for a detailed
account [1, 3, 4, 8, 9, 12]. Taylor was the first to recognize the
need for a statistical approach to the analysis of particle
transport in a turbulent flow [28]. The formula for the
turbulent diffusion coefficient that he proposed,

DT �
�t
0

C�t� dt �1�

(where C�t� � hV�0�V�t�i is the velocity autocorrelation
function), was based on the Lagrangian representation of
particle motion in the field of stationary and isotropic

turbulence,

x�t� �
�t
0

V�t� dt : �2�

Using the exponential representation for the autocorrelation
function, Taylor described the rms displacement of a scalar
particle at large times by the traditional diffusion scaling
R 2�t� / DTt. Later, the approach to the description of
transport processes in terms of correlation functions was
advanced both in the framework of the quasilinear weak
turbulence theory [29] and by considering the general
principles of statistical physics in studies by Kubo and
Green [1, 13, 21]. This simplified model of turbulent
transport already contained not only important information
on the dependence of the turbulent diffusion coefficient on
the amplitude of turbulent pulsations V0, DT / V 2

0 tL, where
tL is the Lagrangian correlation time, but also the possibility
of exploring nondiffusive regimes (anomalous diffusion)
owing to the use of model power-law correlation functions.

Another important result was the discovery of the
anomalous dispersion of two particles in a turbulent flow
(relative diffusion) by Richardson in 1926 [30]. The scaling
proposed by Richardson, which describes an anomalously
fast growth of themean separation between two particles with
time,

l 2R�t� / t 3 ; �3�

remains a subject of scientific discussions even now [1, 3].
Considering diffusion from a resting source, it is easy to see
that the dispersion cannot grow faster than the ballistic
motion, R 2�t� / t 2. Obukhov succeeded in proposing the
first theoretical explanation of this anomalous regime based
on the idea developed by him and Kolmogorov that the
spectral energy flux eK is preserved in the developed turbulent
flow [16, 17]. In the framework of the phenomenological one-
parametric approach, eK [m2 sÿ3] is the proportionality
factor connecting the relative distance and time:

l 2R�t� / CReKt 3 : �4�

Here, CR � 0:2 is the empirical Richarson constant. Subse-
quent studies by Batchelor have shown that the relative
diffusion evolves through four different stages [1, 31]. At the
first stage, the main role is played by the stochastic instability
leading to the exponential dependence l 2R�t� / exp t. It is then
taken over by a transient ballistic regime, l 2R�t� / e 2=3K t 2. The
next evolution stage is related to cascade processes inside the
inertial range and obeys the Richarson scaling. As the
distance between particles reaches the characteristic size of
energy-containing eddies by order of magnitude, this scaling
is replaced by a quasidiffusive regime, l 2R�t� / 2DTt. The
reader can find a detailed discussion of questions pertaining
to relative diffusion in the vast literature [1, 3, 9, 13].

We emphasize that it is important to clearly distinguish
between the diffusion of particles from a fixed source (for
example, the Taylor model) and the relative diffusion of two
marked particles in a cloud moving in space (the Richarson
scaling). Here, we consider only the semiclassical diffusion
from a fixed (resting) source. However, for review purposes, it
is important to stress that the concept of scaling has been
widely used beginning from the first papers on the turbulent
diffusion, the diversity of transport regimes in which is an
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unavoidable consequence of the hierarchical structure of
developed (strong) turbulence. Moreover, Richardson
already clearly understood the nontrivial influence of
turbulent mixing on the intensification of transport processes.

3. Dissipation and advection

The way the turbulent diffusion coefficient depends on the
amplitude of turbulent pulsations is an important character-
istic to explore, because in the regime with strong structured
turbulence this dependence is much smoother than the Taylor
prediction,DT / V 2

0 . Here, we consider the method proposed
by Zel'dovich [32] to analyze the equation of passive scalar
transport, which is valid for resting andmovingmedia as well.
The admixture particles in a flow exerting no effect on the
flow dynamics are called a passive scalar. For example, in the
case where the temperature of every fluid particle is preserved
(the temperature is `frozen' in the medium), even temperature
can be treated as a passive scalar. A similar situation occurs in
models dealing withmagnetic field transport [8, 11], where the
magnetic field, being `frozen in', is carried by plasma, forming
intricate configurations. In the simplest case where the fluid
flow is incompressible, divV � 0, we can rewrite the classical
diffusion equation by replacing the partial derivative qn=qt of
a scalar density n with the full (Lagrangian) derivative. The
scalar transport equation then becomes

dn

dt
� qn

qt
� VHn � D0H 2n : �5�

We note that in the absence of diffusion (the diffusion
coefficient D0 � 0), we recover the freezing-in condition
n�r; t� � n�r0; t�, where r0 is the initial particle coordinate,
r0 � r�t � 0�. From a formal standpoint, the Lagrangian
behavior of a scalar can result in arbitrarily large density
gradients, but in the presence of diffusion (or heat conduction
if the problem is reformulated in terms of temperature), the
inhomogeneities in density must smooth out. To qualitatively
assess the competition between these two factors, we consider
a bounded domain with insulated walls in which the mean
particle density is preserved,

hni � 1

W

�
n�r� d3r ; �6�

where W is the domain volume. Additionally, we let the
density perturbations satisfy n1 � nÿ hni and hni � 0 and�

n1 d
3r � 0 : �7�

The smoothing of inhomogeneities in a scalar field
(density, temperature, etc.) with time is a fundamental effect
that can be explored with the help of the variational approach
in a rather general form, unrelated to the specific form of the
velocity field. As a quantity to be varied, we conveniently take
the integral

IZ�t� �
�
n 2�r; t� d3r : �8�

Indeed, we consider the identity

IZ �
�
n 2 d3r �

� ÿ
nÿ hni�2 d3r� hni2W : �9�

The value of IZ reaches a minimum when the scalar density n
takes the value coinciding with the mean: n�r; t� � hni. The
character of the evolution of IZ can be addressed by multi-
plying both sides of the transport equation by n. Then, by
virtue of the Ostrogradski±Gauss theorem, we arrive at the
equation

1

2

q
qt

�
n 2 d3r �

�
nD0�Hn�N dSÿ

�
D0�Hn�2 d3r : �10�

If boundary fluxes are equal to zero (the density gradient
vanishes at the boundary, �Hn�N � 0) and if the medium is
infinite, we obtain Zel'dovich's dissipation theorem:

qIZ
qt
� q

qt

�
n 2 d3r � ÿ2D0

�
�Hn�2 d3r < 0 : �11�

An important fact is the lack of a direct effect from fluid
motion. Indeed, the fluid velocity does not enter the last
expression. However, the fluid motion contributes indirectly
to the evolution of IZ by dictating the spatial distribution of
the scalar density.

In the framework of quasistationary turbulence, it is
natural to neglect the term with the time derivative in the
left-hand side of Eqn (10). The expression D0�Hn�N char-
acterizes the contribution from external sources, whereas the
term D0�Hn�2 is associated with the scalar redistribution
within the volume dW under consideration. Here, it is
convenient to introduce the effective diffusion coefficient in
the form

Deff � 1

n 2L0

�
W

D0�Hn�2 dW ; �12�

whereL0 is the characteristic size of the system. The condition
that Deff be minimum (the minimum of the functional) then
reduces to the purely diffusive equation H�D0Hn� � 0, where
minDeff � D0. The Zel'dovich theorem demonstrates that the
effective flux can increase owing to the convective mixing in
the case where the flow field is incompressible and a seed
(molecular) diffusion exists.

On the other hand, the upper bound on the effective
diffusion coefficient in a quasistationary turbulent flow can
easily be obtained by considering, for simplicity, the one-
dimensional transport equation

D0Dnÿ VHn � 0 �13�

with the help of the perturbation method,

n � hni � n1 � n0 � n1; V � hV i � v1 � v1 ; �14�

where hV i � 0, n1 5 n0 andD0Dn0 � 0. Computations result
in

D0
q2n1
qx 2
� v1 qn0

qx
: �15�

Limiting our analysis to a dimensional estimate only, we find
n1 � v1 L0n0=D0. The last result can be conveniently rewritten
in terms of the Peclet number Pe � lV=D0, which is
responsible for the comparison of convective effects with the
action of molecular diffusion. In this case, n1 � n0 Pe, the
condition Pe5 1 characterizes weakly turbulent flows. We
note that we relied on the smallness of the term v1Hn1
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compared to v1Hn0 in deriving the estimate. Resorting to the
definition of the effective diffusion coefficient in terms of
�Hn�2, we find

Deff � 1

n 2
0L0

�
W

D0�Hn0�2�1� APe2� dW � D0�1� APe2� ;
�16�

where A is a dimensionless constant. The term Hn0Hn1 is
eliminated by virtue of conditions imposed on n1 and n0.
Simple estimates indicate that the diffusion caused by
turbulence frequently far exceeds the molecular one. For
example, in the surface layer in the atmosphere,
V0 � 104 cm sÿ1, l � 10ÿ5 cm, and D0 � 0:1 cm2 sÿ1 for
molecular motions. Turbulent motions involve quantities of
a substantially higher order of magnitude, V0 � 10 cm sÿ1,
l � �10ÿ2ÿ10ÿ3� cm, and D0 � �103ÿ104� cm2 sÿ1. For this
reason, the particular form of the correction describing the
contribution from turbulent motions is extremely important.

Applying Zel'dovich's variational ideas to the exploration
of turbulent mixing of a scalar, we can derive the fluctuation±
dissipation relation (FDR) that allows estimating the scale of
scalar density fluctuations


�Hn�2� in developed turbulent
flows [8]. For quasistationary turbulence, the Zel'dovich
relation can be written in the form

0 � Q�n1 ÿ n2� ÿD

�
W

�Hn�2 dW ; �17�

where the contribution from the flux through the boundaryQ
is estimated in terms of the mixing length L0 and the velocity
fluctuation scale V0:

Q � ShV0L0iHn � SDT

�
Dn
L0

�
macro

: �18�

With Eqn (18) substituted in relation (17), straightforward
manipulations lead to the Zel'dovich (FDR) scaling


�Hn�2� � �V0L0

D0

� �Dn�2
L 2
0

; Pe � V0L0

D0
4 1 ; �19�

or, in the terms of the Peclet number,

Hn
��
local
�
�
DT

D0

�1=2 �Dn�2
L 2
0

� Pe1=2 Hn
��
macro

: �20�

The last relation implies that for Pe4 1, the character of
turbulent motion ensures that two fluid elements with
strongly dissimilar scalar densities (or temperatures) turn
out to be close to each other. Experiments and numerical
simulations confirm this conclusion. The patterns of scalar
density distributions evolving through turbulent mixing are
often no less beautiful than the canvases of abstractionists.

We can also readily find the scaling for density perturba-
tions dnjturb, similar to that derived when estimating Deff for
Pe5 1. We introduce the local Peclet number Pe � lV0=D0

based on the local scale l. It can then be assumed that

dn
��
turb
/ Hn

��
local

l � Pe1=2 Hn
��
macro

l : �21�

Considering the Peclet and Reynolds number to be directly
proportional to each other, we estimate the scale l as

l � lv / L0

Re
3=4
l

/ L0

Pe
3=4
l

; where Pe / Re4 1 : �22�

In this case, the expression for the amplitude of scalar density
perturbations on scales lv takes the form of the scaling
relation

dn
��
turb
� Peÿ1=4 dn

��
macro

� Reÿ1=4 dn
��
macro

: �23�

Accordingly, the scaling for nl in the case Pe4 1 is essentially
different from its counterpart for Pe51, dn�Pe�/n0 Pe.

We use this result of Zel'dovich for a preliminary estimate
of transport in a developed turbulent flow. Under the
conditions of strong turbulence, a substantial contribution
to the turbulent transport comes from convective motions,
which allows estimating the particle flux as

q / dnV0 ; Pe / Re4 1 : �24�

Using the above expression for density perturbations, we
derive the scaling relation for the turbulent diffusion coeffi-
cient

Deff �Pe� / q �Pe�
n0

L0 / D0 Pe
3=4 : �25�

Expression (25) is notably different from the Zel'dovich
scaling Deff�Pe� / D0 Pe

2 and, as we see in what follows, just
the `flat' scaling emerges in a rigorous theoretical analysis of
turbulent transport in regimes of strong (structured) turbu-
lence.

4. Fractal behavior and percolation stream lines

By turning the consideration from general three-dimensional
flows to incompressible two-dimensional flows, we not only
benefit from the advantages of the Hamiltonian representa-
tion of the equations of motion for a fluid element, but also
are in a position to propose a more rigorous classification of
the transport regimes. With the incompressibility condition
divV � 0, the equations of motion can be written as

_x � Vx � qC�x; y�
qy

; �26�

_y � Vy � ÿ qC�x; y�
qx

; �27�

where C�x; y; t� is the stream function, which is a random
field in models of two-dimensional turbulent flows [13, 33].
Scalar particles move along the stream lines, but because of
molecular diffusion or reconnection of stream lines, they can
leave the initially selected ones. The analysis of different
decorrelation mechanisms responsible for the existence of
different regimes of turbulent diffusion is one of the goals
pursued by this review.

It is well known that processes of self-organization that
lead to the formation of large-scale eddy structures play an
important role in two-dimensional turbulence [1, 3]. In the
framework of fluid dynamics, this process is frequently
associated with the inverse spectral energy cascade [16, 17],
and in the physics of strongly magnetized plasma, with the
onset of drift-convective instabilities [21, 22, 25]. Using the
stream function formalism for random two-dimensional
flows allows considering eddies of various scales in the
framework of statistical topography. Moreover, the coher-
ent structures evolving as a result of self-organization in
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turbulent flows may noticeably differ from regular or small-
scale eddy features and occupy a substantial part of the flows,
thus creating the conditions for the emergence of anomalous
transport regimes.

In this review, we focus on the percolation model of self-
organization of two-dimensional random flows [22, 25]. In
the percolation approach, the stream lines C � C�x; y� are
regarded as coastlines appearing as a result of the inundation
of a hilly landscape (Fig. 1). It is expected that there is a sharp
transition from the region with bounded lakes on the
otherwise endless land to the region with islands in an endless
ocean. The percolation theory assumes the existence of at
least a single coastline of infinite length. The corresponding
stream functions can be modeled by `perturbing' the land-
scape described by the system of convective cells (Fig. 2)

C�x; y� � C0 sin �kxx� sin �kyy� : �28�

A small initial perturbation dC displaces `saddle points' from
the zero levelC � 0. In fact, we are dealing here with random
splitting of saddles and the build-up of long winding stream
lines.

Kadomtsev and Pogutse [22] linked the anomalous
character of diffusion in regimes with strong turbulence to

the fractal character of stream lines of a two-dimensional flow
in the vicinity of the flooding level (Fig. 3). It was proposed to
use the following scaling, found in numerical experiments on
statistical topography, for the length of the percolation
stream line [22, 34]:

L�e� / 1

e 2:4
: �29�

Here, e is a small dimensionless quantity characterizing the
degree of the system deviation from the critical state (the
percolation threshold), e � dC=�lV0�, where dC is the
magnitude of the stream function in the vicinity of the
percolation transition, l is the characteristic size, and V0 is
the characteristic flow velocity. Expression (29) for L�e�
corresponds to a fractal representation of the curve
length [35]. Percolation (fractal) stream lines in fact embrace
the entire flow in the vicinity of the percolation threshold,
furnishing conditions needed for the onset of anomalous
transport.

But the fractal representation of stream lines alone is
insufficient for the description of the effects related to the
substantial increase in transport coefficients. Moreover, the
fractal character of lines sometimes leads to a slower diffusion
(subdiffusion). In the percolation limit, the main character-
istics of turbulent diffusion are the typical correlation scales
in space and time. In Section 5, we present basic scaling
relations that enable us to characterize the hierarchy of space
scales in a simple percolation model.

5. Percolation hierarchy of spatial scales

The percolation approach looks very promising because it
offers a simple, yet universal, model of behavior based on the
effects of strong correlations, which, in the case of turbulent
diffusion, are related to convective transport along the
branching network of stochastic layers formed as a result of
separatrix splitting. On the other hand, numerical simulations
for two-dimensional percolation lattices can be used to verify
the theoretical analysis.

To illustrate the main notions of percolation theory, we
consider a simple model on a square lattice. Let the cells of
this lattice be filled with the probability p or be empty with the
probability 1ÿ p. The filled neighboring cells sharing a

Figure 1. Percolation transition in the two-dimensional case. Dark and

light areas respectively correspond to `water' and `land'.

D

Figure 2. Convective cells. D is the thickness of the stochastic (diffusive)

layer. The bold line shows an example of a particle trajectory in the system

of convective cells.

DD��ee��

LL��ee��

Figure 3. Percolation stream line (bold curve) in a two-dimensional

random flow. The stochastic layer is shaded. D�e� is the thickness of the
stochastic (diffusive) layer and L�e� is the length of the percolation stream

line.
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common edge form a cluster. If p5 1, the clusters are small
and isolated. As p increases from 0 to 1, the number of the
largest clusters also increases. There is a critical value
0 < pc < 1 at which a single cluster is formed that connects
the opposite lattice sides. If the lattice size tends to infinity,
L0 !1, the size of this percolation cluster also becomes
infinite. The value pc at which an infinite cluster forms for the
first time is called the percolation threshold or the critical
probability. Numerical simulations for finite lattices show
that pc�0:59275 for clusters formed by neighboring vertices.
Such simulations also prove that clusters represent fractal
distributions of filled cells.

As p is driven closer to pc, the finite-size clusters grow in
size; their correlation length a, being the size of clusters
contributing most to this growth, tends to infinity at pc. As
a�p� tends to infinity, the characteristic length that would
enter scaling dependences of the system physical properties
ceases to exist. Similarly to fractal structures, the system looks
the same at different magnifications. The system properties
become insensitive to many local details, including even the
lattice structure, which ensures the universality of the critical
indices describing the divergence of parameters as p
approaches pc. These universal indices depend on the model
considered and the system dimensionality, but not on the
local structure. Importantly, in the vicinity of p � pc, the
geometric percolation can be expressed in the same language
as a second-order phase transition, e.g., from a paramagnetic
high-temperature state to a ferromagnetic low-temperature
one. For example, the probability p of a vertex being occupied
can serve as an analog of the temperature T.

The correlation length a also tends to infinity as p
approaches pc (from below and from above) with some new
critical index n:

a / j pÿ pcjÿn � jejÿn ; �30�
where e is a small percolation parameter characterizing the
proximity of the system state to the percolation threshold.
This behavior is reminiscent of the divergence of the
correlation length in the vicinity of critical points of
temperature phase transitions. The percolation critical
indices are universal because they depend only on the system
dimensionality d, i.e., n � n�d �. The goal of percolation
theory is to compute critical indices and establish relations
between them. The reader can learn about methods of
computing the indices from numerous sources (see, e.g.,
Refs [9, 25, 27, 35]). For two-dimensional lattices, the index
n � 4=3 can be found exactly. The situation is more intricate
in three dimensions, and percolation indices have been
obtained thus far only with the help of numerical simula-
tions [25].

In the theory of two-dimensional continual percolation, it
is rigorously proven that the correlation scale follows the
same scaling as in the lattice model [9, 25, 27, 35]. This allows
considering the correlation scale a�e� as the transverse size of
the percolation stream line. In the theory of continual
percolation, the correlation length a�e� is also the parameter
characterizing the length of percolation stream lines in the
vicinity of percolation transition, e! 0:

L�e� / a�e�
e
/ a�e�DH ; DH � 1� 1

n
; n � 4

3
: �31�

Here, DH is the Hurst exponent [9, 25, 27, 35]. Thus, the
percolation approach allows realizing the idea of `long-range
correlations'.

However, a serious problem has emerged here, because
the diffusion coefficient is directly connected with the
expression for the correlation length Dcor: D � D 2

cor=t, where
t is the correlation time. In the case that we consider, it is
plausible to assume that particles of the scalar move along
stream lines; hence,

Dcor � a�e�e!0 !1 �32�

in the percolation limit. This difficulty can be removed by
renormalizing the small percolation parameter e. This review
is precisely devoted to the methods of renormalization of the
parameter e in problems of turbulent transport.

Chaotic behavior of stream lines gives rise to a complex
topological pattern. In this nontrivial situation, the ideas of
fractality and percolation are fruitful, because the notion of
the correlation scale and characteristic spatial scale of the
explored structures can be linked to the fractal topological
characteristics of the flows. On the other hand, in contrast to
conventional diffusion models, the theory of continual
percolation includes not only the hierarchy of spatial scales
but also the hierarchy of time scales, which allows considering
time-dependent models for which processes of flow topology
reorganization and effects driven by stochastic instability
gain in importance.

6. Renormalization and percolation

The classical percolation representation Dcor � a�e�e!0 !1
is too abstract for actual tasks of practical significance. We
consider a simple approach that allows recovering the scaling
behavior for the characteristic correlation scale at finite
values of the percolation parameter. For systems of a finite
size L0, the condition a�e�4L0 must be satisfied. It is
therefore reasonable to introduce a new, `renormalized'
small parameter e� [36] such that

a�e�� � l
1

je�j n 4L0 : �33�

Elementary manipulations give

e� �
�

l
L0

�1=n

: �34�

The result in (34) can be interpreted from the standpoint of
`percolation experiments with samples' of finite size. In such
`samples', the percolation transition occurs for e� lying in
some range De in close proximity to zero. The value for e�
above can be treated as a characteristic estimate for this range
(Fig. 4), De � e�. We note that we are in fact dealing with a
physically motivated small parameter

e0 � l
L0

5 1 ; �35�

related to a system with characteristic scales L0 and l. As a
result of `renormalization', we obtain the new (small, but
finite) percolation parameter

e��e0� � De � e 1=n0 : �36�

As could be anticipated, e� decreases with the increase in the
size of systemL0. In fact, we `hide' the singularity in themodel
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phenomenological parameter characterizing the finiteness of
the sample size.

In the problem of constructing the percolation flow in a
two-dimensional random flow, an analog of the quantity
De � e� is furnished by the width of the stochastic layer. In the
model of convective cells, the width of the stochastic
(diffusive) layer was explored in the limit of large Peclet
numbers Pe � lV0=D0 4 1 in Ref. [37]. We suppose that
scalar particles move along the stream lines, but can leave
them because of the action of seed (molecular) diffusion D0.
The particles leave the stochastic layer diffusively:

qn
qt
/ D0

n

D2
: �37�

Convection along the boundary layer contributes as

qn
qt
/ V0

n

l
: �38�

Comparing estimates (37) and (38), we find the stochastic
layer width

D�V0� �
���������
D0l
V0

s
/ 1������

V0

p : �39�

This is an important result: under conditions of strong
turbulence (Re4 1), the stochastic layer turns out to be very
narrow.

We consider the effective transport of scalar particles in
the system of convective cells based on the reduced convective
estimate in the limit Pe � lV0=D0 4 1:

Deff � lV0P1 � lV0
D
l
� V0D�V0� ; P1 � lD

l 2
� D

l
:

�40�

Here, P1 is the fraction of space related to convection. We
finally arrive at the following estimate for the turbulent
diffusion coefficient:

Deff � const
��������������
D0V0l

p
� D0 Pe

1=2 / V
1=2
0 : �41�

The scaling derived in Ref. [37] provided a theoretical
interpretation of the results of numerical experiments on
transport in the system of drift convective cells [38], which

have beenmet with considerable excitement. The result in (41)
in terms of the Peclet number (Pe4 1) differs notably from
the quasilinear estimate Deff / Pe2 / V 2

0 .
In percolation models of turbulent diffusion, the key

components are the selection of the small parameter e0 for
the problem under study and finding an appropriate
`renormalization' condition e� that would enable obtaining
physically relevant results in terms of the parameters of
velocity, characteristic scale, seed diffusion, etc. The system
of convective cells is not a percolation one, but it is not
difficult to realize that a small perturbation of its stream
function would spawn a percolation structure without
significantly modifying the character of scalar particle
motion. We can expect the Peclet number to become the
small parameter in steady percolation flows with seed
diffusion, and the renormalization condition to include the
diffusive (stochastic) layer width.

7. Percolation transport in a steady flow

We consider a two-dimensional steady flow with zero mean
velocity, which is given by a `generic' bounded stream
function C�x; y�. It is understood to be on average an
oscillating and isotropic function, behaving quasirandomly
with respect to the distribution of saddle points over their
heights. Symmetry considerations lead to the conclusion that
for any function C�x; y� belonging to the generic type, only
one closed zero stream line of infinite length exists. For
instance, a monoscale random flow

C0 � lV0 ; l �
���� C
HC

���� �42�

was explored in [33]. In general, a monoscale flow is formed
by a superposition of a large number of harmonics with the
same wavelength l but with different amplitudes, phases, and
the direction of wave vector k:

C�x; y� �
XN
j

cj cos �kj r� jj� ; N4 1 : �43�

Computation of the turbulent diffusion coefficient relies on
the idea of balance between the ballistic motion of scalar
particles along the percolation stream lines and diffusive drift
out of the stochastic layer. The influence of `long correlations'
is taken into account in the expression for the diffusion
coefficient through the correlation scale a�e�. The formal
expression for the diffusivity in the percolation limit is written
as

Deff �
�1
0

dC1

C1
P1�C1� a

2�C1�
t�C1� ; �44�

where the perturbation of the Hamiltonian is given by
C1 � e�lV0 in the mean field theory framework. Computa-
tions lead to the scaling

Deff�e� � a 2

t
P1 � a 2

t
L�e�D�e�

a 2
� V0D�e� ; �45�

where the correlation time t is estimated ballistically,
t � tb � L�e�=V0, P1 � L�e�D�e�=a 2�e� is the fraction of
the volume occupied by percolation stream lines, and D is
the width of the percolation layer. In fact, the problem of

p

L

a�p�

pc

e��L�

Figure 4. Renormalization of the small percolation parameter.
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computing the turbulent diffusivity has been reduced in the
chosen approximation to finding the width of the stochastic
(percolation) layer.

The estimate Deff�e� � V0D�e� is equivalent to the expres-
sion used in models of convective cells. It is therefore natural
to use the balance of characteristic times (diffusive tD and
ballistic tb) as the starting point in estimating the percolation
layer width D:

tb � L�e�
V0
� D2�e�

D0
� tD ; D �

�����������������
D0L�e��

V0

s
: �46�

Indeed, the time a particle travels along the percolation
stream line tb � L=V0 must have the same order of magni-
tude as the diffusive time tD � D2=D0 it takes a particle to
leave the percolation stochastic layer of width D.

Following the spirit of work dealing with the phase
transition theory, the authors of Ref. [33] proposed `renor-
malization', i.e., a way to compute the universal small
parameter e (for a given class of flows), by identifying the
small `width' of the percolation stream line with the small
parameter of the percolation theory,

D�e� � le : �47�

This renormalization is actually the main result in Ref. [33]; it
initiated the active use of similar methods in other problems
of turbulent transport. To find the expression for the small
percolation parameter e� in the model of a steady random
flow with the seed diffusion D0, we write the algebraic
equation�����������������

D0L�e��
V0

s
� le� : �48�

The computations can be carried out to the end if we use
rigorous scaling results of percolation theory [39] for the
correlation scale a and the length of fractal stream line L as a
function of e:

a�e� � leÿn ; L�e� � l
�
a

l

�DH

; DH � 1� 1

n
; n � 4

3
:

�49�

The renormalized percolation parameter and the effective
diffusivity coefficient are expressed via the Peclet number
Pe � lV0=D0 4 1 (Fig. 5) as

Deff � V0D�e�� � V0l
�

1

Pe

�1=�3�n�
� D0 Pe

10=13 ;

e� �
�

1

Pe

�1=�3�n�
: �50�

Result (50) was subjected to numerous tests in numerical
experiments as well as a probabilistic theory analysis [40, 41].
There is every reasons to regard Eqns (48)±(50) as rigorously
proved. For the renormalization of the initial small parameter
e0 � 1=Pe, we obtain the expression

e� � �e0�1=�3�n�4 e0 : �51�

Some `arbitrariness' in choosing le (but not le 2 or le 3) can be
interpreted as an intention to have a universal small

parameter, in analogy with the only characteristic scale in
the phase transition theory. The length of the percolation
stream line and the correlation scale,

L�e�� � l
1

e n�1�
� lPe�1�n�=�3�n� / V

7=13
0 ; �52�

a�e�� � l
1

e n�
� lPen=�3�n� / V

4=13
0 ; �53�

are never infinite in this approach because the small
parameter e� does not tend to zero, but attains a particular
value e� for all types of flow with characteristicD0, V0, and l.
This is, in a nutshell, the universality of the scaling
Deff / D0 Pe

10=13. Because the condition a�e��4L0 must be
ensured, the condition on Pe (the amplitude of turbulent
pulsations) can be readily obtained as

15Pe4
�
L0

l

��3�n�=n
;

D0

l
5V0 4

D0

l

�
L0

l

�13=4

: �54�

To conclude this analysis, we note that we strived to
propose a simple exposition, but the findings in Ref. [33] only
seems to be simple! It suffices to recall the full `hierarchy' of
scales used in the analysis:

L�e� � a�e�
e

4 a�e�4 l4D�e� � le : �55�
It is just in the context of elaboration on the spatial and
temporal scale hierarchy that the percolation theory of
turbulent diffusion underwent further development [42±45].

8. Turbulent diffusion
and flow topology reconstruction

The unsteadiness of flows is among the most important
factors influencing transport processes. For instance, the
change in the stream line topology is one of the major
decorrelation mechanisms. We need one more dimensionless
parameter to describe this situation, which, in contrast to the
Reynolds and Peclet numbers, includes the characteristic time
scale of the flow topology variation T0 � 1=o, where o is the
characteristic frequency of external perturbations. Such a
parameter is furnished by the Kubo number Ku � V0=�lo�,
which can be easily interpreted using ideas on the character of
scalar particle motion along stream lines. In the case of high

Pe10

Deff / Pe2

Deff / Pe10=13

Deff / Pe1=2

Deff

Figure 5.The turbulent diffusion coefficient in a steady random flow in the

percolation limit.
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frequencies o, the path covered by a test particle can be
estimated ballistically, lo�o� � V0=o, and, consequently,
Ku � lo=l. On the other hand, in the high-frequency limit,
lo is used as the correlation length,

Deff�V0;o� � l 2o
t
� V 2

0o ; �56�

where t / 1=o is the correlation time. Substituting 1=o for
the correlation time leads to the quasilinear scaling for the
diffusion coefficient:

Deff � l 2oKu2 / V 2
0 : �57�

However, in the low-frequency limit o5V0=l, the
actual correlation scale a is much smaller than lo, since it
is affected by the modification of stream line topology (for
example, the decrease in stream line lengths owing to their
reconnections) (Fig. 6). Resorting to ideas on percolation
hierarchy of spatial scales, it is possible to consider the
percolation limit of turbulent diffusion for a scalar in a
time-dependent incompressible plane flow for Ku5 1.
Having estimated the time of the complete flow pattern
renewal as T0 � 1=o, the authors of Ref. [42] proposed that
the main parameter in the case of low-frequency perturba-
tions is the lifetime of a single percolation stream line t. It is
natural to assume that just t is the correlation time, which
can be estimated as

t � e
1

o
� eT0 : �58�

Here, e is the small percolation parameter associated with the
problem. In the time-dependent case considered here, we
expect a useful result if we manage to compute the concrete
`universal' value of e� by using the simple expression that
accounts for the convective motion of scalar particles along
the percolation stream line during the lifetime of this stream
line,

t � tb � e�
1

o
� e�T0 : �59�

The equation for the small percolation parameter
e� � e��o;V0; l� is obtained by the simple substitution

e�
o
� L�e��

V0
: �60�

Using the percolation theory scaling L�e� � l�a=l�DH , we
easily express e� as a function of the flow parameters o, V0,
and l:

e� �
�
lo
V0

�1=�2�n�
�
�

1

Ku

�3=10

/ o 3=10 : �61�

From the standpoint of renormalization of the primary small
parameter e0 � 1=Ku, we obtain the expression

1 > e� � �e0�1=�2�n� > e0 : �62�

The expression for the diffusion coefficient in the percolation
limit is written as

Deff �
�1
0

dC1

C1
P1�C1� a

2�C1�
t�C1� ; �63�

whereC1 � e�lV0. Computations now lead to the final result
for Deff (Fig. 7):

Deff�e�� � a 2�e��
t�e�� P1�e�� � l 2oKu7=10 / V

7=10
0 o 3=10 :

�64�

This dependence differs principally from the quasilinear
dependence

Deff�o� / V 2
0

o
: �65�

Indeed, there are no grounds to believe that the reduction in
the perturbation frequency would result in infinitely growing
transport. We see that the percolation approach gives a
realistic dependence Deff / o 3=10. The values of e� and Deff

depend only on the flow parameters o, V0, and l. Numerous
experiments lend support to the percolation scaling [46, 47].

We note that the percolation scale a�e�� in the model
considered is indeed much less than lo:

a�e�� � L�e�� e� � V0te� � e 2�
V0

o
� e 2� lo 5 lo : �66�

On the other hand, with account for the finite system size L0,
the following condition must hold:

a�e�� � l
e n�
� lKun=�2�n�4L ; �67�

Figure 6. Reconnection of stream lines.

o

V0l

V0=l Ku5 1Ku4 1

Deff / 1=o

Deff

Deff / o 3=10

Figure 7. The dependence of the turbulent diffusion coefficient on the

frequency in the percolation limit.
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which bounds the Kubo number as (Fig. 8)

l5Ku4
�
L0

l

��2�n�=n
: �68�

We need to perform additional estimates of the effect of
diffusive particle drift off the stream lines in terms of the
characteristic time tD. In our estimates, we use the coefficient
of `seed' (molecular) diffusion D0:

t � e�
o
< tD ; tD � D2�e��

D0
� l 2e 2�

D0
: �69�

In fact, this is the limitation on the magnitude of seed
diffusion D0 in the class of flows considered:

D0 < l 2oe� �Ku� / o 13=10

V
3=10
0

: �70�

On the other hand, we obtain a hierarchy of characteristic
times related to the problem of percolation in a time-
dependent flow:�

t � e
o

�
5

�
l 2e 2

D0
� tD

�
5

�
1

o
� T0

�
: �71�

We note that expression (64) for the coefficient of
turbulent diffusion of a scalar in flows with changing
topology (in the low-frequency limit) is only valid in the
approximation t < tD.

9. Influence of small drift velocity

The percolation models in Sections 7 and 8 are based on the
assumption that a stochastic (percolation) layer exists and
that the system is subject to `seed' classical diffusion or low-
frequency fluctuations of a characteristic frequencyD0. Other
physical situations in which percolation effects essentially
influence the character of transport can be addressed by
analyzing the mechanisms responsible for the processes in
the stochastic layer. In fact, we need to consider changes in the
character of percolation transport under an external influ-
ence. An important example is the analysis of effects brought
about by the presence of drift or zonal flows (Fig. 9). The idea
of such an approach was first suggested by Zel'dovich [23],
who predicted the appearance of ``percolation along thin

bundles'' after imposing a weak uniform field on a random
two-dimensional flow (magnetic field). Simultaneously,
Trugman [48] proposed a percolation model to analyze
effects of an external electric field.

The idea of `gradient percolation' has a broad area of
applicability [39]. For example, Isichenko and Kalda [43, 44]
and Yushmanov [49] have addressed the influence of a small
drift velocityUd on the fractal topology of percolation stream
lines,

V � V0 �Ud ; �72�

where the condition Ud 5V0 holds. The simplest choice of
the small parameter is here the quantity e0 � Ud=V0.
Although the renormalization condition in the case of
gradient percolation e� � �e0�1=�1�n� is obtained from general
considerations [48], its interpretation in terms of drift flows
proves useful.

We consider a parametric estimate of the drift velocity,
natural in the percolation case. For the formulated question
about the influence of drift velocity on the behavior of stream
lines of a random two-dimensional flow, we obtain

V0D�e� � Ud a�e� ; �73�

where a�e� is the characteristic correlation scale. In fact,
condition (73) implies that the mean scalar flux is carried at
the speedV0 in narrow channels of the width D�e� oriented on
average along the drift velocity direction. We assume that
adding the drift velocity creates only a small number of open
stream lines that form narrow convective channels. The
amplitude of wandering and mean separation between the
channels can be estimated with the help of a self-consistent
correlation size a�e�. The condition that the percolation layer
is narrow, D�e� � le, has been used many times. It can be
readily verified that on substitution of the standard expres-
sion for the correlation size a � ljejÿn, the parametric
dependence for the small parameter e� in terms of the drift
velocity Ud and the amplitude of turbulent pulsations V0

becomes

e� � �e0�1=�1�n� �
�
Ud

V0

�1=�1�n�
�
�
Ud

V0

�3=7

; �74�

where n � 4=3. First, it is easy to see that expression (74) fully
coincides with the result in [48]; second, this expression can be

1 Kumax Ku

Deff / Ku7=10

Deff / Ku2

Deff�Ku�

0

Ku5 1 Ku4 1

Figure 8. The dependence of the turbulent diffusion coefficient on the

Kubo number in the percolation limit. Figure 9. Open percolation stream lines.
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interpreted in terms of the stream function (Fig. 10):

Ud � C1

a�e� �
eC0

a�e� � V0e n�1 : �75�

Here, the quantity

C1 � DC � elV0 � Ud a�e� �76�
characterizes perturbations of the stream function in the
vicinity of the percolation transition. Moreover, it can be
seen that the spatial hierarchy of scales is included in the
description of perturbations [50]:

Ud � e
l

a�e� V0 � l
L�e� V0 � D

a�e� V0 : �77�

However, the parameter l does not enter the expression for
the renormalized quantity e�. The hierarchy of velocities used
in this substitution is incomplete. Indeed, in the hierarchy of
percolation scales, we had the `lattice scale' l located between
a�e� and D�e�. It is therefore reasonable to introduce the
velocity scale wd that corresponds to l:

V0D�e� � wd l � Ud a�e� : �78�

On the one hand, wd can be expressed in terms of P1�e�,
wd�e�P1�e� � Ud ; �79�

where the expression P1�e� � l=a�e� proposed in the steady
case is used. On the other hand, elementary manipulations
show that wd is a convenient parameter for estimating the
effects of scalar transport,

wd � V0
D�e�
l
� V0e � a�e�

tb
; tb�e� � L�e�

V0
: �80�

In the framework considered here, the transport of the scalar
along percolation channels is convective, hV i 6� 0:

q � V0D�e�� dn � lV0 dn�e0�1=�1�n� / V0

�
Ud

V0

�3=7

; �81�

where dn is the perturbation of the scalar density.

We have diffusive transport in the transverse direction.
For a weak mean flow, the transverse transport is defined by
the competition between the seed (molecular) diffusion and
`ballistic' motion of scalar particles along the closed stream
lines with a characteristic scale of the order of the correlation
scale. This exactly matches the regime Deff � D0 Pe

10=13

discussed in Section 7.
We note that for the appearance of open stream lines, the

imposed drift flow should not be too weak. Indeed, the
boundedness requirement for the correlation scale a�e�4L0

results in a constraint on the drift velocity:

Ud 4V0

�
l
L0

��1�n�=n
� V0

�
l
L0

�7=4

: �82�

The next logical step in studying drift flows is the inclusion of
the effects of time dependence, which play an important role
in the analysis of transport processes.

10. Quasilinear approximation
and the effects of time dependence

The time dependence of drift flow allows us to inquire about
the effective coefficient of turbulent diffusion related to the
reorganization of flow topology. We begin learning about the
effects induced by the flow unsteadiness from the quasilinear
approach. This allows us to keep the expression for the small
percolation parameter in the form corresponding to the
gradient model, e� � �Ud=V0�1=�1�n�. In this case, the expres-
sion for Deff can be reduced, in a rather straightforward way,
to the renormalized quasilinear form

Deff�e� � P1
a 2

t
� w 2

d �e� t�e�P1�e� ; �83�

where we use the drift velocity estimate Ud � wdP1 and the
estimate P1 � l=a�e�� for the fraction of space occupied by
percolation stream lines. Inserting t � 1=o, we arrive at the
Yushmanov scaling, which accounts for the effects of time
dependence in the quasilinear approximation [49]:

Deff � U 2
d

o

�
1

e0

�n=�1�n�
� U 2

d

o

�
V0

Ud

�4=7

/ U
10=7
d V

4=7
0

1

o
:

�84�
In terms of the dependence of Deff on the perturbation
amplitude V0, expression (84) corresponds to the transition
from the quasilinear regime withDeff / V 2

0 to the percolation
one with Deff / V

4=7
0 . Scaling (84) has been used to interpret

the results of numerical simulations dealing with neoclassical
transport in tokamaks [49]. The dependence Deff / V

4=7
0 is

confirmed by numerical modeling (Fig. 11).
The complexity of accounting for several factors simul-

taneously has a consequence that time-dependent flows are
frequently considered only in the framework of the quasi-
linear approach. For flows with the characteristic parameter
variability scale o � 1=T0, we can use the quasilinear
estimate [51]

Deff �
�1
0

C�t� dt � V 2
0

o
; �85�

where C�t� is the velocity autocorrelation function. This
approach, while working well in the case of very high

C�x; y�

a

b

Figure 10. (a) The characteristic shape of isolines in the drift approxima-

tion. The hatched areas correspond to `water'. (b) Percolation relief in the

drift approximation.
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frequencies, does not reflect the physical essence of processes
at low frequencies (the low-frequency limit),

Deff � V 2
0

o

����
o!0

!1 ; �86�

when the particle path l � V0=o over the time T0 � 1=o can
be essentially larger than the actual correlation scale. Indeed,
in the low-frequency limit, the reconnection processes occur
at time intervals much smaller than 1=o, which prevents the
scalar particles from completing the path along the stream
line they `ride' initially. In this case, we have to account for the
flow topology rearrangement, which affects the mechanisms
of decorrelation in a radical way.

11. Low-frequency limit and drift

Obviously enough, the substitution t � 1=o and the use of a
small parameter derived from the steady model provide a
rather rough approximation, especially if we recall that the
characteristic frequencies for which this model was implied
(turbulent transport in tokamaks) lie in a very wide range:
10 < oci < 150 kHz [52, 53]. According to the percolation
approach, we need to find an equation for the small
parameter e� which would `seamlessly' include both the
perturbation frequency o and the drift velocity scale Ud.

The model stream function considered in this section has
the form

C � C0�x; y;ot� �Ud�x cosotÿ y sinot� ; �87�

whereC0 is the main part of the stream function, V0 / C0=l.
As a result of stream line reconnections, a random system of
drift flows emerges. In the case considered, the key quantity is
the parameter DC describing the reconnection processes in
terms of the stream function,

DC�e� /
ÿ
DC�e��2
tcor�e� ; �88�

where tcor is the characteristic correlation time. Two ways of
estimatingDC exist. The first relies on a formal idea about the
topology perturbed by the stream function drift:

DC�e� / �eC0�2
tb

� �eC0�2
L�e� V0 : �89�

The ballistic time for the motion of scalar particles along the
percolation stream line tb � L=V0 is used as the correlation
time. The second way resorts to the use of external factors
(Ud, o) determining the reconstruction of the flow field:

DC�e� /
ÿ
Ud a�e�

�2 o : �90�

It should be kept in mind that in the absence of topological
modifications, the condition DC � V0D�e� � Ud a�e� served
as the renormalization equation for the small percolation
parameter in Ref. [49], where it was proposed to use the
renormalization condition in the form of the equation [54, 55]

�eC0�2
tb�e� �

ÿ
Ud a�e�

�2 o ; �91�

which is based on the equivalence of definitions (89) and (90)
for the stream line diffusion coefficient. The left-hand side of
(91) contains quantities reflecting the geometric features of
the random flow. Its right-hand side contains quantities
accounting for the external influence. In terms of character-
istic times, renormalization condition (91) can be rewritten as

tb�e� � tC�e� ; or
L�e�
V0
� DC�e�2

DC�e� : �92�

Equation (92) can be readily solved. The new expression for
the small parameter obtained as a result,

e��
�
Ud

V0

�2=�3�1�n���
1

Ku

�1=�3�n�1��
/ U

2=7
d V

ÿ3=7
0 o 1=7; �93�

relies simultaneously on two dimensionless quantities:Ud=V0

and the Kubo number. The corresponding expression for the
effective diffusion coefficient becomes

Deff �
�1
0

dC1

C1
P1�C1� a

2�C1�
t�C1�

� lV0

�
Ud

V0

�2=�3�1�n��� lo
V0

�1=�3�n�1��
/ U

2=7
d V

4=7
0 o 1=7 : �94�

The last result corresponds to the low-frequency limit, which,
in contrast to the quasilinear dependence Deff / 1=o, is
characterized by an increase in the effective transport for
higher frequencies, Deff / o 1=7. This form of the dependence
offers a proper description of long-range correlation effects
and agrees well with numerical simulation results (Fig. 12)
presented in Ref. [49]. Consideration of the dependence of
Deff on the drift flow velocity amplitude also points to the
correct character of the regime change. The quasilinear
regime is described by a dependence Deff / U

10=7
d steeper

than the dependence Deff / U
2=7
d in the low-frequency

regime analyzed by us. For the coefficient of Hamiltonian
diffusion, we find

DC / V 24=21o 13=21U
26=21
d : �95�
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Figure 11. The dependence of the effective diffusion coefficient D on the

amplitude of turbulent fluctuations based on numerical simulation data.
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We estimate the impact of the diffusive drift of particles
off their stream lines using the coefficient of `seed' (molecular)
diffusion D0:

tb�e�� � tC�e��5 tD ; tD � D2�e��
D0

� l 2e 2�
D0

: �96�

This allows obtaining the constraint on the magnitude of the
seed diffusion D0 and form the hierarchy of time scales:

l
V0

5 tb�e�� � tC�e��5 tD�e��5 1

o
; �97�

which corresponds to low-frequency drift regimes.

12. Evolution of percolation scales
and percolation transport

Initially, the balances of characteristic times or fluxes were
used [24, 51] as a normalization condition for the small
parameter of the percolation model. Here, we consider an
evolutionary approach to the formulation of the renormaliza-
tion condition [56]. This approach is based on a juxtaposition
of two independent expressions used in the percolation theory
to describe the correlation scale:

L�e� � l
�
a�e�
l

�DH

and a�e� � l
jejn : �98�

At the initial stage of structure formation, it is natural to
expect the increase in the stochastic layer width D � D�t�
associated with the magnitude of the small parameter
e� � D=l. Formally, this leads to a decrease in the correlation
scale:

aD�t� � l
jejn / l

�
l

D�t�
�n

: �99�

On the other hand, simultaneously with the increase in the
length of percolation stream line (or the increase in the path a
scalar particle travels along the stream line), L�t� / V0t, the
correlation scale

aI�t� �
�
L�t�
l

�1=DH

�
�
V0t

l

�1=DH

�100�

also increases. In the mean field theory framework, consider-
ing the balance between aD�t� and aI�t� yields an estimate of
the characteristic time t0 that has to be used as a correlation
scale involved in the turbulent diffusion coefficient Deff.

We consider physically motivated approximations to
describe the increase in the stochastic layer width. If the
increase occurs in a diffusive way, D2�t� � D0t, we find

l
�
V0t0
l

�1=DH

� lÿ ����������
D0t0
p

=l
�n : �101�

Performing computations, we obtain the estimate

t0 � l 2

D0

�
1

Pe

�1=�n�3�
� l 2

D0

�
D0

lV0

�1=�n�3�
; �102�

which, with the formula for the stochastic layer width, gives

D � �D0t0�1=2 � l
�

1

Pe

�1=�n�3�
: �103�

It can be readily found that expression (103) exactly coincides
with the respective expression for the steady percolation
model, while the estimate for the effective diffusivity is
provided by the already classical formula Deff � V0D �
lV0�D0=�lV0��3=13 [33].

Understandably, other expressions for the increase in the
stochastic layer width can also be used. In the dynamic system
theory, the linear estimate D�t� / t is widely used. In the
context related to the description of effects due to unsteadi-
ness, the last expression can readily be rewritten as
D�t� � �lo� t, where o is the characteristic frequency of
external perturbations. In this case, considering the balance
of correlation scales in the form

l
�
V0t0
l

�1=DH

� l
�ot0�n �104�

yields yet another estimate for the characteristic time t0:

t0 � 1

o

�
lo
V0

�1=�n�2�
� 1

o

�
1

Ku

�1=�n�2�
: �105�

The expression for the stochastic layer thickness then acquires
the form that corresponds to a time-dependent percolation
model:

D � le� � l
�

1

Ku

�1=�n�2�
; �106�

where the estimate for the turbulent diffusivity is given by
the expression Deff � V0D � lV0��lo�=V0�3=10 derived pre-
viously for a time-dependent percolation model [42].

The analysis above proves the efficiency of the alternative
renormalization method presented here, which allows using
the balance of correlation scales as the basis to build new
models of percolation transport by using various approxima-
tions for the evolution of the stochastic layer width D�t� [57,
58]. Of course, these approximations must express the
physical properties of the flows being studied.

13. Turbulent diffusion in flows
with the inverse energy cascade

We emphasize an important feature of the percolation
approach to the description of turbulent transport. The
renormalization method used for this purpose is built on
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Deff=�lUd�

10210110010ÿ1

lo=Dd

Figure 12. The dependence of the effective diffusion coefficient D on the

frequency o based on numerical simulation data. The rhombi correspond

to the Kubo number Ku � 5, squares to Ku � 3, and stars to Ku � 0:5.
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singling out the main process responsible for stochastic layer
formation. An analysis of the physical model must provide a
small parameter directly related to the `key' physical quantity.
A very important quantity in turbulence theory is the energy
dissipation rate eK introduced by Kolmogorov. For one
thing, this is a fundamental characteristic of developed
turbulent flow, for another, just in two-dimensional flows,
eK is the key quantity describing the inverse energy cascade.
The inverse cascade furnishes the mechanism `launching' the
formation of large-scale structures. Precisely in such cases can
percolation stream lines form that permeate almost the entire
flow and thus essentially modify the character of scalar
transport.

We describe the initial stage of stochastic layer formation
with the linear dependence

D�t� / VRt /
�

l
tR

�
t : �107�

Wenote that the linear estimate for the rate of stochastic layer
expansion is rather natural for the initial evolution stage and
is widely used in dynamic system theory [59]. The character-
istic time scale tR in our problem statement can depend on
only two parameters, eK and D. Combining these two key
quantities, eK�m2 sÿ3� and D�m�, we obtain the estimate

tR�D; eK� /
�
D2

eK

�1=3

: �108�

Using the scaling form to evaluate the characteristic time was
a common practical choice in the analysis of both hydro-
dynamic and convective turbulence [60, 61]. For example, in
order to describe relative diffusion,Monin used an analogous
estimate:

1

t�k; eK� � �k
2eK�1=3 ; �109�

where k is the wave number involved in the Fourier
representation of the diffusion equation. Similar arguments
have also been utilized by Batchelor when considering the
transitional (ballistic) regime of relative diffusion [32].

We obtain the scaling for the characteristic velocity in the
form

VR�D; eK� / l
�
e 2K
D

�1=3

: �110�

A similar estimate was used in models by Parker [62] for the
magnetic field line reconnection rateVP / Dm=De. Here,VP is
the reconnection rate of magnetic field lines, Dm is the
magnetic diffusion coefficient, and De is the thickness of the
reconnection layer. It can be seen that our estimate for the
stream line reconnection rate qualitatively agrees with the
Parker formula. The rate is directly proportional to the
parameter describing dissipation and is inversely propor-
tional to the layer thickness. We note that in the framework
of the percolation approach, we would like to keep the scale
hierarchy D � le5 l5 a5L, which has proven its effi-
ciency. The other important argument is that this choice of
the characteristic scale allows regarding t,

tR /
�
D2

eK

�1=3

5

�
l 2

eK

�1=3

; �111�

as an estimate for the time of reconnections occurring inside
the stochastic layer [63]. The reconnection of stream lines in
the presence of continuous generation of new structures by
the inverse cascade is the mechanism of utmost importance,
which determines the transport of the scalar in the framework
of this model.

The time evolution of the stochastic layer in the model
under consideration is given by

D �
�

l
tR�D�

�
t � l

�
eK
D2

�1=3

t : �112�

Performing computations, we arrive at the scaling

D�t� � l
�

e

l 2

�1=5

t 3=5: �113�

Assuming the equality of correlation scales aD�t0� � aI�t0�,
which in this case is the renormalization condition [56, 63]

l
�
V0t0
l

�1=DH

� lÿ
D�t0�=l

�n ; �114�

we estimate the characteristic time as

t0 �
�

l
V0

�5=12� l 2

eK

�7=36

: �115�

Here and henceforth, DH � 1� 1=n, n � 4=3. Performing
simple manipulations, we find the small percolation para-
meter

e� � D�t0�
l
�
� �eKl�1=3

V0

�1=4
�116�

and the stochastic layer width

D�t� � l
�
UK

V0

�1=4

; �117�

which involves the characteristic velocityUK � �eKl�1=3. The
effective stream line reconnection time tR shows the inverse
proportionality to velocity, tR / 1=V

1=6
0 , characteristic of

strong-turbulence regimes. The expression for the effective
diffusivity acquires the form [63]

Deff�V0� � V0D�e�� � V0l
� �eKl�1=3

V0

�1=4
/ V

3=4
0 e 1=12K :

�118�
As could be anticipated, the dependence of the effective
diffusivity coefficient on eK, in contrast to that for quantities
characterizing the reconnection processes, is fairly weak. The
dependence of the effective diffusivity on the amplitude of
turbulent velocity pulsations fits well with the currently
accepted ideas on transport in strong turbulence regimes.
Applying the criterion that the system is bounded by a sizeL0,
a�e�4L0, we obtain

�eKl�1=3 5V0 4 �eKl�1=3
�
L0

l

�3

: �119�

Constraint (119) limits the scale of turbulent pulsations in the
flows considered.We estimate the impact of the diffusive drift
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of scalar particles off the stream lines using the molecular
diffusivity coefficient D0:

tR�e��5 tD�e�� ; tD � D2�e��
D0

� l 2e 2�
D0

: �120�

This provides a constraint on D0.
The computed turbulent diffusion coefficient enables

estimates of transport effects in two-dimensional and quasi-
linear turbulent flows in the inverse cascade range. For
example, using the measurement data for the radioactive
admixture transport in the atmosphere [64], we obtain
quantities of the order of eK � 1 cm2 sÿ3, l0 � 104 cm�
100 m, V0 � 103 cm sÿ1 � 10 m sÿ1, and D � 5�
106 cm2 sÿ1 � 500 m2 sÿ1. The result for the turbulent diffu-
sion coefficient agrees well with the experimentally found
valueDexper � �102ÿ103� m2 sÿ1 [63].

14. Increment of stochastic instability
in the percolation limit

Consideration of time-dependent two-dimensional flows is of
special interest because it is well known [65, 66] that in a
steady flow, a `fluid element' in a bounded two-dimensional
domain does not experience exponential stretching and, as a
consequence, the exponential divergence of initially close
stream lines is absent. In fact, in the steady case, we are
dealing with a one-dimensional integrable Hamiltonian
problem, and only if the flow topology changes does the
possibility emerge of exploring the flow stochastic behavior,
because the time dependence is equivalent to the appearance
of an additional degree of freedom.

The percolation `hierarchy' of scales that we use starts
with the stochastic layer width:

L � a

e
4 a4 l4

h

V0
� D � le : �121�

The area associated with the stochastic layer D can be
estimated as

L�e�D�e� � a�e� le
e
� al4 l 2 ; �122�

which is natural because the stochastic layer hosts far more
than one stream line (Fig. 13). This also implies that a spatial
scale ls must exist that characterizes the size of domains where
the adiabatic invariant is no longer conserved (an exponen-
tially narrow layer near the separatrices). Indeed, a good
estimate for ls is provided by the expression [67]

L�e� ls�e� � l 2 ; or ls � l 2

L�e� � le n�1 5D � le : �123�

The extended hierarchy of spatial scales becomes

le n � ls 5D � le5 l5 a � l
e n

5L � a

e
� l

e n�1
: �124�

The introduction of a new scale ls � le n�1 is useful in
obtaining an estimate of the stochastic instability increment
in the low-frequency limit. In the framework of themonoscale
approach, the respective scaling was derived in Ref. [42]. The
characteristic time of reconnection between two close separ-
atrices can be estimated as

gs �
1

ts
� Vs

ls
� lo

ls
� L�e�o

l
; �125�

where Vs � lo is the estimate for the separatrix motion
velocity. We note that the quantity Vs has already been
implicitly used above in the balance of characteristic times
pertaining to a time-dependent percolation flow,

L

V0
� e

o
; �126�

where e=o � D=�lo� � D=Vs. Additionally, the condition
Ku � V0=�lo� > 1 is equivalent to the conditions

L

D
� V0

Vs
> 1 : �127�

We write the full hierarchy of time scales in the percolation
model considered here [42, 67]:

ts � ls
Vs
� l

Lo
� l

a

e
o

5
e
o

5T0 � 1

o
: �128�

On the other hand, the relation between the characteristic
times ts � tb, which can be represented as

l
L�e��o �

L�e��
V0

; �129�

allows defining the small percolation parameter

e� �
�
lo
V0

�1=�2�n�1��
�
�

1

Ku

�3=14

for n � 4

3
: �130�

The final expression for the stochastic instability increment gs
then takes the form (Fig. 14)

gs �
1

ts
� o

L�e��
l
� o

�������
Ku
p

: �131�

Expression (131) is notably different from the quasilinear
result proposed by Kadomtsev and Pogutse (gs � oKu2 [22])
and agrees well with numerical simulations [68].

15. Stochastic instability and the inverse cascade

The method used to derive the scaling gs � oKu2 is tightly
connected to the views of Batchelor on the character of
evolution of a scalar cloud (Fig. 15) in the dissipative range

D�e� � le

Figure 13.A stochastic layer in a two-dimensional random flow. The solid

lines bound the stochastic layer, the thin lines show individual stream lines

inside it.
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under the action of stochastic instability [31]. Here, we are still
dealing with a cascade character of scalar evolution, despite
the lack of an energy cascade:

k < kn �
�
eK
n 3f

�1=4

; �132�

where nf is the viscosity coefficient. The lower bound for the
cascade of the scalar is set by the scale kb � 1=lb, which is
determined by the balance between the diffusive tD and
dissipative tn characteristic times,

tD � l 2b
D0
� �nf eK�1=2 � tn : �133�

Here, tn also plays the role of the characteristic time related to
the stochastic instability, ts � tn, because Vl / l in the
viscous interval, and therefore the initially neighboring fluid
elements diverge exponentially [31, 69]. The authors of
Ref. [42] used the potential of the percolation method,
which enabled them to connect the characteristic time related
to the effects of stochastic instability with the topological
features of two-dimensional random flows. In the percolation
balance in Ref. [42],

tb � L

V0
� lo

ls
� ts ; �134�

the diffusive time tD is substituted by tb, which is associated
with the `mixing' of the scalar in the given problem statement.

However, the relation to the cascade character of processes is
lost in this case, because only the frequency o is used as the
model parameter.

We note that in the Kolmogorov turbulence theory, a
question regarding the role of stochastic instability arises with
respect to both the decorrelation mechanisms (the Batchelor
scale lB) and transitional quasiballistic regimes of relative
diffusion,

l 2R / VR�eK� t 2 �135�

(the Batchelor scaling). These effects can also be analyzed by
considering the balance of characteristic times with the
Kolmogorov spectral energy flux eK as a parameter [1, 31,
69]. In the framework of the percolation approach, we have a
similar possibility. Modifying the estimate for the character-
istic stream line reconnection time

tR�D; eK� /
�
D2

eK

�1=3

�136�

in the stochastic layer by replacing the stochastic layer width
D � el with the spatial scale ls � l 2=L, we obtain

ts�eK; ls� �
�

l 2s
eK

�1=3

�
��

l 2

L�e��
�2

1

eK

�1=3
: �137�

This scaling allows estimating the characteristic evolution
time associated with a separate stream line. In the case
considered, we are dealing with several time scales:

ts �
�

l 2s
eK

�1=3

5 tR �
�
D2

eK

�1=3

5

�
l 2

eK

�1=3

: �138�

It is well known that a cloud of scalar particles evolves in a
rather intricate way in a turbulent flow as a consequence of
stochastic instability. In our problem statement, the main
decorrelation mechanism is characterized by the time scale ts.
To determine the percolation parameter ts, we use the balance
of characteristic times ts�e� � tb�e�. The resulting equation��

l 2

L�e��
�2

1

eK

�1=3
� L�e��

V0
; �139�

is readily solvable with the conventional dependence for the
percolation description of stream lines,

L�e� � a�e�
e
� l

1

e n�1
: �140�

The small percolation parameter of the model is given by

e n�1� �
�

l
V0

�3=5� eK
l 2

�1=5

: �141�

Accordingly, the stochastic instability increment is

gs �
1

ts
� V0

L�e�� �
�
V0

l

�2=5� eK
l 2

�1=5

/ V
2=5
0 e 1=5K : �142�

The dependence of the increment on the amplitude of
turbulent pulsations V0 turns out to be generally slow in the
percolation limit, gs / V

2=5
0 , whereas the dependence on the

spectral energy flux eK is much more pronounced than in the
formula for the turbulent diffusion coefficient. It is natural to

1 Kumax Ku

gs / Ku1=2

gs / Ku2

gs�Ku�

0

Figure 14. The dependence of the stochastic instability increment on the

Kubo number in the percolation limit.

Figure 15. Spreading of a cloud of a scalar owing to stochastic instability.
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expect this because the intensity of reconnection processes
and the evolution of stochastic layers, in contrast to those in
the case of transport processes, are directly dependent on the
power input in the system. In this model, we have actually
succeeded in partly realizing Zel'dovich's thesis that the
theory of percolation and cascade phenomenology comple-
ment each other. Here, the spectral energy flux eK is the key
parameter defining the characteristic reconnection time
related to a single percolation stream line.

16. Conclusions

We have discussed percolation models of turbulent diffusion
that are of fundamental importance in describing anomalous
transport in the case of strong turbulence. Themain focus was
on the scaling analysis of various regimes. We have consid-
ered the quasilinear approximation, monoscale percolation
transport models, and stochastic instability. The choice of
renormalization conditions for the small parameter of
percolation models has been discussed in detail. It has been
shown how the effects of `long correlation' enter the
percolation description of transport.

We considered new approaches to the description of
turbulent transport, with due regard to the effects related to
the reconnection of stream lines. In particular, it has been
shown that the use of the Kolmogorov spectral energy flux eK
as the basic parameter is helpful in describing the transport in
the case where large-scale structures form.

We explored in detail the influence of drift flow and the
effects of time dependence on the behavior of a passive scalar
in the percolation approach framework. It is shown that the
estimates obtained previously are quasilinear and rely on an
ungrounded use of the results of the steady case. The novel
approach enabled us to take the characteristic velocity of drift
flow Ud and the characteristic frequency of perturbations o
into account. The approximation obtained agrees with both
the quasilinear dependence and the monoscale percolation
model.

The percolation method facilitates the analysis of the
effects pertaining to the evolution of stochastic layers in
two-dimensional random flows. This is helpful in obtaining
important information on stochastic instability increments,
which has become possible owing to the percolation hierarchy
of spatial and temporal scales. We note that in most cases, the
effects of stochastic instability are still estimated only by the
order of magnitude, gs / 1=ts / V0=l. The models developed
in the percolation approach allow exploring more intricate
effects, relying on the idea that characteristic scales exist
related to individual stream lines, ls�D� / l 2=L�D�.

The analysis of numerous turbulent transport models
shows that the combination of the balance of correlation
scales with the renormalization of the effective correlation
time facilitates the description of various flow regimes with
both regular and percolation structures. Indeed, the transi-
tion to the regime with large fluctuation amplitudes in the
system of convective cells, steady percolation flows, or
evolving flows with reconnection effects is invariably accom-
panied by a change in the character of the dependence of the
time correlation scale as the fluctuation amplitude increases.

Additionally, just a small modification enables the
approaches discussed in the review to be adapted to
exploring problems of neoclassical transport [70] and the
diffusion of magnetic field lines in plasma [71]. In the latter
case, the computations reduce to the replacement of theKubo

number Ku � V0=�lo� with the magnetic Kubo number
Rm � b0Lz=D?, where b0 is the perturbation amplitude of
the stochastic magnetic field, and Lz and D? are the long-
itudinal and transverse correlation scales.

The percolation approach to the description of turbulent
diffusion has by no means exhausted its potential. For
example, we did not touch here on an important aspect of
multiscale percolation models, in which the stream function
characterizing the flow is given by the scaling

C�l� / C0

�
l
l0

�M

;

where l0, C0, and M are model parameters. This framework
assisted the appearance of new results, both for the anom-
alous diffusion coefficients in two-dimensional flows and for
stochastic instability increments [25, 51, 56]. Here, a possibi-
lity emerges for establishing a link between the multiscale
approach and equations in fractional-order derivatives that
describe anomalous transport in configurations with random
shear flows [72±75].

To conclude, we note that although the applicability
domain of the scaling method is limited, the approaches
highlighted in the review prove to be among the rather
effective tools for analyzing the effect of turbulent transport,
and offer a better understanding of the correlation aspects of
transport processes. As we have seen, the percolation
approach proposed by Kadomtsev and Pogutse more than
30 years ago enables the analysis of new, increasingly
complex, problems. It can be argued that, without a doubt,
the work in this research area is still far from being
completed.

The author is indebted for the valuable comments and
discussions to G S Golitsyn, N S Erokhin, G M Zaslavski,
V I Kogan, S V Konovalov, E A Kuznetsov, A B Mikhay-
lovski, V D Pustovoytov, A V Timofeev, V D Shafranov, and
E I Yurchenko.
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