
Abstract. An overview of experimental data and theoretical
computational methods is given for effective cross sections of
charge exchange (electron capture) and electron loss (projectile
ionization) processes involving heavy many-electron ions (like
Xe q�, Pb q�, W q�, U q�) colliding with neutral atoms (H, He,
N, Ne, Ar, Kr, Xe) in the E � 10 keV/u±10 GeV/u energy
range, i.e., from low up to relativistic energies. These charge-
changing processes can occur with a high probability, reaching
10ÿ14ÿ10ÿ16 cm2 cross-section values and, therefore, they play
a key role in the kinetics of laboratory and astrophysical
plasmas and influence the lifetimes of ion beams in accelerator
facilities. Multielectron capture and loss processes are consid-
ered, as well, since their importance in the case of heavy atomic
projectiles strongly increases, and a contribution to the total
cross sections reaches more than 50%. An important aspect of

the overview is a consideration of the influence of the inner-shell
electrons of two colliding systems and a role of isotope effects in
electron capture by very slow ions (E � 10ÿ100 eV/u) from
hydrogen isotopes H, D, and T. A short description of the
corresponding computer codes is given for the calculation of
cross sections of electron capture and electron loss processes
for complex atoms and ions over a wide collision energy range.

1. Introduction

Radiation and collision processes occurring in laboratory and
astrophysical plasmas are determined by the interaction of
plasma particles (electrons, atoms, molecules, and ions)
among themselves and with photons. These so-called elemen-
tary processes include excitation, ionization, recombination
due to electron±atom and ion±atom collisions, and photo-
processes. Elementary processes are of interest in many
branches of atomic physics and spectroscopy, plasma
physics, quantum electronics, accelerator physics, and ther-
monuclear fusion. Moreover, determination of the relations
among the characteristics of elementary processes and
radiation intensities allows one to develop reliable spectro-
scopic and carpuscular methods for plasma diagnostics. The
properties and the role of elementary processes in laboratory
and astrophysical plasmas have been considered in many
review articles and books [1±24].

During recent years, interest in the investigation of atomic
processes involving heavy many-electron ions has strongly
increased. This is related with the fast development of
accelerator techniques and the employment of heavy ions in
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many applications, such as thermonuclear fusion [25, 26],
slowing down of heavy-ion beams in matter [27], particle
beam diagnostics of laboratory plasmas [28], fragmentation
of exotic nuclei [29], investigation of the interaction of laser-
produced plasmas with a solid surface [30] and the generation
of extreme states of matter [31], in astrophysics [32], in beam
tumor therapy [33, 34], in the design of the new types of
accelerators and storage rings, etc. Investigations of heavy
ions accelerated up to relativistic energies are the focus of
special attention in the new international FAIR project
(Facility for Antiproton and Ion Research) started in 2011
at Gesellschaft fuÈ r Schwerionenforschung (GSI) in Darm-
stadt [35].

Among different ion±atom processes, first of all one
should mention those followed by a charge transfer between
colliding particles. An ion colliding with an atom or molecule
can reduce or increase its charge, respectively, as a result of a
target-electron capture (called the electron-capture, electron-
transfer, or charge-exchange process):

X q� �A! X �qÿk�� �Ak� ; k5 1 ; �1�

or as a result of ionization by the target atom (called the
electron-loss process):

X q� �A! X �q�m�� �
X

A�meÿ ; m5 1 : �2�

Here, X q� denotes the projectile (impinging ion) with a
charge q, and A is the target atom. The sum

P
A means

that the ground-state target can be excited or ionized. For
heavy ions, like Xe q�, Pb q�, W q�, and U q�, the role of
multielectron processes �k > 1, m > 1� increases and their
contribution to the total cross sections, i.e., summed over all k
and m, also increases reaching over 50%. Therefore, multi-
electron processes should be taken into account along with
one-electron processes �k � m � 1�.

As was mentioned, electron-capture and electron-loss
processes play a key role in elementary processes occurring
in many sources of laboratory and astrophysical plasmas, as
well as in accelerator facilities. For example, electron capture
in a low-temperature tokamak plasma is practically the only
mechanism for creating impurity heavy ions in excited states,
the radiative decay of which leads to a short wavelength
radiation used for plasma diagnostics; meanwhile, electron-
loss processes significantly limit the lifetimes of fast heavy
ions in accelerators.

The aim of this review is to present information about the
present status of charge-changing processes (electron capture
and electron loss) involving heavy many-electron ions, as well
as information on theoretical methods and computer codes
for calculating the effective cross sections and on the cross-
section scaling laws comprising the main atomic parameters:
relative collision velocity, ionization potentials, nuclear and
ion charges, and some others.

The main part of the review is devoted to the considera-
tion of many-electron atoms and ions having more than one
electron shell. Quite often, the presence of a large number of
electrons in colliding systems leads to situations where the
inner-shell electrons play a crucial and sometimes decisive
role in electron-capture processes. For example, a prefer-
ential capture of the inner-shell target electrons completely
defines the values and properties of electron-capture cross
sections at high collision energies, while projectile ionization
(electron loss) of inner-shell electrons makes the main

contribution to loss cross sections at medium and high
collision energies.

A system of Hartree atomic units will be used throughout:
e � me � �h � 1, where e and me denote electron charge and
mass, respectively, and �h is the Plank constant.

2. One-electron capture processes

This section is devoted to the consideration of one-electron
capture processes:

X q� �A! X �qÿ1�� �A� : �3�

Actually, process (3) is a reaction with different atomic
particles in the initial and final channels. Usually, one-
electron capture is a dominant process; however, in the case
of heavy highly charged ions �q4 1�, multielectron capture
becomes a very important process and makes up to 50% of
the contribution to the total capture cross section because of
the strong influence of a long-range Coulomb field created by
the projectile (see Section 4.1).

Cross section values in reaction (3) can be very large,
10ÿ14ÿ10ÿ16 cm2, so these processes play a significant role in
atomic physics, astrophysics, plasma physics, and accelerator
physics. In particular, reaction (3) constitutes an effective
mechanism of excitation transfer in plasmas [8, 10, 12] and the
formation of fast beams of neutral atoms, strongly influences
the charge-state distributions in passing ion beams through
solid or gaseous targets [36], and plays a key role in the
investigation of thermonuclear plasma confinement in toka-
maks [17, 37], in the creation of an inversion population in a
short-wavelength spectral range [38, 39], in astrophysics [32],
in accelerator techniques [40±42], and in other areas.

In this review, the processes of nonradiative capture
(NRC) are considered, i.e., those electron capture processes
which are not related to photon radiation or absorption. The
processes of radiative electron capture (REC), the opposite of
photoionization processes, are very important in high-energy
collisions of few-electron highly charged projectiles �q4 1�,
when the nonradiative capture processes become negligibly
small (see review [43] for details).

In ion±atom collisions, the main competitive process to
electron capture is electron lossÐ ionization of the projectile
by the target atom (see Section 3). Both processes have
different dependences on relative collision velocity v, projec-
tile ion charge q, and effective charge Zeff of the target atom
and, therefore, the contribution of each process strongly
depends on the considered energy range and atomic struc-
tures of both colliding particles. At high collision energies E,
electron-capture (EC) sEC and electron-loss (EL) sEL cross
sections exhibit the following asymptotic behavior for the
target shell with a fixed charge value Zeff:

sEC � q 5Z 5
eff

E 5:5
; v 2 4 IP ; �4�

sEL � Z 2
eff

q 2E
; v 2 4 IP ; �5�

where IP denotes the projectile binding energy. Therefore, the
electron-capture cross section decreases much faster with
increasing energy E but depends more strongly on the
charges q and Zeff than the electron-loss cross section.

A typical behavior of electron-capture and loss cross
sections is shown in Fig. 1 by the example of collisions of
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U39� ions (53 electrons) with Ar atoms (18 electrons). As seen
from the figure, for collision energies E < 1 MeV/u,� the ion
charge-changing cross section is mainly determined by the
capture cross section, and by the loss cross section for
E > 30 MeV/u. The energy range E around 7 MeV/u, where
both cross sections are of comparable size, depends on the
atomic structure of both colliding particles. At relativistic
energies,E > 200MeV/u, the electron-loss cross section upon
collisionwith a neutral target atom turns into a constant value
but does not decrease, in accordance with law (5), because of
the relativistic interaction between colliding systems (see
Section 3.1.3).

In the following section, the main focus is on binary
collisions when the density of the atomic or molecular target
is relatively low. Upon increasing the target density, the
collision frequency increases and the arising target-density
(or gas±solid) effects change electron-capture and electron-
loss cross section values drastically. In this case, calculations
of the charge-changing cross sections differ substantially
from those disregarding density effects (see Section 5).

2.1 Properties of one-electron capture processes.
Role of capture of inner-shell electrons from the target
Electron capture reaction (3) is a complicated rearrangement
process with different particles before and after collision;
therefore, the theoretical investigation of these reactions
constitutes a much more difficult problem than that of
electron±atom collisions. At present, the cross sections for
electron±atom collisions can be calculated quite accurately,
with an accuracy of 10±20%, in contrast to ion±atom
rearrangement collisions, where getting an accuracy within a
factor of 2 is a rather tedious task. This is due to the great
difficulties arising in a description of these processes: the use
of different interaction potentials before and after collision
event (the so-called post±prior discrepancy), the nonortho-
gonality of the wave functions of the system in the initial and
the final channels, the Coulomb interaction between two ions
in the final channel and its absence in a collision of an ionwith
an atom in the initial channel, and so on.

A correct formulation of the particle rearrangement
problem could be made with the aid of Faddeev equations
[46]. However, even in the rather simple case of charge
exchange process of protons with hydrogen atoms (i.e., one
electron in the field of two Coulomb centers), the Faddeev
equations cannot be solved exactly; therefore, in practice,
approximate methods are applied depending on the atomic
parametersÐrelative velocity v of colliding particles, their
atomic structures, and the resonance defect DEe of the
reaction, i.e., the difference between binding energies of the
active electron in both the target atomA and the resulting ion
X �qÿ1��:

DEe � IA�n0l0� ÿ IX�n1l1� ;

where n0l0 and n1l1 denote the principal and the orbital
quantum numbers of the target atom A and the resulting ion
X �qÿ1��, respectively. We note that the resonance defect DEe

can be either positive or negative.
Among the different methods of calculating electron-

capture cross sections, one can mention a few basic ones
which give a satisfactory description of the experimental data:
the close-coupling method with an atomic or molecular basis
[47±50], the electron tunneling (through the Coulomb barrier)
model [51], the absorbing spheremodel based on the Landau±
Zener theory [52], the classical overbarrier-transition model
[53], the distorted-wave approximation with normalization
[54, 55], relativistic treatment based on solving the two-center
Dirac equation for the colliding system `nucleus�H-like
target' [56], and others. Most of the methods mentioned are
described inRefs [6, 8, 11, 13, 14, 19, 21, 24]. Somemethods of
calculating electron-capture cross sections at low-energy
collisions (for example, the adiabatic approximation, the
ARSENY code) are described in detail in Section 7.

At different ion±atom collision energies, electron capture
occurs as a result of different physical processes; therefore,
usually two main ranges of relative collision velocity v are
defined: the adiabatic region with v < ve, and the nonadia-
batic one with v > ve, where ve denotes an electron orbital
velocity of the target atom. At low-energy collisions �v < ve�,
the target bound electrons adiabatically react to the varying
field of the incident ion, and, thus, a quasimolecular
treatment is applied when the solution of the problem is
based on the expansion of the total wave function of the
system in terms of the quasimolecular wave functions at fixed
internuclear distance R, and transitions between different
states proceed as occurring between quasimolecular potential
terms corresponding to localization of the active electron
close to one of the nuclei. This treatment is especially effective
for describing the resonance �DEe � 0� and quasiresonance
�DEe � 0� electron capture (see, e.g., Refs [2, 11, 13, 14]).

For collision energies E > 25 keV/u (i.e. for v > 1 a.u.),
when the impact (projectile) velocity is higher than the target-
electron orbital velocity, v > ve, the nonresonance electron
capture prevails and the quasimolecular method is not valid.
This is mainly related to the influence of the momentum
transfer carried away by the captured electron, the so-called
translation factor exp �ivr�, which is neglected at low velocities
v, allowing one to present the interaction matrix elements
through the splitting of the corresponding molecular terms.

At relatively intermediate energies E � 1ÿ25 keV/u, the
target outer-shell electrons are captured by ions with a high
probability, and due to the contribution of electron capture to
a large number of excited states of the X �qÿ1�� ion, the total
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Figure 1. Electron-capture (EC) and electron-loss (EL) cross sections in

collisions of U39� ions with Ar atoms as a function of collision energy.

Experiment: white and black symbolsÐone-electron and total cross

sections, respectively, from Refs [44] and [45]. Theory: solid curvesÐ

calculations by the CAPTURE, DEPOSIT, and RICODE programs (see

text).

* Symbol u stands for unified atomic mass unit.
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cross section has a quasiconstant character, i.e., its magnitude
is nearly independent of the collision energy. The quasicon-
stant behavior of the electron-capture cross sections in
collisions of highly charged ions with neutral atoms was
predicted in paper [47]. The quasiconstant magnitude of the
capture cross section, which is closest to experimental data,
can be estimated using the model of electron tunneling
through the Coulomb barrier created by the target atom and
the projectile by the formula [51]

s�v�
�
cm2

atom

�
� 10ÿ15

q

�IT=Ry�3=2
; q5 5 ; v <

�
IT
Ry

�1=2

;

�6�

where IT denotes the ionization potential of the target atom in
Ry units (1 Ry � 13:606 eV). At intermediate collision
energies, the electron capture leads to the preferential
population of the n-states of the resulting ion X �qÿ1���n�
given by the formula (n is the principal quantum number)

n � q 3=4

�
IT
Ry

�ÿ1=2
: �7�

In formula (6) and what follows, the cross sections are
given in units of cm2/atom, i.e., they are ascribed to one target
atom. This is related to the application of the Bragg additivity
rule for molecular targets (see paper [57]), in accordance with
which the effective cross section for the projectile interaction
with a molecule is presented as a sum of the interaction cross
sections for its constituent atoms. For example, the electron-
capture cross section from an H2 target is calculated as a
doubled cross section for the hydrogen atom: s�H2� �cm2� �
2s�H� [cm2/atom]. The Bragg additivity rule is used because
of the computational difficulties for molecular targets;
however, this is partly justified because, at high collision
energies, the main contribution to the capture (and loss) cross
sections is made by the inner-shell electrons which are
approximately identical in atomic and molecular targets.

At relatively high collision energies �v > ve�, the electron-
capture processes are described in terms of the first-order
perturbation theory (or its modifications) on interaction of
the active electron with the projectile, e.g., the distorted-wave
approximation [58, 59] or the Brinkman±Kramers approx-
imation with a multichannel normalization in the impact-
parameter representation (see Section 2.2). The energy range
in question covers the collision energies E � 25 keV/u±
30 MeV/u, which is characterized by the preferential capture
of inner-shell target electrons, i.e., when the electron shell
structure of the target atom becomes substantial. We note
that in the Brinkman±Kramers approximation, the electron-
capture cross section is presented as a product of twoFourier-
transforms: one for the initial wave function of the active
electron, and the other for the final wave function and the
electron interaction potential with the projectile ion.

The preferential role of the inner-shell target electrons is
the main property of the capture reactions which makes it
different from other processes in collisions of fast ions with
atoms. With increasing energy, the capture cross section for a
fixed target electron shell quickly decreases �� Eÿ5:5�, in
contrast to the excitation and ionization cross sections
�� Eÿ1�, and capture prevails for deep inner-shell electrons
with the orbital electron velocity ve close to the impinging ion
velocity v: ve � v (so-called velocity matching). Under these
conditions, the contribution from the capture of outer-shell

electrons becomes negligibly small compared to the case of
middle and low velocities. As a result, the capture cross
section summed over all target electrons decreases much
more slowly than by the Eÿ5:5 law implemented only at very
high energies, where the cross section is mainly defined by the
capture of only K-shell electrons. That is why the electron-
capture cross sections in collisions with light targets (H, He)
decrease much faster than with heavy ones (Ne, Ar, Kr, Xe)
having several electron shells.

2.2 Methods and computer codes
for calculating electron-capture cross sections
At present, there are a few methods and computer codes for
calculating electron-capture cross sections in collisions of
heavy many-electron ions with atoms: CTMC (classical
trajectory Monte Carlo) method for energies E > 1 MeV/u,
CDW (continuum distorted wave) approximation for
E > 10 MeV/u, and the normalized Brinkman±Kramers
approximation (the CAPTURE code) for E > 10 keV/u.
The accuracy of calculations using the methods mentioned is
within a factor of 2.

Here, we briefly discuss these methods. The CTMC
method [60] is based on the numerical solution of a system
of the Hamilton classical-motion equations for all projectile
and target electrons using a large number of impact para-
meters �� 5000� for the particle trajectories. The system
consists of 6�N� 2� nonlinear first-order equations in partial
derivatives and is solved numerically for the coordinates and
momenta for all N electrons and two nuclei in Cartesian
coordinates. Thus, for one electron �N � 1� moving in the
Coulomb field of two nuclei a and b, the classical Hamilton
equations can be written out as

H � p 2
a

2Ma
� p 2

b

2Mb
� p 2

e

2me
� ZaZb

Rab
ÿ Zae

Rae
ÿ Zbe

Rbe
; �8�

dCj

dt
� qH

qpj
;

dpj
dt
� ÿ qH

qCj
; j � x; y; z ; �9�

where Cj and pj denote coordinates and momenta of an
electron and nuclei, me and e are electron mass and charge,
Ma;b and Za; b are nucleus masses and charges, and Rab is the
distance between the nuclei. From Eqn (9) one has 18 bound
first-order differential equations for coordinate and momen-
tum evolutions of all particles.

The use of the CTMC method is quite complicated,
because many electrons and atomic trajectories should be
taken into account to get enough statistics for the calculated
electron-loss and electron-capture cross sections (see Sec-
tion 3.2.1). The CTMCmethod is applied for the intermediate
collision energy range, where molecular effects can be
neglected. We note that because of the computational
difficulties mentioned, the number of publications on
CTMC electron-capture cross sections involving heavy ions
is quite limited, even for one-electron capture data (see, e.g.,
Refs [61±63]).

The CDW method [55, 58, 59] is based on the modified
Born (distorted-wave) approximation for the calculation of
one-electron capture cross sections in collisions of many-
electron ions with atoms at sufficiently high energies,
E > 10 MeV/u. The method utilizes the Clementi±Roetti
functions as the bound-state wave functions, and the
Coulomb functions for continuum states. One of the
advantages of the method is the possibility of calculating the
partial capture cross sections with transitions to specific
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nl states of the resulting X �qÿ1�� ion with different orbital
momenta l.

The eikonal approximation [64] is intended for computing
one-electron capture cross sections and is based on the semi-
classical approximation with three main assumptions: a
straight ion trajectory, hydrogen-like bound electron wave
functions, and distorted wave functions in the final channel
described by the eikonal phase factor. At present, this
approximation is used very rarely (see, e.g., paper [61]).

The CAPTURE code [65] is meant for calculating
probabilities and cross sections of one-electron capture and
is built around the Brinkman±Kramers approximation (the
Born approximation without account for the internuclear
interaction) normalized in the impact parameter �b� repre-
sentation. In the Brinkman±Kramers approximation, the
electron capture probability in the Born approximation has
the form (see monograph [1])

P�b; v� � ��a�b; v���2 ; a�b; v� �
�1
ÿ1

dt exp �ÿiDEet�

�
�
drj �X�r2�VjA�r1� exp �ivr�

� 1

�2p�2v

�
P

dkF �X�k�FA�a� exp �ikb� : �10�

Here, r � �r1 � r2�=2, DEe is the resonance defect of the
reaction, V denotes the interaction potential of the active
electron with the resulting ion X q�, and subscripts A and X
refer to the wave functions of the target atom A and the ion
X �qÿ1��, respectively. The integration in formula (10) is
performed over the plane P described by the equation

kvÿ DEe ÿ v
2

2
� 0 :

The functions F are the Fourier transforms of the wave
function jX and the product VjA:

F �X�k� �
�
drj �X�r� exp �ikr� ;

FA�a� �
�
drV�r�jA�r� exp �ÿiar� ;

kÿ a � v ; k 2 ÿ a 2 � 2DEe :

The integral (10) over the Fourier transform product
constitutes a quantum-mechanical electron-capture ampli-
tude in the Brinkman±Kramers approximation for the
straight line trajectory.

The CAPTURE code calculates the normalized electron-
capture probabilities P �norm��b; v� as functions of the impact
parameter b and collision velocity v, as well as the electron-
capture cross sections corresponding to the n-states of the
resulting ion X �qÿ1���n� and the total (summed over n) cross
sections stot�v�:

stot�v� �
Xn�ncut
n�n0

sn�v� ; sn�v� �
X
s

ssn�v� ;

ssn�v� � 2p
�1
0

P �norm�sn �b; v�b db ; �11�

P �norm�sn �b; v� � Psn�b; v�
1�

Xnmax

n 0�n0
Psn 0 �b; v�

:

Here, Psn�b; v� denotes the not normalized Brinkman±
Kramers probability of a capture from the target electron
shell s into the n-state of the X �qÿ1���n� ion, and nmax is the
maximum principal quantum number accounted for in the
code. The parameter ncut depends on the target density: ncut is
large for low-density targets (a rarefied gas) and strongly
decreases in the case of high-density targets (foils) due to the
influence of target-density effects (see Section 5).

In the CAPTURE code for the active electron carrying
out the transition, the hydrogen-like wave functions are
employed in the initial (the target atom) and final [X �qÿ1���n�
ion] states, with the effective charge accounting for the
electron screening. The main advantage of the CAPTURE
code is the use of the normalized capture probabilities which
are always less than unity: P

�norm�
sn �b; v� < 1. This circum-

stance allows one to perform calculations over a wide energy
range: from a few dozen keV/u to a few dozen MeV/u.

The low-energy limit of applicability of the normalized
Brinkman±Kramers approximation depends on the atomic
structure of colliding particles. The CAPTURE code leaves
room for accounting the final states with a large number n (up
to nmax � 500), which are required in calculations of the
normalized capture cross sections for highly charged ions,
q4 1, impinging on atoms.

To estimate one-electron capture cross sections, a semi-
empirical formula [66] based on experimental data is often
utilized:

sSch

�
cm2

atom

�
� 1:1� 10ÿ8

~E 4:8

q 0:5

Z 1:8
T

ÿ
1ÿ exp �ÿ0:037 ~E 2:2��

� ÿ1ÿ exp �ÿ2:44� 10ÿ5 ~E 2:6�� ; �12�

~E � E

Z 1:25
T q 0:7

; q5 3 ; ~E5 10 ; �13�

where ZT is the target nuclear charge, and E [keV/u] is the
energy of the projectile. Formulas (12) and (13) reflect the
scaling law for the electron-capture cross sections as a
function of collision energy, projectile charge, and target
nuclear charge, and are widely used for estimating the cross
sections with an accuracy up to a factor of 2.

In the limits of low and high energies, semiempirical
formula (12) exhibits the following asymptotic behavior:

sSch�E! 0�
�
cm2

atom

�
� 10ÿ14

q 0:5

Z 1:8
T

; �14�

sSch�E!1�
�
cm2

atom

�
� 1:1� 10ÿ8

q 3:86Z 4:2
T

E 4:8
: �15�

It should be noted that formula (6) describes the
dependences on the atomic parameters more correctly than
formula (14); therefore, estimate (14) should be applied with
caution, because it can overestimate or underestimate the
capture cross sections at low collision energies.

Typical examples of electron-capture cross sections in
collisions of many-electron ions with atomic and molecular
targets are presented in Figs 2 and 3. Capture cross sections in
Ge31� �Ne and Xe18� �N2 collisions are given in Fig. 2,
where experimental data are compared with results obtained
with the CTMC, eikonal, and CDW approximations, as well
as using the CAPTURE code and semiempirical formula (12).
As is seen from the figure, in the case of collisions between
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H-like Ge31� ions and Ne atoms, all theoretical data are in
rather good agreement with experiment. However, a quite
large disagreement is observed for collisions of Xe18� ions
with an N2 target: the results utilizing the CDW and
CAPTURE codes overestimate experimental data 5±6-fold,
and CTMC results, although showing a better agreement,
also overestimate the experimental data about 3-fold at high
energies.

Electron-capture cross sections in collisions of lead ions
with Ar and N2 targets are displayed in Fig. 3. For collision
energies E > 3 MeV/u, experimental data are in rather good
agreement with the semiempirical formula (12) and results
obtained with the CAPTURE code; at lower energies,
formula (12) is not valid due to the energy limitation given
in formula (13).

From an analysis of experimental and theoretical data on
electron capture by heavy many-electron ions from atoms, it
is possible to make the following conclusions:

(1) The existing computer codes describe available experi-
mental data with an accuracy up to a factor of 2 over a wide
energy rangeÐ from tens of keV/u to tens of MeV/u.
Nonetheless, disagreement between theory and experiment
in some cases is more than 10-fold, e.g., in U28� �Ar and N2

collisions. The reasons for this discrepancy, at least for atomic
targets, are not yet clear. It is worth noting that reactions (1)
and (3) represent a particular case of more general charge-
changing reactions, so-called transfer ionization, in which
charge exchange occurs simultaneously with ionization of
the target atom:

X q� �A! X �qÿk�� �Ai� � �iÿ k�eÿ : �16�
Therefore, reactions (1) and (3) are a special case of reaction
(16) at i � k. Usually, the measured value in experiments is a
number of the resulting X �qÿk�� ions, whereas the corrected
cross-section data can be obtained by simultaneous measure-
ment of both charged particles, i.e., scattered projectiles and
target ions using the coincidence technique. However, the
amount of experimental data obtained with the help of the
coincidence technique is very limited; therefore, a corrected
comparison of calculated data with experimental cross
sections should be performed taking into account the
possible influence of reaction (16) on the measured cross
sections (see paper [70]).

(2) The disagreement between the theoretical and experi-
mental electron capture data for molecular targets can be
related to the unrightful use of the Bragg additivity rule (see
Section 2.1) because, strictly speaking, the impinging ion
interaction with a molecular target cannot be presented as a
sum of ion interactions with atoms composing the molecule.
This question was discussed in Ref. [71], and it was found that
the electron-capture cross section ratio for molecular and
atomic hydrogen is not equal to 2, s�H2�=s�H� 6� 2, but,
upon increasing the collision energy, the ratio nonmonotoni-
cally increases from 0.8 to 4.0. Thus, the question of the use of
the Bragg additivity rule for molecular targets needs further
consideration.

(3) As for many-electron capture processes involving
heavy highly charged ions (see Section 4.1), it was found
experimentally that the total capture cross section increases
with increasing projectile charge, but the general cross-section
dependences on the energy and atomic structures of the target
and projectile have not been investigated experimentally and
theoretically in detail so far (see, e.g., Refs [44, 45]).

3. Electron loss processes (projectile ionization)

Electron-loss processes (2) are competitive with the electron
capture reactions considered in Section 2, and, therefore, they
also play a key role in atomic processes occurring in
laboratory and astrophysical plasmas and accelerator facil-
ities.

Experimentally and theoretically, electron loss processes
with heavy ions and atoms are studied in more detail than the
capture processes, including multielectron loss processes with
m > 1. Electron-loss cross sections are quite large at low and
intermediate collision energies even for the ionization of
highly charged projectiles, in particular, by heavy many-
electron targets (see Section 4.2).
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3.1 Born approximation
At present, a few approaches are applied for calculating the
one-electron-loss cross sections in collisions of fast ions with
neutral atoms: the Born approximation [72], the sudden-
perturbation method [73], the CTMC method [60], and the
classical energy-deposition model [74].

In the first-order of the time-dependent perturbation
theory, the electron-loss probability in the impact-parameter
representation is defined by the following expression (see
paper [72]):

P�b; v� � ��a�b; v���2 ;
a�b; v� �

�1
ÿ1

dt exp �ÿiDEet�

� 
j �f�T �rj�jX��r1�jVjj �i�T �rj�jX�r�
�
;

V � ZT

jR� rj ÿ
XNT

j� 1

1

jR� rÿ rjj ;

DEe � IP � e� DEif ;

where j �i; f�T and jX;X� denote the wave functions of the
target atom and the impinging ion before and after
collision, respectively, V is the Coulomb interaction poten-
tial between the active electron and the target nucleus and
electrons, IP is the binding energy of the projectile, R is the
distance between nuclei, e is the kinetic energy of the ejected
electron, and DEif, ZT, and NT denote the excitation energy,
the nuclear charge, and the total number of electrons of the
target atom.

After some transformations, the electron-loss cross
section of an ion by a structured particle is presented as an
integral of the product of the form factors of colliding
particles over the momentum transfer K (see Ref. [75]):

sEL�v�

� 8p
v 2

X
nl

Nnl

X
l

�1
0

de
�1
K0

dK

K 3
F 2
T �ZT;NT;K �F 2

nl�e; l;K � ;
�17�

K0 � Inl � e
v

; Fnl �


el
��exp �iKr���nl � ; �18�

where v is the ion velocity, Inl is the electron binding energy in
the nl-shell of the projectile, jnl i and jeli are the wave
functions of the bound and continuum states of the active
electron, respectively, l is the orbital angular momentum of
the ejected electron, andFnl is the form factor of the projectile.
The sum over nl in expression (17) means summation over all
electron shells of the projectile, and n and l are the principal
and orbital quantum numbers of the electronic shell with Nnl

equivalent electrons.
In deriving formula (17), an additional assumption was

made, namely the so-called closure approximation:
DEif 5 IP � e, which makes the lower integration limit K0

independent of the excitation energy DEif and significantly
simplifies numerical calculations. Actually, the dependence
K0 on DEif is important only for light target atoms like H and
He and leads to increasing the electron-loss cross sections by a
factor of about 2 (see, e.g., monograph [21]).

The target effective charge FT depends on the momentum
transfer K, the target nuclear charge and the number of

electrons, and has the form

��FT�K �
��2 � "ZT ÿ

XNT

j� 1



j
��exp �iKr��� j �#2

�
"
NT ÿ

XNT

j� 1

���
 j ��exp �iKr��� j ����2# ;
where j j i denote the radial wave functions of the target
electrons. It should be noticed that the expression for the
target effective charge FT�K � was obtained using the
completeness of the target wave functions and includes only
the diagonal matrix elements. The formula for the electron-
loss cross section of atoms and ions by a bare nucleus with the
charge ZT has a form similar to formulas (17) and (18) with
FT�K� � ZT.

The calculation of the electron-loss cross sections even in a
simplified Born approximation is quite complicated because
of the necessity of calculating a large number of the radial
wave functions for the bound (projectile shells) and con-
tinuum (set of l) states, as well as integrating over energies e of
the ejected electron.

The effective charge FT exhibits the following asymptotic
behavior for the momentum transfer K:

F 2
T �K � ! �ZT ÿNT�2 ; K! 0 ; �19�

F 2
T �K � ! Z 2

T �NT ; K!1 : �20�

Formulas (19) and (20) reflect the influence of screening
and antiscreening effects of the target electrons on the cross
sections at low and high collision velocities, respectively. The
asymptotics (20) stands for the limiting case of very large
projectile velocities when the target nucleus and electrons can
be treated at rest in the coordinate system associated with the
projectile. Then, the cross section can be approximately
presented by the Born formula written down through the
ion ionization cross sections by electron �se� and proton �sp�
impacts in the form

sEL � Z 2
Tsp�v� �NTse�v� ; v4 I

1=2
P ; �21�

where IP is the projectile ionization potential. As follows from
last formula, the electron-loss cross section of fast ions
colliding with neutral atoms is proportional to the scaling
factorZ 2

T � ZT, i.e., the heavier the target atom, the larger the
electron-loss cross section. Numerical calculations show that
the dependence of the loss cross sections for heavy ions onZT

is a little weaker than given by Z 2
T � ZT, viz. sEL � Z 1:8

T due
to the screening effects for the target electrons (see Section
3.1.3 and Ref. [76]).

Formany-electron heavy projectiles, the calculation of the
electron-loss cross sections by formula (17) requires account-
ing for the contribution of electron ionization from a large
number of the target shells (about 5±10 shells) independently
of the target particleÐan electron, proton, or complex atom.
For example, to calculate electron-loss cross sections of U28�

ions having 64 electrons, it is necessary to account for
ionization from 9 electron shells of the uranium ionÐ from
the 3s2 inner shell up to the 5p2 outer shell. The binding
energies and ionization potentials for heavy atoms and ions,
required for numerical calculations, can be found in data
compilations [77±80].
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At high collision velocities, the Born electron-loss cross
sections have the following asymptotic form:

E!1 ; v!1 ; sEL ! ln v

v 2
: �22�

3.1.1 LOSS and LOSS-R computer codes. Calculations of the
one-electron-loss cross sections in the nonrelativistic Born
approximation using formulas (17), (18) are realized in the
LOSS code described in paper [75]. There, the radial wave
functions of the active electron for the bound �jnl i� and
continuum �jel i� states are calculated by numerical solution
of the SchroÈ dinger equation with the effective potential of the
atomic core, while the nodeless analytical Slater functions are
used for the target-electron wave functions. The accuracy of
calculations of the electron-loss cross sections by the LOSS
code is about 30% above the cross-section maximum.

Examples of electron-loss cross sections for heavy ions
colliding with atoms and molecules are displayed in Fig. 4 as
functions of collision energy; furthermore, experimental data
are compared here with the results of the LOSS code. In the
case of an N2 target, the Bragg additivity rule was applied,
similarly to the calculation of the electron-capture cross
sections.

In recent years, interest in the behavior of electron-loss
cross sections of heavy many-electron ions colliding with
neutral atoms at relativistic energies E > 200 MeV/u has
grown significantly. This is related to a purely theoretical
interest, as well as to experimental investigations started in
2011 by the International FAIR project [35], in the frame-
work of which the acceleration of U28� ions is planned up to
10 GeV/u. We note that the measurement data on and
calculations of electron-loss cross sections for such ions in
the relativistic energy range are very scarce (see Refs [76, 84,
85]).

Properties of relativistic electron-loss cross sections are
investigated in more detail for H- and He-like projectiles, i.e.,
ions with one and two electrons (see Refs [86±90]). The main
difficulty arising in calculations of such cross sections reduces
to finding the ionization matrix elements in the relativistic
Born approximation [86]:

MEL �


f
���1ÿ baz� exp �iKr�

��i � ; �23�

where v is the projectile velocity, b � v=c is the relativistic
factor, c is the speed of light, az denotes the z-component of
the Dirac matrix a, and ji i and j f i are the wave functions of
the system before and after collision event.

The first term in expression (23) exhibits the contribution
to the matrix element made by the interaction of the projectile
with the scalar potential of the neutral target atom, and
corresponds to the usual nonrelativistic Born approximation
(17), (18). The second term, often called magnetic interaction,
gives the contribution from the vector potential of the target.
Calculation of the second term is usually a quite complicated
problem which was realized mainly for ionization of H- and
He-like ions from n-states with n � 1ÿ6 [89, 90].

The contribution of the second (relativistic) term to the
matrix element (23) can be estimated as follows:

baz � v
c

h pei
mec
� v

c

ve
c
; �24�

where me, ve, and h pei denote the rest mass, orbital velocity,
and momentum matrix element of the projectile electron,
respectively. As is seen from the last formula, the influence of
the magnetic interaction is maximal �baz � 1� when the
projectile velocity v and electron orbital velocity ve are close
to the speed of light; there are some other situations where the
magnetic interaction makes a considerable contribution, for
example, when the ion velocity is small �v5 c�, but ionization
takes place with a small momentum transfer K (see mono-
graph [88]).

To investigate the properties and to perform numerical
calculations of the electron-loss cross sections for heavy ions,
a package of computer codes was created at the Lebedev
Physical Institute, RAS (Moscow), including: LOSS-R
(Relativistic LOSS) [91], HERION (High Energy Relativis-
tic IONization) [92], and RICODE (Relativistic Ionization
CODE) [76]. Among all codes, the RICODE program has the
highest accuracy for calculating one-electron loss cross
sections within a wide energy range covering relativistic
energies.

The LOSS-R code is based on the same equations (17),
(18) as the LOSS code but with two differences in relative
velocity and a minimum momentum transfer K0:

v! bc ; K0 ! Inl � e
gv

; g � 1��������������
1ÿ b 2

q ; �25�

i.e., minimum momentum transfer K0 is g times smaller than
the nonrelativistic one (18), where g is the relativistic factor.
At relativistic energies, the LOSS-R code provides the correct
asymptotic cross-section behavior [cf. Eqn (22)]:

E!1 ; v! c ; s! ln g for ionic targets ;

s! const for atomic targets; �26�

whereas at nonrelativistic velocities the results obtained by
the LOSS and LOSS-R codes coincide.

A rough approximation for K0 in formulas (25) was made
using the result of Bethe's paper [93] for estimating the energy
transfer from ion to atom after collision event. Nevertheless,
the results obtained by the LOSS-R code employing this
simple approximation are in good agreement with both
experimental data and more sophisticated but tedious
calculations (see Section 3.1.3).
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Figure 4. One-electron loss cross sections in collisions of Au53� ions
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Experimental and theoretical data on K-shell ionization
cross sections of neutral heavy atoms Zr �Z � 40�, Tb
�Z � 65�, and U �Z � 92� by proton impact are shown in
Fig. 5 at collision energies from tens of MeV/u to 10 GeV/u.
As is seen, the nonrelativistic cross sections (the LOSS code)
decrease with increasing collision energy, in accordance with
the Born law (22), whereas the relativistic ones (the LOSS-R
code) are slightly increasing for E > 400 MeV/u. At energy
E � 10 GeV/u, the difference in cross-section values calcu-
lated by these codes reaches about one order of magnitude. In
the energy range considered, experimental data [94], relativis-
tic calculations [95], and LOSS-R results agree within 30%.

3.1.2 The HERION code. The problem of relativistic
projectile ionization by neutral particles can be formulated
in terms of the impact parameter �b� representation, when the
electron-loss cross section is represented as a sum of dipole
and nondipole terms:

s�v� � sdip�v� � snondip�v� : �27�
The dipole cross section describes a contribution of ion±

atom interactions at large impact parameters b, when the
dipole interaction plays a key role, interaction between the
projectile electrons and the target atom is weak, and
transition of the active electron occurs with a small momen-
tum transfer, so one can apply the perturbation theory. At
small b values, the interaction region turns out to be small but
momentum transfer is large, and the impulse approximation
may be used for cross-section calculations.

In the dipole approximation, the cross section sdip�v� can
be expressed via the projectile photoionization cross section
sph�nl;o� and the so-called number n�o� of equivalent
photons (see Refs [96, 97]):

sdip�nl; v� �
�1
omin

n�o� s�nl;o� do
o

; �28�

n�o� � 2Z 2
eff

p�bc�2
�
xK0�x�K1�x� ÿ 1

2
�bx�2ÿK 2

1 �x� ÿ K 2
0 �x�

��
;

�29�
x � obmin

gbc
; bmin � n

�2Inl�1=2
; �30�

where Inl denotes the electron binding energy in the nl-shell of
the projectile, Zeff is the effective target-atom charge, and
Km�x� is the Macdonald function.

Employing the impulse approximation for the snondip�v�
term yields [92]

snondip�nl; v� � 2pNnl

Inl

�
Zeffa
b

�2

; �31�

whereNnl is the number of equivalent electrons in the nl-shell.
Equations (28)±(31) are implemented in the HERION

code [92], where the relativistic Dirac±Fock wave functions
are used for calculating the photoionization cross sections
of heavy projectiles. The code is intended for the calculation
of electron-loss cross sections at relativistic energies
E > 100 MeV/u, and it does not account for the magnetic
interactions between colliding particles and the b-dependence
of the target effective charge.

The electron-loss cross sections calculated by the
HERION and LOSS-R codes can differ by a factor of 2,
which is mainly related to the employment of relativistic wave
functions in theHERION code and nonrelativistic ones in the
LOSS-R code. The HERION electron-loss cross sections
mainly consist of a dipole part (60±70%) and, therefore,
reproduce the shape of the total loss cross sections. The
results obtained by the HERION code have turned out to be
very useful for understanding the loss cross-section behavior
at relativistic collision energies.

3.1.3 Relativistic Born approximation: the RICODE program.
The general formulas for electron-loss cross sections of fast
ion±atom collisions were obtained in paper [98] in the
relativistic Born approximation, including magnetic interac-
tions for ejection of the projectile electron from an arbitrary
nl-shell. Based on these results, a RICODE computer
program was created (see Refs [76, 99]). The code has the
highest accuracy in calculating one-electron-loss cross
sections of heavy ions by target ions and neutral atoms
among those codes mentioned before (LOSS, LOSS-R, and
HERION).

Formulas utilized in the RICODE program differ from
expressions (17), (18) in the LOSS-R code by the presence of
an additional term responsible for relativistic (magnetic)
interaction between the projectile and the target atom, and
have the form

sEL�v� � 8p

�bc�2
X
nl

Nnl

X
l

�1
0

de

�
�1
K0

dK

K 3

�
F 2
T �ZT;NT;K �F 2

nl�e; l;K �

� F 2
T �ZT;NT;K

0� b 2�1ÿ K 2
0 =K

2�
�1ÿ b 2K 2

0 =K
2�2 G 2

nl�e; l;K �
�
; �32�

K0 � Inl � e
bc

; K 0 �
�����������������������
K 2 ÿ b 2K 2

0

q
: �33�

Here, Gnl denotes the integral depending on the wave
functions of the initial and final states, and on the derivative
of the initial bound wave function jnl i (see paper [98] for
details), and FT is the effective charge of the target atom
defined in Section 3.1.

Equations (32), (33) were obtained in the relativistic Born
approximation using the Coulomb gauge for the matrix
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Figure 5. Proton-impact ionization cross sections of the K-shell electrons

in neutral Zr, Tb, and U atoms as a function of proton energy.

Experiment: triangles at collision energy 4.8 GeV [94]. Theory: white and

dark circlesÐnonrelativistic and relativistic calculations, respectively, at

0.16, 3.672, and 4.88 GeV/u [95]; solid and dashed curvesÐ relativistic

(LOSS-R code) and nonrelativistic (LOSS) calculations, respectively (see

Ref. [91]).
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element (23), where the first and second terms in (32)
correspond to the nonrelativistic and relativistic Born
approximations, respectively. Relativistic effects for the
form factor of the target atom were accounted for in the
effective charge F 2

T via momentum K 0.
Similar to the LOSS and LOSS-R codes, the RICODE

program utilizes the nonrelativistic radial wave functions for
the bound and continuum states of an active electron. In the
case of heavy many-electron projectiles, this is justified by the
fact that the main contribution to the electron-loss cross
section is made by the outer shells of the projectile, for which
relativistic effects are small. On the contrary, in the case of
few-electron heavy projectiles, the influence of relativistic
effects on the wave functions is strong and leads to a few-
fold reduction in the loss cross sections. This is illustrated in
Fig. 6, where the calculated ionization cross sections of
U91�(1s) projectiles in collisions with protons and H(1s)
atoms are presented as a function of collision energy and
compared with relativistic results (see paper [99]).

As is seen from Fig. 6, fully relativistic calculations for
H-like uranium ions lead to a 2-fold reduction in the cross
section compared to the results obtained by the RICODE
program. It is also seen that the data obtained with the
LOSS-R and RICODE programs are close to each other, and
those with the HERION code are close to the fully relativistic
calculations [89, 90], since the relativistic wave functions are
used in the HERION code.

It should also be noted that all electron-loss cross sections
calculated for collisions with protons increase logarithmically
with collision energy, which is typical for collisions with

charged particles, but cross sections tend to a constant value
in collisions with neutral atoms in the limit of high relative
velocities (see Fig. 6). The point is that in collisions with
charged particles (protons, ions), the projectile-electron
ionization occurs due to the long-range Coulomb interac-
tion, and the cross section increases roughly as s � ln g [see
formula (26)]. In collisions with neutral atoms, the active
electron interacts with a screened atomic field which is
Coulomb-like only at small distances and is exponentially
small at large distances from the target (see paper [87] for
details).

Another typical property of the electron-loss Born cross
sections of heavy ions, following from results simulated by the
LOSS, LOSS-R, and RICODE programs, is the possibility of
scaling the cross sections sEL on the target nuclear chargeZT,
i.e., for an ion with a fixed charge q the sEL quantity can be
presented in the form sEL � Z

d�q�
T in the whole energy range

with about 20% accuracy. The d�q� exponent depends on the
electronic structure and the charge of the projectile and, as the
ion charge increases, the d�q� increases from approximately
1.2 to a maximum value of 1.8. This dependence is related to
the screening effects in the target atoms: ionization of low-
charged ions �q � 1� occurs at high impact parameters, when
the target nucleus is strongly screened by atomic electrons,
and for highly charged ions �q4 1� the electron ejection from
the incident ion takes place at close distances to the target,
where the screening effectsmentioned are small (see paper [76]
for details). The scaling feature of the Born electron-loss cross
sections for heavy ions by atoms can be useful for cross-
section estimations in collisions with an arbitrary target atom
if the data for a fixedZT value are known from experiment or
sophisticated numerical calculations.

3.1.4 Semiempirical formula for one-electron-loss cross
sections. Using the properties of the loss cross sections in
the first Born approximation and numerical results obtained
by the RICODE program, a semiempirical formula was
devised in paper [76] for one-electron-loss cross sections in
heavy ion±neutral atom collisions, covering a relativistic
energy range:

s
�
cm2

atom

�
� 0:88� 10ÿ16�ZT � 1�2 u

u 2 � 3:5

�
�
Ry

I1

�1�0:01q�
4� 1:31

n0
ln �4u� 1�

�
; �34�

u � v 2

I1=Ry
� �bc�

2

I1=Ry
; �35�

where v and q denote the projectile velocity and charge,
respectively, c � 137 is the speed of light, u is the reduced
projectile energy, I1 is the projectile first ionization potential
in Ry units, and n0 stands for the principal quantum number
of the projectile outer electron shell. The factor �ZT � 1�2 in
formula (34) is introduced instead of the usual Z 2

T coefficient
to get better agreement between the results obtained by using
formula (34) and those by the RICODE program for light
atomic targets like H, He, Li, Be, and B.

Cross section (34) reaches its maximum at u � 2:

smax

�
cm2

atom

�
� 10ÿ16�ZT � 1�2

�
Ry

I1

�1�0:01q
; umax � 2 :

�36�
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Figure 6. The Born cross sections of relativistic ionization of U91�(1s) ions
by proton impact (a), and by collisions with H(1s) atoms (b) as a function

of collision energy. The LOSS-R, RICODE, and HERION curves display

the results obtained by the corresponding computer codes; dashed-dot

curvesÐcalculations with relativistic interaction and nonrelativistic wave

functions, and thin solid curvesÐ fully relativistic calculations [89, 90].
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As v! c, cross section (34) tends to a constant quantity

s
�
cm2

atom

�
� 3� 10ÿ20�ZT � 1�2

�
Ry

I1

�0:01q

; u � c 2
Ry

I1
:

�37�

Semiempirical formula (34) for the electron-loss cross
sections, together with formula (12) for electron-capture
cross sections, can be applied for estimating the lifetimes of
ion beams in accelerators and average charges of ions passing
through gaseous targets (see Section 6).

3.2 Classical approximation
3.2.1 Classical trajectory Monte Carlo (CTMC) approxima-
tion.A large amount of theoretical data on electron-loss cross
sections of heavy ions in collisions with atoms and molecules
has been revealed in the classical approximation: by the
CTMC method [68, 100] and the energy-deposition model
[74]. The CTMCmethod was briefly discussed in Section 2.2.
On the basis of the CTMC calculations of electron-loss cross
sections for heavy projectiles, significant physical results have
been obtained: a large contribution of multielectron loss to
the total cross section at low and intermediate collision
energies, a slower decreasing with velocity of the loss cross
sections sEL � vÿ1 compared with the Born approximation
�sB � vÿ2�, a preferential one-electron loss at high collision
energies, and some others.

3.2.2 Energy-deposition method. The DEPOSIT code. The
classical energy-depositionmodel, suggested byNBohr [101],
is based on the assumption that if the kinetic energy T�b�
transferred to the projectile electrons in a collision with the
target atom exceeds the first ionization potential I1 of the
projectile, T�b�5 I1, then the projectile can undergo one- or
multi-electron ionization, where b is the impact parameter.

The energy-deposition model was utilized in Ref. [102] to
explain experimental data on many-electron ionization of the
target atoms in collisions with ions. This model was further
developed in paper [74] for ionization of ions by atoms, i.e., for
computing electron-loss cross sections. It should be noticed
that these two cases of ion±atom collisions are not identical:
ionization of an atom by an ion occurs upon interaction of an
atomic electron with a long-range Coulomb field of the
projectile, whereas ionization of a projectile by an atom is
due to active electron interaction with a field of the neutral
target, which is close to the Coulomb one only at small
interparticle distances and is exponentially small at large
distances.

On the basis of the energy-deposition model, the
DEPOSIT code was created [103] for calculating one- and
many-electron-loss cross sections of projectiles in collisions
with neutral atoms at low and intermediate energies. In the
code, the atomic kinetic energy T�b� transferred to the
projectile electrons is calculated using the classical Bohr
formula

T�b� �
X
s

�
rs�r�DEse�p� d3r ; �38�

where rs�r� denotes the electron density of the projectile
s-shell at a distance r from its nucleus, DEse is the gain in
kinetic energy of a single electron interacting with the target, b
is the impact parameter linking two nuclei, p is the impact
parameter linking the projectile electron and the target
nucleus, and the sum over s means summation over all

projectile electrons. The vectors r, b, and p are related
through a simple geometrical expression. The total electron
density r�r� is normalized to the total number N of projectile
electrons:�1

0

X
s

rs�r� dr �
�1
0

r�r� dr �
X
s

Ns � N : �39�

In the DEPOSIT code, the shell electron density rs�r� is
calculated using the Slater nodeless functions, and DEse via
the derivative qU�R�=qR of the field U�R� created by the
target atom at a distance R from its nucleus. In the code, the
analytical expression is used to describe the U�R� field with
five approximation parameters obtained by the Dirac±
Hartree±Fock±Slater method for neutral atoms from H to
U [104]:

U�R� � ÿZT

R

X3
i�1

Ai exp �ÿaiR� ;
X3
i�1

Ai � 1 ; �40�

where Ai and ai are the approximation parameters.
As was mentioned, projectile ionization occurs under the

condition

T�b�5 I1 ; �41�
where I1 is the first ionization potential of the projectile.
Then, the total electron-loss cross section (summed over one-
and multielectron-loss cross sections) has the form

stot�b� �
XN
m�1

sm � pb 2
max : �42�

Here, sm denotes the m-electron-loss (ionization) cross
section (Section 4.2), and the bmax value is found from the
equation

T�bmax� � I1 : �43�
Therefore, the problem of finding the total electron-loss

cross sections in the classical energy-deposition model is
reduced to the calculation of the 3D integral (38) (cf., the
CTMCmethod, Section 2.2). The calculation accuracy of this
method is within a factor of 2, i.e., similar to that of the
CTMC method. However, in the energy-deposition model
there is no limitation on the total number of projectile
electrons, unlike in the CTMC method, and, moreover, the
heavier the colliding particles, the more accurate the results
obtained in the model.

Electron-loss cross sections of U28� ions colliding with
H2, N2, Ar, Kr, and Xe targets are displayed in Fig. 7, where
experimental data are compared with the CTMC and the
DEPOSIT results (see Ref. [105]). As is seen from the figure,
all experimental data agree with classical calculated results
within a factor of 2, except for the H2 target, because the
validity of the classical model for light targets and low
collision energies is rather limited (see paper [103]).

The numerical results obtained by the DEPOSIT code
allows one to examine the following high-energy behavior of
the loss cross sections:

sEL � Eÿa�ZT� ; a�ZT� � 0:8

Z 0:3
T

; v 2 4 I1 ; �44�

where a�H�� 0:80, a�Ne�� 0:40, a�Ar�� 0:34, a�Xe�� 0:24,
and a�U�� 0:21. As is seen, the heavier the target atom, the
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slower the cross section decreases that is related to the
different contributions of multielectron processes to the
total cross section (see Section 4.2). From formula (44) it
follows that the classical electron-loss cross section scl
decreases much more slowly with energy than the Born cross
section sB:

scl � Eÿa ; a < 1 ; sB � lnE

E
; v 2 4 I1 : �45�

The validity conditions for the classical energy-deposition
model with the target potential (40) have been obtained in
Ref. [103] in the form

RA

�X
s

Nsr
2
s

�ÿ1=2�
2I1
ZT

�1=2

< v <
2RA

Rion

�
2I1
ZT

�1=2

; �46�

where RA and Rion denote the target and projectile sizes,
respectively, and rs is the size of the s-shell of the projectile.
The lower limit on velocity in formula (46) follows from
condition (41) for the minimum transferred kinetic energy
exceeding the first ionization potential of the projectile. The
upper limit is resulted from the classical condition that the
collision time is small, and the gain Dus of the electron orbital
velocity by collision is smaller than its absolute value:
Dus 5 us.

Numerical calculations of the total electron-loss cross
sections show that the classical approach in the deposit-
energy representation gives reasonable results for the ion
velocities (in atomic units) ranging 0:1 < v < 10 a.u., 1 a.u.�
2:2� 108 cm sÿ1.

4. Multielectron processes in ion±atom collisions

If heavy projectiles are involved in electron-loss and capture
processes, multielectronmechanisms of charge transfer play a
very important role and lead to a significant contribution to
the total cross sections, depending on the relative velocity and
atomic structure of colliding particles. This is demonstrated in
Table 1, where experimental data on one-electron and total
charge-changing cross sections are given for collisions of
uranium ions with Ar atoms at E � 3:5 MeV/u [45]. As is
seen, the contribution of multielectron loss processes

decreases from 70 to 50% upon increasing the projectile
charge, and that of multielectron capture processes increases
from 0 to 40%.

4.1 Multielectron capture
Experimental data on multielectron capture in slow (E �
0:01 eV/u ± 10 keV/u) ion±atom collisions

X q� �A! X �qÿk�� �Ak� ; k5 1 ;

can be found in Refs [107±115].
For heavy low-charged ions, the corresponding cross

sections in collisions with noble gases and molecules were
reported in Refs [108, 109] for the following reactions:

X q� �A! X �qÿk�� �Ak� ; k5 1 ; 24 q4 8 ;

X � Ne;Ar;Kr;Xe ; �47�
A � He;Ne;Ar;Kr;Xe;H2;N2;O2;CH4;CO2 :

These data demonstrate a semiconstant behavior of the
capture cross sections at low energies, while experimental
cross sections for capture of k-electrons, k4 4, were
approximated well by the simple formula [109]

sq; qÿk �cm2� � 10ÿ12C�k�qA�k�
�
IT
eV

�ÿB�k�
; q4 8 ; v5 1 a:u:;

�48�
where IT is the ionization potential of a target atom, andC,A,
and B are the approximation parameters given in Table 2.

Experimental data on multielectron capture of Xe q� ions,
154 q4 43, colliding with He, Ar, and Xe atoms at slow
collision velocities v � 0:1ÿ0:2 a.u. are presented in paper
[113], and in paper [114] these data were approximated by
falling back on a semiempirical formula. Experimental multi-
electron capture cross sections for slow ions colliding with
atoms and molecules are given in Refs [116±118]. It is worth
noting the results of experimental [119±121] and theoretical
[119, 122] studies of one- and multielectron capture cross
sections involving fullerenes (hexagonal carbon rings); these

Table 1.Experimental electron-loss and electron-capture cross sections (in
10ÿ18 cm2) for collisions of U q� ions, q � 28ÿ51, with Ar atoms at
E � 3:5 MeV/u [45].

Ion charge q s �1�EL s �tot�EL s �1�EC s �tot�EC

28
31
33
39
42
51

13.4
12.5
8.7
8.0
6.7
ì

40.6
34.7
26.3
19.7
13.8
ì

12.6
19.7
25.0
52.3
61.6
82.5

12.6
20.8
27.0
60.7
79.7
130

s �1�EL and s �tot�EL are the one-electron and total loss cross sections, and

s �1�EC and s �tot�EC are the one-electron and total capture cross sections,

respectively.

Table 2. Approximation parameters for experimental k-fold electron
capture cross sections (48) at small relative velocities v5 1 a.u. �
2:2� 108 cm sÿ1 (taken from Ref. [109]).

k C�k� A�k� B�k�
1
2
3
4

1:43� 0:76

1:08� 0:95

�5:50� 5:8� � 10ÿ2

�3:57� 8:9� � 10ÿ4

1:17� 0:09

0:71� 0:14

2:10� 0:24

4:20� 0:79

2:76� 0:19

2:80� 0:32

2:89� 0:39

3:03� 0:86
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Figure 7. (Color online.) The total electron-loss cross sections of U28� ions
colliding with H2, N2, Ar, Kr, and Xe targets as a function of ion energy.

Experiment: red symbolsÐH2 target, blue symbolsÐN2 target, orange

symbolsÐAr target (taken from Refs [44,68, 100, 106]). Theory: curves

with white symbolsÐCTMC result, curves with the black symbolsÐ

energy-deposition model, DEPOSIT code (see Ref. [105]).
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data are of a particular interest for electron capture in ion
collisions with complex targets.

Experimental three-electron capture cross sections of
highly charged ions (from Ne6� up to U48�) colliding with
Ar atoms at energy E � 1:4 MeV/u obtained by the coin-
cidence technique are presented in paper [117]; these data are
quite well described by the CTMCmethod. At higher energies
E � 1ÿ10MeV/u, experimental data are mainly obtained for
heavy Xe, Pb, and U ions colliding with gaseous targets (see
Refs [44, 45, 82, 100]).

Theoretical investigations into multielectron capture
processes are rather limited and refer mainly to low and
intermediate collision energies. First and foremost, one has to
mention here the classical Bohr±Lindhard model [123]
developed later in papers [124, 125]; this model is primarily
used for capture processes involving few-electron projectiles.
Numerical calculations of the multielectron capture cross
sections have been generally performed for two-electron
capture using the close-coupling method [126±128], the
quasimolecular model [129], and the independent-particle
model (IPM) [130]. As for theoretical models for multi-
electron capture �k > 2� by heavy ions from atoms, one has
to admit that at present they are somewhat incompletely
developed (see Refs [122, 125, 131]).

4.2 Multielectron loss
The probability of multielectron loss of heavy ions in the
reactions

X q� �A! X �q�m�� �
X

A�meÿ ; m5 1 ;

can be high, and the contribution of the corresponding cross
section to the total one can reach more than 50%. This
property is demonstrated in Table 3, where experimental
data for one- and multielectron loss cross sections are
presented. As is seen, the contribution of multielectron loss
processes increases with the target atomic number and
decreases with the projectile charge q.

Themultielectron ionization theory leads to the result that
the cross section of m-fold electron loss can be expressed in
the impact-parameter representation in the form

sm�b� � 2p
�1
0

Pm�b�b db ; �49�

where Pm�b� denotes the ionization probability ofm electrons
of the projectile as a function of the impact parameter b. The
total loss cross section, summed over all m, is given by

stot�v� �
XN
m�1

sm�v� ; �50�

where N is the total number of the projectile electrons.
Usually, it is enough to include terms up to N � 18 whereat
sum (50) converges very fast.

In the CTMC method, the Pm�b� quantities are found
numerically by solving a large number of differential
equations (see Section 2.2). In the DEPOSIT code (Section
3.2.2), on the contrary, an analytical expression for Pm�b�
finds application in the statistical Russek±Meli model [134]:

Pm�b� � N
m

� �
Sm

�
EK

I1

��XN
i�1

N
i

� �
Si

�
EK

I1

��ÿ1
;

�51�XN
m�1

Pm�b� � 1 ;

EK � T�b� ÿ
Xm
i�1

Ii ; S�x� � 2 ��mÿ1�=2�p�m=2�x �3mÿ2�=2

�3mÿ 2�!! ;

�52�
where

N
m

� �
denotes the binomial coefécient, T�b� is the

energy transferred to the projectile by the target, Ii is the ith

ionization potential of the projectile, EK is the kinetic energy

of an ejected electron inm-fold ionization, and �a� denotes the
integer part of a. The electron binding energies of heavy

atoms and ions are presented in tables [77ë80]. As seen from

formula (51), the RussekëMeli probability Pm�b� strongly
depends on the donated energy T�b�.

The dependences of T�b� and Pm�b� functions on the
impact parameter b, which were calculated by the DEPOSIT
code for collisions of Xe18� ions with Xe atoms at energy
E � 6 MeV/u (v � 15:5 a.u.) are depicted in Fig. 8 (see paper
[103]). The contribution from different electron shells of
Xe18� ions to the total energy transfer T�b� is shown in
Fig. 8a, and Fig. 8b displays the ionization probability
Pm�b� for the same case as a function of b. At each value of
b, the sum of Pm�b� over all m electrons is equal to unity
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Figure 8. (a) Energy T�b� transferred to Xe18� ions by collisions with Xe

atoms atE � 6MeV/u (v � 15:5 a.u.) as a function of impact parameter b:

the result of the DEPOSIT code [103]. A contribution from different

electron shells of Xe18� to the total (sum) donated energy is shown.

Horizontal line I1 � 21 a.u. (572.5 eV), corresponding to the first

ionization potential of an Xe18� ion, indicates the minimum transferred

energy required for ion ionization, and bmax shows the impact parameter

corresponding to the total electron-loss cross section. The notation of the

shell, e.g., 2�sp�8, means the electron configuration 2s22p6. (b) The result

of the DEPOSIT code for the multielectron ionization probability Pm�b�
as a function of b was obtained using formula (51) with the transferred

energy T�b� shown in Fig. 8a [103]; a0 is the Bohr radius.

Table 3. Experimental m-fold electron-loss cross sections sm �m � 1; 2; 3�
and the total electron-loss cross sections stot (in 10ÿ18 cm2) in collisions of
Xe18� (ionization potential I1 � 573 eV) and Ar8� (I1 � 420 eV) ions with
noble gas atoms.

Process Energy,
MeV/u

s1 s2 s3 stot References

Xe18� �He

Xe18� �Ne

Xe18� �Ar

Xe18� �Kr

Xe18� �Xe

Ar8� �Xe

6
6
6
6
6
19

3.0
16
24
27
34
23

1.7
7.8
11
13
16
10

0.2
3.8
5.6
7.2
9.0
5.5

4.9
36
56
75
95
44

[132]
[132]
[132]
[132]
[132]
[133]
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according to formula (51). The m-electron loss cross sections
of Xe18� ions colliding with He, Ne, Ar, and Xe atoms at
E � 6 MeV/u, calculated by the DEPOSIT code [105], are
shown in Fig. 9 in comparison with available experimental
data [132].

Experimental investigations of multielectron-loss cross
sections of heavy ions and theoretical calculations via the
CTMC code [68, 100] showed that, upon increasing the
collision energy, the contribution of multielectron losses
decreases and one-electron loss processes begin to play a key
role. This fundamental result is illustrated in Fig. 10, where
the average number hmi of ejected electrons, namely

hmi �
P

m msmP
m sm

; �53�

is displayed for one collision event with a U28� ion impinging
on H, N, and Ar atoms as a function of the projectile energies
E � 1ÿ100MeV/u.As is seen, in a single collision of theU28�

ion with the Ar atom, four electrons on the average, hmi � 4
(!), are ejected for low energies E < 10 MeV/u, and the only
one, hmi � 1, at high energies.

Systematic investigations into the scaling laws for one-
and multielectron-loss cross sections in ion±atom collisions
have been performed in Refs [135, 136] over a wide range of
collision energies. There, the authors have systematized the
properties of experimental electron-loss cross sections and
their dependences on the collision energy and atomic
parameters, such as the projectile ion charge and the target
atomic number, and quantum numbers of the active elec-
trons. The scaling laws obtained describe experimental data
within a factor of 2.

We note that, at present, there is no unique theoretical
approach to describing electron-loss cross sections over a
wide energy range, so in applications one has to lean upon
some semiempirical methods to obtain the so-called recom-
mended cross sections, which are found by applying
different theoretical methods at low- and high-collision
energies, and their further matching at intermediate ener-
gies (see Section 4.3).

4.3 Recommended electron-capture
and electron-loss cross sections
The electron capture processes and theoretical methods of
their calculation were considered in Section 2 over a wide
collision energy range. It was shown that one-electron-
capture cross sections involving heavy ions with energy
E > 10 keV/u can be calculated using the normalized
Brinkman±Kramers approximation implemented in the
CAPTURE code. At lower energies, E < 10 keV/u, the best
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Figure 9.Them-fold electron loss cross sections for collisions of Xe18� ions withHe, Ne, Ar, andXe atoms at the ion energyE � 6MeV/u as a function of

m. Experiment: dotted curves with black circles [132]. Theory: solid curves with white circles simulated by the DEPOSIT code [132].
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Figure 10. Average number hmi (53) of projectile electrons ejected from

U28� ions upon collisions with H, N, and Ar atoms as a function of the

projectile energy. Experiment: black symbols atE � 1:4MeV/u [44], at 3.5

and 6.5 MeV/u [45, 68]. Theory: solid curves with white symbolsÐ the

CTMC calculated results [100].
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results are found with the aid of a close-coupling method and
adiabatic-transition theory (see Section 7).

In the case of electron-loss processes, calculations of their
associated cross sections are performed using different
approximations as well: at low and intermediate energiesÐ
the classical approximation, which describes the multielec-
tron and total cross sections, and at higher energies, including
the relativistic rangeÐ the relativistic one-electron Born
approximation.

Since, at present, there is no unique theory describing the
electron-loss cross sections in the whole energy range
considered, E � 1 keV/u±10 GeV/u, one has, in practice, to
match the classical and quantum-mechanical cross sections
for obtaining the so-called recommended cross-section data.
For this purpose, a simple formula for the recommended
electron-loss cross sections was made up, which is similar to
that defining the reduced mass of two particles:

1

srec
� 1

sDEPOSIT
� 1

sRICODE
; �54�

where srec denotes the recommended cross section, and
sDEPOSIT and sRICODE are the cross sections calculated using
the classical approximation via the DEPOSIT code and the
quantum-mechanical one via the RICODE program, respec-
tively. This method allows one to describe effectively the
electron-loss cross sections over a wide energy range,
including intermediate energies, where calculations are very
complicated. A formula similar to Eqn (54) was used in work
[137] for matching electron-impact ionization cross sections
of positive ions at low and high electron energies.

The recommended charge-changing cross sections [com-
bined results of the DEPOSIT and RICODE programs, and
formula (54)] forU28� ions collidingwithH,N, andAr atoms
at collision energies E � 1 keV/u±10 GeV/u are presented in

Fig. 11 [76] in comparison with available experimental data.
Similar data for other uranium ions are given in paper [85],
where the recommended loss cross sections were approxi-
mated by 7th-order polynomials. The data presented in an
analytical form are required for many applications, e.g., for
estimating the lifetimes of the ion beams in accelerators,
determining the mean ion charges in penetrating ions
through gaseous targets, and so forth (see also Section 6).

5. Target density effects

The target density (or gas±solid) effect was discovered
experimentally and described by Lassen [139, 140] in measur-
ing the charge-state fractions of a uranium ion beam passing
through carbon foils and gas targets, and later [141] in
experiments on comparing the stopping power of ion beams
in gaseous and solid media. Initially, the term `target density
effect' was introduced to indicate the increase in the
equilibrium mean charge of ion beams penetrating through
solid targets, as opposed to gaseous ones. The first theoretical
models for interpretation of the effect considered on the ion
charge-state fractions and stopping power were constructed
in Refs [123, 142]. Later on, with the development of the
accelerator technique, experimental and theoretical investiga-
tions of the density effect have been continued in Refs [27,
143±146]. At the present time, the term `target density effects'
is regarded in a wider sense, meaning also their influence on
the effective cross sections of atomic processes, on the
stopping power of ion beams in a dense media, on equili-
brium charge states of ion beams passing through a plasma or
foil targets, and so on.

In the previous sections of this review, charge-changing
processes (electron capture and electron loss) occurring in
binary ion±atom collisions were considered, namely at low
target densities. However, the collision frequency increases
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Figure 11. Recommended electron-capture (EC) and electron-loss (EL) cross sections of U28� ions colliding with H2 (a), N2 (b), and Ar (c) targets as a

function of ion energy, solid curves [76]. Experiment, figures a, b: EC cross sectionsÐblack circles [82], black squares [100]; EL cross sectionsÐwhite

circles [82], white triangles [100], white squares [138]. Experiment, figure c: EC cross sectionsÐblack triangle up [44], black square [100], black triangle

down [45]; EL cross sectionsÐwhite triangle up [44], white square [68], white triangle down [45].
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with increasing target density, and the time intervals between
two neighboring collision events become shorter than the
lifetime of the projectile excited states, so that a considerable
part of the ions, already in excited states, undergo further
collisions with the medium particles. Excited ions cannot be
stabilized by transitions into lower quantum states through
the radiative or other mechanisms because they are ionized at
ensuing collisions with the target particles.

As a result of target density effects, the electron-capture
cross sections decrease with increasing target density, while
the electron-loss ones increase. These properties have been
revealed experimentally in Refs [145, 147, 148]. The combined
influence of both ion±atom collision peculiarities, as is seen
below, leads to an increase in the equilibrium ion charge in a
more dense medium.

5.1 Influence of target density effects
on electron-capture cross sections
For simplicity, let us consider the influence of target density
effects on electron-capture cross sections for a charge-
exchange reaction when the resulting ion is created in a state
with a specific principal quantum number n:

X q� �A! X �qÿ1����n� �A� ; �55�

where the asterisk stands for an excited state.
In a low-density medium (a rarefied gas), the X �qÿ1���n�

ions are created in all possible quantum states n: from the
ground n0 up to highly excited states n4 1; then, the total
electron-capture cross section has the form of the sum taken
over all n-states:

stot�v� �
X1
n�n0

sn�v� : �56�

As the target density increases, a certain number of ions
emerge in the state with the maximum principal quantum
number ncut, so that the X �qÿ1���n� ions with n > ncut are
ionized by the medium particles in subsequent collisions, and
X �qÿ1���n� ions with n4 ncut are stabilized via radiative
transitions to the ground state. Then, the total electron-
capture cross section with account for the density effects,
sDE, is defined by sum (56) over n but with the finite upper
limit:

sDE
tot �v� �

Xncut
n�n0

sn�v� : �57�

Therefore, the number of `surviving' X �qÿ1���n� ions
decreases with the target density increasing, resulting in a
capture cross-section reduction.

The cut-off parameter ncut can be estimated from the
equation of balance between ionization rate and the prob-
ability of radiation decay of the excited state:

rTvsEL�ncut� � A�ncut� ; �58�

where rT denotes the target density, sEL is the electron-loss
(ionization) cross section of the X �qÿ1���n� ion by the target
atoms, andA�n� is the total radiation decay probability of the
excited n-state.

Using the classical Thomson formula for ionization cross
section sEL and the classical Kramers formula for the total
decay probability A�n�, one can estimate the dependences of

the ncut quantity on the atomic parameters (see Ref. [65]):

sEL � Z 2
Tn

2

q 2v 2
; A�n� � q 4

n 5
;

�59�

ncut � q

�
1018

Z 2
T rT �cmÿ3�

�1=7�
v 2

10q 2

�1=14

� q

�
1018

Z 2
T rT �cmÿ3�

�1=7�
E �keV=u�
250q 2

�1=14

;

where E is the projectile energy. As is seen, the target density
effects are large (i.e., ncut is small) when the density rT and the
target nuclear charge ZT are large, and also when the
projectile charge q and energy E are small. Although formula
(59) is approximate, it exhibits the main dependences of the
cut-off parameter ncut on the target density and other atomic
parameters. In practice, a more strict condition for the `dense'
target may be set for a more accurate estimation of the ncut
quantity:

rTvsEL�ncut�
A�ncut� 4 d ; �60�

where d is a constant, d > 1. For example, if d � 10, then 90%
of ions with the principal quantum number ncut are ionized,
and 10% are radiatively stabilized into the ground state. The
cut-off parameter ncut has a weak dependence on d,
ncut � d 1=7, as follows from formula (59).

The ionization rate rvs and the total radiative decay
probability into the ground 1s-state of O6��n� ions created
in electron capture reaction O7��He! O6��n��He� at
energy E � 3:2 MeV/u are plotted in Fig. 12 as a function of
the principal quantum number n at helium densities r � 1013

and 1019 cmÿ3. As seen from the figure, the maximum
principal quantum number ncut of the resulting O6� ions is
ncut � 30 at r � 1013 cmÿ3, whereas the ncut value at
r � 1019 cmÿ3 is much lower: ncut � 3. The increasing of the
target density leads to a reduction of the capture cross section
to about one order of magnitudeÐ from 5:5� 10ÿ16 to
8:0� 10ÿ17 cm2 (see Ref. [149] for details).
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Figure 12. (Color online.) Electron-loss (ionization) rate rvs (curves 1, 3)

and the total radiative decay probability A�n� (curve 2) for the n-states of
the O6��n� ions created in the electron-capture reaction O7� �He!
O6��n� �He� at E � 3:2MeV/u as a function of n: curve 1 for the helium

density r � 1013 cmÿ3, and curve 3 for r � 1019 cmÿ3 [149]. The crossing
points show maximal principal quantum numbers ncut with which O6�

ions survive in collisions with helium atoms at two different He densities

[see formula (57)].
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Numerical calculations of electron-capture cross sections
showed that the reduction of the cross sections due to the
density effects can be very large (more than 10 times)
depending on the cut-off parameter ncut which, in turn, is a
function of the ion energy and electronic structure of colliding
particles. In other words, the absolute target density can be
small but the target density effects are large.

5.2 Influence of target density effects
on electron-loss cross sections
Similar formulas as derived in previous Section 5.1 for
electron-capture cross sections with due regard for target
density effects can be obtained for electron-loss cross sections
(projectile ionization):

X q��n0� �A! X �q�1�� �A� eÿ ; �61�
where n0 denotes the principal quantum number of the
projectile ground state, and A is the target atom.

As the target density increases, electron-loss processes will
include, besides ionization from the ground n0-state, ioniza-
tion from excited n-states of the projectile ions created due to
collisions with the target atoms, so that the total ionization
cross section sDE

ion �v� of the projectile ion X q��n0� with the
density effects included can be written out as

sDE
ion �v� � sion�n0� �

X
n>n0

sion�n�B�n� ; �62�

B�n� � rTvsex�n0 ÿ n�
A�n� � rTvsde-ex�nÿ n0� � rTvsion�n�

; �63�

where B�n� denotes the branching ratio of the excited level n,
sion�n0; n� are ionization cross sections from the n0 and n
levels without regard for the density effects, sex�n0 ÿ n� and
sde-ex�nÿ n0� denote, respectively, excitation and deexcita-
tion cross sections of the projectile by the target atoms, and
A�n� is the total radiative decay probability of the n-state. The
sex and sde-ex quantities for the n0 ÿ n1 transition are related
by the Klein±Rosseland formula [150]

g0

�
v 2

2
� DE

�
sde-ex

� ������������������
v 2 � DE

p �
� g1

v 2

2
sex�v� ; �64�

where DE denotes the excitation energy for the n0 ÿ n1
transition, and g0; 1 are the statistical weights of the initial
and final states: g0 � 2n 2

0 , and g1 � 2n 2
1 .

Taking into consideration that v 2 4DE for fast ions, and
that

sion�n� � n 2 ; sex�n0 ÿ n� � nÿ3 ; sde-ex�n0 ÿ n� � nÿ1 ;
�65�

the B�n� ratio can be written out in the form

B�n� � rTvsion�n�
A�n� � rTvsion�n�

: �66�

Using estimates (65) and assuming that themain contribution
to sum (62) is made by excitation to and ionization from the
resonance level nr (i.e., electric-dipole-allowed transition to
the ground state n0), one finally arrives at the following
expression for the electron-loss (ionization) cross section,
including the density effects:

sDE
ion �v� � sion�n0� � sex�n0 ÿ nr�B�nr� ; �67�

where sex�n0 ÿ nr� denotes the excitation cross section for the
resonant transition n0 ÿ nr, and nr is the principal quantum
number of the resonance level, and the B�nr� coefficient is
defined in relation (66).

Equation (67) shows the main dependences of the loss
cross section on the target density and other parameters, and
can easily be generalized to the case of ionization from levels
with the orbital quantum numbers nl [149].

For low-density targets (a rarefied gas), the branching
ratio B! 0 and the electron-loss cross section is given by the
`usual' formula for binary collisions:

sDE
ion �v� � sion�n0� ; rT ! 0 ; B! 0 : �68�

For very dense targets (solid state), the coefficient B! 1 and
the loss cross section is defined by the sum of ionization cross
section from the ground state and excitation cross section
from the ground state to the resonance one:

sDE
ion �v� � sion�n0� � sex�n0 ÿ nr� ; rT !1 ; B! 1 :

�69�

Since

sion�n0� � sex�n0 ÿ nr� ; �70�

from Eqn (69) it follows that the electron-loss cross section of
ions in a dense medium is roughly two times higher than that
in the low-density medium. Let us recall that, under the
conditions of electron capture, the density effects lead to
much significant change in the cross sectionÐ to its reduction
by more than 10-fold.

The mutual change in electron loss and capture cross
sections, considered above, gives a qualitative explanation of
increasing the equilibriummean charge for ion beams passing
through a dense medium. This statement is illustrated in
Fig. 13, where the charge-changing cross sections are
presented for heavy uranium ions penetrating through a
dense plasma target (see Ref. [151]). The ion charges
corresponding to the crossing points of the solid curves in
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Figure 13. (Color online.) Electron-capture and electron-loss cross

sections for 11-MeV/u uranium ions passing through a dense carbon

plasma (r � 5� 1019 cmÿ3) as a function of uranium ion charge q [151].

Curves 1 and 2Ðelectron-loss cross sections calculated with and without

regard to density effects, respectively, and curves 4 and 3Ðthe same for

electron-capture cross sections. Arrows indicate the equilibrium charges

hqiDE and hqi obtained with and without regard to the density effects,

respectively. The experimental value is hqiexp � 63� 1.
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the figure are the equilibrium mean charges hqi, i.e., when
both processes are in equilibrium. Taking account of the
density effects in calculations leads to an increase in the
equilibrium mean charge and better agreement with experi-
mental data.

Therefore, to describe the charge-changing processes
occurring in a gas, plasma, or solid-state medium, the
standard formulas for effective cross sections, generally
speaking, cannot be applied, and one has to refer to formulas
taking account of the density effects [see formulas (57), (62),
and (63)].

6. Lifetimes of ion beams in accelerators

One of the main applications of the charge-changing cross
sections is the determination of the lifetime t for heavy-ion
beams injected into an accelerator, where t is defined by

I�t� � I0 exp

�
ÿ t

t

�
; �71�

where I0 denotes the initial intensity of the injected ion beam,
and I�t� is its time evolution. The lifetime t depends on the so-
called vacuum conditions, i.e., pressure and concentrations of
the rest-gas components in the accelerator, and also on the ion
energy and the charge-changing cross sections of beam ions
colliding with the rest-gas atoms andmolecules, usually being
H2, He, O2, N2, H2O, CO, CO2, CH4, and Ar. For estimation
of the vacuum conditions, the concentrations Y of the
`reference' atoms and molecules (H2, N2, Ar) in accelerators
are often used with the following magnitudes: Y�H2� �
70ÿ90%, Y�N2� � 20ÿ30%, and Y�Ar� � 1ÿ3%.

For estimating the ion±beam lifetime in an accelerator,
the following formula is commonly used:

t �
�
rbc

X
T

YT

ÿ
sEC�q; v;ZT� � sEL�q; v;ZT�

��ÿ1
;

X
T

YT � 1 ;
�72�

where r denotes the rest-gas density, b � v=c is the relativistic
factor, q and v are the charge and velocity of the projectiles,
ZT and YT are the nuclear charge and concentration of the
rest-gas components, and sEC and sEL are the total, i.e., with
account for multielectron processes, electron-capture and
electron-loss cross sections of ion±target collisions.

In real conditions, the rest-gas density r and concentra-
tions YT take on different values in different points of the
accelerator volume and are also time-dependent. Moreover,
the rest-gas atoms and molecules can be ionized by the beam
ions, leading to a change in their interactions with the
projectiles, and to so-called dynamic vacuum effects arising
in the accelerator at very high beam densities [42]. All these
circumstances restrict the application of the beam lifetime
(72) but, as a rule, it gives satisfactory results when estimating
the ion-beam lifetimes in accelerators and storage rings.

As an example, experimental data on U28�-ion beam
lifetimes as a function of the ion energy at specified vacuum
conditions are shown in Fig. 14 in comparison with
theoretical calculations (see paper [76]); the vacuum para-
meters employed in calculations are indicated in the figure. In
estimating the ion-beam lifetimes, the recommended cross
sections given in Fig. 11 were used together with the

calculated results for C and O targets. The figure demon-
strates quite the good agreement between theory and
experiment conducted at the SIS18 synchrotron heavy-ion
source in Darmstadt. We note that in the energy range
considered, E > 9 MeV/u, the electron-capture cross sec-
tions of U28� ions colliding with the rest-gas atoms and
molecules are negligible compared to electron-loss cross
sections.

For relativistic energies, E > 5 GeV/u, the calculated
lifetime of the uranium beam is predicted to be a constant of
about 13 s for the vacuum parameters considered. From
Fig. 14 it is also seen that the use of semiempirical formulas
for electron-capture (12) and electron-loss (34) cross sections
gives a reasonable estimate for the ion-beam lifetime over a
wide energy range, including relativistic energies.

As appears from the above concerning formula (72), the
ion-beam lifetime in accelerators depends on the vacuum
parameters and charge-changing cross sections of ions. In
practice, however, simultaneous measurements of ion-beam
lifetimes and residual-gas density and concentrations is a
difficult problem, but one can turn to solving the inverse
problemÐnow to estimate the vacuum conditions from ion
lifetimes and charge-changing cross sections known from
theory or experiment.

The 11.4-MeV/uU q�-ion beam lifetimes t as a function of
the ion charge q are presented in Fig. 15. Experimental data
on t were obtained at the SIS18 heavy-ion synchrotron,
Darmstadt, for charges q � 34ÿ42, but the vacuum condi-
tions were not known properly (see report [153]). Utilizing the
charge-changing cross sections of uranium ions calculated by
the CAPTURE, DEPOSIT, and RICODE programs, and
experimental data on t, the estimated vacuum parameters
were found: r � 1:5� 10ÿ10 mbar, Y�H2� � 75%, Y�N2� �
24%, and Y�Ar� � 1%, i.e., a good agreement with experi-
mental ion-beam lifetimes was reached with these vacuum
parameters and cross sections. The vacuum parameters
obtained this way are close to expected parameters at the
SIS18 synchrotron ion source. Here, the key role of electron
capture processes at the ion energy E � 11:4 MeV/u con-
sidered should be noted: their inclusion leads to a decrease in
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Figure 14. U28�-ion beam lifetimes as a function of ion energy at a gas

pressure in the vacuum chamber about 10ÿ10 mbar and rest-gas concen-

trations shown in the figure. Experiment: black circles [152], and white

circles [138]. Theory: the result of using formula (72) with electron-loss

cross sections obtained with the CTMC code; RICODEÐsame but with

electron-loss cross sections obtained with the RICODE program; dashed

curveÐobtained by using formula (72) with semiempirical formulas for

electron-capture (12) and electron-loss (34) cross sections.
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the ion-beam lifetimes for uranium ions with charges q > 60,
and neglecting the capture processes causes an infinite
increase in t with increasing ion charge. Therefore, the
uranium U q� ions with charges q � 60 are the best candi-
dates for detection of the longest ion-beam lifetime t � 25 s at
the energy E � 11:4 MeV/u.

Certainly, the solution of the inverse problem considered
here is not unambiguous, but the procedure for estimation of
the vacuum parameters may be useful for interpretation of
experimental data and planning future experiments with
heavy many-electron ion beams in accelerator facilities.

7. Charge exchange in slow collisions

In this chapter, charge-exchange process in slow ion±atom
collisions are considered, where the collision velocities are
small, v5 1 a.u., and the motion of nuclei can be treated
classically. Slow collisions are of special interest, both from
the experimental (processes in low-temperature plasmas) and
theoretical points of view. A characteristic feature of slow
collisions is the formation of quasimolecules, while the
internuclear distance between the interacting particles is
decreasing. The study of the mechanisms and probabilities
of electron transitions in such collisions has resulted in the
development of new theoretical approaches and methods.
The most common is the adiabatic approximation based on an
approximate separation of the `fast' (electron motion) and
`slow' (motion of nuclei) variables of a dynamical system.

The fundamentals of the adiabatic approximationÐ the
approximate separation of the electronic, vibrational, and
rotational degrees of freedom in molecules, and the solution
of the nonstationary SchroÈ dinger equation with the Hamilto-
nian slowly changing in timeÐwere laid in Refs [154, 155].
Investigations of the probability of nonadiabatic transitions
have been performed in several papers using different
theoretical approaches [156, 157], solving model problems
[158], and considering the quantum motion of interacting
particles [159].

The development and application of the adiabatic
approach for the calculation of the excitation, charge
exchange, and ionization cross sections in slow atom±atom
and atom±molecule collisions have been the subject of several

monographs and reviews [2, 160±164]. The growing interest in
slow ion±atom collisions due to creating installations with
magnetic plasma confinement has led to a number of studies
[165±169] where exactly solvable models were considered.
These models allowed exploring a large number of specific
physically important processes and creating the theory of
adiabatic transitions in slow collisions, which treats them as
standard problems [13, 170].

In this article, the charge exchange process is considered in
the framework of the adiabatic theory [13, 170], where the
transitions between electronic states of colliding particles are
described by the nonstationary SchroÈ dinger equation in the
classical approximation to nuclei motion:

H�R�c�r; t� � i
qc�r; t�

qt
;

where r is a set of electron coordinates, and H�R� is the
electronic Hamiltonian of a diatomic quasimolecule, depend-
ing on time only through internuclear distanceR � R�vt� (v is
the relative velocity of the nuclei), which is a known function
of time.

In the most common form, the adiabatic approximation
comprises an asymptotic expansion of the solution to the
nonstationary SchroÈ dinger equation in a small parameter v.
In this approximation, the electron wave function is sought
for in the form of the expansion

c�r; t� �
X
p

gp�t�jp�r;R� exp
�
ÿi
� t

Ep

ÿ
R�vt 0��dt 0�

in the eigenfunctions jp of the instantaneous electronic
Hamiltonian

H�R�jp�r;R� � Ep�R�jp�r;R� ;

which depend on R as on the parameter entering into
Hamiltonian. The eigenvalues Ep�R� have several names in
the physics of atomic collisions: molecular potential curves,
adiabatic potential curves, or simply potential curves. In this
representation, the adiabatic approximation is reduced to the
calculation of the leading terms of the expansion coefficients
gp�t� when v! 0.

The ARSENY code was created for numerical calculation
of the charge exchange cross sections [171]. This code is based
on the method of hidden crossings of the electronic potential
curves, which are the eigenvalues of the two-center Coulomb
problem [172]. Along with the hidden crossings method,
programs that are based on the close coupling methods
[173±178], the electron nuclear dynamics [179], and the
solution of the three-body Coulomb problem [180] are also
used for calculating the charge exchange cross sections in slow
collisions.

In low-temperature plasmas (edge plasma and plasma in a
divertor of tokamaks and stellarators), charge exchange is the
dominant process in the population of the excited states of the
plasma ions and, therefore, plays an important role in ion
charge distribution, radiative cooling, and the transport of
particles. Experiments on cold plasma diagnostics have
shown that the simulation of such a plasma needs considera-
tion of the resonant charge exchange (RCE) between highly
excited states of the plasma particles (H, He) and plasma
impurities (Li, Be, C, W) [181, 182], which requires develop-
ment of the theory of RCE between excited states. Such a
theory was developed for slow collisions of protons with
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excited hydrogen atoms, since the state of an arbitrary atom
with one excited outer-shell electron can be approximately
described in the hydrogen approximation with an effective
charge of the atomic core.

Below, two processes are considered in detail: the
resonant charge exchange in slow collisions of protons with
hydrogen atoms in the excited state, and the charge exchange
between heavy ions and hydrogen isotopes. These processes
have been selected for a detailed description because of the
novelty of the theoretical approach to calculating the RCE
cross sections and of the effect which occurs in reactions
involving hydrogen isotopes H, D, and T.

7.1 Resonant charge exchange
between protons and hydrogen atoms
In this section, the RCE in slow collisions (the center-of-mass
energy E4 1 a.u. � 27:202 eV) of a proton with an excited
hydrogen atom is discussed. Recent experiments on cold
plasma diagnostics have shown the necessity of including the
RCE between excited states in plasma simulations [179, 180].
RCE between the ground (initial and final) states of the
hydrogen atom in slow collisions is described by the Firsov±
Demkov theory [165, 183] and has been well studied
theoretically [175, 184, 185]. However, this theory does not
apply to describing excited states, due to their degeneration.
Indeed, there is now a limited amount of data for RCE cross
sections involving excited degenerate states, which were
calculated by the close coupling method [173, 174], while for
energies below 1 a.u. there is virtually no data.

The theory of RCE between excited states, which is an
extension of the Firsov±Demkov theory to the case of
degenerate initial and final states, was first developed and
described in paper [186]. On the basis of this theory, the RCE
computer code (Resonant Charge Exchange) was created,
and the charge exchange cross sections for energies of less
than 1 a.u. were obtained initially for the reaction

H�n � 2� �H� ! H� �H�n � 2� : �73�

7.1.1 Resonant charge exchange in p±H collisions involving
ground-state hydrogen atoms. To illustrate the reliability of
the suggested method of calculating the RCE cross sections
between degenerate excited states, we start from the well-
known case of n � 1 and compare the results obtained with
available data. The method aimed at calculating the RCE
cross sections for the reaction

H�n � 1� �H� ! H� �H�n � 1� �74�
at low collision energies was developed by Firsov [183]. His
theory gives the following semiclassical expression for the
RCE cross section:

s � 2p
�1
0

sin2
��1

b

Eg�R� ÿ Eu�R�
2v

�����������������
R 2 ÿ b 2
p R dR

�
b db ; �75�

where R is the internuclear distance, b is the impact
parameter, v is the relative velocity, and Eg�R� and Eu�R�
are the electron energies (eigenvalues of the two-center
Coulomb problem [172]) corresponding to gerade (even)
and ungerade (odd) states shown in Fig. 16a. Parity of the
electronic state described by spheroidal quantum numbers
nZ, nz, and m is defined as �ÿ1�nZ [172].

Firsov's theory provides a method for calculating the
RCE, but does not describe the mechanism of electron

transition. Demkov considered the more general problem of
quasi-resonance charge exchange [165], when the energies of
the initial and final states differ by a small value DE. Using an
exactly solvable Rosen±Zener model [187], he developed a
theory which is widely applied in the physics of atomic
collisions. In this theory, diabatic states correspond to the
states of separated atoms, whereas adiabatic ones correspond
to the molecular states. The adiabatic states coincide with the
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distance. The electron charge exchange transition via the Demkov
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results from Ref. [185]; region of convergence of quantum and quasiclas-

sical calculations is shown in figure c in detail.
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diabatic states as R!1. The nonadiabatic interaction as a
function of the internuclear distance has a maximum, when
the diabatic (atomic) states rearrange into adiabatic (mole-
cular) states. At this point in time, electron transition occurs.
Thus, the Demkov theory describes the general mechanism of
the charge exchange in the quasiresonance case. It is
important to note that this theory in the limit of DE � 0
gives a result coinciding with formula (75) obtained by Firsov
[183].

Considering one-electron collision reaction (74) allows a
much more advanced analysis, since the variables of the two-
center Coulomb problem are separable in the prolate
spheroidal coordinates [172]. The adiabatic theory of transi-
tions in slow collisions inZ1ÿeÿZ2 electronic systems, where
Z1 and Z2 are the effective charges of the nuclei, was
developed by Solov'ev [13, 170]. It has been shown that in
the quasiresonance case, j1ÿ Z1=Z2j5 1, corresponding to
small values of DE, the so-called P series of hidden crossings
responsible for the Demkov mechanism exists [186]. The
Solov'ev theory does not describe the RCE in symmetric
systems withZ1 � Z2, since the even and the odd states in this
case do not interact and there are no hidden crossings
connecting the corresponding electron energy surfaces in the
plane of complex R values. Nevertheless, the Demkov theory
is applicable to a more general class of collision systems
describing the resonance case �DE � 0�, as well. Thus, in
Ref. [186] it was concluded (this should be considered as a
plausible assumption rather than a proven statement) that the
transitions in the RCE process are localized in the regions
where the atomic states rearrange into molecular ones. This
happens near the point R0, where the even and odd states
become approximately degenerate. Using the semiclassical
approximation [170], the R0 value can be estimated from the
following equation

R 2
0E�R0� � 2lu�R0� � 4

��������������
lu�R0�

p
� 0 ; �76�

where E�R� and lu�R� are the electron energy and the
separation constant for the odd state. In Fig. 16a, the region
near the point R0 for the case n � 1 is indicated by a circle.

Quantum representation of equation (75) has the follow-
ing form [184, 185]:

s � p

�vm�2
X1
L�0
�2L� 1� sin2 ÿdg�L� ÿ du�L�

�
; �77�

where dg; u�L� is the scattering phase shift, m is the reduced
mass, and L is the angular momentum associated with the
internuclear axis. Starting from pioneering works [184] and
[185], the RCE cross section for reaction (74) has been
calculated using equation (77) and its energy dependence
has been studied in detail (see, e.g., paper [175]). In this
approach, the nuclei of the colliding particles (protons) were
treated classically. To our knowledge, only one fully quantum
calculation exists of the cross section for quasiresonance
charge exchange between hydrogen atom in the ground state
and deuteron, which is based on the solution of the three-
body Coulomb problem [178].

In paper [186], the RCE cross sections for reaction (74)
were calculated using the Firsov method in three different
ways. The first one is semiclassical, and the cross section is
defined by formula (75). The other two methods utilize
formula (77), but the scattering phase shifts are calculated in
different ways: in the quantum approachÐby solving the

stationary SchroÈ dinger equation

d2

dr 2
cg; u�R� �

�
2m
�
1

R
� Eg;u�R� ÿ ecm

�
� L�L� 1�

R 2

�
� cg; u�R� � 0 ; �78�

while in the semiclassical approach the scattering phase shifts
are given by [189]

dg;u�L��
�1
Rt

" ���������������������������������������������������������������������������
2m
�
ecmÿ 1

R
ÿ Eg;u�R�

�
ÿ �L� 1=2�2

R 2

s
ÿ k

#
dR

� p
2

�
L� 1

2

�
ÿ kRt ; �79�

where m is the reduced mass, ecm is the collision energy in the
center-of-mass frame, Rt is the turning point, and
k � ������������

2mecm
p

. The results of calculations [186] are shown in
Fig. 16b, c.

The calculated results are converged with respect to all
numerical parameters. A comparison of the calculated cross
sections with the results presented in Ref. [185] (dots in
Fig. 16b) shows good agreement over the whole energy
range, except for small differences in the cross sections at
low energies. This difference is due to the inclusion of
nonadiabatic corrections to the potential [185]. The oscilla-
tions of the cross sections and positions of the orbiting
resonances (the values of orbital momentum L were ascribed
to some of the resonances in Fig. 16b) are in very good
agreement with the data reported in Refs [175] and [190].
Quantum calculations take a considerable time with an
increase in energy, and a good convergence of the quantum
results to quasiclassical ones (Fig. 16c) allows us to use the
semiclassical dg; u�L� for the RCE cross section calculations
beginning from an energy of about 0.017 a.u. Cross sections
evaluatedwith formula (75) (dotted line) do not reproduce the
oscillatory structure and meet with the two others at a
collision energy of about 1 a.u.

7.1.2 Resonant charge exchange in p±H collisions involving
hydrogen atoms in the excited n � 2 state. As an example of
RCE between excited degenerate states, we consider the
following reaction

H�n � 2� �H� ! H� �H�n � 2� : �80�

Figure 17a depicts the electron energies for six states
converging to the n � 2 level in the limit of the far removed
atoms �R!1�, which are relevant for a discussion of this
reaction. In the limit of separated atoms, the principal
quantum number n is expressed in terms of spheroidal
quantum numbers nZ, nx, and m of the electronic state as
follows:

n � nx �
�
nZ

2

�
�m� 1 ; �81�

where �a� denotes the integer part of a. In this limit, the
spheroidal coordinates are transformed into parabolic coor-
dinates, and the correspondence between spheroidal
�nZ; nx;m� and parabolic �n1; n2;m� quantum numbers is
given by the formulas [172]

n1 � nx ; n2 �
�
nZ

2

�
: �82�
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First of all, we note that the electronic states displayed in
Fig. 17a can be divided into three pairs each consisting of even
and odd states with the same values of nx andm. Within each
pair, the nZ value of the odd state exceeds nZ of the even state
by unity; hence, both states are described by the same set of
parabolic quantum numbers n1, n2, and m as R!1. It
should be noticed that the degeneracy within the pair occurs
at much smaller internuclear distances than that between

pairs. In what follows, such a pair of states will be called
degenerate. In Fig. 17a, the states belonging to the same
degenerate pair are shown by the same line style.

The approach to the calculation of the RCE cross section
in reaction (80) is as follows: electron transitions within the
degenerate pairs are treated applying the Firsov±Demkov
theory, while the interaction between different pairs conver-
ging to the level with n � 2, as well as their interaction with
states converging to the different n-states, are neglected. In
the adiabatic approximation (slow collisions), this approach
is justified by the fact that the regions of localized electron
transitions in degenerate pairs (circles in Fig. 17a), described
by the Demkov mechanism, are separated well by the
internuclear distance. A similar approach found application
in Ref. [191] for calculations of the cross sections of
quasiresonant charge exchange between the n � 2 states,
where the Demkov interaction inside each pair of quaside-
generate states was taken into account, and all other
interactions were neglected. The results obtained in
Ref. [191] are in good agreement with the available exact
quantum results [192], where the same three-body Coulomb
system was considered. This fact offers an additional
independent argument supporting the present approach.

RCE cross sections between parabolic states with n � 2
and m � 0 and 1 are plotted in Fig. 17b, c. Cross sections
corresponding to electron transitions between parabolic
010ÿ010 and 001ÿ001 states reveal a resonance structure
and increase as the collision energy decreases, whereas the
cross section of the 100ÿ100 transition does not have
resonances and decreases. Figure 18a demonstrates the
potentials

U�R� � 1

n 2
� 1

R
� Eg;u�R�

for the three pairs of spheroidal states. It can be seen from the
figure that the potentials of the 010 and 110 states are
repulsive. The turning point Rt [internuclear distance
whereat the argument of the square root in formula (79)
becomes zero] moves to the right as the energy decreases.
When Rt becomes larger than 10 a.u. (R0 for these states),
which happens at an energy of about 0.02 a.u., the cross
section decreases rapidly, as is evidenced in Fig. 17b. Several
resonances in the transition between parabolic states
010ÿ010 and the corresponding orbital momenta L are also
indicated in Fig. 18b.

The potentials of the form

U�R� � 1

n 2
� 1

R
� Eg;u�R� � L�L� 1�

2mR 2

for the spheroidal 200 and 300 states and the orbital
momentum L � 90 are plotted in the inset. In the potential
of the 200 state there is a barrier which causes the first orbital
resonance in Fig. 18b. Since the collision energy EL�90
corresponding to this resonance is very close to the top of
the barrier, the resonance width is quite large. We studied the
convergence of the RCE cross sections between parabolic
010ÿ010 states calculated using formula (77) with the
quantum and semiclassical phase shifts dg; u�L�, and the
convergence of the cross sections defined by formulas (75)
and (77). Analysis of the results leads to the following
conclusion: it is possible to calculate the RCE cross sections
using formula (77) with the semiclassical phase shifts dg; u�L�,
starting from a collision energy of about 0.008 a.u., and to
apply formula (75) from 2 a.u.
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Figure 17. (Color online.) (a) Electron energies of the even (thick lines) and

odd (thin lines) states participating in the RCE reaction

H�n � 2� �H� ! H� �H�n � 2� as a function of the internuclear

distance. Electron transitions due to the Demkov mechanism occur in

the circled regions defined by formula (76). (b, c) RCE cross sections of

the reaction H�n1; n2;m� �H� ! H� �H�n1; n2;m� as a function of

the center-of-mass collision energy for parabolic states 010 (b), 100 (b),

and 001 (c): solid linesÐ formula (77) with the quantum dg; u�L�;
dashed linesÐ formula (77) with quasiclassical dg; u�L�; dotted linesÐ

formula (75).
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The transformation from parabolic to spherical coordi-
nates is accomplished by utilizing the Clebsch±Gordan
coefficients [189]. The RCE cross section between spherical
nlmÿnl 0m states can be represented as follows:

snlmÿnl 0m�v� � p

�vm�2
X1
L� 0

�2L� 1�

�
����X
n1n2m

c�n1n2mÿnlm�An1n2m�L� c�n1n2mÿnl 0m�
����2 ; �83�

where

An1n2m�L� � sin
�
dg�L� ÿ du�L�

�
exp

�
i
ÿ
dg�L� � du�L�

�� �84�
is the RCE amplitude in parabolic coordinates, and

c�n1n2mÿnlm� � �ÿ1�n1�m
������������
2l� 1
p �

�
nÿ 1

2

nÿ 1

2
l

n2 ÿ n1 �m

2

n1 ÿ n2 �m

2
ÿm

0BB@
1CCA : �85�

The second summation in expression (83) is performed over
parabolic states with the same quantum numbers n and m.

As a result, we obtain RCE cross sections for the following
transitions: 2s0ÿ2s0, 2p0ÿ2p0, 2p0ÿ2s0, and 2p1ÿ2p1.
Because of the properties of the Clebsch±Gordan coeffi-
cients, the cross sections of 2s0ÿ2s0 and 2p0ÿ2p0 transi-
tions are equal; they are displayed in Fig. 19a. The point in
the figure marks the cross section of the 2s0ÿ2s0 transition
at velocity v � 0:1 a.u., calculated by the semiclassical close-
coupling method [173]. The difference of about 30%
between present calculations and the data from Ref. [173]
can be explained by the fact that our method does not take
into consideration some other processes (nonresonant
charge exchange, excitation, and ionization), whose prob-
abilities become significant with an increase in the collision
energy.

The cross sections of 2s0ÿ2s0 and 2s0ÿ2p0 transitions
are displayed in Fig. 19b. The results are compared with the
total cross section of the transition from the 2s0 state at a
collision velocity of 0.05 a.u., which was calculated in the
molecular close-coupling approach [174]. The difference of
9% means that at this velocity the contribution from the
processes, which we do not account for, decreases in
comparison to their contribution at a collision velocity of
0.1 a.u. As far as we know, there are no other data for the
energy range considered. The RCE cross section of the
2p1ÿ2p1 transition (Fig. 17c) does not change during the
transformation from parabolic to spherical coordinates.
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Figure 19. (Color online.) (a) RCE cross sections of the H�n; l;m� �H� ! H� �H�n; l;m� reaction as a function of the center-of-mass collision energy

for the spherical 2s0 and 2p0 states: solid lineÐ formula (77) with the quantum dg; u�L�; dashed lineÐ formula (77) with quasiclassical dg; u�L�; dotted
lineÐ formula (75); dotÐ result from Ref. [173]. (b) Total RCE cross section of the H�2s0� �H� ! H� �H�2s0; 2p0� reaction as a function of the

center-of-mass collision energy for the spherical 2s0 and 2p0 states: solid lineÐ formula (77), dotted lineÐ formula (75); dotÐ result from Ref. [174].
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(b) Orbital resonances in the RCE cross sections as a function of the center-of-mass collision energy for parabolic 010ÿ010 states. Inset: potentials
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Figure 20 illustrates the validity of the theory, developed
in work [186] for the case of n � 2 states, for an arbitrary
excited state. This figure shows the electron energies of the
excited degenerate states of atomic hydrogen in the following
RCE process:

H�n � 7;m � 0� �H� ! H� �H�n � 7;m � 0� : �86�

As is seen from the figure, the system of 14 electronic
states is split into 7 pairs of even and odd states, and the
regions of transitions within each degenerate pair (circles in
the figure) are well separated by the internuclear distance.
This means that the approach proposed can find application
at collision energies such that the processes due to the
interaction between pairs may be neglected.

7.2 Isotope effects in charge exchange reactions
involving hydrogen isotopes
In this section, we consider the influence of the isotope effect
(mass dependence) on the charge exchange process in slow
collisions of Li, C, and W ions (materials used for plasma
facing components in fusion devices) with hydrogen isotopes
(H, D, and T). The isotope effect is studied in the framework
of the adiabatic theory of electron transitions in slow
collisions [13, 170]. Numerical results are presented below
for the probabilities and the cross sections of charge exchange
of Li, C, andW ions colliding with hydrogen isotopes, and for
the reverse reaction.

7.2.1 Mechanism of the isotope effect in slow collisions. The
isotope effect was first observed in collisions of alpha particles
�He2�� with H, D, and T atoms at very low energies
E � 1ÿ500 eV/u [193]. This effect is due to the rotational
mixing of the electronic states at small internuclear distances
R. Rotational interaction mixes the pairs of electronic
states with the same principal and orbital quantum numbers n
and l, with the same parity, and with magnetic quantum
numbers differing by unity �Dm � �1�. The amplitude of the
m-changing transition caused by rotational interaction
depends on the trajectory of the colliding particles, which, in
turn, depends on their reduced masses: the heavier the
isotope, the larger the charge-exchange cross section.

Nonadiabatic transitions caused by rotational interaction
between quasimolecular states degenerate in the united atom
limit �R � 0� are of interest from a theoretical point of view,
since they constitute non-Landau±Zener type transitions [13,
170]. The influence of the rotational coupling on the charge-
exchange cross sections in slow collisions was studied in
Ref. [193] for the He2� �H�1s� reaction. It was revealed
that for collision energies below 1 keV/u the main contribu-
tion to the charge-exchange cross section is made by
transitions caused by the rotational interaction in close
collisions.

A strong isotope effect due to rotational interaction was
observed and studied in Refs [193, 195, 196] for
He2� �H;D;T processes which are of considerable interest
for plasma modeling in fusion devices. These studies fell back
on the Electron Nuclear Dynamics (END) approach [179]
based on the solution of the time-dependent SchroÈ dinger
equation, with the trajectories of heavy particles determined
by a scattering potential that evolves in accordance with the
dynamics of the electrons.

The influence of the isotope effect on the charge exchange
in slow collisions of Li, C, and W ions with H, D, and T
isotopes was studied inRefs [197, 198] in the framework of the
adiabatic theory based on themethod of hidden crossings [13,
170]. The charge exchange process plays a key role in the
transport of the particles and forming the charge distribution
of the impurities in DÿT plasmas. In the theory of ion±atom
collisions, the adiabatic approximation is employed to
describe electron transitions, when the particle collision
velocity is small and the nuclear motion can be treated
classically. In this theory there are no assumptions of the
specific form of the electronic Hamiltonian, and only the
smallness of the relative nuclear velocity finds use. This results
in a deeper understanding of the nature of nonadiabatic
transitions.

Since the isotope effect shows itself at collision energies
where the adiabatic theory is applicable, the adiabatic
approximation is a natural theoretical tool for studying the
isotope effect. Numerical calculations of the charge exchange
probabilities and cross sections were performed using the
ARSENY computer code [171] based on the adiabatic
approximation. To find the amplitude of the m-changing
transition caused by the rotational interaction, the nonsta-
tionary SchroÈ dinger equation with the Coulomb nuclear
trajectory in the united atom limit was solved numerically.

7.2.2 Calculations of the charge-exchange cross sections in the
adiabatic approximation. To illustrate the applicability of the
adiabatic approach [197], let us consider the reaction

Li3� �H�D;T��1s� ! Li2��nl � �H�D;T�� : �87�

Figure 21a gives the energies of the electronic states for
reaction (87). These energies are the eigenvalues of the two-
center Coulomb problem [172], which is separable in the
longitudinal spheroidal coordinates and in our approach is
solved for the complex internuclear distance. In Fig. 21a, the
quasimolecular states are described by the spherical quantum
numbers of the united atom. In the adiabatic theory, the
charge exchange transitions occur at internuclear distances
where the electron wave function changes rapidly. This
happens when the nonadiabatic interaction reaches its
maximum.
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Figure 20. (Color online.) Electron energies of the even and odd

states participating in the RCE process H�n � 7;m � 0� �H� !
H� �H�n � 7;m � 0� as a function of the internuclear distance. Elec-

tron transitions due to theDemkovmechanism occur in the circled regions

defined by formula (76).
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Charge exchange transitions caused by radial coupling
occur in the hidden crossings (branching points) at complex
internuclear distances R, where the electronic energies of two
states are equal. The hidden crossings arise when the system
passes the state corresponding to the unstable periodic orbit.
Hidden crossings are invisible on the plot of the adiabatic
potential curves at real values of the adiabatic parameter R
(internuclear distance) and require direct calculations in the
complex R plane.

These `radial' transitions are indicated in Fig. 21a by
arrows Rad which connect the initial [H(1s) in the separated
atom limit] and the final states of the electron, and are located
at real R values of the corresponding hidden crossings.
Three transitions of this kind occur at internuclear
distances 1.5, 4, and 7 a.u. (we consider the resonance
channel Li 3� �H�1s� ! Li2��n � 3� �H� responsible for
the isotope effect). The electron transition occurring at
ReR � 1:5 a.u. does not contribute to the process of charge
exchange, since the corresponding hidden crossing belongs to
S series (called `superpromotion' of the diabatic term to a
continuum [13, 170]). This interaction couples pairs of
electronic states Enlm�R� and En�1 lm�R� and leads to emer-
ging an ionization process in the adiabatic approximation.
The other two transitions lead to a change in the charge state,
and the transition between 3ds and 4fs states comprises the
main radial transition in the resonance channel.

Rotational interaction associated with the internuclear
axis rotation in close collisions induces transitions between
Enlm�R� and Enlm�1�R� electronic states degenerate in the

united atom limit. The potential curves of these states have
the exact crossing at complex values of R �ReR � 0�. In
Fig. 21a, these transitions are indicated by arrowsRot located
at arbitrary values ofR. Rotational transition 3dsÿ3dp is the
transition that causes the isotope effect in reaction (87).

To calculate the RCE cross sections, the ARSENY code
based on the hidden-crossingmethodwas applied [171]. In the
adiabatic approximation, radial inelastic transitions occur in
the regions of the closest approach of the potential curves and
are decomposed into a sequence of individual two-level
transitions through hidden crossings. First, adiabatic poten-
tial curves as a solution of the two-center Coulomb problem
in the complex R plane are found. Then, the code finds all
branching points and calculates the appropriate Stueckelberg
parameters

Dpq �
����Im � Rc

ReRc

�
Ep�R� ÿ Eq�R�

�
dR

v�R; b�
���� ; �88�

where p and q comprise the set of quantum numbers, Ep and
Eq are the energies of the initial and final states of the active
electron,Rc is a complex branching point, v�R; b� is the radial
internuclear velocity, and b is the impact parameter.

Transition probability Ppq as a function of the impact
parameter is calculated for the entire set of nonadiabatic
transitions as follows:

Ppq � exp �ÿ2Dpq� : �89�
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illustrated in figure b.
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Then, the S-matrix is evaluated as the product of elementary
S-matrices for individual transitions induced by various
branching points. Starting with the initial S-matrix
S
�n�
i j � di j, a change in the S-matrix due to the nth transition

between p and q states, induced by the branching point at
internuclear distance Rc, is defined in the following way:

S
�n�
ip � S

�nÿ1�
ip �1ÿ Ppq� � S

�nÿ1�
iq Ppq ; �90�

S
�n�
iq � S

�nÿ1�
iq �1ÿ Ppq� � S

�nÿ1�
ip Ppq : �91�

Integrating the S-matrix over the impact parameter, we
finally obtain a complete set of charge-exchange cross
sections between arbitrary initial and final states, namely

sqq � 2p
�1
0

j1ÿ Sqqj2b db �92�

for elastic scattering, and

spq � 2p
�1
0

jSpqj2b db �93�

for an inelastic transition, where Spq are the elements of the
S-matrix. To find the amplitude of the m-changing transition
caused by the rotational interaction, the time-dependent
SchroÈ dinger equation was solved numerically for the Cou-
lomb nucleus trajectory in the united atom approximation.
Rotational interaction is taken into consideration if the
following condition is satisfied: the internuclear separation
should be less than

Rmax � �l� 1=2�2
Z1 � Z2

; �94�

where l is the orbital angular momentum of the electron, and
Z1 and Z2 are the nuclear charges. This condition defines the
boundary of the united atom region. Since the scattering
angle

w � 2 arctan
Z1Z2

mbv 2
�95�

depends on the reduced mass m, the mechanical trajectories of
the heavy particles in the reactions with H, D, and T are
different. This, in turn, leads to a difference in the correspond-
ing charge-exchange cross sections. The amplitude of the
rotational transition is the solution of the time-dependent
SchroÈ dinger equation (b < Rmax and Rmax > Rclmb, where
Rclmb is the internuclear separation corresponding to the
closest approach):

i _am ÿ Emam � i
Xl
m 0�ÿl

�
jnlm

���� qqt
����jnlm 0

�
am 0 � 0 : �96�

Here, the following notation was introduced:

Em � 3Dm 2R 2 ; �97�

D � Z1Z2�Z1 � Z2�2
n 3l �l� 1��2lÿ 1��2l� 1��2l� 3� ; �98�
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��������������������������������������
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p
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i
; �99�

where jnlm are the adiabatic wave functions. In the ARSENY
code, they are expressed through the spherical functions in the
fixed coordinate system with the aid of theWigner d-function
[13, 170].

7.2.3 Results of calculation and discussion.TheARSENY code
utilized for numerical calculations is based on the theoretical
approach described by Solov'ev [171]. This approach is valid
when the energy of the system e � mv 2=2 is much higher than
the electron energy of the initial state. This condition
determines the lower bound of the collision energy for the
reactions under consideration: E5 10 eV/u.

The total cross sections for the charge exchange reactions
Li3� �H�D;T��1s�, calculated using the ARSENY code, are
displayed in Fig. 21b. The same cross section calculated
without taking into account the rotational interaction PR is
also shown. As is seen from the figure, the rotational
interaction starts to contribute to the cross sections for
collision energies below 10 keV/u. This contribution
increases as the energy decreases, and it is larger for the
heavier isotope. A comparison with experimental data [199]
shows a good agreement with the calculated results for the
reaction with theH target.With a further energy decrease, the
influence of the rotational interaction diminishes. For
energies below 60 eV/u, the cross section corresponding to
the reaction with H is only determined by the radial coupling,
while the main contribution to the D and T cross sections is
still due to the rotational interaction. This can be explained by
the fact that, for the collision of the Li3� ion with the
hydrogen atom, the internuclear distance Rt (the turning
point), which satisfies the condition [189]

e � �L� 1=2�2
2mR 2

t

� Z1Z2

Rt
; �100�

is larger than Rmax (94), and for these collision energies the
Li 3� ion does not reach the region where rotational coupling
emerges.

The probability of electron capture on the n � 3 level of
the Li2� ion [resonance channel of reaction (87)] averaged
over the Stueckelberg oscillations is demonstrated in
Fig. 21c, d as a function of the impact parameter. These
probabilities correspond to the collision energies E1 �
0:04 keV/u and E2 � 0:1 keV/u denoted in Fig. 21b. At the
E1 energy, the charge exchange probabilities for the D and T
targets are defined by the probabilities of rotational transi-
tions 3dsÿ3dp, while for the H target the probability is close
to zero and coincides with the probability calculated
excluding the rotational interaction. It can be seen from the
figure that for the tritium target the rotational coupling
affects the charge-exchange cross sections in a wider range of
impact parameters than in collisions with a deuterium target.
At the energy E2, the projectile in collisions with the
hydrogen target enters the region of rotational coupling as
well, and all three probabilities are determined by the
rotational transitions.

The reverse process, namely

H�D;T�� � C�1s22s22p2� ! H�D;T��nl � � C��1s22s22p� ;
�101�

was studied in paper [197]. The cross sections and the
transition probabilities for this reaction were calculated with
an effective charge Zeff � 1:86 for the initial 2p state of the
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electron in a C atom. The CDW code, based on the Coulomb
distorted wave approximation, was used in paper [54] for the
calculation of the effective charge. The results of the
calculation are given in Fig. 22. In this case, two reaction
channels with final states of H �D;T� �n � 1� and H �D;T�
�n � 2�make the main contribution to the total cross section:
n � 2 for the lower, and n � 1 for the higher collision energies
at which the rotational interaction plays the main role. This
feature manifests itself in the nonmonotonic behavior of the
total cross section.

The contribution from each channel to the total cross
section for the H� ion is illustrated in Fig. 22a. Electronic
energies of the states which contribute to the isotope effect in
charge exchange process (101) are shown in Fig. 22c. The
initial 2p0 and 2p1 states of the electron in a C atom
correspond to 3ds and 2pp states in the united atom limit.
The transition from the initial state C(2p1) to the final state
H�D;T��1s0� (2ps in the unified atom limit) is accounted for
by the rotational transition 2ppÿ2ps. Rotational transition
3dsÿ3dp and the subsequent radial transition 3dpÿ4fp
occurring at R � 13:7 a.u. are responsible for the transition
to the final H�D;T� �n � 2� state [the 4fp state corresponds to
H�D;T��2p1� in the limit of separated atoms].

Figure 22b displays the dependence of the charge
exchange probability on the impact parameter at collision
energyE � 0:08 keV/u. At this energy, all three ions reach the
region of rotational interaction. The contributions of the
n � 1 and n � 2 channels are shown for the H� ion.

The total cross sections for the charge exchange reaction

W��6s� �H�D;T��1s� !W�6s2� �H�D;T�� �102�

are plotted in Fig. 23. At present, this process is of great
interest, since tungsten �Z � 74� is selected as a key material
of plasma facing components in the ITER tokamak, where
tritium plasma is planned to be ignited. Process (102) plays an
important role in the charge distribution, radiative cooling,
and particle transport in low-temperature plasmas (edge and
divertor plasmas). A comparison of the calculated data with
the experimental findings yields a good agreement for the
reaction with a hydrogen target [198].

Analyzing the data obtained, one can conclude that the
isotope effect is pronounced if the charge exchange reaction
has a resonance or quasiresonance channelÐ that is, if the
energies of the initial and final states of the electrons are
exactly equal or differ by a small value. In this case, the
rotational interaction at collision energies satisfying the

condition Rt < Rmax [equations (100) and (94)] dominates
the radial one, rotational transitions make the main contribu-
tion to the total charge-exchange cross section, and the
isotope effect is observed. The significant difference in the
charge-exchange cross sections for the reactions with H, D,
and T atoms (several orders of magnitude) indicates the
necessity of accounting for the isotope effect in the modeling
of edge and divertor plasmas in fusion machines utilizing
hydrogen isotopes.

8. Conclusions

In the last few years, fast development of accelerating
technology and plasma beam diagnostic methods increase
the interest in theoretical physics of atomic collisions
involving heavy many-electron atoms and ions, especially in
the effective cross sections of charge-changing processes:
electron capture and electron loss. New experimental data
on the cross sections obtained at modern powerful accel-
erators have led to construction of new theoretical models
and creation of corresponding computer codes. The main
peculiarity of these many-electron atomic systems is the effect
of inner-shell electrons: in many cases they play a key role and
a contribution of the outer-shell electrons becomes negligibly
small. The influence of inner-shell electrons leads to a change
in the scaling laws for the collision cross sections as a function
of atomic parameters. A part of this review is just devoted to
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the problemsmentioned above, although a lot of them are still
to be solved in the future. There are some unresolved
experimental problems as well, for example, measurements
of the electron-loss cross sections at relativistic energies
E > 200 MeV/u where experimental data are still absent. In
this respect, the International FAIR project, started in 2011,
seems to be very perspective: according to it heavy ions like
U28� are planned to be accelerated up to relativistic energies
� 10 GeV/u for further investigation of their spectroscopic
and collisional properties.

Another interesting aspect of the modern physics of
atomic collisions, considered in this review, centers around
the influence of the isotope effect on the cross sections of
resonant and quasiresonant electron capture by low-energy
ions colliding with hydrogen isotopes H, D, and T. Most
probably, these processes will be of a high interest for
specialists studying DÿT plasmas due to two main reasons.
First, these processes exhibit the dominant mechanisms for
creating in a plasma the impurity ions in excited states,
radiative decay of which is utilized for plasma diagnostics.
Second, a high interest is now related to W �Z � 74� atoms
and ions because tungsten is considered as the most
perspective element for making walls and diverter in plasma
devices with magnetic confinement, where the interaction of
W atoms and ions with hydrogen and its isotopes play an
important role. It should be noted that the common scaling
laws for electron-capture cross sections are not valid for low-
energy collisions with hydrogen isotopes, and that the
influence of the isotope effect on the resonant and quasi-
resonant electron-capture cross sections is extremely strong:
the cross sections for the reactions with different isotopes may
differ by more than three orders of magnitude; therefore,
investigation of these processes requires a special attention.

The authors are grateful to V S Lebedev and A A Narits
for the fruitful discussions of and valuable remarks on the
manuscript.
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