Physics— Uspekhi 56 (12) 1217-1229 (2013)

© 2013 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

REVIEWS OF TOPICAL PROBLEMS

PACS numbers: 05.45.—a, 05.45.Xt, 87.10.—e

Synchronization of delay-coupled oscillator networks

V V Klinshov, V I Nekorkin

DOI: 10.3367/UFNe.0183.201312¢.1323

Contents
1. Introduction
2. Phase description
3. Account for amplitude dynamics
4. Description based on pulse coupling

1217
1218
1221
1222

4.1 System with two elements; 4.2 Small networks; 4.3 Large networks

5. Conclusions
References

Abstract. Research on the synchronization of delay-coupled
oscillator networks is reviewed. A number of key research
approaches using different models and methods are described,
and major results obtained through their use are presented and
generalized. The most characteristic properties of time-delay
coupled systems are discussed.

1. Introduction

The synchronization of self-sustaining oscillations constitutes
a phenomenon of fundamental importance encountered in
systems of diverse natures in physics, technology, biology, or
other disciplines. The essence of this phenomenon consists in
the fact that coupling between subsystems often leads to a
qualitative change in the dynamics of the system as a whole,
namely, it tunes and co-ordinates the rhythms of the
interacting parts. The history of the study of synchroniza-
tion, which already amounts to more than three centuries,
begins with the classic work by Huygens [1] on the pendulum
clock, and Rayleigh [2] on organ pipes and tuning forks. In
the first half of the 20th century, a new impetus to study
synchronization was given by the inception of vacuum
electronics: van der Pol and Appleton experimentally exam-
ined synchronization in electric generators [3, 4], whilst
Andronov and Witt coined the theory of this phenomenon
[5, 6]. Since then and up to the present time, the body of
research on synchronization has been continuously expand-
ing in two directions. On the one hand, synchronization is
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being discovered in ever new branches of science and
engineering. As a far from complete list we mention here
studies of mechanical vibrators [7, 8], turbulent flows [9, 10],
optical laser systems [11, 12], systems of communication and
control [13-15], chemical reactions [16], and living systems
[17-21]. On the other hand, theoretical methods of exploring
synchronization, which have become an important part of the
general theory of nonlinear oscillations, evolve and are
perfected further. The synchronization theory, which dates
back to the work of van der Pol [4], Andronov and Witt [22],
and Krylov and Bogoliubov [23, 24], has seen further
development in numerous contributions (see, e.g., Refs [16,
25-41]). The creation of a general synchronization theory has
become possible owing to the remarkable fact that the
synchronization of self-sustained oscillators of very different
natures often relies on qualitatively similar dynamical
mechanisms. Synchronization as a universal dynamical
phenomenon is discussed in monograph [42]; some mathema-
tical aspects of synchronization can be cleared up from
Ref. [43].

Despite such a long and rich history, there are still plenty
of unexplored areas in the field of synchronization, which
invite further research. One important task consists in
studying the time-delay effects in coupling between the
interacting subsystems. Its scientific significance and urgency
hinge on the following factors.

First, the presence of a time-varying delay in the coupling
between the elements is characteristic of many systems of
diverse natures, being caused by the finite speed of signal
propagation or other factors. Systems with time-delay
coupling are typical in electronics and radiophysics [44—54],
nonlinear optics [55-66], neural dynamics [67—73], biology
and physiology [18, 74-76], ecology, economics, and the
social sciences [S1, 77, 78], etc. The brain in mammals may
serve as a notable example of a system with significant
intrinsic time delays in coupling. The propagation of neural
pulses between neurons located in its various regions takes
time comparable with, or even exceeding, the typical oscilla-
tions timescale. It is fascinating that sometimes one observes
the full synchronization of distant brain compartments [79—
86], which is important for the cognitive processes the brain
maintains. One more example is furnished by modern wireless
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communication systems [87, 88]. The time delays in this case
are due to the finite speed of radio signal propagation as well
as the finite duration of the message, which has to be fully
received in order to be correctly interpreted. In this case, the
synchronization of various components of a wireless commu-
nication system is needed for controling their access to the
medium [89, 90]. As yet another very fresh example of a
system where time delays play an important role, we may
mention the implementation of so-called reservoir comput-
ing, which was realized recently on the basis of a laser with a
long feedback loop [91, 92].

Second, the occurrence of time delays in coupling may
lead to an essential modification and increased complexity of
collective system dynamics. One intuitively understands that
the delay in coupling would interfere with the establishment
of synchronization, which is indeed observed in a number of
cases. In other cases, however, an opposite effect shows
itself, and adding time delays into the interelement interac-
tions leads, on the contrary, to the establishment of
synchronization in the system. Often, delays entail the
occurrence of multistable regimes in the system, when
different regimes of collective dynamics are realized, for
example, synchronous and asynchronous, for the same
parameters as a function of the initial conditions. Even
more intricate dynamic effects can be evoked by delays;
they will be discussed at length further.

It should also be mentioned that studying time-delay
systems frequently presents a real mathematical difficulty
for researchers, for systems of that type are described by
differential-difference equations and possess, in general, a
phase space of infinite dimension. A substantial body of
literature (see, e.g., Refs [93-96]) is devoted to investigating
systems with time delay coupling and to their mathematical
theory.

We present in this review the most significant results
related to the synchronization of networks of self-oscillating
elements interacting with time delay. Given a topic so
immense, discussing all pertinent research in a single review
seems impossible, and we leave aside such lines of inquiry as
synchronization of chaotic self-sustaining oscillations and
systems with discrete time (references to some work con-
tributing to these areas are provided in the Conclusions). The
main focus of this review is on the synchronization of regular
self-sustaining oscillations. Among the approaches applied in
numerous studies exploring this topic, we can single out
several basic ones, differing in the models used and the
research methods. We describe these approaches below in
due course, presenting for each of them the main results found
with its assistance. Section 2 deals with the approach based on
the phase description of self-sustaining oscillations. Section 3
describes the approach also accounting for the amplitude
dynamics. Section 4 concerns the approach based on pulse
coupling. In the Conclusions (Section 5), we briefly summar-
ize the results of our description and formulate the general
properties most pertinent to systems with time delay coupling.

In this review, when referring to a system composed of
identical or similar self-oscillatory subsystems interacting
with each other, we interchangeably use the terms ‘network’
or ‘ensemble’. Referring to separate subsystems, we call them
an ‘element’ or ‘self-sustained oscillator’. Turning to the
phase description of self-oscillations, we often call self-
sustained oscillators ‘phase oscillators’. In the case of pulse-
coupled networks, we sometimes call the self-sustained
oscillators ‘pulsators’.

2. Phase description

The most widely disseminated approach to modeling the
dynamics of self-sustained time-delay coupled oscillator
networks relies on so-called phase approximation. If the
coupling between self-oscillating subsystems is weak, it
mainly influences the dynamics of the phases of oscillations,
leaving their amplitudes unchanged. In this case, following
the approach developed by Kuramoto [16], it is possible to
derive closed equations for the phases of self-sustained
oscillators in the form

do;
(T[l:ijFZij((ﬂk*(Pj)- (1)
k#j

Here, ¢; are the phases of the oscillators, w; are the
frequencies of their autonomous oscillations, and Hj, are the
functions describing interelement couplings, which depend
only on the phase difference between the interacting elements.
Frequently, coupling is given in the form of a harmonic
function: H(¢p) ~ sin ¢.

Models like (1) are long and widely used to explore phase
effects (see, e.g., Refs [97-101]). For two symmetrically
coupled self-sustained oscillators, system (1) is reduced to a
simple one-dimensional system on a circle for the phase
difference ¢, — ¢,. In this case, the system exhibits frequency
entrainment if coupling between the elements is sufficiently
strong to compensate for detuning in their natural frequen-
cies. The system then has a synchronous solution at a unique
common frequency.

More complex cases of large phase oscillator ensembles
have also been studied. The classical work [16] considered an
ensemble with ‘each-to-each’ global connections. This model,
initially proposed by Kuramoto to describe chemical and
biological oscillators, was later recognized as a universal one
suitable for the description of synchronization in ensembles of
self-oscillatory elements of an arbitrary nature [102]. The
model is defined as

do; K .
WZW/‘JFN}; sin (¢ — ;) (2)

where K is the coupling coefficient. The natural frequencies w;
of self-sustaining oscillations are distributed in some interval
around the central frequency @ with the probability density
g(w). The dynamics of system (2) for large N are studied in
Ref. [16], which introduces the concept of the mean field to
characterize the degree of ensemble synchronization:

N
Z = Rexp (i0) = %Z exp (i;) - (3)
=1

The mean field amplitude R is the system’s order parameter
characterizing the degree of the coherence of ensemble
elements, caused by their mutual synchronization. If synchro-
nization is absent altogether, i.e., if all elements oscillate at
different frequencies, the parameter R is close to zero. Upon
synchronization of some part of the elements in the ensemble
at a certain frequency, their oscillations add coherently, and a
nonzero mean field arises. Kuramoto showed that, on
increasing the coupling strength K, a transition takes place
from an asynchronous regime to a synchronous one, in
analogy with the second-order phase transition. If the
coupling strength exceeds a certain critical value K. depend-
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ing on the frequency distribution g(w), a nonzero mean field
is generated in the system, with the amplitude increasing
proportionally to the square root of supercriticality:
R ~ /K — K_. Such a transition corresponds to the Andro-
nov—Hopf supercritical bifurcation. The strengthening of the
mean field with increasing supercriticality stems from the
frequency entrainment of an ever-increasing number of
oscillators.

The incorporation of time-delay coupling in systems of
coupled phase oscillators endows them with new dynamical
properties not observed in systems with instantaneous
coupling. As shown in Ref. [103], for small coupling
coefficients, the account for delay only modifies the shape of
the coupling function if the delay is not too large. However,
for stronger coupling and longer time delays, fundamentally
new effects emerge in the system.

Research on the effect of the time-delay coupling on the
dynamics of systems of coupled phase oscillators was initiated
by the pioneering work of Schuster and Wagner [104] who
considered an ensemble of two phase oscillators interacting
with a symmetric delay:

d%p:wlstin (01(1) = @2t = 1)), @)
dq?d—i(t):wz—Ksin (@2(1) = @1 (1= 7)), )

where ), are the natural frequencies of self-sustaining
oscillations. The authors of Ref. [104] explored synchronous
solutions to the set of equations (4), (5) in the form
¢y, = Qt + /2, where Q is the common frequency, and o is
the phase shift. Such solutions have been found analytically
and analyzed for stability. The most interesting effect arising
in the time-delay coupled system is the coexistence of stable
synchronous solutions at different common frequencies. This
effect is illustrated in Fig. la, which displays stable system
solutions as a function of coupling strength (the solid line
corresponds to the most stable solution'). When the coupling
coefficient exceeds a certain threshold K, the system acquires
a synchronous solution at a frequency in the vicinity of the
mean frequency of self-sustained oscillators, as is the case for
instantaneous coupling. However, the further increase of the
coupling strength is accompanied by the appearance of newer
and newer solutions on passing the bifurcation points
K = K. The newly appearing solutions are characterized by
higher frequencies and stronger local stability, yet the
solutions at lower frequencies do not lose their stability. The
higher the system multistability, the longer the delay time
and the stronger the coupling coefficient K. The number of
differing solutions that simultaneously exist in the system for
given parameters can be estimated as N ~ (K — K;)t. The
bifurcation lines corresponding to the appearance of new
solutions are plotted in Fig. 1b.

Later on, models comprising delay-coupled phase oscilla-
tors were tapped to study the dynamics of more complex
ensembles. For example, Yeung and Strogatz [105] studied
the influence of delayed coupling on the dynamics of the
Kuramoto model by modifying it in the following way:

do(t

PN _ 4 K5 sin gy )~ 1), (©)
k#j

! A nonzero negative Lyapunov exponent with the smallest absolute value
is considered by the authors of Ref. [104] as a measure of local stability.
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Figure 1. Synchronous solutions at t =1 (a) and the bifurcation lines
corresponding to the appearance of new periodic solutions (b) in the
system of two coupled phase oscillators (4), (5). The parameters of the
system are w; = 0.6, and w, = 1.4. (Taken from Ref. [104].)

The authors of Ref. [105] first studied a system of identical
phase oscillators (g(w) = 6(w — wy), wy = 2/n). Considering
the Fokker—Planck equation for the density p(¢,w, t), they
devised analytical conditions for the stability of the asynchro-
nous oscillation regime, turning then to global synchronous
solutions in the form ¢,(t) = ¢(t) = Q¢+ f. From the
condition of self-consistency, they derived the expression for
the common oscillation frequency:

Q = wy — Ksin Qr, (7

and the stability condition for the synchronous solution:

cosQt > 0. (8)

The diagram of dynamical regimes for system (6) is given
in Fig. 2a. The black color marks the areas where the only
stable solution is the asynchronous regime. Interestingly,
these areas form a periodic structure along the t-axis, with a
characteristic period corresponding to that of autonomous
oscillations of isolated oscillators. The area where only
synchronous oscillations are stable was painted white. On
increasing the coupling strength, the transition from asyn-
chronous to synchronous regimes passes through the domain
of bistability, shown in gray. The existence of a bistability
domain between the areas of asynchronous and synchronous
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Figure 2. (a) Diagram of dynamical regimes of system (6) for identical
oscillators. The stability areas for asynchronous regimes are shaded black,
the stability area of synchronization is white, and the domains of
bistability are shaded gray (taken from Ref. [105]). (b) The same as in
figure (a), but in the presence of frequency spread. The curve denotes the
boundary of the synchronization area. Insets show transitions to synchro-
nization in the case of subcritical Hopf bifurcation at T = 1 (left inset) and
T =2 (right inset) (taken from Ref. [105]). (c) Diagram of dynamical
regimes of ensemble (9) for the coupling function f(¢) = sin™ ¢ and odd
m. The stability areas for the asynchronous regimes are shaded black
(taken from Ref. [106]).

regimes is a completely new dynamical feature lacking in the
Kuramoto system with instantaneous coupling.

On allowing spread in the frequencies of self-sustained
oscillators, the picture in the parameter space undergoes some
modifications (Fig. 2b). The areas of asynchronous motions
‘rise’ along the K-axis, and now the asynchronous regime
becomes possible for arbitrary delay times. However, the
periodic character of the boundary of the synchronization
area is preserved, and the critical value K, of the coupling

coefficient, for which the transition from the asynchronous to
synchronous regime takes place, depends on the time delay in
a periodic way. We also note that, depending on the values of
7, this transition may occur through both the supercritical and
subcritical Andronov—Hopf bifurcations. In the latter case,
the transition is realized through the bistability domain and is
characterized by a hysteresis (see inserts to Fig. 2b).

Earl and Strogatz [106] have generalized the results above
to coupling functions of an arbitrary form and to a more
general class of coupling topologies. The model proposed by
them takes the form

do, S
q:i/z(t) _w-‘r%;aﬂff((pk(t_‘t) — ;1)) ©)

Here, f(¢) is an arbitrary 2mn-periodic function, and the
matrix aj reflects the topology of coupling: ay =1 if
oscillator j affects oscillator k, and a; = 0 otherwise. The
coupling matrix is subject to the constraint that each
oscillator be coupled to the fixed number M of other phase
oscillators. This constraint is satisfied, in particular, by the
topologies of a ring or an ensemble with global couplings.

Exploring synchronous solutions of the set of equations
(9) in the form ¢;(7) = Qt, the authors of Ref. [106] obtained
the expression for the common frequency of synchronous
oscillations:

Q=0+ Kf(—Qr1), (10)
and proved that the synchronous solution is stable if and only
if the inequality

Kf'(~0) > 0 (11)
is satisfied. It is worth mentioning that stability criterion (11)
coincides with condition (8) if the coupling function is chosen
as f(p) = —sing.

It is notably that the stability criterion appears to be
remarkably simple: the stability or instability of the synchro-
nous solution depends only on the sign of the coupling
function derivative. Because the coupling function is peri-
odic, the boundaries of the synchronization area also show a
well pronounced periodic structure. This is seen from Fig. 2c,
which displays a diagram of dynamical regimes of system (9)
for the coupling function in the form of f(¢) = sin” ¢ for
odd m.

Networks of phase oscillators with more complex types
and topologies of coupling have also been addressed in the
literature. Reference [107] reports that, for an ensemble with a
global feedback (of the so-called comparator type), the
incorporation of delay causes system desynchronization.
Reference [108] studied a two-dimensional lattice with local
time-delay coupling, for which it showed the existence of a
large set of synchronous regimes with differing frequencies.
However, only the regime with minimum frequency finds
itself stable among them, the rest being metastable. Even for a
short time delay, the frequency of the stable synchronization
regime proves to be substantially smaller than the natural
frequencies of individual elements. This effect was called
‘frequency suppression’ of a system.

The formation mechanisms of frequency clusters were
studied for a chain of oscillators in Ref. [109]. Reference [110]
demonstrated that the delay in coupling causes different
effects in different topologies. For example, the delay
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enhances the system multistability in a ring of unidirectionally
coupled oscillators, whilst in contrast it expands the attrac-
tion basin of one of the solutions, which is characterized by
the highest symmetry, in a ring of oscillators coupled
bidirectionally.

Interesting results have been obtained for ensembles of
phase oscillators in which the interelement signal delay
depends on their mutual location. The model assumes that
the elements reside in a medium characterized by a constant
speed ¢ of signal propagation. The interaction between
elements separated by a distance rj is then characterized by
the time delay tj = rj/c. References [111, 112] consider
ensembles of globally coupled phase oscillators arranged as
a one-dimensional chain with periodically posed boundary
conditions (ring). They show that the presence of space-
dependent delays in coupling destroys the global synchroni-
zation regime and leads to the generation of some struc-
tures — the phase waves — propagating in the ring. A similar
result is observed in the two-dimensional plane topology [113,
114]. In this case, global synchronization is destroyed for
sufficiently long time delays, and various phase structures,
such as rolls, rectangular and diamond-shaped lattices, and
ring and spiral waves, emerge in the system.

3. Account for amplitude dynamics

The phase description of self-sustaining oscillations serves as
a plausible approximation if coupling between the oscillatory
subsystems is weak. If coupling between the self-sustained
oscillators becomes sufficiently strong, it affects not only their
phase dynamics but also their amplitudes. For weakly
nonlinear self-sustaining oscillations, the analysis of accom-
panying effects can be carried out with the van der Pol
averaging method. Mutual synchronization of two self-
sustained oscillators with account for the amplitude
dynamics was studied by Aronson et al. [115], who consid-
ered an ensemble of two coupled van der Pol systems in the
vicinity of the Andronov—Hopf bifurcation. Such an ensem-
ble is described by the following system of equations for the
phases and amplitudes:

d

%:rl(lfwfrf)+i’z“/005</)a (12)
drz 2

5:r2(1—1cy—r2)+r1ycos¢, (13)
%:A+qlr12—qz"§—v<r—l+r—z) sin¢b. (14)
drs n oI

Here, r; and r, are the oscillation amplitudes of self-sustained
oscillators, ¢p = 6; — 0, is the phase difference between their
oscillations, y is the coupling strength, and the parameter x
describes the type of coupling (for example, k = 1 corre-
sponds to the so-called diffusive coupling). The parameter 4
stands for the frequency detuning between the oscillators, and
¢ and ¢, define the dependence of the oscillation frequency
on the amplitude in uncoupled systems.

The most interesting fact discovered in system (12)—(14) is
the so-called quenching of oscillations, also called oscillation
death. Its essence is that, upon coupling the self-sustained
oscillators, they cease to oscillate and their amplitudes r;
decay to zero values. In the phase space, this effect
corresponds to a globally stable equilibrium state at the
coordinate origin. The authors of Ref. [115] performed a
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Figure 3. (a) Bifurcation diagram of a system of two coupled weakly
nonlinear self-sustained oscillators (12)—(14) in the parameter plane of the
‘coupling strength—frequency detuning’. I denotes the domain of oscilla-
tion death, II is the synchronization domain, and III is the domain of
asynchronous oscillations (taken from Ref. [115]). (b) Bifurcation diagram
in the parameter plane K—A for the system of two self-sustained
oscillators with a delay coupling (12)—(18); the parameters T = 0.0817,
@ = 10 (taken from Ref. 116). (¢) The domain of oscillation death in the
system of identical oscillators (19) in the plane ‘time delay—coupling
strength’ for various values of N (taken from Ref. [116]).

linear stability analysis of this equilibrium state and showed
that it can only be stable for |4| > 2/k. Thus, the death of
oscillations in the presence of diffusive coupling is observed
only for a sufficiently large detuning, 4 > 2.

Reference [115] also reports on a full bifurcation analysis
for system (12)—(14) in the case of isochronous self-sustaining
oscillations and diffusive coupling (¢; =0, x=1). The
system’s parameter space was divided into three domains
with qualitatively different behaviors (Fig. 3a). For a small
detuning 4 and strong coupling strength y, the system exhibits
synchronization, in which case its elements oscillate preser-
ving a constant phase shift. For large detuning and weak
coupling, the system dynamics are asynchronous — the phase
difference of oscillators grows indefinitely. In the limit of
large detunings and strong coupling, the oscillations in the
system are quenched. When making oscillations nonisochro-
nous (g; # 0), the bifurcation diagram of the system becomes
more complicated and includes the appeared zones of multi-
stability.

Inclusion of amplitude dynamics into consideration may
qualitatively modify the collective behavior of even more
complex ensembles of self-oscillatory elements. In chains and
lattices comprising coupled self-sustained oscillators, the
change in amplitudes of self-sustaining oscillations may lead
to complex dynamics of phase clusters [30]. In a system of
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globally coupled self-sustained oscillators, accounting for
varying amplitudes results in the formation of phase—
amplitude clusters [117].

An analysis of the impact of a time delay in coupling on
the phase—amplitude dynamics of a self-oscillatory system
was first carried out by Reddy et al. [116, 118, 119]. The
authors of these studies considered a system of two diffusively
coupled self-sustained oscillators, namely

%:rl(l — K—r{)+ Krycos [0x(t — 1) — 04] (15)
dl‘z 2

E:rZ(I—K—rz)-i-KVlCOS [0:(1—1) — 02], (16)
d6, r(t—1) .

§:w|+KTsm [02(1 — 1) — 01], (17)
do, r(t—r) .
W:w2+KTsm[01(171)702}. (18)

Here, r; and 0; are the amplitudes and phases of self-sustained
oscillators, w; are the frequencies of autonomous self-
sustaining oscillations, K is the coupling strength, and 7 is
the time delay in coupling. An analysis of the linear stability
of the equilibrium state at the coordinate origin, which
corresponds to oscillation death, was also carried out, with a
rather unexpected outcome. It turned out that, for a delayed
coupling, the oscillations may die out even for identical self-
sustained oscillators, i.e., for the zero frequency detuning
A = w; — w,. This property is illustrated in Fig. 3b; the
domain of oscillation death is expanding here down to
A = 0. This effect was dubbed ‘death by delay’ [120]: in the
absence of a delay in the coupling, the oscillators become
synchronized, whereas its presence causes the death of
oscillations. A qualitative explanation of this effect was
proposed by Strogatz [120]. For instantaneous coupling, the
points representing the self-oscillators in the phase space
‘attract’ each other and tend to approach in the limit cycle,
whilst in the case of delay coupling each point is ‘attracted’ to
a site the other one occupied some time before. For an
appropriately chosen delay, this may lead to ‘pulling’ points
from the cycle to the coordinate origin and the oscillation
death.

The delay-induced death of oscillations in a system of
identical self-sustained oscillators is observed not only for
two coupled elements but also for larger ensembles. In
Refs [116, 119], Reddy and his coauthors considered this
effect for different coupling topologies — global and ring. For
‘each-to-each’ type coupling, an ensemble of N self-sustained
oscillators is described by the following set of equations for
complex-valued amplitudes Z; = r;exp (i0)):
dz;(¢ K
D _ (1o, 120 20 + K (20— o) - 200

= (19)

At 7 =0, such a system was studied by Mirollo and
Strogatz [121], who derived analytical conditions for the
onset of oscillation death. The result of this work is that, as
for two coupled self-sustained oscillators, the oscillations die
out only for a substantial spread in frequencies and
sufficiently strong coupling. Reddy et al. [122] showed that,
in large ensembles with delayed coupling, oscillation death is
possible even without frequency detuning. They identified the
boundaries of the domain of oscillation death (death island)

for an ensemble of identical self-sustained oscillators. The
shape of such islands is illustrated in Fig. 3c for various N and
in the thermodynamic limit N — oo. One is led to conclude
that the delay-induced death of oscillations represents a
rather general effect characteristic of ensembles comprising
self-sustained oscillators with various topologies, provided
coupling among them is not weak. We add that this effect was
discovered experimentally in a system of two nonlinear
LC-circuits coupled through a digital delay line [122].

An approach to exploring ensembles of self-sustained
oscillators with delayed coupling, which accounts not only
for the phase but also for the amplitude dynamics, was
elaborated in a number of later studies. Thus, D’Huys and
coauthors [123] showed that accounting for amplitude
dynamics may lead to the emergence of chaotic regimes. A
detailed analysis of a system composed of two [124] and three
[125] van der Pol generators with a diffusive delayed coupling
was also carried out. Recently, an extended series of studies
has been devoted to the dynamics of ensembles of Stewart—
Landau oscillators (the normal form of the Andronov—Hopf
bifurcation) with so-called time-delay phase-dependent cou-
pling. In this case, a complex-valued coupling coefficient is
selected: K = Kexp (i0), where 6 is the coupling phase. It was
demonstrated that, by choosing the coupling phase, one may
effectively control the system dynamics by switching between
different regimes of oscillations [126—129].

4. Description based on pulse coupling

Another approach to studying systems with delayed coupling
alternative to the phase and phase—amplitude approaches
described in Sections 2 and 3, respectively, resorts to the idea
of so-called pulse coupling. Systems characterized by pulse
coupling include neural networks, heart pacemaker cells,
populations of fireflies, and some others [130—133]. In such
systems, the dynamics of self-oscillatory elements are char-
acterized by the periodic generation of short signals (pulses)
against the background of long quiescent intervals. The
action of these pulses on other elements abruptly changes
their state. Quite often, transient processes decay rather
rapidly, and the self-sustained oscillator being affected
rapidly returns to the stable oscillatory state. This allows
one to assume that a self-sustained oscillator always stays in
the self-oscillatory regime and that pulse actions instanta-
neously change or reset its oscillation phases.

When modeling systems with pulse coupling, phase
oscillator type models are routinely used as basis elements.
Their state, in this case, is described by a single variable —
their phase ¢, which monotonously increases with a constant
rate do/df = w. When the phase attains a maximum value,
for example, unity, the element generates a pulse and switches
to the state with a zero phase. The dynamics of the basis
element in an autonomous case are thus the periodic
generation of pulses with a constant period 7'= 1/w. Some-
times, such elements are also called pulsators. The interaction
of pulsators reduces to an exchange by pulses. The pulse fired
by one element and affecting another one causes an
instantaneous shift in the phase of the latter by some value,
so that (t+0) = @(t — 0) + Ag.

The phase shift Ap depends only on the instantaneous
value of (7 — 0) of the phase directly before the interaction.
The phase shift A can be either positive, which corresponds
to the ‘acceleration’ of the oscillator, or negative, which
testifies to its ‘retardation’. The dependence A¢ =f(¢),
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called the ‘phase resetting curve’ or the ‘phase response curve’
(PRC) [134], describes the acceleration/retardation of the
rhythm of the oscillator caused by variation of its phase
under an external action. The notion of a phase resetting
curve was widely used in work dealing with oscillations in
biological systems, such as heart muscle cells or neural
networks [135-141]. The universality of the approach relying
on the phase resetting curve is that other popular models, for
example, integrate-and-fire and isochronous clocks, etc. [139]
can be reduced to it by an appropriate choice of the curve
shape.

In the most general form, a network of N phase oscillators
with delayed pulse coupling is described by the set of
equations [142]

~

d(pj(t N - P
TR kz_;ffk(%(l)) > o(t—tf =)

7
U

(20)

Here, ¢; and ; are instantaneous phases and natural
frequencies of the elements, respectively, where j=1,
2,...,N. The function fj(¢) describes the phase resetting
curve of the kth element under the action of pulses arriving
from the jth element. It can usually be assumed that the form
of the curve fi(¢) is the same for all elements and that
couplings between them differ only in strength, being
characterized by different coupling coefficients i, so that
Jik(@) = i f(@). In such cases, we refer to f(¢) as the
coupling function. The time delay between elements is
determined by the quantities 7. The second sum on the
right-hand side of Eqn (20) is taken over all moments 7/ of
pulse generation by the kth element. This sum takes on
nonzero values only at the instants of time 7 + 1 when
these pulses act on the jth element. Namely then the
instantaneous phase shifts in the jth element occur.

Strictly speaking, the approach based on pulse coupling is
a particular case of the phase description addressing self-
oscillatory networks for a specific selection of coupling
functions in the form of a delta function [cf. systems (1) and
(20)]. Such a choice of the coupling function, however, leads
to the jumpwise dynamics of phases of the network elements,
making the task of describing and studying these dynamics
fundamentally different from the methodical perspective,
which provides the rationale for singling out those models
with pulse coupling into a separate class. A convenient and
natural instrument to explore systems with pulse coupling
comprises point maps [143]. In the absence of time delays, at
each instant ¢; of exciting one of the elements the pulse
generated by it acts immediately on all other ensemble
elements and consequently causes an immediate change in
their states. Given the values of phases directly before this
instant of time, one may compute the phase shifts under the
action of the pulse and, knowing the new phases, determine
the next instant some other self-oscillator will fire. As a result,
one gets a map describing the change in the state of the
ensemble between the two subsequent instants of time its
elements generate the pulses.

However, the construction of the point map becomes
more involved in the presence of time delays in the system.
Information on the instantaneous values of element phases is,
in this case, insufficient to predict the system dynamics, since
it can be affected by signals generated in the system earlier.
For this reason, to fully describe the ensemble state one needs
information not only on the current state but also on the past
activity of the ensemble. Accordingly, the longer the time

delays, the longer the time interval in the past which may
influence the system’s dynamics in the future. Because of the
pulse character of coupling in system (20), only the instants of
time #{ of the pulse generation are essential out of all the
information about ensemble activity in the past.

Important questions are what precisely is the number of
pulses fired earlier that have to be taken into account, and is it
finite. We answered them in Ref. [142], where it was shown
that, provided the coupling is not excessively strong and
certain initial conditions are taken, information on no more
than finite number P of last pulses for each element is
sufficient to fully describe the system’s state.” In this case, it
is convenient to introduce a finite-dimensional state vector
defined as

i(t) = ((/)l(l)v (/)2(1)7 cee (PN(Z)vxllvxlzv RR) x1P7
le,xzz,...,xf,...,x},,x]%,,...,x]{;), (21)
where x/” =t — t/ is the time elapsed after the instant when

element j generates pulse p, xf1 corresponds to the last
generated pulse, sz corresponds to the next to the last, and
so on. The vector £(¢) contains a full description of system
(20). Reference [142] constructs a point map defining the
system evolution. The system dynamics in this case are
regarded as a sequence of some discrete events, so-called H-
events, each linked with an instantaneous jumpwise change in
the components of the state vector. Such events belong to two
types: they are linked to either the pulse generation by one of
the elements or the action of a pulse generated earlier on some
of the ensemble elements. The point map describes the change
in the state vector between subsequent H-events and enables
studying the dynamics of ensembles with an arbitrary
coupling structure.

4.1 System with two elements

The simplest example of an ensemble with pulse time-delayed
couplings is that with just two elements. For short delays, the
system of two coupled pulsators was studied by Ernst et al.
[144, 145] in the context of the dynamics of neural ensembles.
Two cases were considered: that of excitatory coupling, when
the outer action favors the generation of the next pulse, and
that of inhibitory coupling, when the outer action inhibits
pulse generation. It has been shown that the dynamics of the
system studied are essentially different in these two cases. In
the presence of a delay, the excitatory coupling leads to out-
of-phase synchronization in the ensemble: all the elements are
excited with the same period, but not simultaneously. This
makes the dynamics distinct from the case of instantaneous
interaction, in which an ensemble with excitatory couplings is
synchronized strictly in phase [130]. A sufficiently strong
inhibitory coupling, in contrast, synchronizes the elements
of the ensemble in phase, even in the presence of time delay.

The impact of various factors, such as asymmetry in the
coupling [146] or the finiteness of a pulse duration [147, 148],
on the dynamics of a pair of coupled pulsators has also been
explored.

For arbitrary time delays, including long ones, the
ensemble of two elements was analyzed in Ref. [149] which
considered the case with symmetric couplings characterized
by the coupling function fi2(¢) = f21(¢) = f(¢) and the time

2 Reference [142] also offers an example of nontrivial dynamics in a system
with strong coupling, where these conditions are not met.
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Figure 4. (a) Bifurcation diagram for the ensemble of two coupled
pulsators (20) in the delay (t)—frequency detuning (£) plane. The system
parameters are ¢ = 0.1 and w; = 1. The light (dark) gray shading shows
zones of in-phase (antiphase) synchronization. The black domains
correspond to the overlapping zones and multistability. (b) Phase-flip
bifurcation in the ensemble of two coupled pulsators (20). The dependence
of the interelement phase difference A relevant to system’s periodic
solutions on the delay time t. The solid lines mark stable branches of
solutions, and dashed lines show the unstable ones. (Taken from
Ref. [149].)

delay 115 = 721 = 7. Solutions to this system that correspond
to the regimes of synchronization and their domains of
existence and stability were explored by the Poincaré map
method. It was shown that there is a set of domains in the
parameter space, so-called synchronization zones, where the
synchronization of the small ensemble is observed. In Fig. 4a,
these zones are displayed in the plane of the delay time t and
frequency detuning ¢ = @, — w of elements for a sinusoidal
coupling function f(¢)= —usin2n¢p. Synchronization is
evident in a bounded band of frequency detuning &, defined
as
N 2#601
=1
The zones of synchronization form a periodic structure
along the t-axis. They extend to infinity along this axis, and
synchronous regimes are found in the system for arbitrarily
long coupling delays. Noteworthy is the observed alteration
of different types of zones which correspond to in-phase or
antiphase synchronization of the ensemble elements. The
‘width’ of the zones increases as the delay time 7 is made
longer, so that the different types of zones overlap, which
entails the onset of bistability between the in-phase and
antiphase regimes. We touch here on this phenomenon in
more detail.

<o (22)

The overlapping of neighboring synchronization zones
happens in the domain where the frequency detuning ¢ is
small. In this case, the regimes of in-phase and antiphase
synchronization coexist in the system within some interval of
delays 1. The behavior of the ensemble as the parameter t
slowly changes is characterized by the presence of hysteresis.
An example of such behavior is given in Fig. 4b. Let the
ensemble initially be in the regime of in-phase synchroniza-
tion, and the parameter t be slowly varied from 7 =1 to
t=1.5. On reaching a critical value 7 =1, =~ 1.34, the
ensemble abruptly switches to the regime of antiphase
synchronization. This phenomenon got the name of ‘phase-
flip bifurcation’ [150-152]. The dynamic mechanism beyond
this effect is due to the disappearance in the phase space of the
stable in-phase solution through a saddle-node bifurcation at
7 = 11. Moving in the other direction along the parameter t
with it decreasing from 7= 1.5 to 7= 1.0, the ensemble
switches in the opposite way from the antiphase to the in-
phase regime at t = 7, &~ 1.21. At this value of 7, the antiphase
stable solution also disappears through a saddle—node
bifurcation.

The width of intervals of bistability for the in-phase and
antiphase regimes, on the boundary of which phase-flip
bifurcation takes place, expands with increasing 7. Large t
are characterized by the occurrence of the multistability of
another type, associated with the existence of stable synchro-
nous and asynchronous regimes. Yet another specific prop-
erty of a system with long time delays in the coupling is the
substantial increase in the duration of transient processes
preceding the establishment of the synchronous regime. The
estimate 7 ~ 73 for the duration of the transient stage was
obtained in Ref. [149].

4.2 Small networks

The next level of complexity after the two-element systems is
encountered in networks comprising a few elements. As an
example of such a network, Ref. [153] considers an ensemble
of four pulsators with a heterogeneous symmetric coupling
(Fig. 5a). The values of delays between the elements of each
pair are presented in Fig. 5b, the frequencies of the pulsators
are equal, w = 1, and the coupling is the same for each pair
and is described by the function f(¢) = —psin2ne. For
instantaneous coupling (t = 0), a regime of global synchro-
nization is observed in the ensemble, in which excitatory
phases of all four elements are equal: (¢, ,, @3, 04) =
(0,0,0,0). If the time delay is short, the global synchroniza-
tion is preserved, but it breaks provided the delay is
sufficiently long. Distinct patterns of rhythmic activity

0 05 10 14512.0

Figure 5. (a) An ensemble of four coupled pulsators. (b) Dynamical
regimes of this ensemble. Small black dots mark the excitation instants
of time for the elements in the ensemble, and the squares with numbers
show the phase relationship of respective patterns. (c) Shaded bands
illustrate the intervals of parameter T where the dynamical regimes of plate
b are observed. (Taken from Ref. [153].)
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evolve in the ensemble, which are characterized by the
periodic excitation of the elements with different phase
relations. The patterns fall into two types: (1) sequential
excitation, in which all the elements get excited one after
another with a quarter period phase shift, (¢, @, @3, 94) =
(0, 0.25, 0.5, 0.75), or symmetric to it, and (2) pairwise
synchronization, in which the elements are split into two
pairs. Each pair is synchronized in phase, but the different
pairs are in antiphase: (¢, @,, @3, ¢4) = (0, 0.5, 0, 0.5). Each
of these patterns exists in certain intervals of the parameter t,
as illustrated in Fig. 5c.

We see that, as in the case of two elements, the presence of
delays in a small ensemble spawns new dynamical regimes of
the system. And similar to the case of two elements,
transitions between the dynamical regimes in an ensemble
accompanying a slow change in the delay times exhibit a
hysteresis behavior: the intervals corresponding to different
synchronization patterns partly overlap. Additionally,
domains with intricate irregular dynamics are observed near
the boundaries of pattern existence domains. We note that the
ability of the delay to maintain new dynamical regimes in a
system is strongly dependent on the coupling structure. So,
Ref. [154] shows for an ensemble of four pulsators with
excitatory and inhibitory couplings that the presence from
couplings of both types enables the ensemble to preserve the
regime of global synchronization in a wide range of delay
variation.

As the number of elements in an ensemble is increased, its
dynamics become more complex. Reference [155] considered
an ensemble of five elements with symmetric coupling. Such
an ensemble maintains a broad diversity of dynamical
regimes with different configurations of element assembling
into clusters and phase relationships between the clusters.
Under the action of weak external perturbations, the system
may undergo transitions between different configurations
according to certain rules, which lays the basis for effectively
controling the ensemble dynamics.

4.3 Large networks

We turn to the case of networks comprising a large number of
pulsators with time-delay coupling. Gerstner [156] studied the
dynamics of such networks in an arbitrary topology, but for a
particular coupling function fi(¢) = Jx = const. A limita-
tion is also imposed on the net weight of the coupling, which
has to be normalized and equal for all elements:
>.;Jij=A <1 for all i It was shown that if the maximum
delay in the network does not exceed the valueof 4 =1 — 4,a
periodic regime is established in the network. In this case, the
oscillation periods are equal for all elements, but their phase
relationships are undefined: the elements may be excited out-
of-phase. For discrete homogeneous delays, the system
evolves into a synchronous state in a finite time, and it does
so asymptotically in general.

Reference [157] considered a network composed of
identical elements (w; = 1) with each-to-each global cou-
pling, when the coupling function fjy(¢) =f(¢) and delay
time 7 = 7 are arbitrary. Such an ensemble is described by
the set of equation

do; N
qzt(t) =0+ fle;0)> (-1} —7).

= r
k=1 7

(23)

Most attention was focused on the global synchronization
regime in the ensemble, in which all the pulsators fire
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Figure 6. (a) Diagram of dynamical regimes for an ensemble of 10 pulsators
with the harmonic coupling f(¢) = —psin 2n¢. Dark gray shading marks
domains of stability of the global synchronization regime; the narrow
black bands are the domains of bistability of synchronous and asynchro-
nous regimes. (b) Probability of the establishment of the global synchro-
nization regime in an ensemble of 10 pulsators with the coupling function
f(¢) = p(1 —2¢) decreasing everywhere. Initial conditions have been
selected at random, u = 0.01. (Taken from Ref. [157].)

periodically at the same instants of time. The common period
in this case is described by the relationship

T=1—uN-1)f(rmodT). (24)

A stability analysis of the periodic solution led to the
formulation of a simple stability criterion for the global
synchronization regime. It turned out that it is determined
by the sign of the derivative of the coupling function: the
synchronous solution is stable for

f(tmod T) <0, (25)

where f'(¢p) = df (¢)/de. Stability criterion (25) implies a
periodic structure of the parameter space for ensemble (23). It
can be most readily illustrated for a weak coupling when
uN < 1. In this case, the period of joint oscillations is 7~ 1,
and the stability criterion becomes f’(tmod 1) < 0. The last
inequality is periodic in the parameter 7, and the domains of
global synchronization in the space of ensemble parameters
have the periodic structure, accordingly. These domains are
displayed in Fig. 6a for a harmonic coupling function
f(p) = —usin2ne. For small coupling coefficients, u < 1,
the boundaries of synchronization domains are given by the
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where k is an arbitrary nonnegative integer number. The
synchronous regime is stable for tmodl < 1/4 or
tmod 1 > 3/4, and it is unstable for 1/4 < tmod 1 < 3/4.
The stability domains of the synchronous regime expand for
larger coupling coefficients. Outside them, the ensemble
elements also fire pulses periodically, but with different
phases; in this case, differing phase relationships between
pulsators may be realized for the same parameters. Narrow
bands of multistability of synchronous and asynchronous
regimes are evidenced at the periphery of synchronous regime
stability zones.

Studies dealing with collective dynamics in neural
ensembles frequently mention the fundamental difference
between the effects of excitatory and inhibitory coupling on
synchronization. Notably, it has been pointed out that in the
presence of delays the synchronization of ensembles is more
often due to the inhibitory coupling than to the excitatory
coupling [156, 158—161]. Interestingly, according to criterion
(25), the stability of the global synchronization regime is
defined only by the sign of the derivative of coupling function
f(¢), independent of the sign and magnitude of the function.

Thus, the synchronization of an ensemble of elements is
possible for both positive (‘excitatory’) and negative
(‘inhibitory’) couplings, which is confirmed in Ref. [157].
For modeling an ensemble with excitatory coupling, the
coupling function was chosen in the form f(¢) = u(1 — ¢),
which gives f(¢) = 0 for all ¢. A coupling of this type is
excitatory because an external stimulus always brings nearer
the generation of the next pulse by the elements. To model an
ensemble with inhibitory coupling, the coupling function had
the form f(¢) = —ugp. Here, f(¢) < 0forall ¢. Therefore, an
external stimulus always retards the pulse generation and,
hence, the coupling can be called inhibitory. It was shown that
global synchronization is observed in the ensembles in both
cases.

According to criterion (25), global synchronization in
ensembles with a coupling function decreasing everywhere
will be stable for any values of parameter 7. This criterion,
however, tells us nothing about the uniqueness of this regime.
For example, for the coupling function f(¢) = u(1—2¢)
decreasing everywhere, global synchronization is indeed
observed for almost all values of 7, except for integer ones
falling on points of discontinuity for f, where a linear analysis
is not applicable. The attractor corresponding to global
synchronization is, however, not always the only one in the
system.

Figure 6b plots the dependence of the probability of
establishing the regime of global synchronization, as a
function of the value of delay time t for arbitrary initial
conditions. This probability equals one only in narrow
vicinities of half-integer values of the parameter T and drops
to zero on approaching integer values of 7. In regions where
this probability is less than unity, synchronous and asynchro-
nous regimes coexist. An analogous effect was observed for
small time delays in Ref. [162].

5. Conclusions

We described the main approaches to studying networks of
self-oscillatory elements which interact in a time-delayed

fashion. Historically, the first and most widely disseminated
approach is based on the model of Kuramoto phase
oscillators. The use of phase models helped to obtain
important results and to show that the delay in coupling
brings about a substantial modification of ensemble
dynamics, making them more complex. In the framework of
the phase approach, such dynamical effects as synchroniza-
tion and the formation of clusters and wave structures have
been explored. The natural development of this approach
consists in accounting for the amplitude of self-sustaining
oscillations. An analysis of phase—amplitude dynamics led to
the discovery of a series of new effects, first and foremost, the
effect of delay-induced oscillation death.

An alternative approach to modeling ensembles of self-
sustained oscillators with time-delayed coupling relies on the
concept of pulse-coupled oscillators. This approach offers an
important advantage which simplifies analytical and numer-
ical treatment. In general, an ensemble with time-delayed
coupling is described by an infinite-dimensional system of
differential-difference equations. Making use of pulse-
coupled models allows reducing this system to a finite-
dimensional point map. The technique of obtaining such a
map and the related applicability conditions are presented in
Ref. [142]. Similar techniques were tapped earlier, but only for
particular cases, for example, for short delays [144—146] or
assuming the presence of a particular activity pattern in the
ensemble [163-165]. The technique elaborated in Ref. [142]
allows one to explore the dynamics in ensembles of an
arbitrary configuration for any initial conditions. The
reduction of ensemble dynamics to point maps equips one
with well-developed techniques of handling them, permitting
one to find fixed points and periodic solutions and to analyze
their stability and bifurcations. Additionally, the point maps
are more convenient for numerical studies than systems with
continuous time.

The research pertaining to the dynamics of delay-coupled
ensembles of self-sustained oscillators is not limited to the
approaches described in this review. Numerous papers are
devoted to studies of ensembles of various strongly nonlinear
systems involving, for example, relaxation self-oscillations
[166, 167], chaotic self-oscillations [168—172], and excitatory
[173] and bistable [174] elements. The properties of the
dynamics of such ensembles strongly depend on the proper-
ties of elements the ensembles are composed of, making the
classification of numerous results rather difficult. Nor can we
avoid mentioning a fundamentally distinct approach which
considers systems with discrete time, i.e., point maps, as
elements of an ensemble (see, e.g., Refs [175-179]). All the
positive aspects of point maps notwithstanding, this
approach has significant limitations: the time delay can only
take discrete values and cannot change arbitrarily.

Generalization of the results obtained using various
models and approaches allows one to describe characteristic
properties intrinsic to delay-coupled ensembles. Apparently,
we have to mention the periodicity in the dependence of
system’s dynamical regimes on the delay time as the most
pertinent property of such systems. The characteristic period
of this dependence corresponds to the period of autonomous
self-sustaining oscillations of the elements composing the
ensemble.

At first glance, this property seems obvious: if oscillations
have a period T, the delay of a signal over time 7 is equivalent
toits delay over © + nT, where n € N. In this respect, one may
get an impression that exploring a system with long time
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delays is altogether irrelevant and only cases of small delays
need to be explored, i.e., T < T. This conclusion is, however,
wrong. The point is that the period of oscillations of ensemble
elements is set by the collective dynamics, which in turn
depend on the ensemble parameters, including the magni-
tudes of delay. Despite the presence of characteristic
periodicity in the structure of ensemble parameter space, it
is, nevertheless, not perfect (see, e.g., Fig. 2 and Fig. 4a).

It is incorrect to assume that a system with a large delay ©
is fully equivalent to a system with a short delay tmod 7.
According to the analysis, the system exhibits new dynamic
properties for large delays, such as a significant increase in the
duration of the transient processes, the expansion of multi-
stability domains, and the appearance of new types of
multistability [149]. Generally speaking, multistability on its
own is also one characteristic attribute of delay-coupled
ensembles. It is, as a rule, observed for long delay times or
strong forces coupling the elements. Two kinds of multi-
stability are possible: one associated with the coexistence of
different periodic regimes, and the other associated with the
coexistence of periodic and aperiodic regimes.

In discussing the role of time delay in the synchronization
of self-oscillatory networks, one cannot unambiguously
answer the question of whether the presence of delay in
coupling favors or hinders the establishment of synchrony.
The answer to this question depends on the concrete coupling
function and system parameters. A series of papers shows that
the most relevant factor influencing the establishment of
synchronization in an ensemble is the sign of the coupling
function derivative. Remarkably, this result is valid for both
continuous [105, 106] and pulse [157, 165] couplings.

To conclude, we note that synchronization in self-
oscillatory delay-coupled networks is an important branch
of modern physics, attracting the incessant attention of
researchers. In general, such topics as the influence of time
delays in the coupling on the dynamics of small ensembles of
oscillators and the global synchronization of large networks
with a homogeneous structure are explored rather compre-
hensively; yet many actual avenues still remain unexplored,
such as the dynamics of networks with heterogeneous delays,
cluster synchronization and activity pattern formation, and
the use of delay-coupled systems in applications to informa-
tion control and processing [180].
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the Russian Foundation for Basic Research (grants 12-02-
00526, 12-04-31963, 13-02097050, 13-02-00858), and the
Federal Program ‘Scientific and Scientific-Pedagogical Per-
sonnel of Innovative Russia’ (contracts Nos 8205, 8497, and
14.132.21.1354).

References

1. Huygens Ch (Buvres Completes (Amsterdam: Swets and Zeitlinger,
1967)

2. Strutt J W (Baron Rayleigh) The Theory of Sound (New York:
Dover Publ., 1945) [Translated into Russian (Moscow: Gostekhiz-
dat, 1955)]

3. Appleton EV Proc. Cambr. Philos. Soc. 21 231 (1922)
4. Van der Pol B Philos. Mag. 3 64 (1927)
5. Andronov A A, Witt A A Zh. Prikl. Fiz.7 (4) 3 (1930); in Andronov

A A Sobranie Trudov (Collection of Papers) (Exec. Ed. M A Leonto-
vich) (Moscow: Izd. AN SSSR, 1956) p. 70

6. Andronow A, Witt A Arch. Elektrotech. 24 99 (1930) [Trans-
lated into Russian, in Andronov A A Sobranie Trudov (Collec-
tion of Papers) (Exec. Ed. M A Leontovich) (Moscow: Izd. AN
SSSR, 1956) p. 51]

10.

11.
12.
13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.
30.
31.
32.

33.

34.

35.
36.

Blekhman I I Sinkhronizatsiya Dinamicheskikh Sistem (Synchroni-
zation of Dynamical Systems) (Moscow: Nauka, 1971)

Blekhman I T Synchronization in Science and Technology (New
York: ASME Press, 1988) [Translated from Russian: Sinkhroniza-
tsiya v Prirode i Tekhnike (Moscow: Nauka, 1981)]
Gaponov-Grekhov A V, Rabinovich M 1, Starobinets | M JETP
Lett. 39 688 (1984) [Pis’'ma Zh. Eksp. Teor. Fiz. 39 561 (1984)]
Afraimovich V S, Verichev N N, Rabinovich M 1 Radiophys.
Quantum Electron. 29 795 (1986) [Izv. Vyssh. Uchebn. Zaved.
Radiofiz. 29 1050 (1986)]

Siegman A E Lasers (Mill Valley, Calif.: Univ. Science Books, 1986)
Roy R, Thornburg K S (Jr.) Phys. Rev. Lett. 72 2009 (1994)
Lindsey W C Synchronization Systems in Communication and
Control (Englewood Cliffs, N.J.: Prentice Hall, 1972) [Translated
into Russian (Moscow: Sov. Radio, 1978)]

Shakhgil’dyan V V, Lyakhovkin A A Fazovaya Avtopodstroika
Chastoty (Phase Automatic Frequency Tuning) (Moscow: Svyaz’,
1966)

Afraimovich V S et al. Stability, Structures, and Chaos in Nonlinear
Synchronization Networks (Eds A V Gaponov-Grekhov, M I Rabi-
novich) (Singapore: World Scientific, 1994) [Translated from
Russian: Ustoichivost’, Struktury i Khaos v Nelineinykh Setyakh
Sinkhronizatsii (Eds A 'V Gaponov-Grekhov, M 1 Rabinovich)
(Gor’ky: IPF AN SSSR, 1989)]

Kuramoto Y Chemical Oscillations, Waves, and Turbulence (Berlin:
Springer-Verlag, 1984)

Winfree A T The Geometry of Biological Time (New York: Springer,
2001)

Glass L, Mackey M C From Clocks to Chaos: The Rhythms of Life
(Princeton, N.J.: Princeton Univ. Press, 1988) [Translated into
Russian (Moscow: Mir, 1991)]

Glass L Nature 410 277 (2001)

Nekorkin V I Phys. Usp. 51 295 (2008) [Usp. Fiz. Nauk 178 313
(2008)]

Borisyuk G N et al. Phys. Usp. 45 1073 (2002) [Usp. Fiz. Nauk 172
1189 (2002)]

Andronov A A Sobranie Trudov (Collection of Papers) (Exec. Ed.
M A Leontovich) (Moscow: Izd. AN SSSR, 1956)

Krylov N M, Bogoliubov N N /zv. Akad. Nauk SSSR Ser. VII Otd.
Mat. Estestv. Nauk (4) 475 (1933)

Bogoliubov N N, Mitropolsky Y A Asymptotic Methods in the
Theory of Non-linear Oscillations (New York: Gordon and Breach
Sci. Publ., 1961) [Translated from Russian: Asimptoticheskie Me-
tody v Teorii Nelineinykh Kolebanii (Moscow: Fizmatgiz, 1958)]
Landa P S Avtokolebaniya v Sistemakh s Konechnym Chislom
Stepenei Svobody (Self-Sustaining Oscillations in System with
Finite Number of Degrees of Freedom) (Moscow: Nauka, 1980)
Neimark Yu I, Landa P S Stochastic and Chaotic Oscillations
(Dordrecht: Kluwer Acad. Publ., 1992) [Translated from Russian:
Stokhasticheskie i Khaoticheskie Kolebaniya (Moscow: Nauka,
1988)]

Anishchenko V S et al. Sinkhronizatsiva Regulyarnykh, Khaotiches-
kikh i Stokhasticheskikh Kolebanii (Synchronization of Regular,
Chaotic and Stochastic Oscillations) (Moscow —Izhevsk: RKhD,
2008)

Pecora L M, Carroll T L Phys. Rev. Lett. 64 821 (1990)

Pecora L M, Carroll T L Phys. Rev. A 442374 (1991)

Nekorkin V 1, Velarde M G Synergetic Phenomena in Active
Lattices: Patterns, Waves, Solitons, Chaos (Berlin: Springer, 2002)
Osipov G V, Kurths J, Zhou Ch Synchronization in Oscillatory
Networks (Berlin: Springer, 2007)

Trubetskov D 1 Sinkhronizatsiya: Uchenyi i Vremya (Synchroniza-
tion: Scientist and Time) (Saratov: Kolledzh, 2006)

Dmitriev A S, Panas A I Dinamicheskii Khaos: Novye Nositeli
Informatsii dlya Sistem Svyazi (Dynamical Chaos: New Informa-
tion Storage for Communication Systems) (Moscow: Fizmatlit,
2002)

Leonov G A, Smirnova B V Matematicheskie Problemy Teorii
Fazovoi Sinkhronizatsii (Mathematical Problems of the Phase
Synchronization Theory) (St. Petersburg: Nauka, 2000)

Belykh V N, Belykh I V, Mosekilde E Phys. Rev. E 63036216 (2001)
Belykh I, Belykh V, Hasler M Chaos 16 015102 (2006)



1228

V V Klinshov, V I Nekorkin

Physics— Uspekhi 56 (12)

37.

38.
39.

40.

41.

42.

43.

44,

45.
46.

47.

48.
49.

50.

51

52.

53.

54.
55.

56.

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.

71.
72.

73.
74.
75.
76.
77.
78.

79.
80.

Kuznetsov A P, Stankevich N V, Turukina L V Physica D 238 1203
(2009)

Kim S-Y et al. Phys. Rev. E 67 016217 (2003)

Abarbanel H D et al. Phys. Usp. 39 337 (1996) [Usp. Fiz. Nauk 166
363 (1996)]

Rabinovich M I, Muezzinoglu M K Phys. Usp. 53 357 (2010) [Usp.
Fiz. Nauk 180 371 (2010)]

Anishchenko V S, Astakhov S V Phys. Usp. 56 955 (2013) [Usp. Fiz.
Nauk 183 1009 (2013)]

Pikovsky A, Rosenblum M, Kurths J Synchronization: A Universal
Concept in Nonlinear Sciences (Cambridge: Cambridge Univ. Press,
2001)

Shil'nikov L P et al. Metody Kachestvennoi Teorii v Nelineinoi
Dinamike (Methods of Qualitative Theory in Nonlinear Dynamics)
Pt. 1 (Moscow —Izhevsk: Inst. Komp’yut. Issled., 2004)

Dmitriev A S, Kislov V Ya Stokhasticheskie Kolebaniya v Radio-
fizike i Elektronike (Stochastic Oscillations in Radiophysics and
Electronics) (Moscow: Nauka, 1989)

Kilias T et al. Int. J. Electron. 79 737 (1995)

Leonov G A, Seledzhi S M Vestn. St. Petersburg Gos. Univ. Ser. 10
Priklad. Mat. Inform. Protsessy Upravl. (1) 36 (2004)

Ryskin N M Radiophys. Quantum Electron. 47 116 (2004) [Izv.
Vyssh. Uchebn. Zaved. Radiofiz. 47 129 (2004)]

Leonov G, Seledzhi S Int. J. Bifurcation Chaos 15 1347 (2005)
Leonov G A, Seledzhi S M Automat. Remote Control 66 348 (2005)
[Avtomat. Telemekh. (3) 11 (2005)]

Leonov G, Seledzhi S Int. J. Innovat. Comput. Inform. Control 1779
(2005)

Arino O, Hbid M L, Ait Dads E (Eds) Delay Differential Equations
and Applications (NATO Science Series, Ser. II, Vol. 205) (Dor-
drecht: Springer, 2006)

Balachandran B, Kalmdr-Nagy T, Gilsinn D (Eds) Delay Differ-
ential Equations: Recent Advances and New Directions (New Y ork:
Springer, 2009)

Ryskin N M, Khavroshin O S J. Commun. Technol. Electron. 56 690
(2011) [Radiotekh. Elektron. 56 741 (2011)]

Usacheva S A, Ryskin N M Physica D 241 372 (2012)

Kozyreff G, Vladimirov A G, Mandel P Phys. Rev. E 64 016613
(2001)

Vladimirov A G, Turaev D V Radiophys. Quantum Electron. 47 769
(2004) [Izv. Vyssh. Uchebn. Zaved. Radiofiz. 47 857 (2004)]

Kim M-Y et al. Phys. Rev. Lett. 94 088101 (2005)

Wiinsche H-J et al. Phys. Rev. Lett. 94 163901 (2005)

Vicente R et al. Phys. Rev. E 73 047201 (2006)

Nizette M et al. Physica D 218 95 (2006)

Flunkert V et al. Phys. Rev. E79 065201(R) (2009)

Zamora-Munt J et al. Phys. Rev. Lett. 105 264101 (2010)

Masoller C et al. Phys. Rev. A 84 023838 (2011)

Rebrova N et al. Phys. Rev. E 83 066202 (2011)

Otto Cet al. New J. Phys. 14 113033 (2012)

Kashchenko S A, Grigor’eva E V Relaksatsionnye Kolebaniya v
Lazerakh (Relaxation Oscillations in Lasers) (Moscow: LIBRO-
KOM, 2013)

Golomb D, Ermentrout G B Network 11 221 (2000)

Takamatsu A, Fujii T, Endo I Phys. Rev. Lett. 852026 (2000)
Oprisan S A, Prinz A A, Canavier C C Biophys. J. 87 2283 (2004)
Bazhenov M, Rulkov N F, Timofeev I J. Neurophysiol. 100 1562
(2008)

Friedrich J, Kinzel W J. Comput. Neurosci. 27 65 (2009)

Masoller C, Torrent M C, Garcia-Ojalvo J Philos. Trans. A 367 3255
(2009)

Kashchenko S A, Maiorov V V Modeli Volnovoi Pamyati (Models
of Wave Memory) (Moscow: URSS, 2009)

Faro J, Velasco S Physica D 110 313 (1997)

Tass P et al. Phys. Rev. E 54 R2224 (1996)

Haken H Eur. Phys. J. B 18 545 (2000)

Trubetskov D I, Mchedlova E S, Krasichkov L V Vvedenie v Teoriyu
Samoorganizatsii Otkrytykh Sistem (Introduction to the Theory of
Self-Organization in Open Systems) (Moscow: Fizmatlit, 2005)
Lakshmanan M, Senthilkumar D V Dynamics of Nonlinear Time-
Delay Systems (Berlin: Springer, 2010)

Gray C M et al. Nature 338 334 (1989)

Engel A K et al. Science 252 1177 (1991)

81.
82.
83.
84.
85.
86.
87.

88.
89.

90.
91.
92.
93.

94.

95.

96.

97.

98.
99.

100.
101.

102.
103.
104.
105.
106.
107.
108.

109.

110.
I11.
112.
113.
114.

115.
116.
117.

118.

119.

120.
121.
122.

123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.

136.

Frien A et al. NeuroReport 52273 (1994)

Singer W, Gray C M Annu. Rev. Neurosci. 18 555 (1995)
Courtemanche R, Lamarre Y J. Neurophysiol. 93 2039 (2005)
Schoffelen J-M, Oostenveld R, Fries P Science 308 111 (2005)
Doesburg S M, Ward L M Int. Congress Ser. 1300 551 (2007)
Uhlhaas P J et al. Front. Integr. Neurosci. 3 17 (2009)

Wu J (Ed.) Handbook on Theoretical and Algorithmic Aspects of
Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks (New York:
Auerbach Publ., 2005)

Akyildiz I F et al. Comput. Networks 38 393 (2002)

Sundararaman B, Buy U, Kshemkalyani A D A4d Hoc Networks 3
281 (2005)

Demirkol I, Ersoy C, Alagoz F IEEE Commun. Mag. 44 115 (2006)
Larger L et al. Opt. Express 20 3241 (2012)

Brunner D et al. Nature Commun. 4 1364 (2013)

Bellman R, Cooke K L Differential-Difference Equations (New
York: Academic Press, 1963) [Translated into Russian (Moscow:
Mir, 1967)]

Leonov G A, Ponomarenko D V, Smirnova V B Frequency-Domain
Methods for Nonlinear Analysis: Theory and Applications (Singa-
pore: World Scientific, 1996)

Leonov G A, Smirnova V B Math. Nachr. 177 157 (1996)
Kaschenko D, Kaschenko S, Schwarz W Int. J. Bifurcation Chaos 22
1250184 (2012)

Daan S, Berde C J. Theor. Biol. 70 297 (1978)

Neu J C SIAM J. Appl. Math. 37 307 (1979)

Ermentrout G B J. Math. Biol. 12 327 (1981)

Hoppensteadt F C, Keener J P J. Math. Biol. 15 339 (1982)

Kopell N, Ermentrout G B Commun. Pure Appl. Math. 39 623
(1986)

Acebroni J A et al. Rev. Mod. Phys. 77 137 (2005)

Izhikevich E M Phys. Rev. E 58 905 (1998)

Schuster H G, Wagner P Prog. Theor. Phys. 81 939 (1989)

Yeung M K S, Strogatz S H Phys. Rev. Lett. 82 648 (1999)

Earl M G, Strogatz S H Phys. Rev. E 67 036204 (2003)

Dorizzi B, Grammaticos B Phys. Rev. A 44 6958 (1991)

Niebur E, Schuster H G, Kammen D M Phys. Rev. Lett. 67 2753
(1991)

Nakamura Y, Tominaga F, Munakata T Phys. Rev. E 49 4849
(1994)

D’Huys O et al. Chaos 18 037116 (2008)

Zanette D H Phys. Rev. E 62 3167 (2000)

Ko T-W, Ermentrout G B Phys. Rev. E 76 056206 (2007)

Jeong S-O, Ko T-W, Moon H-T Phys. Rev. Lett. 89 154104 (2002)
Campbell S A, Kobelevskiy I Discrete Continuous Dyn. Syst. 322653
(2012)

Aronson D G, Ermentrout G B, Kopell N Physica D 41 403 (1990)
Ramana Reddy D V, Sen A, Johnston G L Physica D 129 15 (1999)
Klinshov V V, Kazantsev V B, Nekorkin V I Izv. Vyssh. Uchebn.
Zaved. Priklad. Nelin. Din. 12 (6) 129 (2004)

Ramana Reddy D V, Sen A, Johnston G L Phys. Rev. Lett. 80 5109
(1998)

Ramana Reddy D V, Sen A, Johnston G L Phys. Rev. E 69 056217
(2004)

Strogatz S H Nature 394 316 (1998)

Mirollo R E, Strogatz S H J. Stat. Phys. 60 245 (1990)

Ramana Reddy D V, Sen A, Johnston G L Phys. Rev. Lett. 85 3381
(2000)

D’Huys O et al. Chaos 20 043127 (2010)

Wirkus S, Rand R Nonlin. Dynamics 30 205 (2002)

Song Y, XuJ, Zhang T Chaos 21 023111 (2011)

Choe C-U et al. Phys. Rev. E75 046206 (2007)

Choe C-U et al. Phys. Rev. E 81 025205(R) (2010)

Zou W et al. Phys. Rev. E 84 066208 (2011)

Selivanov A A et al. Phys. Rev. E 85016201 (2012)

Mirollo R E, Strogatz S H SIAM J. Appl. Math. 50 1645 (1990)
Ermentrout G B, Kopell N J. Math. Biol. 29 195 (1991)

Kuramoto Y Physica D 50 15 (1991)

Bottani S Phys. Rev. Lett. 74 4189 (1995)

Canavier C C, Achuthan S Math. Biosci. 226 77 (2010)

Peskin C S Mathematical Aspects of Heart Physiology (New York:
Courant Institute of Mathematical Sciences, New York Univ., 1975)
Izhikevich E M IEEE Trans. Neural Networks 10 508 (1999)



December 2013

Synchronization of delay-coupled oscillator networks

1229

137.
138.
139.
140.

141.
142.

143.

144.
145.
146.

147.
148.
149.
150.
151.
152.
153.
154.

155.
156.
157.

158.
159.
160.
161.
162.
163.
164.

165.
166.
167.
168.
169.
170.
171.
172.

173.
174.
175.
176.

177.
178.
179.
180.

Glass L Nature 410 277 (2001)

Glass L et al. Phys. Rev. E 65021908 (2002)

Goel P, Ermentrout B Physica D 163 191 (2002)

Loskutov A, Rybalko S, Zhuchkova E Int. J. Bifurcation Chaos 14
2457 (2004)

Rybalko S, Zhuchkova E Int. J. Bifurcation Chaos 19 263 (2009)
Klinshov V V, Nekorkin V 1 Commun. Nonlinear Sci. Numer.
Simulat. 18 973 (2013)

Neimark Yu I Metod Tochechnykh Otobrazhenii v Teorii Nelinei-
nykh Kolebanii (Method of Point Maps in the Nonlinear Oscillation
Theory) (Moscow: Nauka, 1972)

Ernst U, Pawelzik K, Geisel T Phys. Rev. Lett. 74 1570 (1995)
Ernst U, Pawelzik K, Geisel T Phys. Rev. E57 2150 (1998)

Zeitler M, Daffertshofer A, Gielen C C A M Phys. Rev. E 79
065203(R) (2009)

Coombes S, Lord G J Phys. Rev. E55 R2104 (1997)

Coombes S, Lord G J Phys. Rev. E 56 5809 (1997)

Klinshov V V, Nekorkin V I Chaos Solitons Fractals 44 98 (2011)
Prasad A et al. Phys. Rev. E 74 035204(R) (2006)

Prasad A et al. Chaos 18 023111 (2008)

Adhikari B M, Prasad A, Dhamala M Chaos 21 023116 (2011)
Klinshov V, Nekorkin V Cybernetics Phys. 1106 (2012)
Ermentrout G B, Kopell N Proc. Natl. Acad. Sci. USA 95 1259
(1998)

Neves F S, Timme M J. Phys. A Math. Theor. 42 345103 (2009)
Gerstner W Phys. Rev. Lett. 76 1755 (1996)

Klinshov V V, Nekorkin V I Discontinuity Nonlinearity Complexity
1253 (2012)

Wu W, Chen T Nonlinearity 20 789 (2007)

Wu W, Chen T Int. J. Neural Syst. 19 425 (2009)

Wu W, Liu B, Chen T Neural Networks 23 783 (2010)

Wang S et al. PLoS Comput. Biol. 8 €1002306 (2012)

Timme M, Wolf F, Geisel T Phys. Rev. Lett. 89 258701 (2002)
Foss J, Milton J J. Neurophysiol. 84 975 (2000)

Woodman M, Canavier C Front. Syst. Neurosci. Conf. Abstract.
Computational and Systems Neuroscience (2009), doi: 10.3389/conf.
neuro.06.2009.03.139

Woodman M M, Canavier C C J. Comput. Neurosci. 31 401 (2011)
Campbell S R, Wang D Physica D 111 151 (1998)

Rossoni E et al. Phys. Rev. E71 061904 (2005)

Buri¢ N, Todorovi¢ D Phys. Rev. E 68 066218 (2003)

Oguchi T, Nijmeijer H, Yamamoto T Chaos 18 037108 (2008)
Michiels W, Nijmeijer H Chaos 19 033110 (2009)

Jungling T et al. Phys. Rev. E 84 056208 (2011)

Manju Shrii M, Senthilkumar D V, Kurths J Europhys. Lett. 98
10003 (2012)

Buri¢ N, Todorovi¢ D Phys. Rev. E 67 066222 (2003)

Huber D, Tsimring L S Phys. Rev. Lett. 91 260601 (2003)

Jiang Y Phys. Lett. A 267 342 (2000)

Masoller C, de S Cavalcante H L D, Rios Leite J R Phys. Rev. E 64
037202 (2001)

Masoller C, Marti A C Phys. Rev. Lett. 94 134102 (2005)

Wang Q et al. Phys. Rev. E 80 026206 (2009)

Masoller C, Atay F M Eur. Phys. J. D 62 119 (2011)

Koronovskii A A, Moskalenko O I, Hramov A E Phys. Usp. 521213
(2009) [Usp. Fiz. Nauk 179 1281 (2009)]



	1. Introduction
	2. Phase description
	3. Account for amplitude dynamics
	4. Description based on pulse coupling
	4.1 System with two elements
	4.2 Small networks
	4.3 Large networks

	5. Conclusions
	 References

