
Abstract. Features of wave packet dynamics in linear and non-
linear optical fibers are studied allowing for complex-valued
dispersion parameters. It is shown that the presence of imagin-
ary components in dispersion parameters affects considerably
the compression behavior of a wave packet in single-element
and cascaded optical fibers; causes a shift in carrier frequency,
and creates frequency-modulated wave packets with a super-
luminal envelope maximum.

1. Introduction

The dynamics of optical wave packets (WPs) propagating in
an amplifying medium has been attracting attention recently
both in fundamental and applied studies [1±9]. However,
despite a variety of methods applied for studying these
systems, the models used neglect, as a rule, the complex
nature of dispersion parameters playing an important role in
the dynamics of optical WPs propagating in active optical
fibers [10±13]. Meanwhile, amplifying fibers are described by
the complex refractive index. Guided modes in such fibers
have a complex propagation constant and, therefore, a
complex group velocity and dispersion parameters. The

authors of papers [14, 15] pointed out significant differences
in the behavior of WPs in optical fibers with complex
dispersion parameters from that in `classical' active fibers, in
which amplification in the corresponding dynamic equation is
taken into account only by introducing a linear term resulting
in an exponential increase in the amplitude [16, 17]. Thus, the
degree of the linear compression of optical radiation is
determined to a large extent by the relation between the
imaginary and real components of the group velocity
dispersion (GVD) parameter and the initial frequency
modulation (FM) rate. In this case, compression is possible
even without the initial FM of the input WP, unlike fibers
with the real GVD parameter.

The compression of a WP in an active optical fiber, as a
rule, is accompanied by a shift of its carrier frequency, caused
by the presence of the imaginary component of the first-order
dispersion parameter. The carrier frequency shift, in turn, can
result in WP distortion and the deformation of the signal
envelope, thereby violating the compression regime and
producing other dynamic effects in the propagation of WPs
in such fibers [18±20].

The pulsed radiation dynamics in optical fibers with
material parameters inhomogeneously distributed over the
fiber length has attracted great recent attention [21±24]. Such
an interest is explained by the fact that optical fibers with
modulated GVD, nonlinearity, or amplification find wide
applications as highly efficient systems for controling laser
radiation. In this paper, we study the features of the linear and
nonlinear WP dynamics in active and inhomogeneous (in
length) optical fibers with a complex propagation constant
and, consequently, dispersion parameters and discuss the
possibility of the temporal compression of WPs and achiev-
ing the superluminal velocity of the WP envelope. This
possibility is associated with the presence of the imaginary
components of the optical fiber material parameters.
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2. Linear dynamics of a wave packet
in an active optical fiber

2.1 Temporal compression
Let us consider the optical radiation dynamics in an
inhomogeneous (in length) optical fiber with a complex
refractive index and, therefore, the complex propagation
constant b � b 0 ÿ ib 00. In this case, the field of a WP
propagating in a fiber can be written out in the form

E�t; r; z� � 1

2
eR�r�

�
�
B�t; z� exp

�
i

�
o0tÿ

�z
0

b 0�x� dx
��
� c:c:

�
; �1�

where e is the unit polarization vector of the light field, the
function R�r� describes the radial field distribution in the
fiber, o0 is the carrier frequency of the coupled WP, and c.c.
stands for the complex conjugate. Taking into account first-
and second-order dispersion effects, we obtain in the linear
approximation the equation [17]

qB
qz
� k�z� qB

qt
ÿ i

D�z�
2

q2B
qt 2
� ÿb 00�z�B �2�

for the WP temporal envelope, where complex dispersion
parameters are introduced: the first-order parameter
k � k 0 ÿ ik 00 � �qb=qo�0, and the second-order parameter
D � D 0 ÿ iD 00 � �q2b=qo 2�0, where the values of the deriva-
tives are taken at the WP carrier frequency o0. In the case of
the real propagation constant, the first dispersion parameter
k determines the group velocity, and the second dispersion
parameterD determines the GVD of the light wave propagat-
ing in the fiber.

Taking into account the complex propagation constant,
the slowly varying complex amplitude B�t; z� can be con-
veniently written out in the form

B�t; z� � A�t; z� exp
�
ÿ
�z
0

b 00�x� dx
�
; �3�

where b 00 > 0 for an absorbing fiber, and b 00 < 0 for an
amplifying fiber. By substituting expression (3) into equation
(2), we obtain the equation

qA
qz
ÿ ik 00�z� qA

qt
ÿ i

D�z�
2

q2A
qt 2
� 0 �4�

for theWP temporal envelope, where t � tÿ � z0 k 0�x� dx is the
time taken in a moving coordinate system.

Let us consider a frequency-modulatedGaussianWPwith
quadratically changing phase, which is coupled to the input of
an optical fiber (z � 0):

A�t; 0� � A0 exp

�
ÿ �1� ia0t 20 � t 2

2t 20

�
; �5�

where the parameter a0 characterizes the input FM rate, and
t0 is the initial WP duration. The solution of Eqn (4) for the
initial excitation conditions of fiber (5) in a moving coordi-
nate system can be written out in the form

A�t; z� � r�t; z� exp �ij�t; z�� ; �6�

where the amplitude of the WP temporal envelope and its
phase were introduced:

r�t; z� � A0

�����
t0
tp

r
exp

� �1� S 2�K 002z 2 ÿ t 2s
2t 2p

�
;

�7�

2j�t; z� � St 2s ÿ 2tsK 00�1� S 2� z� K 002S�1� S 2� z 2
t 2p

� arctan

�
Sÿ a0t 20
1� a0t 20S

�
:

Here, we also introduced the refined running time
ts � tÿ SK 00z, the duration of WP propagation through the
fiber

tp�z� � t 20

������������������������������������������
�1ÿ w1z�2 � w 2

2 z
2

t 20 �D 00�1� a 2
0 t

4
0 � z

s
; �8�

and the parameters

S � �a
2
0 t

2
0 � tÿ20 �D 0zÿ a0t 20

1� �a 2
0 t

2
0 � tÿ20 �D 00z

;

w1 � a0D 0 ÿD 00tÿ20 ; w2 � a0D 00 �D 0tÿ20 ;

D 0�z� � zÿ1
�z
0

d 0�x� dx ; D 00�z� � zÿ1
�z
0

d 00�x� dx ;

K 00�z� � zÿ1
�z
0

k 00�x� dx

depending on the coordinate z.
An analysis of the equations obtained shows that,

depending on the relation among parameters t0, a0, D 0, and
D 00, the WP spreads or undergoes compression and acquires
additional FM during its propagation. The compression
condition for the input WP, �qtp=qz� < 0, is determined by
the inequality

�a 2
0 t

4
0 ÿ 1�D 000 � 2a0t 20D

0
0 > 0 ; �9�

in the case of complex dispersion parameters and taking
expression (8) into account, where D 00 and D 000 are the values
of the appropriate parameters at the fiber input. It follows
from inequality (9) that under consideration of the real
propagation constant b, i.e., for the real GVD parameter
�D 00 � 0�, compression takes place only for a0 6� 0 in the
region of parameters where a0D 0 > 0. Then, we obtain the
well-known expression

tp�z� � t0

��������������������������������������������������
�1ÿ a0D 0z�2 �

�
D 0z
t 20

�2
s

�10�

for the WP duration. In another limiting case, D 0 � 0 and
D 00 6� 0, the WP duration takes the following form

tp�z� � t 20

������������������������������������������������������
�1�D 00z=t 20 �2 � �a0D 00z�2

t 20 �D 00�1� a 2
0 t

4
0 � z

s
; �11�

which means that theWP compression is realized forD 000 < 0,
even in the absence of the initial FM. In this conditions,
a0 � 0 and the WP duration is expressed as tp�z� �
�t 20 �D 00z�1=2.

Figure 1 shows the dependence of theWP duration on the
distance propagated in the fiber for D 00 < 0 and different
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values of the parameter Z � D 00=D 0. The initial WP duration
is t0 � 10ÿ11 s, the FM rate is a0 � 1020 sÿ2, and the value of
D 00 � ÿ10ÿ25 s2 mÿ1 is fixed (only the value of D 0 > 0
changes). As the parameter jZj increases, the WP compres-
sion degree also increases. The dashed curve fits the values of
a0 � 1021 sÿ2 and jZj � 10. In this case, the compression
degree increases to an order of magnitude compared to the
case where a0 � 1020 sÿ2.

2.2 Spectral description of the wave-packet dynamics
An analysis of the WP dynamics in an amplifying medium
with complex dispersion parameters should take into account
effects related to the possible carrier-frequency shift [18±20].
We will more to the spectral representation of the WP
temporal envelope

~A�o; z� � 1

2p

�
A�t; z� exp �ÿiot� dt : �12�

The spectral representation of the temporal envelope for a
Gaussian frequency-modulated pulse takes the form

~A�o; z� � A0

�
t0

2pDos

�1=2

� exp

�
ÿ
ÿ
os�z� ÿ o

�2
2Do 2

s

� O 2

2Do 2
s

� ij�o�
�
; �13�

where os�z� is the coordinate-dependent effective carrier
frequency, and

O�z� � os�z� ÿ o0 � ÿDo 2
s �z�

�z
0

qb 00�x�
qo

dx �14�

is the carrier-frequency shift. Then, the coordinate-dependent
spectral width of the WP is given by the relation
Dos � �tÿ2p � a 2�z� t 2p �1=2. The sign of the carrier-frequency
shift is determined by the sign of k 00 � qb 00=qo, which, in
turn, depends on the amplification line shape and the position
of the carrier frequency with respect to the resonance
frequency. It follows from the relationships presented above
that, during the propagation of a WP in an optical fiber, its
effective carrier frequency shifts and the spectral width
changes. For D 00 < 0, the spectral broadening of the WP

occurs in the path of z4L. The mechanism of this broad-
ening is related to the specific features of the radiation
propagation in media with a strong dispersion of the gain.
Because of the fast FM, spectral components at the pulse
edges escape from the maximum gain region, so that their
amplification proves to be much smaller than that for
components located near the maximum of the WP envelope.
Therefore, considerable amplification occurs only near the
maximum of the WP envelope, where the instantaneous
frequency shift O�t� � ÿqj�o�=qt does not considerably
exceed the gain linewidth.

Because the carrier frequency o0 of a WP coupled to an
optical fiber may not coincide with the gain line center or in
the regionD 00 < 0, the sign of the carrier frequency shift for a
gain line depends on the sign of the difference o0 ÿ or. If
o0 > or, then O > 0, while for o0 < or, the opposite
situation takes place, i.e., O < 0. In this case, the carrier
frequency in an amplifying medium is pulled into the
maximum gain region. The occurrence of the shift of the
carrier frequency considerably restricts the possibilities of the
compression mechanism under study, because the carrier
frequency at large enough values of the parameter k 00 can
leave a region with the negative imaginary component of the
GVD parameter.

Consider next the dependence of the imaginary compo-
nents of dispersion parameters on the carrier-frequency
detuning from the resonance frequency and the linewidth by
the example of a Lorentzian gain line. The gain increment for
radiation intensity well below the saturation intensity in the
case under study can be described by the formula [25]

g�o� � ÿ2b 00�o� � rNDo 2

do 2 � Do 2
; �15�

where do � o0�z� ÿ or is the detuning from the induced
transition frequency or, r is the induced transition cross
section, N is the concentration of active particles in the
absence of lasing, and Do is the gain linewidth. In this case,
the imaginary components of the first- and second-order
dispersion parameters are defined by the expressions

k 00 � rN doDo 2

�do 2 � Do 2�2 ; D
00 �rNDo 2�Do 2ÿ3do 2�

�do 2 � Do 2�3 : �16�

To obtain the compression of a WP coupled to a fiber at
a0 � 0, according to inequality (9), the condition D 00 < 0
must be fulfilled, where the frequency o is set equal to the
WP carrier frequency o0. It follows from formulas (16) that
this condition can be fulfilled if the carrier frequency is chosen
so that the detuning from the resonance frequency equals
jdoj > Do=

���
3
p

. Because the carrier frequency is pulled to the
gain line center, where k 00 � 0 and D 00 > 0, the realization of
compression mechanism related to the phase modulation
caused by the imaginary component of the GVD parameter
in the model of a single Lorentzian line proves to be quite
problematic.

It is necessary to note that, for k 00 6� 0, the carrier
frequency always shifts. For a Lorentzian gain line, the
carrier frequency shift is determined by the equation

Os�z� � ÿDo 2
s �z�

�z
0

rN�x�
ÿ
os�x� ÿ or

�
Do 2ÿ

Do 2 � �os�x� ÿ or�2
�2 dx :

�17�
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Figure 1. Dependence of the WP duration on the traversed distance for

D 00 < 0, jD 00=D 0j � 10, 20, 50, a0 � 1020 sÿ2 (curves 1±3); dashed curve 4

corresponds to jD 00=D 0j � 10 and a0 � 1021 sÿ2.
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In general, having regard to the pump degeneracy, the
parameter N determining the presence of active centers
almost always depends on a coordinate (for example, due to
the pump degeneracy effect).

The problem of the carrier-frequency shift can be solved,
in particular, by using media with the complex profile of the
gain increment possessing a local extremum in the frequency
range with D 00 < 0. It can be formed if the medium is
approximated by a sum of two Lorentz oscillators. In this
case, the gain is defined by the expression

g�o� � ÿ2b 00�o� � N
X
i�1;2

ri fi Do
2
i

�oÿ ori�2 � Do 2
i

; �18�

where the quantity fi � Ni=N determines the contribution
from the corresponding group of oscillators to the total gain
curve and f1 � f2 � 1. Here, it is always possible to select the
carrier frequency o � os so that, on the one hand, k 00 � 0
and, on the other hand, the condition D 00 < 0 is fulfilled.

Figure 2 plots the frequency dependences of dispersion
parameters k 00 and D 00 for a single Lorentzian line (Fig. 2a)
and a complex gain line (Fig. 2b) determined by relations (16)
and (18). Numerical calculations were performed using
parameters of widely distributed erbium-doped silica fibers:
r�2�10ÿ24 m2,N�5� 1021 mÿ3,or�1:8� 1015 sÿ1,Do �
0:5� 1012 sÿ1 (Fig. 2a) and f1 � 0:55, f2 � 0:45, or1 �
1:8�1015 sÿ1, or2 � 1:802� 1015 sÿ1, Do1 � 6� 1011 sÿ1,
Do2 � 5:5� 1011 sÿ1, and riN � 10ÿ2 mÿ1 (Fig. 2b). In the
event of a complex gain line, the arrow indicates the operation
frequency for which k 00 � 0 and D 00 < 0 and the carrier-
frequency shift is virtually absent during the propagation of
a pulse in a fiber with such a gain line.

The problem of the carrier-frequency displacement can
also be solved by tapping hollow fibers filled with an
amplifying gas medium [26] with the inhomogeneous gain
line in which a local minimum, the so-called Bennett hole [27],
is burnt at the required frequency, or by using microstruc-
tured fibers [28]. Notice also that the gain line of a real active
medium cannot be described by an ideal Lorentzian and
practically always has a sufficiently large number of local
extrema.

The analysis performed above gives evidence that the WP
carrier-frequency shift can considerably complicate the
realization of compression regimes in active optical fibers.
However, along with this negative factor, the imaginary first-
order dispersive parameter can lead to some specific effects.
An important feature of WP propagation in an amplifying
medium is the fundamental possibility of the movement of its
envelope maximum at a velocity exceeding the speed of light c
in vacuum. Such a superluminal propagation of the WP does
not mean that energy is transferred at this velocity, but is
related to a change in the WP shape due to a stronger
amplification at the WP leading edge [29]. Although the
possibility of achieving the superluminal velocity of WP
traveling in amplifying media was discussed long ago [30±
32], this effect is still attracting the close attention of
researchers [33±62].

The authors of above-noted papers analyzed WPs with a
fairly extended exponential leading edge. However, super-
luminal propagation regimes for the envelope maximum are
also possible for a rapidly decaying Gaussian FM pulse.
Taking into account the running time introduced in expres-
sions (7), the propagation velocity of the WP envelope
maximum in a medium can be defined by the general
expression

um � u

1� Sk 00u
; �19�

where u � �k 0�ÿ1 � c=nef is a quantity that is usually
identified with the WP group velocity, and nef is the real part
of the effective refractive index of the active medium in which
the WP is formed. It follows from relationships (19) that the
superluminal regime (um > c) for the WP envelope maximum
is possibly attained when the condition Sk 00 < 0 is fulfilled.
This regime can be obtained upon both WP compression and
broadening its spectrum for different signs of the quantities
o0 ÿ or, a0,D 0, andD 00. To obtain the superluminal regime at
large enough distances, conditions providing the mainte-
nance of the carrier frequency within the gain line
(jOsj5Do) should be fulfilled over the entire WP propaga-
tion path. The dynamical features of WPs in media with a
considerable dispersion of the gain increment will be
discussed in more detail in Section 4.

3. Cascade compression scheme

Let us consider in this section the features of a cascade
radiation compression scheme, related to the complex
dispersion parameters. We assume that an optical fiber
consists of a sequence of active (amplifying) and passive
homogeneous segments for which the imaginary and real
components of dispersion parameters are deemed constant.
This compression technique is a continuation of the amplifi-
cation technique for FM WPs applied for reducing the
influence of nonlinear optical phenomena on the generation,
amplification, and transfer of high-power ultrashort light
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Figure 2.Frequency dependences of dispersion parameters k 00 andD 00 for a
single Lorentzian (a) and complex (b) gain line.
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pulses in solid-state laser systems [63±65]. According to this
technique [66, 67], a light pulse is transmitted before
amplification through a stretcher providing an increase in
the pulse duration. The resulting decrease in the peak pulse
power considerably reduces the influence of nonlinear effects
at the amplification stage. The phase modulation produced
during stretching is compensated for after amplification with
the aid of a compressor producing an ultrashort laser pulse.

Below, we consider compression conditions for a Gaus-
sian WP propagating in a cascade optical fiber with an input
active fiber and an output passive fiber. This scheme solves
the problem of the carrier frequency shift and assumes the
generation of a long enough WP with a relatively small
envelope amplitude and a high FM rate at the first section
of the cascade [68, 69]. After the FM rate of the WP becomes
as high as possible, the WP is coupled with the second section
to obtain compression. In this case, the second section length,
at which the WP becomes transform-limited, coincides with
the length at which the WP duration becomes minimal. An
analysis and comparison of the parameters of a WP
propagating in a cascade fiber are performed for forward
and backward propagations.

3.1 Two-stage scheme
Let us first consider a two-stage WP compression scheme,
when optical radiation propagates in the first amplifying fiber
with complex parameters k1, D1 and length L1, and then is
coupled into the second fiber with real dispersion parameters
k2, D2 and length L2. We assume that a WP coupled with the
first fiber has the duration t0 and the initial FM rate a0.
According to expression (7), the FM rate of the WP at the
output of the amplifying fiber (and at the input to the second
passive fiber) is given by

a1 � q2j
qt 2

����
z�L1

� ÿ a0t 20 �1ÿ w1L1� ÿ w2L1

t 20
��1ÿ w1L1�2 � �w2L1�2

� : �20�

In this case, according to formula (10), the WP duration after
propagation through the second fiber is described by the
expression

tp�L2� � t1

�
�1ÿ a1D 02L2�2 �

�
D 02L2

t 21

�2�1=2
; �21�

where t1 � tp�L1� and a1 � a�L1� are the WP duration and
the FM rate at the output of the first amplifying fiber. It
follows from the last formula that the compression regime in
the second fiber is possible when the inequality a1D 02 > 0 is
satisfied.

Consider the important case demonstrating the funda-
mental possibility of the cascade compression of a propagat-
ing WP in the absence of its initial FM, i.e., at a0 � 0. After
traversing a distance L1 in the first amplifying part of the
fiber, the WP acquires at the output the FM rate

a1 � a�L1� � D 01L1

�t 20 �D 001L1�2 � �D 01L1�2
: �22�

It is appropriate to determine the optimal length of the first
fiber from the condition according to which the WP duration
should be minimal at the cascade output. To achieve this, the
FM rate ja�L1�j at the output of the first fiber should be as
high as possible. By setting the derivative qa=qL1 equal to
zero, we obtain the optimal length of the first fiber:

L10 � t 20 =jD1j. As a result, the FM rate for the WP at the
output of the first fiber with the optimal lengthL10 reaches the
value

a10 � a�L10� � D 01
2t 20
ÿjD1j �D 001

� : �23�

The WP duration after traversing a distance L1 in the first
amplifying fiber is determined by the expression

t1 � tp�L1� �
� �t 20 �D 001 L1�2 � �D 01L1�2

t 20 �D 001 L1

�1=2
: �24�

After traversing the optimal length, the WP broadens and its
duration becomes equal to t10 � tp�L10� �

���
2
p

t0.
The values a1 and t1 are the initial (input) for the second,

passive fiber. The FM rate and the WP duration after
traversing a distance z in the second fiber are defined by the
expressions

a�L1 � z� � ÿ a1t
2
1 � �a 2

1 t
2
1 � tÿ21 �D 02z

t 21
��1ÿ a1D

0
2z�2 � �D 02tÿ21 z�2� ;

tp�L1 � z� � t1
�����������������������������������������������������
�1� a1D

0
2z�2 � �D 02tÿ21 z�2

q
:

�25�

Thus, the FM rate andWP duration at the cascade output are
determined by the parameters a12 � a�L1 � L2� and
t12 � tp�L1 � L2�. The optimal length L20 of the second
fiber in the cascade is found from the condition of the WP
duration minimum at the cascade output. By solving the
equation qtp=qL2 � 0, we obtain the optimal length

L20 � a1t
4
1

D02�1� a 2
1 t

4
1 �

�26�

of the second fiber, on which the maximum compression is
reached and where the minimal possible values of a1 and t1 at
the cascade output should be chosen as optimal values. In this
case, the WP duration at the cascade output reaches the
minimal possible value

tmin
12 � tp�L0� �

t10��������������������
1� a 2

10t
4
10

q �
������������������������
t 20 �D 001 L10

q

� t0

�����������������
1� D 001
jD1j

s
�27�

for the chirp value a10 realized at the output of the first fiber,
where the total optimal cascade length L0 is the sum of the
optimal lengths of the first and second fibers, i.e.,
L0 � L10 � L20. It follows from this expression that the
minimum WP duration which can be attained in the cascade
depends on the sign of the parameterD 001 and the value ofD 01.
Thus, for D 01 ! 0 and D 001 < 0, we have tp�L0� ! 0 at the
cascade output. According to formula (21) and in view of
Eqn (24), the compression condition in the cascade scheme
will be expressed by the inequality D 01D

0
2 < 0. It also follows

from Eqn (27) that the value of tp�L0� is independent of the
parameters of the second, passive fiber; however, according
to formula (24), the higher degree of compression cannot be
achieved without this fiber, i.e., in the active fiber alone.

The analysis of expression (27) shows that, for ja1j t 21 � 1,
the duration of the compressedWP takes the maximum value
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of tmin � 1=�2ja1j�1=2. Therefore, to obtain the WP duration
at the cascade output as short as possible, it is necessary to
increase the FM rate ja1j at the first fiber output. In the case of
high compression degrees, the inequality ja1j t 21 4 1 must be
satisfied, and the expressions obtained can be transformed to
the form

L20 � 1

jD 02a1j
� t 20

���� D 01
D 02D

00
1

���� ; �28�

tmin � 1

ja1t1j � �t
2
0 �D 001 L1�1=2

�
1�
�
t 20 �D 001 L1

D 01L1

�2�1=2
:

�29�
To achieve efficient cascade compression, the length L1 of the
amplifying fiber should be chosen to provide the validity of
the inequality jt 20 �D 001 L1j5 jD 01L1j. Then, expression (29)
reduces to Eqn (27).

A considerable carrier-frequency shift in the compression
scheme constructed here is mainly prevented by the choice of
the initial carrier frequency o0 determining the value of
k 001 �o0�. Thus, for the case of a0 � 0, the condition jOsj5
Do determining the restriction on the carrier-frequency shift
in the cascade compression scheme can be rewritten in the
form

tmin 4

��������������
jk 001 jL1

Do

r
; �30�

where it is taken into account that Dos � 1=tmin. The validity
of condition (30) is achieved by choosing the parameter
k 001 �o0� so that the value of jk 001 jL1 is small enough.

Let us turn now to the case of the backward propagation
of a WP, when optical radiation first propagates in a passive
fiber with parameters k2, D2, and L2 and then is coupled into
an active fiber with parameters k1, D1, and L1, i.e., the
sections of a cascade fiber are interchanged. We assume that
the WP coupled into the cascade, as in the first event, has the
duration t0 and the initial FM rate a0 � 0. After propagation
through the passive fiber, the WP acquires the FM rate and
duration determined by the expressions

a2 � a�L2� � D 02L2

t 40 � �D 02L2�2
;

t2 � tp�L2� �
��������������������������������
t 20 �

�
D 02L2

t0

�2
s

:

�31�

After propagation through the active section of the fiber, i.e.,
at the cascade output, the WP duration and the FM rate are
described by the expressions

a21�ÿ a2t
2
2 � �a 2

2 t
2
2 � tÿ22 �D 01L1

t 22
��1ÿ�a2D 01ÿD 001 tÿ22 �L1�2��a2D 001 �D 01tÿ22 �2L 2

1

� ;

t21�t 22

����������������������������������������������������������������������������������������������
�1ÿ�a2D 01ÿD 001 tÿ22 �L1

�2��a2D 001 �D 01tÿ22 �2L 2
1

t 22 �D 001 �1� a 2
2 t

4
2 �L1

s
;

�32�

where notations a21 � a�L2 � L1� and t21 � tp�L2 � L1�
were introduced.

The dependences of the WP duration on the distance
traversed in the fiber for the forward and backward propaga-

tions (solidanddashed curves) calculatedby these relationsare
presented in Fig. 3. We assumed that the WP coupled to the
fiber input had the initial duration t0 � 10ÿ12 s, the FM rate
a0 � 0, and the two values of dispersion parameters
D 01��2; 0:5� � 10ÿ27 s2 mÿ1, D 001 ��ÿ8;ÿ6� � 10ÿ27 s2 mÿ1,
and D 02�ÿ2:2;ÿ2� � 10ÿ26 s2 mÿ1 (curves 1 and 2, respec-
tively). In the case of arbitrary section lengths L1 �
�100; 150� m and L2 � �32:5; 20:3� m, the WP at the fiber
output exhibits broadening, i.e. its duration at the output
enhances that at the input (Fig. 3a). In the case of optimal
lengths L1 � �121:3; 166:1� m and L2 � �11:0; 4:2� m, the
output WP duration is considerably shorter than its initial
duration (Fig. 3b). In this event, the minimal pulse time
corresponds to the zero FM rate achieved in the second fiber
of the cascade. In forward and backward propagations, the
WP duration at the cascade output is the same, which
demonstrates the manifestation of reciprocity in the linear
compression mechanism under consideration (the backward
propagation of the WP is equivalent to a change in the order
of the sequence of sections in the fiber).

The WP dynamics in the cascade are illustrated by a
change in the envelope shape during the forward (Fig. 4a) and
backward (Fig. 4b) propagations of the wave packet in the
cascade with optimal lengths of sections (these dependences
were constructed using the values of parameters correspond-
ing to curve 1 in Fig. 3b).

Analysis shows that WP compression is possible for
arbitrary lengths of sections as well; however, it is noticeably
weaker than that for optimal lengths of sections in the
cascade. This is explained by the fact that, for an arbitrary
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Figure 3. Dependences of the WP duration on the distance traversed in a

fiber for arbitrary (a) and optimal (b) lengths of sections, two values of

dispersion parameters (curves 1 and 2), and forward (solid curves) and

backward (dashed curves) wave propagations.
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length L1, it is impossible to produce the highest possible FM
rate of the pulse immediately ahead of the input to the second
fiber, where compression is performed. The length of a given
fiber on which the pulse becomes transform-limited does not
coincide with the length on which the pulse duration becomes
minimal. The pulse is also compressed in the active fiber.
However, the FM rate of the pulse at the point of its minimal
duration is rather high, which is highly undesirable for
various technical applications.

3.2 Multistage scheme
A two-stage cascade scheme cannot fully solve the problem of
locking the WP carrier frequency in the spectral region
corresponding to the negative values of the imaginary
components of the second-order dispersion parameters. This
problem can be most efficiently solved by designing multi-
sectional fibers consisting of sections supplying radiation to
an amplifier, the amplifier itself, and a compensating fiber
located behind the amplifier. In so doing, the carrier
frequency can be locked in the required frequency region by
two radically different techniques.

The first technique is based on the employment of
multisectional fibers containing three and more elements,
for which the mean value of the parameter k 00�z� over the
entire propagation path of the pulse is close to zero, while the
mean value of the parameter D 00�z� is negative, namely

hk 00i �
XN
i�1

k 00i Li

L
� 0 ; hD 00i �

XN
i�1

D 00i Li

L
< 0 ; �33�

whereN is the number of sections in the cascade fiber, andL is
its total length.

Another technique for carrier-frequency locking is built
around a fiber optic line containing a sequence of amplifying
elements with resonance frequencies increasing on passing
from one element to another (or1 < or2 < . . . < orN),

thereby providing the fulfillment of the condition hD 00i < 0
over the entire fiber length. In this case, the condition that the
WP carrier frequency not escape from the region D 00i < 0 in
each of the elements of the fiber can be represented by the
inequality

josi ÿ Osi ÿ orij > Doi���
3
p ; Osi � k 00i Li�1� a 2

0 t
4
0 �

t 20 � �1� a 2
0 t

4
0 �D 00i Li

:

�34�

This model should operate well enough if the carrier-
frequency shift in each of the fiber elements is small
compared to the detuning of the carrier frequency in the
given element from the induced-transition frequency, i.e.,
josi ÿ orij4Osi.

Let us consider a cascade consisting of N homogeneous
dispersive optical fibers, some of which are characterized by
complex dispersion parameters, while the others have real
dispersion parameters.We assume that conditions for carrier-
frequency locking in the region D 00i < 0 are fulfilled. In this
event, the FM compensation condition (for generating a
transform-limited WP) at the output of the Nth element of
the cascade takes the form

hD 0iL �
XN
i�1

D 0i Li �
a0t

4
0

1� a 2
0 t

4
0

: �35�

The transform-limited WP duration at the cascade output is
then determined by the expression

tp �
�
hD 00iL� t 20

1� a 2
0 t

4
0

�1=2

: �36�

For a0 6� 0 and D 00i < 0, the WP duration at the cascade
output can be much shorter than t0. Thus, for example, for a
three-sectional cascade fiber (N � 3) and a0 6� 0, the length of
a compensator (the last element of the cascade), in which the
compressed WP should be obtained at its output, is given by

L3 � a0t
4
0 �1� a 2

0 t
4
0 �ÿ1 ÿD 01L1 ÿD 02L2

D 03
> 0 ; �37�

where L1 is the length, and D 0i is the real component of the
material dispersion of the ith element. The minimal duration
of the transform-limitedWP at the fiber output, like that for a
two-sectional cascade, is determined by the amplifier para-
meters D 002 , L2, and k 002 and the initial FM rate a0:

tmin�L3�� 1

Dos�L3��
�

1� a 2
0 t

4
0

t 20 �D 002 L2�1� a 2
0 t

4
0 �
�ÿ1=2

: �38�

Thus, the presence of complex dispersion parameters in
cascade optical fibers containing active and passive sections
can cause the compression of a WP without the initial FM of
low-power input radiation. In this case, the cascade technique
allows one to almost completely eliminate negative factors
related to the WP carrier-frequency shift and the influence of
nonlinear effects accompanying compression in one-sectional
amplifying fibers. For active fibers in the cascade compres-
sion scheme in the region of the carrier-frequency detuning
from the resonance gain line, it is possible to obtain the
superluminal propagation regime for the WP envelope
maximum in the presence of FM and positive values of the
imaginary part of the GVD.
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4. Wave-packet dynamics
in a nonlinear optical fiber

Nonlinear single-mode optical fibers that are inhomogeneous
in lengthmake up efficient tools for controling the parameters
of short WPs. Modern technologies make it possible to
manufacture optical fibers with the specified type of long-
itudinal inhomogeneity of a corresponding parameter. Thus,
the required GVD profile is formed by changing the fiber
diameter or the difference in the refractive indices of the fiber
core and cladding [21±23]. The character of longitudinal
distribution of material parameters noticeably affects the
WP dynamics in a nonlinear fiber [70±80]. For example, in
the case of the considerable influence of nonlinear effects, the
WP carrier-frequency shift can considerably complicate the
realization of compression regimes in active fibers.Moreover,
nonlinearity inevitably leads to a strong instability of WPs
with the superluminal velocity of the envelope's maximum
propagation.

4.1 Solution of a nonlinear equation for the envelope
Let us consider the nonlinear WP dynamics in an amplifying
fiber with material parameters depending on the longitudinal
coordinate z. The dynamics of WPs of duration t0 4 1 ns
does not virtually depend on the second- and higher-order
dispersion effects. Therefore, the WP envelope in a fiber with
the Kerr nonlinearity is described by the equation

qB
qz
� k�z� qB

qt
� iR�z�jBj 2 B � ÿb 00�z�B ; �39�

where R is the Kerr nonlinearity parameter. This equation
can be applied in analyzing the radiation dynamics in optical
fibers with the inhomogeneous longitudinal distribution of
material parameters slowly varying in length. By making the
substitution

B�z; t� � A�z; t� exp
�
ÿ
�z
0

b 00�x� dx
�

�40�

into equation (39), we arrive at the equation for the slowly
varying amplitude A�z; t�:

qA
qz
� k�z� qA

qt
� iRef�z�jAj2 A � 0 ; �41�

where the effective nonlinearity parameter is defined in the
following way:

Ref�z� � R�z� exp
�
ÿ 2

�z
0

b 00�x� dx
�
: �42�

The FM envelope of a Gaussian WP at the fiber input can be
described by the expression

A�t; 0� � A0 exp

�
ÿ t 2

2t 20
� i

a0t 2

2
� ij0

�
; �43�

with the duration constant along the fiber, where
t � tÿ � z0 k�x� dx is the running time, and A0 and j0 are the
amplitude and phase of the WP envelope at the fiber input.
Taking into account that k�z� is a complex quantity, we can
write out the expression for the radiation intensity��A�t; z���2 � A 2

0 exp

�
ÿ t 2m
2t 20
� ÿtÿ20 � a 2�z� t 20

�
�
��z

0

qb 00�x�
qo

dx
�2�

; �44�

where the time

tm�z� � tÿ
��z

0

qb 0�x�
qo

dx� a�z� t 20
�z
0

qb 00�x�
qo

dx
�
�45�

related to the WP envelope maximum was introduced. Then,
the instantaneous velocity of the envelope maximum for the
FMWP is determined by relation (19), while the delay time of
a signal that travelled a distance L is Dtm�L� � tÿ tm�L�.
Taking these relations into account, we can find the mean
velocity of the WP envelope maximum on the fiber length L:

humi � L

Dtm�L�

� L

��L
0

qb 0�z�
qo

dz� a�L� t 20
�L
0

qb 00�z�
qo

dz

�ÿ1
: �46�

If the parameter b 0 is assumed constant over the fiber length,
expression (46) takes the form

humi �
�
1

u
� a�L� t 20

L

�L
0

qb 00�z�
qo

dz

�ÿ1
; �47�

where u � �qb 0=qo�ÿ10 is the group velocity of the WP. In the
case important in practice, when the carrier-frequency
detuning from the resonance frequency of the gain line is
relatively small, jdos�0�j5Do, expression (47) can be
rewritten in the form

humi �
�
1

u
� a�L� t 20 r

Do 2L

�L
0

N�z� dos�z� dz
�ÿ1

; �48�

where the parameter N depends in general on the coordinate.
In particular, the pump degeneration effect can lead to a
decrease in N �z� with increasing z. On the other hand,
tapping distributed fiber amplifiers, it is possible to create
active profiles with N increasing with length.

It follows from the relations presented above that the WP
dynamics as a whole and the envelope maximum velocity, in
particular, considerably depend on the value and sign of the
FM rate. To find the dependence of the parameter a on the
distance traversed by the WP, we will utilize the equation
obtained by the authors in Ref. [74]. For aWP propagating in
an amplifying nonlinear medium, by neglecting second-order
dispersion effects, we have

qa
qz
� Ref�z� I0���

2
p

t 20
; �49�

where I0 � jA0j2 is the intensity of radiation coupled to the
fiber. If the distribution of the effective nonlinearity Ref�z�
along the fiber length is known, the function a�z� can be found
from relation (49). By substituting this function into formula
(48), we can find the velocity of theWP envelope maximum at
any point of the fiber. Notice here that the superluminal
velocity of the WP envelope maximum can be obtained even
in the case of zero initial FM, because the FM appears during
the WP propagation in the fiber due to the Kerr nonlinearity.

4.2 Carrier-frequency shift and a change
in the width of the spectrum
As follows from relation (27), the presence of the nonzero
imaginary component of the group velocity almost inevitably
leads to reshaping theWP and its carrier-frequency shift. The
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dynamics of carrier-frequency shift in general (including the
Lorentzian approximation of the gain line) can be simulated
only numerically. In some important particular cases,
however, the carrier-frequency shift can be obtained in the
analytical form.

If the WP width weakly changes during light propagation
(which is the case when the influence of nonlinear effects is
insignificant), then the carrier-frequency shift with respect to
the maximum of the Lorentzian gain line can be found from
the solution of integral equation (17). We will represent the
carrier-frequency shift in this equation in the form

Os�z� � os�z� ÿ or ÿ os�0� � or �50�

and introduce the current detuning dos�z� � os�z� ÿ or from
the resonance frequency. By substituting Os�z� into Eqn (17),
we obtain

dos�z�ÿdos�0��ÿDo 2
s �z�

�z
0

rN�x� dos�x�Do 2ÿ
Do 2�do 2

s �x�
�2 dx :

�51�
Differentiating this equation with respect to coordinate z
yieldsÿ

Do 2 � do 2
s �z�

�2
dos�z�

q
qz

dos�z� � ÿrN�z�Do 2
s �z�Do 2 : �52�

If the WP width remains constant during propagation, i.e.,
Dos�z� � const (this is the case for input FM pulses
propagating in a medium with a weak cubic nonlinearity),
we obtain the functional dependence

G�z� ÿ G�0� � ÿDo 2
s

�z
0

rN�z� dz ; �53�

determining the dynamics of the detuning dos�z�, where

G�z� � do 4
s �z�

4Do 2
� do 2

s �z� � Do 2 ln
dos�z�
dos�0� :

In the approximation of small detuning of the carrier
frequency from the resonance gain line, we have a simple
solution to equation (53) describing the carrier-frequency
`pulling' to the region of the gain line maximum:

dos�z� � dos�0� exp
�
ÿ Do 2

s

Do 2

�z
0

rN�z� dz
�
: �54�

In the approximation of narrowWPs with respect to the gain
line width, when the carrier-frequency detuning from the
resonance frequency can be considered quite accurately
constant, i.e., dos�z� � dos�0�, the velocity of the WP
envelope maximum is described by the expression

um�z� �
�

1

u�z� �
a0t

2
0 rN�z� dos�0�

Do 2

�ÿ1
: �55�

In the narrowband spectrum and inexhaustible pump
approximations, the velocity of the envelope maximum can
be assumed constant with a good accuracy. In this case, it
follows from relations (50)±(55) that there is a need to use
rather long FM pulses (much longer than 1 ms) for observing
superluminal waves.

In general, not only the carrier-frequency shift but also a
change in the width of the spectrum essentially contribute
(and determine to a large extent) to the dynamics of a chirped
WP in an active fiber in circumstances where strong nonlinear
effects show their worth. For an arbitrarily changing WP
linewidth, the analytic solution of equation (51) for the
carrier-frequency shift with respect to the resonance fre-
quency (for a small detuning, when jdos�z�j5Do) can be
written out in the form��dos�z�

�� � jo0ÿorj ��z�
�
1ÿ2

�z
0

�ÿ1�x�
�
q
qx

ln
Dos�x�
Dos�0�

�
dx
�
;

�56�

where

� � F�z�
F�0� exp

�
ÿ
�z
0

F�x� dx
�
; F�z� � g�or�Do 2

s �z�
Do 2

;

and g�or� � rN is the gain increment at the resonance gain
line frequency. In this case, we can assume quite accurately
that F�z�=F�0��Do 2

s �z�=Do 2
s �0� and the current spectral

width of the WP is described by the expression

Dos�z� � tÿ10

��������������������
1� S 2�z�

q
;

S�z� � S0 � RI0���
2
p

rN

�
exp�rNz� ÿ 1

�
;

�57�

where S0 � a0t
2
0 . Here, the mean velocity of the envelope

maximum on a fiber segment of length L is found from the
expression

humi �
�

1

u�z� �
a�L� t 2p �L� r

Do 2L

�L
0

N�z� dos�z� dz
�ÿ1

: �58�

One can see that, for a�L� < 0, the superluminal velocity of
the envelope maximum for an FM WP can be reached.
Because the group velocity is complex, the WP carrier
frequency can `leave' the frequency range corresponding to
the superluminal velocity of the envelope maximum. By
forming inhomogeneous distributions of fiber parameters, it
is possible to maintain the WP envelope maximum in the
frequency range corresponding to the superluminal velocity
on a certain length of the fiber.

4.3 Velocity and acceleration
of the wave-packet envelope maximum
Our analysis showed that the velocity of the WP envelope
maximum considerably depends on the initial WP duration
and the initial FM rate. This dependence and related features
of the dynamics of Gaussian FMWPs open up, under certain
conditions, possibilities for achieving the regime of the
superluminal propagation of the WP envelope maximum
over long distances. It seems that this regime can be most
efficiently achieved by using long enough (t0 > 10ÿ3 s) and
strongly modulated WPs, for which the inequalities
ja0j t 20 4 1 and jD 00j �tÿ20 � a 2

0 t
2
0 � z5 1 are simultaneously

valid over distances z5 1 m. In this case, S � ÿa0t 20 and,
according to formula (19), um � u=�1ÿ a0t

2
0 k
00u�, where the

quantity k 00, taking into account the Lorentzian shape of the
gain band, is determined by expression (16).

We will illustrate the possibility of achieving the super-
luminal propagation of the envelope maximum by a numer-
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ical example using the parameters typical for erbium-doped
fiber amplifiers, which have recently found wide applications
[25, 27]. Thus, for a WP with parameters t0�10ÿ2 s,
a0�108 sÿ2 in a medium with jk 00j�10ÿ12 s mÿ1 and jD1j �
jD2j � 10ÿ26 s2 mÿ1, we obtain um > c. Under these condi-
tions, the carrier-frequency shift is jOsj4 103 sÿ1 for
z4 103 m. Taking into account that the gain linewidth is
typically Do � 1011 ± 1014 sÿ1, the carrier-frequency shift by
� 103 sÿ1 can be considered extremely small and not affecting
the superluminal WP dynamics. It should be noted, however,
that in the region of parameters satisfying the relation
a0t

2
0 dos�z� � Do 2=rNu, the velocity of the envelope max-

imum can take arbitrarily large values. Figure 5 shows the
dependence of the velocity of the WP envelope maximum on
the traversed distance and parameter rN, obtained for the
parameters a0 � 0, R0 � 0, and �qb 00=qo� < 0 (Fig. 5a) and
also a0t 20 � ÿ2� 103, RI0 � 2 mÿ1, and �qb 00=qo� > 0
(Fig. 5b). It is evident that the more accurately the above
relation is fulfilled, the greater the velocity of theWP envelope
maximum. It is no accident that the velocity of the WP

envelope maximum observed in one of the most well-known
experimental papers [34] in this field was um � 310c.

The superluminal velocity of the envelope maximum can
also be reached with the aid of strongly modulated narrow-
band WPs, which are produced with the help of gas lasers by
introducing light beams into a narrowband amplifying
medium (presumably an active gas medium). In doing so,
for a long pulse of a duration considerably exceeding 1 ms, a
WP with the superluminal velocity of the envelope maximum
can be observed over lengths on the order of 1 m.

This result does not contradict the theory of relativity
because photons themselves propagate at the speed of light in
a corresponding medium. But due to amplification in the
medium, the concentration of photons at the leading edge of a
WP proves to be much higher than that at the trailing edge.
Thus, the WP envelope undergoes deformation, and its
maximum begins to propagate at the superluminal velocity.

Notice that, to analyze in more detail the propagation of a
Gaussian WP over relatively large distances, it is necessary to
separate its leading part (precursor) against the fluctuation
(noise) background inevitably appearing in the active
medium. Account of fluctuations leads to the deformation
of the WP envelope and, therefore, the distortion of
information carried by it. The deformation for k 00 6� 0 is
caused by the difference between velocities of the envelope
maximum (amplitude center) um and the phase center uf �
u=�1ÿ uk 00=S� of the WP [31] and also by phase distortions
related to a change in the group velocity within the WP
frequency range.

Of interest is also the possibility of phase conjugation,
when um < 0, which can be caused by the effect of strong
amplification and dispersion. As a result, the WP envelope
maximum is formed at the WP onset and is shifted to the side
opposite to the WP propagation direction. This effect was
observed experimentally (see, for example, Refs [38, 81, 86]).

A rapid increase or decrease in the velocity of the WP
envelope maximum propagating in an active fiber under
nonlinear dynamics conditions should inevitably lead to a
strong acceleration as well. It follows from the relations
obtained above that the coordinate dependences of the FM
rate, the concentration of active particles, the carrier-
frequency detuning, and the pulse duration in the region of
um values close to superluminal velocities can lead to huge
accelerations of the WP envelope maximum:

am � dum
dt
� um

dum
dz

: �59�
In this case, we can assume that the cross-sectional area r of
active centers and the gain linewidth Do are independent of
the coordinate z. Very high accelerations (above 1020 m sÿ2)
should take place in the region of parameters satisfying the
condition

1

u�z� �
a�z� t 2p �z� r

Do 2
N�z� dos�z� ! 0 ; �60�

when, according to formula (55), the velocity um�z� ! 1.
It follows from expression (59) that the high accelerations

of the envelope maximum are related to the inhomogeneity of
the velocity um over the coordinate, which can be specified in
practice by the z-dependence of the group velocity u�z� and
the number N�z� of active centers. The inhomogeneity of the
group velocity and concentration of active centers can easily
be obtained by the inhomogeneous doping of a fiber
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amplifier. In this case, the acceleration of the envelope
maximum will be described by the expression

am � um
dum
dz
� u 2

m

�
q�ln u�
qz

ÿ �

1� �Nu

q�Nu�
qz

�
; �61�

where the parameter � � a0t
2
0 r dos�0�=Do 2 is a constant.

It should be noted that the `superluminal' WPs considered
above are, in principle, unstable. It is known that the
superluminal propagation of an electromagnetic energy
bunch in any medium should produce Vavilov±Cherenkov
emission [29, 45], which leads to bunch energy losses and
limits the bunch lifetime. Accompanying radiation inevitably
causes the deformation and instability of superluminal WPs.
Meanwhile, it is specific superluminal optical objects that can
be manifested as genuine physical objects which can be called
optical tachyons.

Our above-made analysis shows that the velocity of the
WP envelope maximum strongly depends on the initial WP
duration and the initial FM rate. This dependence and the
related features of the dynamics of Gaussian FM WPs open
up, under certain conditions, the possibility of anticipating
information (with a certain statistical significance) about
some observed event. For example, the envelope maximum
of the `second' pulse can arrive from a transmitter at a
detector before the `first' pulse sent earlier with a somewhat
different initial chirp (or without it entirely). When the
superluminal propagation of the WP envelope maximum
takes place, the self-reproduction of a partially transmitted
pulse occurs, which is caused by the assumed analyticity of the
transmitted signal [31, 33, 35].

5. Conclusions

We have considered the dynamics of an FM pulse in an active
(amplifying) mediumwith the carrier frequency detuned from
the gain band maximum. It has been shown that low-power
incident transform-limited pulses (not producing noticeable
self-phase modulation) can be temporarily compressed in
such optical fibers. In this case, under conditions of carrier-
frequency detuning from the gain line maximum, the WP
carrier frequency inevitably shifts, which negatively affects
the temporal compression mechanism under study. In one-
sectional optical fibers, the carrier frequency can be main-
tained by using active media with a complicated gain-line
profile having a local extremum in the frequency region with
D 00 < 0. In cascade optical fibers containing active and
passive sections, the availability of complex dispersion
parameters can produce a strong compression of an optical
WP without the initial FM of the coupled low-power
radiation. The use of the cascade technique allows one to
eliminate almost completely negative factors related to the
carrier-frequency shift, accompanying WP compression in
one-sectional active optical fibers.

The presence of a first-order dispersive parameter with
imaginary components leads, along with the negative factor
of carrier-frequency shift, to the fundamental possibility of
propagation of the FM WP envelope maximum in a linear
amplifying medium at a velocity considerably different from
the WP group velocity. Moreover, the velocity of the WP
envelope maximum can exceed the speed of light in vacuum.

We have considered within the framework of the first-
order dispersion approximation the influence of complex
material parameters on the WP dynamics in a length-

inhomogeneous optical fiber with Kerr nonlinearity. Our
analysis has shown that this model allows the possibility of
the superluminal regime of the propagation of the envelope
maximum for a Gaussian pulse even in the absence of the
initial FM. The achievement of high velocities (in particular,
exceeding the speed of light in vacuum) at finite distances can
lead to huge accelerations of the envelope maximum of the
corresponding WP. In this case, the wave structures under
study are fundamentally unstable [33]. Thus, the super-
luminal movement of an electromagnetic energy bunch in
any medium should produce Vavilov±Cherenkov radiation,
resulting in bunch energy losses, thereby additionally restrict-
ing the bunch lifetime. The presence of specific superluminal
radiations gives evidence that the superluminal waves con-
sidered in the paper are not caused by kinematic effects but, as
pointed out inRefs [29, 45, 82±85], canmanifest themselves as
real physical objects which can be called tachyons.
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