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Abstract. It was as early as the 1980s that A V Gurevich and his
group proposed a theory to explain the magnetosphere of radio
pulsars and the mechanism by which they produce coherent
radio emission. The theory has been sharply criticized and is
currently rarely mentioned when discussing the observational
properties of radio pulsars, even though all the criticisms were in
their time disproved in a most thorough and detailed manner.
Recent results show even more conclusively that the theory has
no internal inconsistencies. New observational data also demon-
strate the validity of the basic conclusions of the theory. Based
on the latest results on the effects of wave propagation in the
magnetosphere of a neuron star, we show that the developed
theory does indeed allow quantitative predictions of the evolu-
tion of neutron stars and the properties of the observed radio
emission.

1. Introduction

Thirty years have passed since the group led by A V Gurevich
at the Theoretical Physics Department of the Lebedev
Physical Institute, Russian Academy of Sciences, published
its first article [1] on the theory of the magnetosphere of radio
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pulsars, 25 years since the publication of their article [2]
dealing with the development of the theory of radio emission
of pulsars, and, finally, 20 years since the publication of
monograph [3], in which a consistent theory was formulated
of the principal processes responsible for the observed activity
of radio pulsars. In hindsight, we would like to make some
comments, which, we hope, can be useful at the present stage
of development of the theory.

Currently, already more than 40 years since radio pulsars
were discovered [4] in 1967, our understanding of these
objects remains somewhat ambiguous. On the one hand,
significant progress had been achieved already during the
first decade after the discovery of radio pulsars, when the
theory of the magnetosphere of radio pulsars and the theory
of their radio emission were being actively developed by
leading scientists throughout the world: Ginzburg [5],
Zheleznyakov [6], Kadomtsev [7], Sagdeev [8], and Lomi-
nadze [9] in the USSR, and Goldreich [10], Coppi [11],
Melrose [12], Mestel [13], and Ruderman [14] in other
countries. That was a period of ‘storm and stress’ (‘Sturm
und Drang’), which permitted anticipating the main proper-
ties of radio pulsars (see, e.g., monographs [15, 16]); the
extremely stable sequence of radio pulses is due to the
rotation of a neutron star, the kinetic energy of rotation is
the source of energy, while the mechanism responsible for the
slowing down of rotation is of an electromagnetic nature.

Total success was not achieved, however, in spite of a
number of tactical gains (for instance, the key role of the
secondary electron—positron plasma filling the magneto-
sphere of a neutron star was fully appreciated [14, 17], as also
was the importance of the current mechanism of energy losses,
i.e., of energy losses due to longitudinal currents flowing in the
magnetosphere of a pulsar [10]). In particular, it is only in
recent years that processes occurring in the magnetosphere of
an oblique rotator have started to be actively discussed [18—
21]; previously, most work was devoted to the axisymmetric
magnetosphere [22-29]. No common standpoint regarding
the mechanism of coherent radio emission exists yet [30-32].

By the late 1980s, research activities on the theory of the
pulsar magnetosphere and the theory of radio emission were
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drastically reduced. Two or three serious publications per
year (!) certainly made no real difference. Actually, a period of
deep stagnation set in. On the one hand, most theorists were
not able to propose a model that could provide readily
testable predictions, while, on the other hand, the existence
of a simple hollow-cone geometric model [33] (in which the
directivity pattern of the radio emission repeats the density
profile of the secondary electron—positron plasma outflowing
along the open magnetic field lines) permitted interpreting
observational data without turning to theory. As a result, the
connection between theory and observations was practically
lost.

Perhaps, precisely the atmosphere of general failure
(although there most likely existed purely opportunistic
reasons, also) resulted in a series of studies, performed in
the 1980s by the group led by Gurevich [1, 2, 34, 35], in
which the authors succeeded in formulating a consistent
theory of the magnetosphere and of the radio emission of
pulsars, which was met, mildly speaking, without friendli-
ness. Here, we only present a few quotations from articles
and reviews on book [3] that was the conclusion of a decade
of work.! “We conclude that their computation of the
dielectric tensor of a plasma in a strong magnetic field is
wrong” [38]. “It has been claimed that this instability is
spurious” [39]. “This theory is known to be incorrect. It
contains several fatal flows” [40].

Regretfully, such peremptory criticism made any serious
discussion of the results of our work simply impossible,
although practically all the main critical pronouncements
were given detailed explanations [30, 41, 42], demonstrating
their judgements to be unjustified. Therefore, as before, we
believe in the validity of our conclusions, which can be
formulated as follows.

1. Theory of the magnetosphere of radio pulsars.

1. The plasma filling the pulsar magnetosphere totally
screens the magnetodipole radiation of a neutron star,
because all the energy losses must be due to longitudinal
currents circulating within the pulsar magnetosphere (and
closing up on the surface of the neutron star).

2. For a local Goldreich current (see Section 2.2), current
losses should be significantly smaller for an orthogonal
rotator than for the axially symmetric one, which follows
from the expression we found for current losses for an
arbitrary inclination angle of the magnetic dipole axis to the
axis of rotation.

3. The inclination angle of the magnetic dipole axis to the
axis of rotation should increase with time, unlike the magnetic
dipole losses.

4. Quite a small longitudinal current is realized in the
pulsar magnetosphere, which results in the inevitable appear-
ance outside the light cylinder of a region where the electric
field is greater than the magnetic field. Inside this region,
effective acceleration of the plasma flowing out of the pulsar
magnetosphere becomes possible.

II. Theory of radio emission.

1. The dielectric permittivity tensor of plasma in an
inhomogeneous medium has been found, in particular, for
the relativistic plasma moving along curved magnetic field
lines. This tensor permits correctly describing the interaction
of particles with waves propagating in an inhomogeneous
plasma.

! Incidentally, the fact that critical reviews continued to appear until quite
recently [36, 37] rather serves as an argument in favor of our conclusions.

2. The analysis of such a tensor reveals the instability of
‘curvature—plasma’ waves, which can serve as the base
instability for the maser mechanism providing coherence of
the observed emission.

3. By taking the nonlinear interaction of waves into
account, the excitation level has been determined for
transverse waves capable to escape from the magnetosphere
of a neutron star, and, thus, the intensity of the radio emission
of pulsars has been established.

4. Based on a consistent analysis of wave propagation in
the magnetosphere of a pulsar, which, for instance, takes the
refraction of an ordinary wave into account, quantitative
predictions have been made concerning the main observa-
tional characteristics of pulsars (the frequency dependence of
the width of mean profiles, the statistics of pulsars with single
or double profiles, etc.).

The purpose of this article is to show that at present,
sufficient material has been accumulated to assert with
confidence that the principal theoretical points of our theory
not only have not become obsolete (which could well have
happened owing to the impetuous development of numerical
methods) but also can be a basis for understanding the
phenomenon of radio pulsars. Moreover, we show that the
recently obtained observational data confirm the validity of
the main theoretical conclusions formulated over 20 years
ago.

2. Pulsar magnetosphere

2.1 Screening of the magnetodipole radiation

A uniformly magnetized sphere rotating in the vacuum is
known to lose rotational energy owing to magnetodipole
losses [43]:

1 B2Q

Wiot = _JFQQ:67C3 sinz;{. (1)
Here, R is the radius of the sphere, By is the magnetic field at
the magnetic pole, J, ~ MR? is the moment of inertia, y is the
inclination angle of the magnetic dipole axis to the rotation
axis, and Q = 2n/P is the angular velocity of rotation. This
mechanism is quite universal, and hence it would be natural to
assume expression (1) for magnetodipole losses to also hold in
the case of a magnetosphere filled with secondary electron—
positron plasma. Therefore, estimate (1) still expresses the
common view of the rotation deceleration mechanism of
radio pulsars.

However, this conclusion, seemingly evident at first
glance, turned out to have no foundation. To be more
precise, we showed that in the framework of a force-free
approximation (a secondary plasma, whose energy density is
negligible compared to the energy density of the magnetic
field, fully screens the longitudinal electric field) and in the
case of a zero longitudinal (parallel to the magnetic field)
electric current, the flux of the Poynting vector through the
surface of a light cylinder, Ry = ¢/Q, vanishes [1]. From a
mathematical standpoint, this is because the toroidal compo-
nent of the magnetic field on the surface of the light cylinder
must vanish (actually, this conclusion was obtained in 1975 in
Ref. [44]):

By(Ry) = 0. 2)
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From a physical standpoint, this means that the plasma filling
the pulsar magnetosphere completely screens the magnetodi-
pole radiation of the neutron star. In other words, in the case
of a zero longitudinal current, the magnetospheric plasma
emission is in a phase precisely opposite to the phase of the
pulsar magnetodipole radiation. Consequently, all the energy
losses should be due to longitudinal currents circulating inside
the magnetosphere of the neutron star and closing up on its
surface. These energy losses can be determined by the formula
Wiot = —QK, where

K:%J[rX[JSxB]]dS (3)
is the decelerating moment of the Ampere force due to surface
currents J;. We recall that it is possible to obtain an analytic
solution for an oblique rotator because in the case of a zero
longitudinal current, the equation describing the magneto-
sphere of a neutron star is linear; it is also extremely
important here that the boundary condition at infinity
(along the rotation axis) was used.
It follows that the energy losses can be written as [1]

2 BZQ4R6 )
Wiot :‘i OT IpCOS 1, (4)

where iy = jj/jgy is the dimensionless longitudinal current
normalized to the so-called Goldreich current (or the Gold-
reich—Julian current),

QB

Jar=5_": (5)
and f, = 1.59—-1.96 is a coefficient that depends weakly on
the inclination angle y.

We note that the conclusion concerning the complete
screening of the magnetodipole radiation was, naturally, not
obvious. Therefore, not surprisingly, it remains far from
being adopted by everyone. It is interesting that now, after
30 years have passed, we have been surprised to learn from
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Figure 1. Structure of magnetic field lines of an orthogonal rotator in the
equatorial plane [45]. The toroidal magnetic field is zero on the light
cylinder.

many participants in those discussions that the main criticism
seems to have concerned our alleged claim that pulsars lose no
rotation energy at all. But we never made any such statement
and could not have done so. The main conclusion in Ref. [1] is
formula (4) for current energy losses, which clearly points to
the deceleration mechanism.

At present, screening of the magnetodipole radiation of a
neutron star can be confidently said to indeed take place. First
of all, in 1999, the group of Mestel [45] performed studies
equivalent to those presented in Ref. [1] and fully confirmed
our conclusions: in the case of a zero longitudinal current, the
energy losses of an oblique rotator are equal to zero. Figure 1
shows the structure of the magnetic field of an orthogonal
rotator in the equatorial plane, obtained in Ref. [45] (the
corresponding cross section remained in the draft copies of
Ref. [1]). It is clearly seen that the magnetic field lines indeed
approach the light cylinder at a right angle.

However, the most important recent result is that
magnetodipole losses are also absent in the solution for the
magnetosphere of an oblique rotator constructed by Spit-
kovsky on the basis of numerical simulation [20]. First of all,
this follows from the assertion concerning the split-monopole
asymptotic form of the solution obtained, which is close to the
model of radial magnetized wind [18]. Such flows only involve
stationary magnetized wind (independent of time outside a
thin current sheet), in which, however, the energy flux is
related to the flux of the Poynting vector. But the main point
is that the absence of magnetic dipole losses is also confirmed
by a straightforward analysis of the structure of electromag-
netic fields in Ref. [20].

Indeed, in the case of a vacuum rotator, for any value of
the inclination angle y # 0°, a variable-in-time component of
the magnetic field must be present on the rotation axis, with
the amplitude

.

(6)
where m is the magnetic moment of the star (with |m| =
ByR3/2), m is its second time derivative, and |m|=
Im| Q2 sin ;. However, as can be seen from Fig. 2, the variable
component of the magnetic field in the Spitkovsky solution
decreases much more rapidly, like 1/, In our opinion, the
absence of variable fields decreasing as 1/r in the numerical
solution for an oblique rotator is the most convincing proof of
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Figure 2. Dependence of the B, component of the magnetic field on the
axis of rotation on the distance r from the neutron star in numerical
simulation [20]. The dashed curve shows the asymptotic behavior B ~ r 3.
The inclination angle is y = 60°.
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the total screening of magnetic dipole radiation in the case of
a magnetosphere completely filled with plasma.

2.2 Current losses

One more important consequence of the theory of current
losses is that for a local longitudinal Goldreich current, the
rotational energy losses should decrease as the inclination
angle y increases [1, 3]. The point is that, besides the factor
cos y related to the scalar product Wy, = —QK, a significant
dependence of the current losses Wi, in Eqn (4) on the
inclination angle is also involved in the quantity #. Indeed,
in the definition of the dimensionless current iy = jj /jcs, the
denominator contains the Goldreich current for the axially
symmetric case, while in the case of nonzero angles y, the
Goldreich—Julian charge density in the vicinity of the
magnetic poles

QB QB

= —— y 7
PG = —5 AN 5 Cosy (7)

itself depends on the angle y. On the other hand, it is natural
to expect the longitudinal current to be bounded by the value
JiI = pgyc. At any rate, both in the Ruderman-Sutherland
model [14] with the particle escape from the surface of a
neutron star being hindered and in the Arons model [46], in
which the escape of particles is free, the longitudinal current is
indeed determined by the relation jjj = pg;c. But then, in the
case of an oblique rotator, the dimensionless current iy has the
upper bound iJ"*(y) ~ cosy. As a result, the current losses
must decrease as the angle y increases, at least like cos” . In
particular, if y = 90° (when cos? y is to be substituted by its
characteristic value in the range of the polar cap,
(cos? ) = QR/c), we obtain

B2Q*RS [/ QR
.

In the case of a local Goldreich current, iy = 1, while the
coefficient ¢, ~ 1 already depends not only on the profile of
the asymmetric longitudinal current but also on the shape of
the polar cap.

In discussions of this issue, the following reasoning is
standardly used as an argument against the decrease in losses
occurring as y increases. In expression (3) for the decelerating
moment, an increase in the angle y is indeed accompanied by
the surface current Jg decreasing as cos y. But the character-
istic distance between the axis and the polar cap increases as
sin y, and hence, even in the case of a local Goldreich current,
the losses depend weakly on the inclination angle.

However, as has been demonstrated by a more precise
analysis in Ref. [1], the above reasoning, which seems obvious
at first glance, does not take the real structure of surface
currents in the polar cap region into account. As shown in
Fig. 3, the currents that close up should actually be arranged
such that the current averaged over the polar cap surface
vanish. Consequently, in determining the deceleration rate of
a radio pulsar, it is necessary to consider higher-order effects,
such as the effect of the curved surface of a neutron star.

But if the averaged surface current within the polar cap
indeed vanishes, then, as shown in Fig. 3, a surface current
comparable in value to the volume current flowing in the
magnetosphere should flow along the separatrix separating
the regions of closed and open field lines. In the case of an
orthogonal rotator (and for a circular polar cap, when the

Closed field
lines

Figure 3. Structure of electric currents flowing in the vicinity of the
magnetic poles of an orthogonal rotator. The currents flowing along
separatices (bold arrows), separating the regions of closed and open field
lines, close the longitudinal volume currents (contoured arrows) such that
surface currents are fully concentrated within the polar cap.

result can be obtained analytically), the inverse current
should amount to 3/4 of the volume current flowing in the
region of open field lines. A remarkable event was that
numerical simulation [47] of the magnetosphere of an
oblique rotator actually revealed inverse currents flowing
along the separatrix. True, the inverse current only
amounted to 20% of the volume current. But such a
discrepancy between the results of simulation and theoretical
predictions can most likely be explained by the radius of the
star being set in simulations only to half the radius of the light
cylinder, when the magnetic field near the magnetic poles
already differs strongly from the dipole field.

Finally, we note that no contradiction actually exists,
either, between relation (4) and the expression

0 ©)

obtained by Spitkovsky for an oblique rotator; approximate
formula (9) was obtained in Ref. [20] for a magnetosphere in
which the longitudinal current was actually significantly
larger than the local Goldreich current (see Ref. [48] for the
details), which is consistent with the condition iy > 1
(correspondingly, ix > 1). A longitudinal current exceeding
the local Goldreich current was necessary for constructing a
smooth solution containing the magnetohydrodynamic
(MHD) wind outflowing to infinity (see Section 2.4).

It is interesting that one more possibility was recently
revealed for directly testing the validity of expression (4) for
current losses Wiy (and at the same time the validity of the
assertion that the pulsar magnetosphere completely screens
the magnetodipole radiation of a neutron star). The possibi-
lity of implementing such a test is related to the unusual
properties of the pulsar PSR B1931+24 [49]. Unlike the
radiation of other radio pulsars, the radiation of PSR
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B1931+24 is strongly variable. This pulsar is in an active
state for 5-10 days, then its radio emission is switched off in
less than 10 s, and it is no longer observable for the next 25—
30 days. It is important that the absolute value of the rotation
acceleration of PSR B1931+ 24 is different in the ‘on’ and
‘off” states:

Qo =1.02x 1074572, (10)
Qofr = 0.68 x 10714572 (11)
with
g ~15. (12)
off

Later, the pulsar J1832+0031 was also found to exhibit
similar behavior (7o, ~ 300 days, tor ~ 700 days, also with
the ratio Qon/Qofr & 1.5), as did the pulsar PSR J1841-0500
(in that case, Qon/Qofr = 2.5 [50]). )

_ Itis natural to assume that the difference between Q,, and
Q. for these pulsars occurs simply because deceleration in
the switched-on state is related to current losses, while in the
switched-off state (when the magnetosphere is not filled with
plasma), it is due to the emission of a magnetodipole wave
[51, 52]. Then, using relations (1) and (4), we obtain

Q 31?2
0 = Ly cot? y,
Qo 2

(13)

which yields a reasonable value for the inclination angle
¥ = 60°—70°. On the other hand, if relation (9) is applied for
the switched-on state, we arrive at

Don —57”,5?2%. (14)
Qoff 2 Nty

Clearly, this quantity cannot be equal to 1.5 or 2.5 for any
value of the inclination angle y.% If such an interpretation of
the observations corresponds to reality, it follows that the
longitudinal current flowing in the magnetosphere does not
actually exceed the local Goldreich current.

2.3 Evolution of the inclination angle

Determining the evolution of the inclination angle y could
serve as one more test. For current losses, the decelerating
moment K is directed opposite to the magnetic moment of the
neutron star, and therefore the Euler equation leads to the
conservation of the projection of the rotation angular velocity
onto the axis perpendicular to K. Hence, the following
quantity must be conserved during the evolution [3]:

Qsin y = const. (15)
Consequently, in the case of current losses, the angle y
between the axis of rotation and the magnetic dipole axis
should increase (but not decrease, as in the case of magnetodi-
pole radiation), and the characteristic time of its evolution
should coincide with the characteristic dynamical age of the
pulsar, tp = P/2P [34]. Regretfully, no method has been
found to determine the direction of evolution of the
inclination angle y for individual pulsars (see, however,

2 For this reason, relation (9) was somewhat corrected in Ref. [53].

sin y
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Figure 4. Pulsar extinction line in a (P, siny) diagram for different
inclination angles y and different magnetic fields. Arrows show the
evolution tracks of individual pulsars in the model of current losses (15).
The production of secondary particles is suppressed at angles y close to
90°. Therefore, neutron stars, which in the diagram are above and to the
right of the extinction line, do not manifest themselves as radio pulsars,
independently of the deceleration mechanism.

Ref. [54]). On the other hand, the prediction indicating an
increase in the angle y is known not to contradict observations
statistically [34, 55].

The last assertion requires clarification. Observations
reveal average statistical inclination angles y to indisputably
decrease as the period P of pulsars increases and its derivative
P decreases [56]. Therefore, the average statistical inclination
angle decreases as the dynamical age tp increases. Corre-
spondingly, pulsars with larger periods can be observed to
exhibit relatively larger widths of mean pulses W, =
Wr(o)/ siny [57] (where W,(()) is the pulse width for an
orthogonal rotator). But this by no means implies that the
inclination angle for each concrete pulsar decreases with time.
Such a behavior of the average inclination angle y can also be
realized when the angle y of each pulsar increases in
accordance with (15).

Indeed, as can be seen from Fig. 4, for the given values of
the pulsar period P and the magnetic field By, the production
of particles is suppressed precisely at angles close to 90°. This
is because Goldreich—Julian charge density (7) decreases
significantly at such angles, which in turn leads to a decrease
in the electric potential drop near the surface of the neutron
star. As a result, stable production of secondary particles
becomes impossible there. Therefore, owing to such a
dependence of the pulsar extinction line on y, the average
inclination angle can also decrease as the dynamical age
increases, for example, in the case of pulsars uniformly
distributed over the (P, siny) plane. A detailed analysis,
already carried out in Ref. [34] based on a kinetic equation
describing the distribution of pulsars (see also later studies
[58, 59]), confirmed that the observed distribution of pulsars
over the inclination angle does not contradict hypothesis (15)
of the increase in the angle y for any individual pulsar.

In any case, it is quite clear, that the inclination angle y is a
key hidden parameter: without taking it into account, it is
impossible to construct a consistent theory of the evolution of
radio pulsars. Regretfully, with a few exceptions (see, e.g.,
Ref. [60]), modern theorists (so-called scenario producers)
describing the evolution of neutron stars [61-63] do not take
the influence of the inclination angle evolution on the
observed pulsar distribution into account.

2.4 Light surface

Starting from the 1970s, the magnetosphere of a pulsar has
been discussed almost exclusively in the force-free approx-
imation [23, 64-66]. The reason is that the plasma filling the
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magnetosphere of a neutron star is less important (secondary)
than the magnetic field; therefore (at least within the light
cylinder), the particle energy density can be neglected.

In the force-free approximation, the structure of the
magnetosphere is described by the so-called pulsar equa-
tion, i.e., an elliptic equation for the magnetic flux function.
In Section 2.1, in discussing the solution of a similar
equation for the zero longitudinal current, we noted that in
the case of numerical simulation of an axisymmetric
magnetosphere, it is necessary to introduce an additional
condition for the external boundary of the integration region
[24-29]. Such a condition is usually chosen in the form that
the magnetic field lines be radial. In this approach, precisely
such an additional condition fixes the longitudinal current
flowing within the magnetosphere. Therefore, it is not
surprising that the current is close to the critical current
JjG1 = pgyc in (5) obtained analytically by Michel [64] for the
quasispherical wind.

A very important property of this solution is that the
energy in the wind is carried by the crossed fields Ey and B,,,
which form a radial flux of electromagnetic energy (the
Poynting vector flux), and the electric field is smaller than
the magnetic field as far as infinity. Otherwise, the freezing-in
condition E+v x B/c=0, which always serves as the
cornerstone in the approach considered, would be violated.

On the other hand, as is readily verified, implementation
of the condition E < B is possible only if the longitudinal
electric current 7 flowing in the magnetosphere is sufficiently
large. Indeed, in the case of a quasispherical wind outside the
light cylinder, the electric field

Qrsin 0
0= B, (16)
and the toroidal magnetic field
21
', = ——— 17
" crsin0 (17)

decrease with the distance r as r~! (while the poloidal field
decreases as r ~2). Therefore, for the light surface to recede to
infinity, it is necessary that the toroidal magnetic field on the
light cylinder be of the same order of magnitude as the
poloidal field. Implementation of this condition is possible
precisely when the total current 7 outflowing beyond the light
cylinder is not less than the Goldreich current Igy = anJROZ,
where Ry is the radius of the polar cap. We stress that in all
numerical calculations, no restrictions were imposed on the
longitudinal current outflowing from the neutron star sur-
face. Therefore, it is not surprising that the longitudinal
current obtained as a solution of the problem turned out to
be of the order of Ig;.

We recall that in the complete MHD version, where
taking the finiteness of particle masses into account results
in the appearance of an additional critical (fast magneto-
sonic) surface, the longitudinal current is no longer a free
parameter [67]. The value of the longitudinal current is close
to Igy. Therefore, most researchers currently consider the
existence of a strongly magnetized wind for which the
condition E < B is satisfied to be practically proven [20, 21].
We stress that the issue here concerns scales comparable to
the radius of the light cylinder (r ~ 1—100 Ry); at larger
scales, as follows, for instance, from an analysis of the
interaction of the pulsar wind with supernova remnants [68],
the main energy must already be carried by particles. As is
known, within the theory of strongly magnetized wind, such

an acceleration required for a quasispherical outflow cannot
be obtained [67, 69-71].

Generally speaking, the rigorous analytic conclusion that
the longitudinal current is close to the critical one only
concerned stationary axially symmetric flows. But numerical
calculations recently performed for nonstationary force-free
configurations [53] have shown unambiguously that the
system undergoes quite rapid evolution precisely toward a
state with a current close to the critical current. And such a
state corresponds to the minimum-energy configuration (for
example, minimum energy is exhibited by configurations in
which the singular point separating the regions of closed and
open field lines is on the light cylinder, but not inside the
magnetosphere [29, 72]3). Thus, the existence of quite a
strong longitudinal current has been confirmed once again;
in any case, no restrictions were imposed on the longitudinal
current either.

The following problem arises here, however. As noted, all
the theories of stationary particle production in the magneto-
sphere of a neutron star [3, 14, 46, 73, 74] unambiguously
testify in favor of the longitudinal current density not possibly
being larger than the local Goldreich current, which, as can be
seen from its definition (7), depends on the inclination angle y:

QB
iG] = — . 1
JGI b COos (18)

For example, in the case of an orthogonal rotator, the local
Goldreich charge density in the vicinity of the magnetic poles
must be (QR/ c)l/ ? times smaller than in the case of an axially
symmetric magnetosphere. Hence, the longitudinal current
flowing along open field lines should also be smaller in the
same proportion (for ordinary pulsars with a period P ~ 15,
this current is nearly 100 times smaller for an orthogonal
rotator). Therefore, in constructing the solution for an
oblique dipole [20], it was necessary to assume the long-
itudinal current in the region of the magnetic poles to be
significantly higher than the local Goldreich current
(A Spitkovsky, private communication).

Therefore, the value of the longitudinal current flowing in
a neutron star’s magnetosphere turns out to be the key issue,
without resolving which it is impossible to move toward the
understanding of the structure of the magnetosphere of radio
pulsars. The problem lies in whether the region of plasma
generation at the surface of a neutron star can provide the
longitudinal current sufficiently large for the existence of an
MHD wind from an oblique rotator. If the necessary current
can be created (see, e.g., Ref. [75]), nothing can prevent the
production of the MHD wind in which the main part of the
energy is carried by the electromagnetic field: such is the
opinion of most researchers. But if the generation of a
sufficiently high longitudinal current turns out to be impos-
sible for some reason, then, in the vicinity of the light cylinder,
a ‘light surface’ inevitably arises in which the electric field
becomes equal to the magnetic field. Precisely such a structure
was predicted by us in Ref. [1].

The appearance of a light surface in the magnetosphere of
aradio pulsar radically alters the properties of the pulsar wind
because, close to the light surface, closure of the current and
effective particle acceleration inevitably occur. Solving the
equations of two-fluid hydrodynamics (precisely describing

3 Solutions in which the singular point is inside the light cylinder are, most
likely, affected by the limited time available for numerical calculations
(A Tchekhovskoy, private communication).
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Figure 5. Structure of a magnetosphere with a very small longitudinal
current, having a natural boundary — the ‘light surface’ |E| = B| at which
the freezing-in condition cannot be satisfied. Therefore, electrons and
positrons are accelerated in opposite directions along the electric field.
Precisely this current closes the longitudinal currents flowing in the
magnetosphere.

the difference in motion between electrons and positrons) in
the case of the simplest cylindrical geometry reveals [1] that a
significant part of the energy carried within the light surface
by the electromagnetic field in the thin transition layer close
to the light surface,

Ar~ ARy, (19)
is transferred to plasma particles (A = n./ngy ~ 10°—10° is
the production multiplicity of particles close to the surface of
a neutron star). In the same layer, as shown in Fig. 5,
practically total closure of the longitudinal current circulat-
ing in the magnetosphere occurs. As a result, a natural
explanation is also found for the high efficiency of particle
acceleration. Subsequently, a similar result was also obtained
for a more realistic geometry, when the poloidal magnetic
field near the surface of the light cylinder is close to a
monopole field [76]. In particular, it has been confirmed that
the particle energy immediately beyond the light surface is by
the order of magnitude given by

1 /QR\?
£, ~ eBoR © (f)
2 c

s\ B P2
4 A _Bo \(P
10 Mev<103> (1012 G)(1s> ’

but does not exceed the value 10° MeV at which the effects of
radiation friction become essential.

Quantity (20) practically corresponds to the total energy
transfer from the Poynting vector flux to the flux of
accelerated particles. In (20), & is A times smaller than the
energy Emax = eAV corresponding to the maximum potential
difference AV ~ (QL/c) BL of different magnetic field lines in
the magnetized wind. Here, L is the characteristic size of the
central engine; in radio pulsars, L is equal to the size of the
polar cap Ry = (QR/c)"/>R. As a result, we can express the
Lorentz factor y,,, = Ee/mec? as

(20)

(21)

Ymax = 7,

where ¢ is the so-called magnetization parameter introduced
by Michel [77] in 1969.4 As was shown in Ref. [48], the
magnetization parameter can be represented in the very
simple form

I <Wm>‘/2
g~ )
A\ Wa
where Wi, is the total energy losses and W = mezc5/e2 ~
107 erg s~! is a universal constant. Because the particle
production multiplicity 4 ~ 10*—10° for radio pulsars is
known [73, 74, 78], the value of ¢ can also be found. For
most pulsars, the value of ¢ lies in the range 103 —10%, and it
can reach 10° only in the youngest sources (the Crab and Vela
pulsars). We note that the parameter ¢ is very convenient for
determining the key parameters of strongly magnetized

winds. For example, the radius of the fast magnetosonic
surface is expressed simply as

(22)

rp~a PR (23)
Therefore, our theory predicts effective particle acceleration
in the region of the light cylinder up to energies corresponding
to the Lorentz factor 10*—10°. Clearly, such an acceleration
is only possible within the fast magnetosonic surface, r < rf;
as was noted, if the magnetized wind is free to reach the fast
magnetosonic surface, then the longitudinal current is
comparable in value to the Goldreich current.

Clearly, the effective acceleration of particles should result
in the generation of hard radiation, which, in principle, could
be detected. In [3], the synchrotron losses of accelerated
particles are estimated, and both the total energy release and
the energy range of radiation are shown to depend very
strongly on the period P of the pulsar. The energies of emitted
photons can reach several tens of MeV only in the case of the
youngest pulsars (Crab, Vela), while the radiation of most
radio pulsars due to the synchrotron mechanism must lie in the
optical range. The energy released in all ranges has turned out
to be quite low, which has allowed observing these sources with
the aid of existing detectors.

On the other hand, as is well known, another important
channel in which energy is released and which is capable of
resulting in the production of y quanta of even higher energies
is the inverse Compton scattering of thermal X-ray photons
emitted from the surface of a neutron star. This process has
recently been regarded as the main process for the generation
of photons of energies in the TeV range for the widest class of
objects, such as active galactic nuclei [79, 80], galactic sources
in the TeV range [81], and, naturally, radio pulsars [82]. In
those cases where the ‘central engine’ is indeed a rapidly
rotating neutron star, the Lorentz factor of electrons (or
positrons) necessary for shifting the observed photons and
soft y quanta toward the TeV energies corresponds precisely
to values y = 10*-10°. Thus, for the pulsar B1259-63 (which is
in a double system containing a Be-star), observations agree
best with the value y ~ 10* [83]. As can be readily estimated
from relations (21) and (22), precisely this value is the
characteristic value of the magnetization parameter ¢ for
B1259-63.

4 Recently, the notation u for the magnetization parameter has become
popular, with ¢ standing for the ratio of the electromagnetic energy flux to
the energy flux carried by particles.
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We especially draw attention to the work of the group of
Aharonian published in Nature [82], the title of which is
precisely the following: “Abrupt acceleration of a ‘cold’
ultrarelativistic wind from the Crab pulsar.” It is shown in
Ref. [82], for example, that the observed intensity of TeV
photons can be explained if rapid acceleration of particles
occurs at distances of the order of 30 Ry, as a result of which
the particles acquire energies corresponding to Lorentz
factors y =~ 10°. As was noted above, the value y ~ 10°
corresponds precisely to estimate (22) for the magnetization
parameter ¢ of the Crab pulsar. Moreover, the scale of 30 R
is certainly smaller than the radius of the fast magnetosonic
surface ry =~ 100 Ry in (23).

A detailed comparison of theoretical predictions and
observational data is beyond the scope of this article,
however.> Nevertheless, it must be noted that after it became
clear that the existence of a large potential difference AV
between the magnetic field lines in the magnetized wind does
not lead directly to any effective particle acceleration up to
ultra-high energies Enax ~ A& (see, e.g., Ref. [84]), the
possibility of direct electrostatic acceleration of particles is
not being taken into consideration (see, e.g., Ref. [85]).
However, as was shown above, this process could well be
realized in the case where, for some reason or other, the
longitudinal current flowing in the magnetosphere of a
compact object is quite small.

3. Theory of radio emission

3.1 Formulation of the problem
As is well known, one of the methods for determining the
instability increment of waves in a plasma consists in
analyzing the dispersion equation, for which it is necessary
to determine the dielectric permittivity tensor of the
medium. The procedure for calculating the dielectric
permittivity tensor of an inhomogeneous anisotropic
plasma in the approximation of geometric optics on the
basis of the standard approach, expounded, for example, in
Ref. [86], is described in detail in [2]. In the same work, a
study is presented of the collective interaction in which
electromagnetic waves associated with curvature radiation
are simultaneously amplified by the Cherenkov mechanism.
We emphasize that this effect is absent in the vacuum.
Most likely because the calculation procedure is quite
complicated, erroneous assertions have been made in a
number of publications [87-89]. The objections put forward
in Ref. [89] were later withdrawn [90] by the author. As
regards Refs [87, 88], which are still cited in papers on the
relevant topic, they contain numerous arithmetic errors,
which have all been revealed and described in detail
in Ref. [42].

In addition, another method for dealing with the problem
of collective curvature radiation was proposed in [36-38, 91].
In these studies, a model problem, which could be solved
‘exactly’, was considered in a cylindrical geometry. The
magnetic field in this problem is assumed to be precisely
circular, while the relativistic plasma moves along the circular
magnetic field lines owing to the centrifugal drift,
u=cp./py < c, directed parallel to the cylinder axis. Here,
p. = ¢/, is the cyclotron radius and p, is the curvature

5 In our opinion, the distance from the acceleration region to the light
cylinder amounting to 30Ry. for the Crab pulsar may be overestimated.

radius. But as we now show, this approach cannot be used in
analyzing the collective curvature radiation either [2, 96].

Asin [36-38], we consider the electromagnetic fields in the
wave to be of the form

[E,B] = [E(p), B(p)] exp (—iwt + isp + ik.z) (24)
where,  is the wave frequency, s is an integer defining the
azimuthal component k, = s/p of the wave vector, and k. is
the component of the wave vector parallel to the cylinder
axis. In the approach considered, the amplitudes are
assumed to depend only on the radius of the cylinder p.
Moreover, not the vectors E and B but their cylindrical
components (E, B),,, (E, B),,, and (E, B), depend only on the
cylindrical radius p. This means that the polarization in the
wave follows the magnetic field, turning from one point to
another, which is possible only in the case of a well-defined
boundary condition, for instance, for a system inside a metal
cylinder. Under these conditions, we arrive at a one-
dimensional problem, which can indeed be readily solved.
However, as is not difficult to show, the wave considered
within such an approach has nothing to do with curvature
radiation.

To show this, we consider a particle moving along a
circular trajectory of radius p, with a constant velocity v.
Such motion corresponds to an infinite magnetic field. Then
the emitted energy is equal to the work performed by the field
of the wave on the electric current of the particle. The electric
current is given by

o(p — po) e
p

where Q = v/p,. For the polarization chosen,

j = evd(p — Q1) 6(2) " (25)

JjE dr = evE,(py) exp (—iwt 4 isQt) . (26)
It hence follows that radiation is possible only when
o = sQ = k,v. But this is the condition for Cherenkov,
but not curvature, radiation. A wave with such polariza-
tion cannot be generated by the curvature mechanism. The
difference between curvature and Cherenkov waves is that
the interaction time of bremsstrahlung and the irradiating
particle is finite. A freely propagating wave with a nearly
constant polarization deviates from the direction of motion
of the particle. As a result, a nonzero projection of the
electric field of the wave arises in the direction of the electric
current of the particle, i.e., an exchange of energy between
the wave and the particle becomes possible. The process
lasts a finite time 7, which can be found from the condition
7(w —kv) ~ 1. For relativistic particles (v~¢), 1=
2 2\1/3
(g /@)™ =~ po/ey.

3.2 Polarization of the curvature wave
It is well known that the radiation field of the electric current j
and of the charge density p, of a moving particle of charge e is
described by the retarded potentials [43]

A :% JJ% dr. (27)
[ pe(t)
®— J Pt ar, (28)

where ¢’ =t — R/c is the so-called retarded time and R is the
distance from the charge to the observer located at the point
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with coordinates (p, @, z) at the instant ¢,

1/2
R=[p>+2>+p —2ppycos (¢’ — )], (29)

p'=Qr. (30)

We now introduce the Fourier transform of potentials (27)
and (28) with respect to time:

Ay = % JA(t) exp (iof) dt (31)
d, = zl—n J@(t) exp (iwt) dt. (32)

Itis convenient in what follows to pass from integration over ¢
to integration over the retarded time ¢’, and then over the
angle ¢’ — @. Asaresult, in Cartesian coordinates (x, y, z), we
obtain the vector potential A and the scalar potential @ in the
form

e i ¢
[Awa (po)] _%CXP (%) l:_Ks; K(:; 0; ; KO ) (33)

where Ky, K, and K, are functions of only the coordinates p
and z:

exp [io(R/c+ Q)0

Ko = . do,
0 R+ vpsina/c 8
exp [io(R/c+ Q) al sina
k. [P lo(R/e+ Qe sina -
R+ vpsina/c

exp [io(R/c+ Q") a] cosa d
R+ vpsina/c *

R=(p>+z>+p —2ppycosa)'’?.

We stress that expression (33) is valid not only in the wave
zone but also at any point r. The dependence on the angle ¢ is
given by the factor exp (iwp/Q). Hence, owing to the
periodicity in the angle ¢, we simply obtain w = sQ.

An important fact follows from relations (33): the field of
the irradiated wave is a superposition of three harmonics: s,
s—1, and s+ 1. For example, we present the following
expression for the azimuthal component of the electric
field E,,:

iw v
E(pw = <_ Po b, +— Arpa))
v o ¢

epow
2mo?

2
=i exp (isp) [% Ko — % (Kssing+K.cos o) |. (35)

The first term in the right-hand part of (35), which is
proportional to the scalar potential @, is not significant in
the wave zone p > p,, but is significant in the vicinity of the
particle trajectory, p = p,. Owing to the presence of this term,
a particle that is in resonance with one of the three harmonics,
for instance, the sth (w = sQ), is knocked out of resonance by
the adjacent harmonics s+ 1. Here, the component E,,
changes sign in a time t. The synchronicity condition
1 —cosQt ~ 1 —v2/c? = y~% determines the time as

1
T~ _Po

oo (36)

which coincides with the formation time of curvature
radiation.

Hence, the emitted curvature wave comprises three
harmonics, s and s+ 1, with a fixed relation between the
amplitudes. Precisely this circumstance provides the curva-
ture mechanism of radiation. The neighboring harmonics,
s+ 1, arise owing to modulation of the field of the emitted
wave by the electric current of the particle with the harmonic
s = 1. It can now be understood why simply dealing with
collective curvature radiation in cylindrical geometry with a
single cylindrical harmonic does not reveal any significant
amplification of waves [36-38, 91]. The chosen polarization
excludes the curvature radiation.

3.3 Propagation of a triplet of harmonics

It was shown in Section 3.2 that the curvature radiation of a
single charged particle in the vacuum cannot be described by a
single cylindrical harmonic exp (is¢). In the problem of the
collective curvature radiation of waves, modulation of the
electric current of particles occurs at the same time as their
excitation; therefore, the resonance azimuthal harmonic
s = wp/v, mixes with the harmonics of the modulation of
the particle electric current, giving rise to harmonics with all
possible values of s. Below, we show that all azimuthal
harmonics contribute to the response of the medium to the
electromagnetic field. But here, we show that propagation of
the triplet (s, s £ 1) of cylindrical harmonics differs signifi-
cantly from the propagation of a single harmonic, which is
usually discussed in the literature.

We consider the simple cylindrical one-dimensional
problem of the emission from a flux of cold relativistic
plasma particles with charge ¢ and mass m., which move in
the xy plane along an infinite azimuthal magnetic field
By = B, In this case, the particles can only move in the ¢
dlrectlon with a velocity v, at an arbitrary cylindrical radius
p. We assume the nonperturbed particle number density né )
and the velocity vq,oj to be constant, i.e., independent of the
radius p. The electric current j then has only a component
along ¢, while the magnetic field of the wave has only the
component B. (B, = B, = 0). The electric field in the wave
has two nonzero components, E, and E, (E. = 0).

The dependence of the wave field on the coordinates is
given by

[Ep; Ey; B:]= [ () Eg(p); B:(p)] exp (it +isg). (37)

From the Maxwell equations, we obtain

(@) . (o)
dE," _i0 1) P97 o) By (38)
dp p " o c2 P o
(o) (a)
dE, ) (,,) o o B 7 (39)
dp p wp? p

where the index o corresponds to one of the three harmonics, s
or s+ 1. For simplicity, we introduce the dimensionless
variable r = pw/c and the quantity

_ "

A= 023 (40)

where o, = (4nnce 2/mL)I/2 is the plasma frequency, y =

(1- 2/0 )~"% is the Lorentz factor of plasma particles, and
4mjl?)

G, =2 41

7 Aw (41)
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is the dimensionless current. In the new variables, Eqns (38)
and (39) become

dE(f,U) io LT EY
=2 " E@_jZEl_Z2 42
dr ro? ! o * ro’ (42)
dE(” .G ¢ E)
=—i—E"9 44— G, ———. 43
dr ! r ¢ * ro ¢ 7 (43)

As was noted, we here consider the interaction of three
waves, s and s £ 1. It is very important that the propagation
of these waves is not independent: coupling between the
waves is realized by means of the electrostatic field
[E,(p); Eo(p)] exp (ip) with the lowest azimuthal harmonic
s = 1. The electrostatic field turns out to be the result of
nonlinear coupling of the high-frequency harmonics s and
s £ 1. The propagation equations of the mode s =1 in the
same notation have the form

dE, i E

S A p—— 44
dr P’ r’ (44)
E E,

d—ﬂ:—llEq,—i—AZ— L. (45)

where Z = 4mneec/(Aw). We stress that the second term in the
right-hand side of Eqn (42) is absent in Eqn (44) because the
field proportional to exp (ie) is static (w = 0).

To determine the response of the medium to the electro-
magnetic fields, we can use the continuity equation and the
Euler equation:

%JrV(nev):O, (46)
(%+VV)P=€(E+|:;7B])~ (47)

It is easy to verify that only the ¢-component of the Euler
equation is significant, while the radial component provides
the equilibrium configuration across the infinite magnetic
field.

We represent the velocity of plasma particles and the flux
density in terms of the expansion in powers of the wave field
amplitudes:

vp = v + 8 + vl + .., (48)
ne =n® +n{V 4+ n® + ... . (49)
The linear response can be readily found as
kol
0 ¢ (50)
n n ,
¢ S w-— kv(f,())
E
oD =i el : (51)

mey3(w — kv(f,()))

where k = s/p. To find the nonlinear response of the medium,
it is necessary to take the nonlinear relation between dv,, and
dp, into account:

3 dv,)*
qu) _ I’)’le’y38’U¢ _E mevq()o),yS ( 'U/))

- (52)

Straightforward calculation gives

1 { Ej r
G, = i C—— t o —
1- sv(f,o)/ rl 11— sv(f,o)/ r U(f,())
E371E1 Es+lE1*
X <As,.y71 (/)7(/)(0)7145’”1 ‘/’7‘/’(0)>:| ) (53)
1—(s—1)vy ' /r I—(s+1) vy ' /r

1
Gt =T 0,
l—(s—=1Dwy /r

s 1k
EwErp

Ao —) (54)
o lfsvg))/r

s—1
.
lf(sfl)vé, /r vé))

1

Gy =——"—"86++—
DO

sl

% (i—(;—&—ocL A, HIM) (55)
1—(s+ l)v(§,0>/r v(§,0> R - sv(ﬁ,o)/r
1 ) (l E(,H»l E{s*
£=10 2{‘1_“”"( CYSEWG
(v(p) /r (I=(s+1) vy ' /r)(1=svy /1)

—1)*
T EyEy " >]
(1= sv/r)(1 = (s — 1) v /r)

(56)

| I
32,

A b= + —
- avé,o)/r 1 - bv(g,o)/r

where o« = e/(mecy3w) and the velocity of plasma particles is
expressed in terms of the speed of light. Similar quantities can
be found in Ref. [3] for plane waves. The equations were
analyzed numerically with the initial condition Eéf) =—J.(r),
E" = i6J4(r)/r corresponding to the normal mode in the
vacuum for a cylindrical geometry; here, J,(r) is the Bessel
function of order ¢. The singularity in Eqns (53)—(56) is
smoothed out, as usual, by adding a small term +i¢ to the
resonance denominators in (50) and (51).

Equations (42)—(45) were solved for e =sand ¢ = s+ 1
numerically at two different values of G, and Z. In the first
case, we neglected the nonlinear terms in (53)—(56), while the
second case corresponded to the fully nonlinear problem. The
results of calculations for both cases are presented in Fig. 6.
To illustrate the influence of the nonlinear current better, we
have chosen the amplitude of the modes s — 1 and s + 1 to be
20 times larger than the amplitude of the s mode. Actually, the
s mode couples to the entire continuum of modes, and hence
the above model assumption is reasonable. Figure 6 shows
that |E| |2 is 2.5 times larger in the fully nonlinear problem than
when the nonlinear current is neglected.

Thus, we have shown that the triplet of cylindrical
harmonics, better corresponding to the curvature mechan-
ism, is amplified more effectively than a single cylindrical
harmonic. This means, inter alia, that the true polarization of
collective curvature modes can only be obtained by calculat-
ing the dielectric permittivity tensor of the plasma flowingin a
strong curved magnetic field. Here, the solution of the wave
equations not only yields the dispersion relation for normal
modes w = w(k) but also determines their polarization. We
note that initially, it is totally unclear what polarization
corresponds to nonstable modes.

At first glance, the essentially nonlinear problem dis-
cussed above is not directly relevant to the amplification
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problem in the linear approximation. We included the
nonlinearity only in order to examine the self-consistent
coupling of modes s and s+ 1. Even in the case of a weak
nonlinearity, the presence of adjacent modes s 4= 1 alters the
amplification of the s mode significantly. It is also absolutely
clear that the coupling of harmonics s+ 1 with the low-
frequency harmonic s = 1 results in the appearance of all
possible azimuthal harmonics.

3.4 Calculation of the dielectric permittivity tensor

In this section, we show that the asymptotic form of the
dielectric permittivity tensor obtained in Ref. [2] for large
values of the magnetic field curvature radius p, can be found
by straightforward summation of responses (50) and (51) to
individual cylindrical modes. We first note that in the case of
an infinite toroidal field, there is only a response to the
toroidal component E,, of the wave electric field [92]. Here,
we only consider the case of a stationary medium; therefore,
the time dependence can be chosen in the form exp (—iwt).

Summation over all cylindrical modes yields

Dy(p,@)=Ey(p, @)=Y E,(p,s) K(p,s)exp (isp), (57)
where (see, e.g., Ref. [36])
4me? v o
K = - d 58
(o) =2 [ e L, (59)

and f©(p,) is the nonperturbed particle distribution
function. Applying the Fourier transformation

21
E,(p,s) = I Jo E,(p,¢")exp (—is@’)de’ (59)

and passing to a Cartesian coordinate system, we find

1 (p'dp'de’ & ;o ,
Dy=Eits- JTFZ_;OEM .0")o(p —p")
x K(p,s) exp [is(p — ¢")] sin g, (60)
1 [p'dp'de’ & b
D= Ey g [P0 S Bl 0000 )
(61)

x K(p,s) exp [is(¢p — ¢")] cose.

We choose a local coordinate system in the particle orbit
plane with the y axis directed along the magnetic field.
From the expressions presented above, we obtain the
components of the kernel of the dielectric permittivity
operator:

s_,,(r,r)—l——— d(p—p')K(p,s)
& 21 p g;ﬁ
x exp [is(p — ¢')] cospcos g’ (62)
( 5> a0 9
ep(r,r’) = o= — K(p,s
X 2 ,0
x exp [is(p — ¢')] cos psing’, (63)
1 o0
Sx}’(rvr = 2_ ,0_ Z pv )
x exp [is(¢ — ¢')] sinpcos ', (64)
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| e ‘ | sinoy + (|&]/2) sinog
() =1—-—— 5(p—p")YK(p,s sing = 1 , 73
(rr) 2np/l\;m ( ) Kip.s) ¢ n+&/2] 7
i — )] si ing’ COS Oy — 2) cosa
x exp [is(p — ¢')] sin@sing’, (65) cos ¢’ = | " — (I€1/2) g (74)
n—¢&/2|
which determine the material relation
As a result, the integration in (69)—(72) reduces to integration
Di(r) = Jsif(r7 r') Ej(r')dr’. (66)  over the components of the vector & that are perpendicular to

We note that the kernel found satisfies the necessary
symmetry property

8,’](1',1",(0) = Sji(rl7r7 7(‘0)7 (67)
which follows from the condition K(r,s,w) = K(r, —s, —m).
Further, it is well known that for calculating the dielectric
permittivity tensor, only the symmetrized form of ¢;;(w, k, r)
must be used [93, 94]:

611(60,1(771—’1‘) :Jbl](w7§an) eXp (_lki)dg (68)

Here, by definition, n = (r+r')/2 and & =r—r'. It is
important to note that only this tensor correctly describes
the interaction between waves and particles in a medium with
slowly varying parameters (see, e.g., Refs [35, 86]; in problems
dealing with cosmological plasma, this approach was applied
in Ref. [95]).

Substituting the components of the kernel, we now obtain

1

1 .
(o, k,m) =1-— %Jdi exp (—ik§) m

P (I LG

s=—00

x exp [is(¢ — ¢')] sin@sing’, (69)

1
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I (I LG

§=—00

)

x exp [is(p — ¢')] sinpcos o’ (70)

1

1 .
ec(0,k, M) = %Jdé exp (—ik&) m

L (3 UL (S
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)

x exp [is(p — @')] cospsing’, (71)

1 , 1
a0 kem) = 1 =3 [ d& exp (<ikE) -

P (I LG

S=—00

9

x exp [is(p — ¢')] cospcos ' (72)

The angles ¢ and ¢’ in expressions (69)—(72) are functions of
the polar angles o, and oz of the vectors n and &:

1. On the other hand, the delta functions in relations (69)—(72)
are given by

8(0 —1/2)
(Im+¢&/21-In—¢&/2)),

5(0+m/2)
(In+&/2/-m—-&/2));,
(75)

3(..) =

where 6 is the angle between vectors n and & . Therefore, the
integration over the angles is carried out in a trivial manner.
Finally, performing the transition m —r, we obtain
cos oy — cos oy =1. In accordance with (75), we can there-
fore write k& = k||, where k|| is the component of the wave
vector directed along the magnetic field.

The property that the final result is independent of k, is
very important. Precisely it provides the same symmetry
property as in a homogeneous medium [42]:

&j(—w,—k,—B,r) = ¢;(w,k,B,r) . (76)
If transformation (68) is neglected, the necessary symmetry
cannot be obtained [36] (the authors of Ref. [36] explained the
dependence of the dielectric tensor on k; by k, not being a
Killing vector).

Finally, we use the Taylor expansion in || and the
reduction of summation to a delta function:

1
2 oS E Ay s

2 2 0\1/2
4
—>in‘[(...)5<s—w(|n| +151/4) )ds. (77)
Vo
We then obtain
8n2e? vy Of ©
x‘le_.— FN 22 17 78
=1 =1 [P0 2 (78)
8m2e? p01/3vz/3 o
Exy = —&yx = JF’(%) wz/(g) ap(p dp(p s (79)
8m2e? po vl or©
8}:};:1—1 JF”) a)l/3 %dp(p, (80)
where
1 —+00 ) i[3
F(x) =— exp [ ixt +— | dt, (81)
T Jo 3
2(w — kv,
424((” ”’U/,) p§/37 (82)

2/3
w‘/3v(/

the derivative of F with respect to its argument is indicated
by a prime, and p, is the curvature radius of the magnetic
field.
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It can be readily verified that the condition » > 1 is
satisfied in the magnetosphere of radio pulsars owing to the
large curvature radius p, of the magnetic field, and therefore
we can use the asymptotic form of the function F(x):

i 2i
F(x) ~ —
() ~ —

(83)

it
Integrating by parts, we obtain the final result

17§< wgvf > _i< V| >
2\ pgat 73pe@3

&ij = , (84)
Y (,UZUH (,02

i =2 1—( 2

<V3ﬂofv3> <v3®2>

where, by definition, @ = o — kv and the angular brackets
stand both for averaging over the particle distribution
function f¢+ - (p,) and for summation over the particle
species:

(0= [0 10 o) dpo.

ete~

(85)

We see that dielectric permittivity tensor (84) coincides
exactly with the tensor obtained in Ref. [2] and that it is
precisely the dielectric permittivity tensor that predicts the
existence of unstable plasma—curvature modes. As expected,
in the limit p, — oo, the tensor found coincides with the
tensor for homogeneous plasma. The nonzero components
Exys Epx, and Oey, = ¢y — 1 of g;; in (84) for a finite curvature
are due to the nonlocal response of the plasma to the
electromagnetic field of the wave. The nonlocality parameter
(v)/®)/py is the ratio of the radiation formation length
Iy = ¢t to the curvature radius. For the vacuum, @ ~ /72
and the length v /@ coincides with the formation length of the
curvature radiation, /.

It is important that the components &y, = —¢,, and Se.
alter the wave polarization significantly. The relation between
the components E, and E, of the wave electric field, following
from expression (84) for the dielectric permittivity tensor, is
given by

(8xy +1phg) Ep + (06xc + 1 — ni) E,=0, (86)
where 1, and n,, are dimensionless components of the wave
vector n = ke/w. In the case of strictly azimuthal propagation
(i.e., forn, = 0),

0y £~ c

ﬂ — T <
Exy P

E,~ E,. (87)

As a result, the electric field of the wave can perform negative
work on the particle current j,, i.e., it can be excited. This
property is violated if 8¢y, = &, = 0, whence it follows that
E, =0.

Thus, as we have shown (also see Ref. [96]), a wave with a
polarization [E,(p); E,(p)] exp (isg), containing a single
azimuthal harmonic s, satisfies only the Cherenkov radiation
mechanism, while the emission of a charged particle in a
circular magnetic field in the vacuum involves three azimuthal
harmonics, s and s + 1. This property provides an exit for the
wave from the phase synchronism of the particle current.
Further, in the case of collective curvature radiation, it was
shown that the hydrodynamic model of plasma moving along

an infinite magnetic field gives different results for wave
amplification depending on the wave polarization. Conse-
quently, there is no other way of finding the polarization of
unstable modes except by calculating the response of the
medium to the electromagnetic field, or, to be more precise,
calculating the dielectric permittivity tensor. The correct
procedure for calculation of the dielectric permittivity tensor
via expansion into cylindrical modes is indicated above. The
derived tensor coincides with the one obtained previously by
another method [3].

In conclusion, we note that the unsuccessful attempts to
find collective curvature radiation have led to the introduc-
tion of the term ‘curvature-drift instability’ [36]. As shown
above, the polarization chosen in such an analysis, namely, a
single azimuthal harmonic, only ensures the possibility of the
Cherenkov amplification mechanism. In this case, the
centrifugal drift of particles plays a decisive role. This is
virtually a single curvature effect in such an analysis. The
Cherenkov resonance, with account of the drift motion, at
best provides a small wave amplification [37].

3.5 Propagation theory of radio waves

In this section, we make several comments concerning the
most recent work on the theory of wave propagation in the
magnetosphere of pulsars and on the formation problem of
their average pulses. Over many years, a large number of
polarimetric observations have been accumulated [97-100],
and the hollow cone model, at least in its simplest realization,
is not sufficient for their analysis. We recall that this model is
based on the following three assumptions (see, e.g., Ref. [15]):

e the formation of polarization occurs at the point of
emission;

e radio waves propagate along straight lines;

e cyclotron absorption can be neglected.

But all these assumptions turned out to be incorrect. It
was shown in Ref. [101] that in the innermost regions of the
magnetoshpere, the refraction of one of the normal modes is
significant. After publication of the work of Mikhailovskii’s
group [102], it became clear that cyclotron absorption can
significantly affect the radio emission intensity. The influence
of the magnetosphere plasma on variation of the polarization
of radio emission propagating in the internal regions of the
magnetosphere also must not be neglected [103]. Here, the
main point is the effect of limiting polarization, which consists
in the following. The polarization of radio emission in the
region of dense plasma satisfies the laws of geometric optics;
therefore, the orientation of the polarization ellipse coincides
with the magnetic field orientation in the picture plane. But
the wave polarization in the vacuum region remains
unchanged. Hence, there is a transition layer, after passing
through which the polarization is no longer affected by the
magnetospheric plasma. In the case of typical parameters of
the pulsar magnetosphere, it turns out that the formation of
polarization occurs not at the emission point but at a distance
of about 0.1Ry from it [104, 105]. Taking this effect into
account should also explain the observed fraction of circular
polarization of the order of (5-10)%. Therefore, for a
quantitative comparison of theoretical results on radio
emission with observational data, it is necessary to have a
consistent theory of radio wave propagation in the magne-
toshpere.

At present, the theory of radio wave propagation in the
magnetosphere of a pulsar can be considered to provide the
necessary precision [106—110]. Four normal modes exist in the
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magnetosphere [3, 16]. Two of them are plasma modes and
two are electromagnetic, which are capable of departing from
the magnetosphere. An extraordinary wave (the X-mode)
with the polarization perpendicular to the magnetic field in
the picture plane propagates along a straight line, while an
ordinary wave (the O-mode) undergoes refraction and
deviates from the magnetic axis [101]. An important point
here is that for typical magnetosphere parameters, refraction
occurs at distances up to = 0.01 Ry, i.e., it can be considered
separately from the cyclotron absorption and the limiting
polarization.

Based on the Kravtsov—Orlov method [109], we have
developed [110] such a theory of wave propagation in a
realistic pulsar magnetosphere taking corrections to the
dipole magnetosphere into account (based on the results
obtained by numerical simulation in Ref. [20]) together with
the drift of plasma particles in crossed electric and magnetic
fields and a realistic particle distribution function. The theory
developed allows dealing with an arbitrary profile of the
spatial plasma distribution, which may differ from the one in
the hollow-cone model, because precisely the inhomogeneous
plasma distribution leads to the characteristic ‘patchy’
directivity pattern [98].

The main result consists in the prediction of a correlation
between the sign of the circular polarization (the Stokes
parameter V) and the sign of the derivative of the change in
the polarization of the position angle, p.a., along the profile,
dp.a./d¢, where ¢ is the phase of the radio pulse. For the
ordinary mode, these signs must be opposite to each other,
while for the extraordinary mode, they must coincide. As was
noted, refraction of the ordinary wave leads to a deviation of
beams from the rotation axis, and therefore the ordinary
wave pattern should be broader than for the extraordinary
wave. In the case of the ordinary mode, double radio
emission profiles should mainly be observed, while single
profiles should be observed in the case of the narrower
extraordinary mode [3].

Observations also fully confirm this conclusion of the
theory in [111]. In reviews [99, 100], to perform an analysis,
over 70 pulsars were chosen for which both the variation of
the position angle and the sign of the circular polarization
could be traced well (the results of the analysis are presented
in the Table). In the case of opposite signs of the derivative
dp.a./d¢ and the Stokes parameter V, the pulsar was placed
in class O, while in the case of identical signs, it was placed in
class X. As can be seen from the Table, most of the pulsars
exhibiting a double-peaked (index D) profile indeed corre-
spond to the ordinary wave, while most of the pulsars with
single-peaked profiles (index S) correspond to the extraor-
dinary wave. Moreover, the average width of the radiation
pattern ata 50% intensity level W5, (normalized with account
of different pulsar periods P) for Op pulsars is indeed about
two times larger than the average width of the radiation
pattern for Xg pulsars. The existence of a certain number of

Table. Statistics of pulsars with known circular polarization ¥ and
variation of position angle p.a. The pulsar periods P are expressed in
seconds, and the window width W5, in degrees.

Profile Os Op Xs Xp
Number 6 23 45 6
of pulsars

VPWsy, 6.8 +3.1 10.7 £4.5 6.5+29 53+3.0

pulsars of classes Op and Xg should not give rise to surprise,
because for central passage through the directivity pattern,
independently of whether it corresponds to the O-mode or to
the X-mode, a double-peaked profile should be observed,
while for lateral passage, a single-peaked profile should be
observed.

Another important result consists in the determination of
the applicability range for the standard relation

sin y sin ¢ >

sin y cos { cos ¢ — sin { cos x

.a. = arctan 88
p (

describing variation of the position angle in the mean profile
under the assumption of the validity of the hollow-cone
model (the absence of any absorption and the presence of a
dipole magnetic field in the emission region, precisely where
the polarization is determined). Here, once again, y is the
inclination angle of the magnetic dipole to the rotation axis, {
is the angle between the rotation axis and the direction toward
the observer, and ¢ is the phase of the pulse. Accurately
taking propagation effects into account has shown [108, 111]
that such a variation of the position angle can be realized only
under conditions of low plasma density or high mean particle
energy. Significant deviations from prediction (88) were
obtained in the case of quite reasonable parameters (for
example, the multiplicity 2 ~ 10* and the average Lorentz
factor y ~ 50) satisfying particle production models. We
recall that precisely equation (88) has been used for many
years in estimating the pulsar inclination angle, which is a
very important parameter for determining the structure of the
magnetosphere. In the nearest future, we plan to perform a
detailed comparison of observational data and theoretical
predictions.

4. Conclusion

In our opinion, quite a sufficient number of arguments have
been presented in this article to assert with confidence that the
theory of the magnetosphere of radio pulsars and of the
mechanism of their coherent radiation, developed by us in the
1980s [3], contains no internal contradictions. Moreover, as
shown above, observational data obtained recently confirm
the validity of the main conclusions of the theory. Therefore,
with the most recent results [110] concerning the effects of
wave propagation in the magnetosphere of a neutron star (see
Section 3.5), the theory developed by us, unlike many others,
permits making quantitative predictions concerning the
evolution of neutron stars and properties of the observed
radio emission.

Once again, we stress that the present article only concerns
the theoretical foundation of our model of radio pulsars. A
more detailed exposition of quantitative predictions of the
theory and their comparison with observational data must be
discussed separately. This will be discussed elsewhere.
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