
Abstract. The new, rapidly developing field of theoretical re-
searchÐ studies of dark energy interacting with black holes
(and, in particular, accreting onto black holes)Ð is reviewed.
The term `dark energy' is meant to cover a wide range of field
theory models, as well as perfect fluids with various equations of
state, including cosmological dark energy. Various accretion
models are analyzed in terms of the simplest test field approx-
imation or by allowing back reaction on the black-hole metric.
The behavior of various types of dark energy in the vicinity of
Schwarzschild and electrically charged black holes is examined.
Nontrivial effects due to the presence of dark energy in the
black hole vicinity are discussed. In particular, a physical
explanation is given of why the black hole mass decreases when
phantom energy is being accreted, a process in which the basic
energy conditions of the famous theorem of nondecreasing
horizon area in classical black holes are violated. The theore-
tical possibility of a signal escaping from beneath the black hole
event horizon is discussed for a number of dark energy models.
Finally, the violation of the laws of thermodynamics by black
holes in the presence of noncanonical fields is considered.

1. Introduction

The discovery of accelerating expansion of the universe is one
of the most important cosmological discoveries at the turn of
the 20th and 21st centuries [1±3]. Independent evidence of the
accelerating expansion has been obtained from type-Ia
supernova observations, from measurements of cosmic
microwave background fluctuations (integrated Sachs±
Wolfe effect), from studies of the large-scale distribution of
galaxies, and from gravitational lensing. According to the
interpretation of the accelerating expansion using Einstein's
General Relativity (GR) and the Friedmann cosmology,
some form of matter exists with a negative pressure whose
absolute value is approximately equal to the energy density
(in units where the speed of light is c � 1) [4±7]. This matter,
called dark energy, started dominating in the universe at
redshifts z � 0:5ÿ1:0, and presently its contribution to the
total energy density in the universe amounts to � 70%. The
modern state of the dark energy problem is reviewed, for
example, in [8±12].

It is important to note that the physical carrier of dark
energy remains unknown. The term `dark energy' simply
reflects the observed properties of this matter: the word
`dark' means that it is not directly seen in any observations
except gravitational measurements, and `energy' reflects the
fact that this matter has an energy±momentum tensor that
can be found from Friedmann's equations. An important
feature of the carrier, which is not encrypted in the term `dark
energy', is its negative pressure, comparable in amplitude to
the energy density.

Whatever the nature of dark energy, it can be effectively
characterized by the pressure and density, and it is possible to
introduce their ratio w � p=r, also known as the equation-of-
state parameter. The notion of the cosmological constant
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(L term), which was introduced by Einstein [13] and
subsequently rejected by him (see [14, 15]) after reading
Fiedmann's paper [16] (also see [17]) and recognizing the
observational evidence of the expansion of the universe [18],
has seen a rebirth due to astronomical observations since the
discovery of dark energy.

Presently, the ever-growing list of proposed models for
dark energy is quite long and includes very different ideas
(see, e.g., a review of theoretical models in [19]). The
introduction of the cosmological L term requires a very
small value of the energy density of the vacuum (as presently
observed), which demands a huge fine-tuning of field theory
parameters [20]. For this reason, instead of introducing the
L term, models of dynamical dark energy with w 6� ÿ1 have
been proposed. Here, for example, we can mention the
popular models of a scalar field with a flat potential (the
`quintessence') [21±27] and models with a nontrivial kinetic
term (the `k-essence') [28±30], the ghost condensate [31], and
Galileons [32±35]. Different generalizations and modifica-
tions of GR have been discussed in which dark energy
effectively emerges (so-called geometrical dark energy) [36,
37]. In this connection, we canmention scalar±tensor theories
[38±41], including f �R�-gravity (see, e.g., review [42]), multi-
dimensional models (see review [43]), andmassive gravity [44,
45]. In addition, models of matter that would have the
properties of dark energy at large scales and imitate dark
matter (hidden mass) at small scales [46] have been proposed.
Models have been considered in which the apparent accel-
erating expansion of the universe results from averaging of
small-scale density inhomogeneities with back reaction in the
background metrics [47]. The explanation of dark energy in
terms of a gravitational wave background has also been
proposed [48].

Interestingly, the modern observational data do not
exclude the possibility that dark energy represents the so-
called phantom energy [49, 50]Ða matter with the effective
equation-of-state parameter w < ÿ1. Indeed, recent results
from the Planck space mission in combination with polariza-
tion measurements by the WMAP (Wilkinson Microwave
Anisotropy Probe) satellite and acoustic oscillations yield the
parameter w � ÿ1:13�0:23ÿ0:25 [51], with the mean value slightly
smaller than ÿ1.

Different aspects of phantom cosmology have been
considered in many papers (see, e.g., [12, 36]). The possibility
of a Big Rip is one extravagant scenario of phantom
cosmology [49, 50]. In this scenario, the cosmological density
of phantom energy and the scale factor of the universe diverge
to infinity in a finite time interval, such that all bound objects
at the scales of the effective description of phantom energy are
disrupted.

We emphasize, however, that the simplest models of
phantom energy turn out to be unstable, notably, due to the
presence of ghosts, which lead to vacuum instability. An
infinitely rapid instability can be rendered finite in time by
introducing an ultraviolet (UV) cut-off [52, 53], which,
however, requires violating the Lorentz invariance of the
theory. In more complicated field models, it is possible to
reach stability at least during some period of the cosmological
evolution [54, 55]. In the Galileon model, the phantom
equation of state is not something special: due to the
`coupling' of the graviton to a scalar field inherent in this
model (the mixing of kinetic terms), it is quite straightforward
to obtain a stable phantom regime [56].

The evolution of dark energy is usually considered in the
context of cosmological problems, in which a homogeneous
dark energy determines the cosmological expansion dynamics.
However, it is also interesting to study the behavior of dark
energy anddifferent kinds ofmatter in general in the vicinity of
black holes (BHs). Modern astronomical observations by
large ground-based and space telescopes provide compelling
evidence that supermassive black holes exist almost in each
massive (structured) galaxy [57]. Possibly, primordial BHs
formed at pre-galactic stages served as seeds for BHs in
galactic nuclei. A model was also proposed in which the
Hubble flow itself can be treated as a gravitational collapse
into a black hole inverted in time, i.e., the universe in this
model is considered as the internal part of a white hole [58].
There is almost no doubt that supermassive BHs in galactic
nuclei and stellar-mass BHs, which are remnants of stellar
evolution, do exist, and it is therefore the right time to
investigate the properties of these BHs and to study their
interaction with different kinds ofmatter and fields, with dark
energy in particular.

In this review, we focus on the problem of accretion of
dark energy (and, in general, different kinds of matter) onto
BHs. We note that the accretion rate of dark energy onto
astrophysical BHs in many cases is much smaller than that of
ordinary baryonic matter. Therefore, from the astrophysical
standpoint, the problem of accretion of dark energy seems to
be purely academic. On the other hand, BHs are extremely
valuable objects from the fundamental standpoint because, in
some sense, they provide a `test bed' to study different kinds
of matter. In this connection, the problem of dark energy
accretion becomes relevant, because in some cases it allows
obtaining exact solutions and, more importantly, studying
various physical effects generated by different kinds of matter
in the gravitational field of a BH.

The history of the study of accretion of a perfect fluid onto
a compact star began with the pioneering work by Hoyle and
Littelton [59] and by Bondi and Hoyle [60]. In these papers,
regions located far away from the BH horizon were consid-
ered, and therefore the problem could be treated nonrelativis-
tically. Later, the problem of accretion in the Newtonian limit
was solved in the classical paper by Bondi [61]. Stability of the
Bondi accretion with respect to small perturbations was
studied in [62]. The generalization to the case of accretion of
a relativistic gas was done byMichel [63] (see also additions to
theMichel solution in [64±68] and details of the history of the
accretion theory in [69]). We emphasize that in the accretion
papers cited above, the infalling matter is treated as a test
fluid, i.e., the back reaction of the fluid on themetric is usually
neglected. But, for example, when considering the formation
of primordial BHs in the universe, such an approximation is
insufficient, and the full system of equations must be solved.
The problem of primordial BH formation was first formu-
lated by Zeldovich and Novikov [70]. Later on, Carr and
Hawking [71] considered the problem of accretion of dust and
radiation onto a primordial BH immediately after its birth
and at later stages. Carr and Hawking solved the full system
of Einstein's equations, taking the back reaction of the
accreting fluid into account. This idea has been further
elaborated in many papers (see, e.g., [72±79]). In particular,
the dynamics of the horizon during collapse and accretion
was studied in [80].

Models of accretion onto astrophysical BHs (from
accretion disks in particular), taking magnetic fields and the
realistic thermodynamics of matter into account, have been
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considered in many papers (see, e.g., reviews [81±83] and
monograph [84]).

In this review, we do not discuss problems of magnetic
hydrodynamics.We consider classes of problems in which the
matter equation of state can be somewhat simplified and
idealized. Moreover, we assume spherically symmetric accre-
tion in almost all of our calculations. These assumptions
allow us to obtain exact solutions and to address fundamental
questions on the internal structure and fate of black holes.

The generalization of the Bondi±Michel accretion to dark
energy was proposed in [85, 86]. In these papers, dark energy
was modeled by a perfect fluid with the equation of state
p � p�r�, and the problem of quasispherical accretion onto
BHs was considered. In particular, in [85], accretion onto a
BH in a universe filled with evolving phantom energy, when
dark energy determines both the dynamics of the expanding
universe and the evolution of the accreting BH, was studied.

In [76, 77], self-similar solutions for a BH on a cosmolo-
gical background are discussed, and the question is addressed
of whether the BH growth rate can be equal to that of the
cosmological horizon.

Accretion of dark energy onto realistic astrophysical BHs
(intermediate-mass BHs in globular clusters) was discussed in
[88], and the conclusion was made that accretion of dark
energy has no observational consequences in this case.

We note that the problem of accretion of a perfect fluid
can be reformulated (under some assumptions) in terms of a
scalar field with shear symmetry. However, a scalar field with
a nontrivial potential cannot be described by a perfect fluid.
Therefore, it makes sense to investigate accretion of a scalar
field, because different scalar fields have been proposed as
dark energy candidates.

In [89±95], the behavior of a scalar field with the canonical
kinetic term near a BH was studied for different potentials
V�f� and some analytic solutions for the BH mass evolution
were obtained. It was shown in [96] that accretion of ghost
condensates (fields of a special kind) onto a BH can be very
effective (however, see the criticism of this approach in [97]).

It is the study of different kinds of matter near BHs (which
in many cases first appears as dark energy) that often yields
interesting and unexpected results, which we discuss in this
review. A decrease in the BHmass due to the phantom energy
accretion is one such result [85, 86, 98] (also see [99]). The BH
mass decreases because the perfect fluid energy flux is
proportional to r� p, which is negative by definition for
phantom energy (see, e.g., [100]). In a universe filled with
phantom energy, themasses of all BHs gradually vanish as the
evolution approaches the Big Rip [85]. This decrease in BH
masses is due to violation of the weak energy condition
r� p5 0, which underlies theorems on the nondecreasing
surface of classical BHs (ignoring quantum effects) [101]. The
conclusion that accretion of a scalar field with nonminimal
coupling, which violates the energy conditions, leads to the
BH mass decreasing was previously formulated in [98] (also
see [102]). The decrease in the BH horizon during accretion of
a phantom scalar field is confirmed by numerical calculations
in [103, 104], which also showed that this decrease is not an
artefact of the reference frame choice.

Recently, the possibility of accretion of an exotic fluid
with negative density, whose existence is not fully excluded by
GR, has also been discussed [105±108]. In the real world, such
fluids may correspond to some quantum systems, for
example, to the Casimir energy.

Hypothetical microscopic BHs, which can arise due to
quantum gravity effects, represent another limit case, which is
opposite to the supermassive BHs in galactic nuclei. Micro-
scopic BHs have also been discussed from the practical
standpoint in relation to their hypothetical creation in the
largest accelerator experiments in models of gravity with
extra dimensions.

The electric charge can be essential for microscopic BHs.
Studies of charged BHs are important to clarify the key points
of the theory of gravitation. In particular, it is interesting to
study the features of accretion onto charged BHs and the
character of the space±time changes during accretion onto
such BHs. Studies of charged BHs are also of interest from the
standpoint of the existence of extreme BHs, which in some
sense can be considered an intermediate case between black
holes and `naked' singularities.We note that the extreme state
of a charged BH can also be attained in a finite time interval
during accretion of phantom energy if the fluid is treated as a
test liquid [109±111]. However, the back reaction of the
gravity of dark energy on the metric can prevent the BH
from turning into a naked singularity, in accordance with the
third law of the BH thermodynamics [112].

Accretion of a phantom field onto charged BHs in the
theory with a 5-dimensional (5D) space±time was studied in
[113]. The conclusion was made that in the 5D case, the
accreting BH cannot pass through the extreme state, and the
naked singularity does not emerge. In the 4D case, however, it
is impossible to make such an unambiguous conclusion.

If a naked singularity does appear in some physical
process, it is interesting to investigate the behavior of dark
energy in its vicinity. Under certain assumptions, accretion of
some kinds of matter is also possible onto a naked singularity.
But under conservative physical assumptions, perfect fluids
cannot accrete onto a naked Reissner±Nordstrom singularity
[111, 114]; instead, a static atmosphere emerges around the
singularity. A similar result was obtained numerically in [115]
for a Kerr naked singularity (with angular momentum).

Accretion of some noncanonical fields provides an
intriguing possibility to look inside the `usual' BH horizon
[116, 117]; even Lorentz-invariant scalar field theories,
generally speaking, allow superluminal propagation of
perturbations for nontrivial configurations when the light
cone lies inside the `sound' cone. This effect can have
interesting applications in cosmology [118, 119]. We note
that the causality property becomes very nontrivial in such
theories and requires a thorough investigation. For example,
the Cauchy problem cannot be solved for arbitrary initial
conditions [120±123]. The presence of such `superluminal'
fields in the gravitational field of a BH opens up the
possibility of `looking inside' the BH.

As mentioned above, the usual analytic treatment of the
accretion problem assumes the test character of the accreting
fluid. However, it is of great interest to study the back
reaction of the fluid on the metric. This is a very complicated
problem, however: only a few analytic solutions are known
that take the back reaction into account. The famous Tolman
solution for dust accretion onto a BH [124, 125], as well as the
Vaidya solution [126±129], which describes a BH emerging in
radially moving radiation, provide examples. There is a
generalization of the Vaidya solution that involves a more
general energy±momentum tensor (see, e.g., [130]).

Another approach to the problem is also possible: instead
of solving the exact back-reaction problem, one can use
perturbation theory methods. In this way, for example, in
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[131], corrections to the metric of a Hawking-evaporating BH
due to the gravitational field of the outgoing radiation were
calculated. In [132, 133], for the accretion of matter with an
arbitrary equation of state, small back-reaction corrections to
the metric were found. Although this method does not allow
calculating large corrections, it gives fairly general results and
allows finding conditions when the back reaction prevents the
use of the formalism of successive approximations. The
method of thin self-gravitating shells provides another useful
approach. This method was formulated by Israel [134, 135]
and has been elaborated in many papers (see review [136] and
the references therein). It turns out that his method can also
be used to model the accretion of phantom energy onto BHs.

2. Stationary accretion

In this section, we consider the simplest case of spherically
symmetric stationary accretion of dark energy modeled as a
perfect fluid. The fluid is treated as a test flow, i.e., it moves in
the given external gravitational field and its own gravitational
field can be neglected. This condition holds for sufficiently
light fluids. The stationarity assumes that the BH mass
increases slowly, such that the distribution of the fluid on
the relevant space±time scales has time to adjust itself to the
changing BH metric.

2.1 Accretion in the Newtonian approximation
Early calculations of accretion onto the central mass were
carried out in the Newtonian approximation. The test
particles move in the Newtonian gravitational potential
V � ÿGM=r. If particles of the fluid interact weakly with
each other, i.e., their free-path length is much larger than the
characteristic scales, dust-like accretion occurs. The accretion
rate is determined by the geometrical size of the central body,
taking the gravitational focusing into account. If particles
belong to some steady system, for example, they are stars in a
globular cluster, then in the dynamical time (the time of one
flight across the system) particles with small angular
momentum (or, as it is said, from the `loss cone') fall onto
the BH, and then the accretion rate decreases.

For a fluid, the accretion rate can be much higher than in
the case of noninteracting particles, because the interaction of
the fluid particles changes the directions of their momenta,
and the loss cone permanently replenishes. The bulk motion
velocity of the medium at infinity, v, plays an important role
in accretion calculations. For noninteracting particles, this
velocity and the impact parameter determine the possibility of
the fall of a particle onto the BH [59], and the accretion rate is
_M / vÿ3. For a fluid, the sound velocity in themedium is also
important, as was shown in the classical paper by Bondi [61]
(that is why this type of accretion is called the `Bondi
accretion').

The rate of spherically symmetric stationary accretion of a
fluid with a polytropic equation of state is calculated from the
solution of the Bernoulli equation

ÿGM

r
� v

2

2
� g
gÿ 1

p

r
� g

gÿ 1

p1
r1

�1�

and the mass continuity equation

v �
_M

4prr 2
; �2�

where the constant _M determines the rate of the BH mass
increase and g is the polytropic index. The sound velocity for
the considered polytropic equation of state is cs �

����������
gp=r

p
. In

coordinates �cs; v�, Eqns (1) and (2) respectively represent an
ellipse and a hyperbola. They either do not intersect or
intersect at one or two points. These curves always touch
each other on the bisector at which the velocity of motion
becomes equal to the sound velocity, and the subsonic flow
becomes supersonic. We do not describe the Newtonian
accretion properties in detail here because this case has been
considered in much detail in many papers and textbooks (see,
e.g., a very clear presentation in [137]).

2.2 Relativistic accretion of a perfect fluid
We now consider the relativistic accretion of a fluid with
nonzero pressure. The Schwarzschildmetric corresponding to
a nonrotating noncharged BH with massM is given by

ds 2 � f dt 2 ÿ f ÿ1 dr 2 ÿ r 2�dy 2 � sin2 y df 2� ; �3�

where

f � 1ÿ 2M

r
:

Below, we use units in which c � G � 1. We consider the
accretion of a perfect fluid with the energy±momentum tensor

Tmn � �r� p� umun ÿ pgmn ; �4�

where r and p are the rest-frame density and pressure of the
fluid and u m � dxm=ds is the fluid 4-velocity normalized as
u mum � 1. We assume that the pressure depends only on the
density, p � p�r�, and temporarily consider this dependence
arbitrary. Perfect fluid (4) describes a fairly wide class of
matter exactly or to some approximation.

Michel [63] found a general relativistic solution for the
spherically symmetric accretion of ordinary (baryonic)
matter treated as a test fluid, ignoring back reaction on the
metric, from the equations of mass and energy flux conserva-
tion in the Schwarzschild metric. The mass flux conservation
coincides with the particle number conservation in the case of
a gas. When treating dark energy as a perfect fluid, no
presence of particles is assumed at all. In this case, accretion
calculations should be somewhat modified, such that no
particle number conservation is required in general [85]. It is
possible to formally introduce a function n expressed through
the dark energy equation of state as dn=n � dr=�r� p�r��; if
the medium consists of individual conserved particles, n
coincides with the particle number density [86].

The projection of the energy±momentum tensor conserva-
tion law Tmn

; n � 0 onto the 4-velocity direction, umT
mn

;n � 0,
yields the continuity equation for a perfect fluid:

u mr; m � �r� p� u m
; m � 0 : �5�

From (5), we find the integral of motion (an analog of the
energy conservation law)

ux 2 n

n1
� ÿA ; �6�

where the dimensionless radius is x � r=M,

n

n1
� exp

�� r

r1

dr 0

r 0 � p�r 0�
�
; �7�
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u � dr=ds < 0 in the case of direction to the center (accre-
tion), and A > 0 is a dimensionless constant, to be found in
Section 2.3.

The integration of the time component of the conserva-
tion law T 0n

; n � 0 yields another integral of motion:

�r� p�� f� u 2�1=2x 2u � C1 ; �8�

where u � dr=ds and C1 � const. From (6) and (8), it is
straightforward to obtain

r� p

n
� f� u 2�1=2 � C2 ; �9�

where

C2 � ÿC1

A
� r1 � p�r1�

n�r1�
;

and ri is the density at infinity. Equations (6) and (9) in
combination with the equation of state of the fluid p � p�r�
make a closed systems of equations describing accretion of
dark energy onto a BH.

During accretion, the BHmass changes as _M � ÿ4pr 2T r
0 ,

which follows from the interpretation of the component T r
0 in

terms of the energy flux. Using (6) and (9), the last equation
can be transformed into

_M � 4pAM 2
ÿ
r1 � p1

�
: �10�

This is an important result, to be used in various sections of
this review. Anticipating a discussion in what follows, we note
that Eqn (10) implies that the BH mass decreases during the
accretion of phantom energy characterized by the condition
r1 � p�r1� < 0.

The constant C2 is fixed by the boundary condition at
infinity. From Eqns (6), (9), and (10), we can find the density
and velocity of the fluid at the event horizon. To calculate the
constant A in (6) and, accordingly, the energy flux onto the
BH, we make the physical assumption that the flow smoothly
crosses the critical point (see [63, 82, 83, 138] formore details).
Namely, by differentiating Eqns (6) and (9), we obtain the
relation

du

u

�
V 2 ÿ u 2

1ÿ 2=x� u 2

�
� dx

x

�
2V 2ÿ 1

x�1ÿ 2=x� u 2�
�
� 0 :

�11�

In the calculations, the parameter with the dimension of
velocity,

V 2 � n

r� p

d�r� p�
dn

ÿ 1 ; �12�

first appears, which, by virtue of (7), is equal to the sound
velocity in the medium:

V 2 � c 2s �r� �
qp
qr

: �13�

For the single-valuedness of the solution, both square
brackets in (11) must be equal to zero, and then the resulting
equations determine the critical point. Thus, from (11), we
find the critical point parameters:

u 2
� �

1

2x�
; V 2

� �
u 2
�

1ÿ 3u 2�
; �14�

where the subscript � marks values taken at the critical
point.

From Eqns (9), (10), (13), and (14), we find

r� � p�r��
n�r��

� ÿ1� 3c 2s �r��
�1=2 r1 � p�r1�

n�r1�
; �15�

which yields r� for any p � p�r�. From the above equations,
all other quantities of the problem, including the constant A,
can be derived. We note that there is no critical point outside
the BH horizon �x� > 1� for c 2s < 0 or c 2s > 1. This fact has a
simple interpretation: the solution has a critical point if the
fluid velocity increases from subsonic to supersonic values. In
the case c 2s < 0, the fluid velocity never crosses such a point. If
c 2s > 1, the critical point can appear inside the event horizon
�x� < 1� (see Section 4).

Figure 1 shows several solutions with different fluxes and
the unique correct solution passing through the critical point.

The problem of accretion onto a BH considered here is
self-consistent if 1) the accreting fluid is light and 2) the BH
mass increases slowly (the stationary limit). To satisfy these
conditions, two parameters must be small. The first is the
ratio of the mass of the fluid Mfluid � r1M 3 inside the
spherical volume with the BH gravitational radius to the BH
mass M: r1M 3=M � r1M 2 5 1. When this parameter is
small, the test fluid approximation in the background metric
is valid for the radii r5Rmax � M�r1M 2�ÿ1=3. The second
small parameter characterizes the slow rate of the BH mass
change relative to the characteristic hydrodynamic time,
_M=M5cs=M, where cs is the sound velocity in the accreting
matter. According to (10), both parameters become equal,
_M � r1M 2 5 1, in the case of accretion of a perfect fluid, for
which jwÿ 1j is not too close to zero and under the condition
that cs is of the order of unity.

We now consider accretion onto a Reissner±Nordstrom
BH with an electric charge Q. The Reissner±Nordstrom

0.2

0.4

0.6

0.8

1.0

5.04.54.03.53.02.52.0
0

r=M

ur

Figure 1. Possible solutions for the radial velocity of a fluid with the

equation of state p � r=2 as a function of radius in the case of accretion

onto a Schwarzschild BH. Different curves correspond to different fluxes.

The single-valued solution (bold curve) passes through the critical point

marked by the black dot.
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metric can be expressed in form (3), but now with

f � 1ÿ 2M

r
�Q 2

r 2
:

We set e � Q=M. For e 2 < 1, the equation f �x� � 0 has two
roots:

x� � 1�
�������������
1ÿ e 2
p

:

The larger root x � x� corresponds to the Reissner±Nord-
strom BH event horizon, and x � xÿ is the so-called Cauchy
horizon, or the inner horizon. In the opposite case, e 2 > 1,
metric (3) describes the so-called naked singularity, which is
not hidden by the event horizon from an external observer.
The degenerate case e 2 � 1 corresponds to an extreme BH.

Using the above method, we obtain the relations at the
critical point:

u 2
� �

x� ÿ e 2

2x 2�
; c 2s �r�� �

x� ÿ e 2

2x 2� ÿ 3x� � e 2
: �16�

From (16), we obtain

x�� �
1� 3c 2�
4c 2�

(
1�

�
1ÿ 8c 2� �1� c 2� �
�1� 3c 2� �2

e 2
�1=2)

; �17�

where c� � cs�x��. Critical points exist if

e 2 4
�1� 3c 2� �2
8c 2� �1� c 2� �

:

We note that here, in contrast to a unique critical point in the
Schwarzschild BH case, there are formally two critical points
corresponding to the plus and minus signs in (17), and
xÿ� ! 0 as e! 0.

Depending on the values of e and cs, five distinct cases of
the mutual location of the horizon and critical points can be
realized [111]. In Figure 2, the critical radius is shown as a
function of the sound velocity for different values of e.

2.3 Accretion of a fluid with a linear equation of state
The equation of state for dark energy modeled as a perfect
fluid is frequently written in the form p � wr, where
w � const < 0. In this case, however, the medium is dynami-
cally unstable, because the square of its sound velocity is
negative: c 2s � qp=qr � w < 0. In field models, the equation
of state and the square of the sound velocity are not related in
such away in general. However, it is muchmore convenient to
solve accretion problems using the perfect fluid approxima-
tion, and it is therefore desirable to circumvent this difficulty.
For this, it is convenient to start with a perfect fluid with a
more general equation of state

p � a�rÿ r0� ; �18�

where a and r0 are parameters. This simple generalization
of the linear equation of state allows considering dark
energy, including phantom energy, with a positive square
of the sound velocity, c2s � a5 0, although w can here be
negative. Interestingly, for a � ÿ1=3, Whittaker found an
exact static solutionÐa stable spherically symmetric field
configuration [139]. The value a � ÿ1=3 is special because
in this case the combination r� 3p � r0, which serves as a

source in gravitational field equations, takes a constant
value.

The evolution of a universe filled with dark energy with
equation of state (18) was studied in [140]. Assuming this
equation of state to be valid, interesting solutions can be
derived, including an anti-Big Rip or bounce (the change of
contraction with expansion).

Equation of state (18) can be reduced to an `effective'
cosmological constant and the dynamically evolving dark
energy by redefining the density and pressure as

r � rL � ra ; p � pL � pa ; �19�

where pL � ÿrL, pa � ara, and

rL �
ar0
1� a

; ra � rÿ ar0
1� a

: �20�

We note that such a separation into two effective fluids can be
done only for a strictly linear equation of state.

Instead of (18), we can consider an arbitrary smooth curve
p � p�r� (Fig. 3). Because any smooth curve in the vicinity of
its point can be approximated by a linear function, Eqn (18)
can be considered a linear approximation of the general
nonlinear equation of state p � p�r� near some point
r � r1, as long as jrÿ r1j is sufficiently small. In particular,
if the curve p � p�r� intersects theL-term line, a universe with

c 2s

xÿ�

xÿ�x
� �;

x
ÿ �

x��

x��

x��

x��

xÿ�0.5

0 0.5

1.0

1.5

2.0

2.5

1.0 1.5 2.0 2.5

e � 1.00
e � 1.01

e � 0.90
e � 0

Figure 2. The outer critical radius x�� (bold lines) and the inner critical

radius xÿ� (thin lines) as functions of the sound velocity cs for different

values of the electric charge e � Q=M. The outer critical point coincides

with the event horizon, x�� � 1, for an extreme BH �e � 1� when cs 5 1.

rr

p p

Figure 3. Sketch of the evolution of dark energy with an arbitrary equation

of state p�r�. At each point, the curve p � p�r� can be approximated by

linear dependence (18).
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dark energy always approaches the de Sitter attractor state
[140].

We consider the accretion of a perfect fluid with equation
of state (18) onto a Reissner±Nordstrom BH. From (6), using
(14) and (17), we can find the dimensionless constantA for the
linear equation of state,

A � a 1=2x 2
�

�
2ax 2

�
x� ÿ e 2

��1ÿa�=2a
: �21�

The velocity and energy density as a function of radius are
determined from solutions (9) and (96) using relations

f� u 2 �
�
ÿ ux 2

A

�2a

;
r� p

r1 � p1
�
�
ÿ A

ux 2

�1�a
: �22�

Solutions of these equations can be expressed in terms of
analytic functions in special cases where a � 1=4, 1=3, 1=2,
2=3, 1, 3=2, and 2. For example, for a � 1=3 (thermalized
photon gas),

r � r0
4
�
�
r1 ÿ

r0
4

��
1� 2z

3f

�2

;

where

z �
cos

2pÿ b
3

; x�4 x4 x� ;

cos
b
3
; x > x� ;

8>><>>:
b � arccos

�
1ÿ 27

2
A2 f 2

x 4

�
:

The obtained expressions are simplified for a Schwarz-
schild BH. For example, the critical point parameters in this
case are x�� �1� 3a�=�2a�, u 2

� � a=�1�3a�. The constant
that determines the flux onto the BH takes the form

A � �1� 3a��1�3a�=2a
4a 3=2

: �23�

It is easy to see thatA5 4 for 0 < a < 1, while for a > 1 it can
be shown that A < 4. At a � 1, we have A � 4. These

considerations lead to the conclusion that for typical sound
velocities, the constant A is of the order of unity. Figure 4
shows the fluid density as a function of x [86].

The case of a superluminal fluid is of interest for a
Reissner±Nordstrom BH. `Superluminal' dark energy is
discussed in more detail in Section 4. Here, we only mention
that the behavior of the superluminal fluid �cs > 1� is fairly
unusual. There is an infinite family of regular solutions at
r > 0, which are parameterized by the constant A. Each
solution includes one hydrodynamic branch, and there is no
sound horizon.

The solution for a subsonic fluid exists only inside
the region with some minimal radius r > rmin, where
0 < rmin < rÿ; the accreting fluid does not reach the central
singularity, and its density reaches amaximum at rmin (Fig. 5).
A similar behavior was discovered for test particles with a
nonzero mass moving along geodesics [141, 142] in the
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Figure 4. The density (normalized to the value at infinity) r=r1 as a function of the coordinate for linear model (18). (a) The density r=r1 of a

hydrodynamically stable fluid with a � 1: curve 1, r0 � 0 (model of neutron star matter); curve 2, r0=r1 � 16=9 (linear model of nonphantom dark

energy); curve 3, r0=r1 � 7=3 (linear model of phantom energy); curve 4, r0=r1 � 7=3 (linear model of phantom energy with the density at the horizon

rh � 0). (b) The density r=r1 at a < 0: curve 1, a � ÿ2, r0 � 0, and A � 4 (linear model of phantom energy); curve 2, at a � ÿ1=2, r0 � 0, and A � 4

(linear model of nonphantom energy).
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Figure 5. The radial 4-velocity u�x� (bold curve) for an accreting fluid with

p=r � 1=3 (thermalized photon gas) in the Reissner±Nordstrom metric

with the charge e � 0:999; us is the 4-velocity at the critical point.
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Reissner±Nordstrom metric, with the particles bouncing at
the radius rmin � Q 2=�2M�. The corresponding solutions for
accretion of a subluminal fluid are singular at r � rmin,
namely, u 0�rmin� � 1 and r 0�rmin� � ÿ1 (although the
4-velocity and the density remain finite at r � rmin). As a
result, continuity equation (5) is ill-defined at r � rmin.

3. Accretion of phantom energy
and the fate of black holes

In Section 2, we showed that during the accretion of a perfect
fluid with r� p > 0, the masses of BHs increase as in the case
of accretion of ordinary matter. But a qualitatively different
result follows for phantom energyÐ a medium with
r� p < 0. Equation (10) implies that the BH mass decreases
in this case. In Section 3.1 we discuss the notion of phantom
energy and its properties, and then in Section 3.2 we consider
accretion of phantom energy onto BHs.

3.1 Violation of energy conditions and phantom energy
Before the appearance of the notion of phantom energy, it
was usually assumed in studying the general properties of
solutions of the Einstein equations that the energy conditions
hold [101], which were thought to be appropriate for
physically admissible matter. These conditions underlie
general theorems about singularities and horizons. How-
ever, more exotic cases where the energy conditions are
violated have recently been discussed in numerous papers.
Even if the real cosmological dark energy is not the phantom
energy, studying themodels with violated energy conditions is
interesting from the theoretical standpoint and turns out to
lead to nontrivial results.

The weak energy condition can be formulated as follows:
for any timelike vector v a, the inequality Tabv

av b 5 0 holds.
For a perfect fluid with energy±momentum tensor (4), this
implies that r5 0 and r� p5 0. As was proved by
Christodoulou [143] (1970) and Hawking [144] (1971), when
the weak energy condition is satisfied, the surface area of a
BH does not decrease for any classical (nonquantum)
processes. For the phantom energy, the weak energy condi-
tion is violated, and this theorem is invalid. Therefore, the BH
mass can decrease during accretion of phantom energy.

Different field theory models have been proposed for the
phantom energy. In theories with a scalar field, the corre-
sponding Lagrangian must have a negative kinetic term [49,
50], for example, K � ÿ�1=2�f;mf

;m. Then the phantom
energy flux onto a BH has the opposite sign, T0r � ÿf; tf; r,
wheref is the solution of the sameKlein±Gordon equation as
in the case of the standard scalar field. In this case, accretion
of a scalar phantom field causes the BH mass to decrease at
the rate _M � ÿ4p�2M�2 _f 2

1. A more general form of the
negative kinetic term in the k-essence model was considered
in [145].

The simplest models of phantom energy are unstable at
the quantum level due to the appearance of ghost solutions.
In more sophisticated models with (dynamical) Lorentz
symmetry violation, it is possible to avoid the catastrophic
quantum instability of phantom energy [54, 55]. In such
models, the instability of phantom fields occurs only at low
energies [54, 55]. Moreover, in models with the Galileon, the
phantom regime emerges quite naturally without the
appearance of ghosts or a gradient instability [56]. As a
result, physically acceptable models of phantom energy have
been constructed.

We also note that in addition to field phantom models,
phantom energy can be imitated by deviations from GR in
f �R�-gravity and scalar±tensor models of gravity. Studies of
phantom energy have their own general theoretical meaning
for analyzing possible properties and paradoxes of phantom
energy, as well as for clarifying physical features and
conditions under which the `pathological' behavior appears.

3.2 Accretion of phantom energy
Formula (10) implies that the BH mass must decrease due to
the accretion of phantom energy. This result is independent of
the equation of state p � p�r�; only the condition p� r < 0 is
important, under which the phantom energy falling into the
BH brings energy outwards.

We recall that r and p in the rest-frame of the fluid, i.e., as
measured by the comoving observer, enters the energy±
momentum tensor Tmn � �r� p�umun ÿ pgmn. But if the fluid
moves with a velocity v relative to the observer, the observer
measures the energy density [146] (see also [147], where
similar considerations are applied to Galileons):

r 0 � T0 00 0 � r� pv 2

1ÿ v 2 ; �24�

in accordance with the usual Lorentz transformations (see
[148], æ 35). Bearing this in mind, it is easy to understand that
the observer at rest in the Schwarzschild metric near the BH
horizon (where the physical velocity of the êuid v! 1) in the
phantom case r� p < 0measures the êux onto the BHwith a
negative energy density, r 0 < 0. This example clearly explains
the reason for the decrease in the BH mass.

If we neglect the cosmological evolution of r1, then we
obtain from (10) that

M �Mi

�
1� t

t

�ÿ1
; �25�

where Mi is the initial mass of the black hole and the
characteristic time of evolution is

t � ÿ1
4pAMi

ÿ
r1 � p�r1�

� : �26�

Equation (25) implies that for r1 � p�r1� < 0, the BH mass
decreases with time.

3.3 Thermodynamics of phantom energy
In a medium with p4 0, such as dark energy, some nontrivial
energetic effects can occur [149]. For example, during an
adiabatic expansion, the internal energy increases, in contrast
to ordinary matter with p5 0. Phantom energy, if it exists,
has evenmore exotic thermodynamic properties. We consider
the general thermodynamic relation for dark energy:

T dS � p dV� dE ; �27�

where V � � ���
g
p

d3x, gab is the spatial metric tensor and the
integration is performed over the volume with a size smaller
than the characteristic scale of change of the relevant
quantities. For a small comoving volume, Eqn (5) implies
that nV � const. It is useful to introduce specific values
r� E=V and s� S=�nV �. Under the adiabatic condition
ds � 0, which is equivalent to the definition dr �
�r� p� dn=n introduced in (7), it is possible to find the
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following relation from (27), which is a particular case of the
general relation found in [150] for a dissipative medium:

dT

T
� dn

n

�
qp
qr

�
n

: �28�

For the linear equation of state (18), it follows from (28) that

n � const jT j1=a : �29�

Setting rL � ar0=�1� a�, it is straightforward to derive
from (29) that

r � rL � C3jT j�1�a�=a ; �30�

with a constant C3 > 0, the plus sign corresponding to
r� p > 0, and the minus sign corresponding to r� p < 0.

We now find the expression for the entropy of phantom
energy. If the chemical potential m satisfies the equality
dm � ÿs dT� V dp=N � 0, then

s � 1

n

dp

dT
: �31�

In the adiabatic case s � const, using the relation
�qp=qT �s � �qp=qr�s�qr=qT �s, it finally follows from (31)
that

S � �V�1� a�C3jT j�1�a�=aTÿ1 : �32�

Hence, the entropy of phantom energy is positive, S > 0,
while the temperature is negative, T < 0 (this case was first
considered in [151]), and vice versa.

Negative temperatures are considered in physics, for
example, in application to the inverse population of quan-
tum levels, when the number of particles at higher levels is
larger than that at lower levels. In practice, this situation
occurs for some subsystems of electrons in the workingmatter
of a laser. Similarly, negative temperatures can be realized for
the degrees of freedom of translation motion of atoms in an
ultracold gas [152].

In classical physics, the entropy defined in terms of the
statistical weight is nonnegative. However, the notion of
negative entropy arises in quantum mechanics in systems
with quantum entanglement [153]. Therefore, phantom
energy can reflect some specific quantum properties of its
physical constituent.

We consider the entropy balance during accretion using
the well-known relations for the temperature and entropy of a
BH:

TBH � �hc 3

8pGM
; SBH � 4pGM 2

�hc
: �33�

We consider the sphere of a radius r �4 2M around a
Schwarzschild BH. We mark the quantities related to the
interior and exterior of this sphere by the subscripts `in' and
`out'. If the mass of dark energy can be neglected (as we have
assumed so far), then _Sin 5 _Sout. For the external region,

_Sout ' 4pr � 2su � ÿ4pM 2As1 � ÿ
_M

T
; �34�

where we use the stationarity of the flux onto the BH. The
total entropy is

_S � _SBH � _Sin � _Sout � _M

�
1

TBH
ÿ 1

T

�
: �35�

Hence, the total entropy does not change during accretion,
_S � 0, up to a small value _Sin, if TBH � T, i.e., if some kind of
thermodynamic equilibrium between dark energy and the BH
is established.

It is interesting to consider the formal problem of dark
energy enclosed in a cell with impermeable walls [152]. If the
energy of the system is conserved, then, from (27) and the
maximum entropy principle, we obtain

p

T
� qS

qV

����
E

5 0 : �36�

This implies that the signs of pressure and temperature are the
same and a medium with p < 0 must have a negative
temperature, T < 0.

Different aspects of the dark energy thermodynamics
have also been discussed in other papers (see, e.g., [151, 154±
159]).

3.4 Fate of black holes in a universe
approaching the Big Rip
Wenow discuss the evolution of black holes in a universe with
the Big Rip when the scale factor a�t� increases to infinity in a
finite time interval [49, 50]. We consider the epoch in which
only dark energy is important and other forms of matter can
be ignored. Setting r0 � 0 for simplicity in linear model (18),
we find the law of phantom density evolution in such a
universe:

r1 � r1; i

�
1ÿ t

t

�ÿ2
; �37�

where

tÿ1 � ÿ 3�1� a�
2

�
8p
3

r1; i

�1=2

; �38�

r1; i is the initial density of the cosmological phantom energy,
and the initial time is chosen such that the Big Rip occurs at
the time t. In particular, a rapid increase in the phantom
energy density and the value of the scale factor can falsify the
current astronomical prediction that our Galaxy will collide
with the Andromeda nebula in a few billion years. By
contrast, starting from some time, the galaxies will recede
with acceleration.

We note that a single condition r� p < 0 is insufficient
for the evolution to end up with a Big Rip [160, 161].
Examples of phantom cosmology without the Big Rip are
considered, for example, in [160].

From Eqn (10) and using (37), we derive the evolution of
the BH mass in a universe approaching the Big Rip:

M �Mi

�
1� Mi

_M0t

t

tÿ t

�ÿ1
; �39�

where

_M0 � 3

2
Aÿ1j1� aj ; �40�

and Mi is the initial BH mass. For example, for a � ÿ2 and
the typical value A � 4 (corresponding to uh � ÿ1), we have
_M0 � 3=8. In the limit t! t (i.e., near the Big Rip), the
dependence of the BH mass on time t becomes linear,
M ' _M0 �tÿ t�. As t approaches t, the rate of the BH mass
decrease is no longer dependent on its initial mass and the
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phantom energy density: _M ' ÿ _M0. In other words, the
masses of all BHs close to the Big Rip become almost equal.
This means that the accretion of phantom energy dominates
over the Hawking evaporation until the BH mass reduces to
the Planck value. However, formally all BHs will be
evaporated via the Hawking radiation at the Planck time
before the Big Rip. Such is the fate of BHs in a universe
approaching the Big Rip. Unlike all other objects, including
elementary particles, which will be disrupted before the Big
Rip, BHs, according to classical theory, must disappear (their
masses will vanish) exactly at the instant of the Big Rip, and
with the Hawking evaporation taken into account, by the
Planck time interval before the Big Rip.

Similar questions about the fate of a BH at the time of
bounce in the model of a pulsating universe and about
possible observational manifestations of the `surviving' BHs
in the next phase of the cosmological expansion are discussed
in the literature. These include, for example, the traces of
collisions of BHs in the form of concentric circles appearing in
the CMB temperature distribution [162] (we note, however,
that the circles found in [160] have not been confirmed by
independent analyses). If the masses of BHs exceed some
critical value immediately before the bounce, they can merge
into one big BH [163]. Accretion of dark energy can
significantly change the BH evolution at the bounce points.
Accretion of a nonphantom dark energy with r� p > 0 at the
stage of compression could overcome the BH mass decrease
due to the Hawking evaporation, which would lead to the
`survival' of low-mass BHs during the bounce, but they will
also be evaporated at the next stage of expansion, when the
accretion rate decreases.

4. Noncanonical scalar fields and black holes

In this section, we discuss the behavior of different non-
canonical scalar fields in the vicinity of BHs. The study of
noncanonical scalar fields is basically motivated by the dark
energy problem: such fields have usually been proposed in the
context of dark energy. Here, we are primarily interested in
the behavior of such a field near a BH. To tackle this problem,
we partially borrow the formalism of calculations of matter
accretion onto BHs described in Sections 1±3. However, we
are interested not in the accretion itself but in the way of
finding scalar field solutions in the BHmetric. First, we show
how accretion of a perfect fluid can be represented in terms of
the accretion of a k-essence scalar field, and then we study
physical effects emerging when noncanonical scalar fields are
present near a BH.

4.1 Perfect fluid as a scalar field
It is well known that potential flows of a relativistic perfect
fluid can be described in terms of a scalar field [164]. In
particular, an ultrarelativistic fluid corresponds to the
canonical massless scalar field. To represent more compli-
cated equations of state, it is necessary to introduce a scalar
field with a more complicated noncanonical Lagrangian,
written as

L � L�X � ; X � 1

2
qmf q mf : �41�

The energy±momentum tensor corresponding to Lagrangian
(41) has the form

Tmn � LXHmfHnfÿ gmnL ;

where the subscriptX denotes the derivative with respect toX.
The correspondence between the scalar field and the perfect
fluid with energy±momentum tensor (4) can be obtained by
the identification (see, e.g., [116])

um � Hmf������
2X
p : �42�

The pressure p coincides with the density of the scalar field
Lagrangian

p � L�X � ; �43�

and the density is written as

r�X � � 2XLX ÿ L : �44�

The sound velocity is then expressed as

c 2s �
LX
rX
�
�
1� 2X

LXX
LX

�ÿ1
: �45�

Besides the density r and pressure p, the `particle number
density' and enthalpy can be formally defined as

n � exp

��
dr

r� p

�
�

����
X
p
LX

and

h � r� p

n
� dr

dn
� 2

����
X
p

:

Lagrangian (41) yields the equations of motion

qm
ÿ �������ÿgp LX g mn qnf

� � 0 : �46�

The stationary flux can be determined by the ansatz

f�t; r� � _f1t� c�r� ; �47�

where the constant _f1 determines the `cosmological' value _f
at the spatial infinity. It is easy to verify that for ansatz (47),
the following equation holds:

X � 1

2

� _f 2
1
f
ÿ fc 0 2

�
;

and equation of motion (46) can be integrated. As a result, we
obtain

r 2 fLXc 0�r� � r 2g
_f1 ~A ; �48�

where the coefficients in the right-hand side are chosen such
that the parameter ~A, responsible for the energy flux, is
dimensionless. Equation (48) is an analog of Eqn (6) written
in terms of a scalar field. Moreover, Eqn (48) is an algebraic
equation for c 0 (after expressing LX in terms of c 0). There-
fore, the general solution contains the parameter ~A, which
must be determined in a way similar to the determination of
critical point parameters (14). From (46), we express c 00 in
terms of c 0 (this expression also contains LX and LXX). The
critical point can be found by equating both the numerator
and denominator of the obtained expression to zero. As a
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result, we find

c 0 2� � _f2
1

r� f 0�
f 2�r� f 0� � 4 f�� ; f�c

0 2
� LXX � LX ; �49�

which is similar to Eqn (14). Hence, we have three equations
(48) and (49) from which c 0�, r�, and ~A can be found. This
procedure is fully equivalent to fixing the critical point of the
accreting fluid. The accreting scalar field flux can be found as
_M � 4pr 2T r

t , and therefore we ultimately obtain

_M � 4p _f 2
1r

2
g

~A ; �50�

which coincides with Eqn (10) up to a redefinition of ~A.
We consider Eqn (48) in the limit x � r=M! 0. We have

2X � x 2B 2=e 2 ÿ e 2c 0 2=x 2, where B � const. For the fluid,
we have X > 0, whence X! 0 and c 0 2 ! 0 as x! 0. On the
other hand, we find from (48) that LXc 0 ! const as x! 0.
By combining these equations, we arrive at the conclusion
that the fluid reaches the coordinate x � 0 during a stationary
accretion process only if LX !1 as X! 0. It hence follows,
in particular, that a fluid described by a linear equation of
state with a4 1 never reaches the central singularity x � 0 in
the case of a stationary accretion process if e 6� 0.

Wave fields of various types in the gravitational field of a
BH have been considered in many papers. Especially well
elaborated is the scattering of fields in the BH gravitational
field, including in the form of `superradiation'Ð field
enhancement due to the BH rotational energy. We are
interested in the particular case of the behavior of fields near
a BH when the energy flux through the horizon (accretion) is
present. The scalar field Lagrangian is L � Kÿ V, where K is
the kinetic term andV is a potential. For the standard form of
the kinetic term K � �1=2�f;mf

; m, the energy flux is
T0r � f; tf; r. In [89], the solution for the Schwarzschild
metric was found for the zero potential V � 0: f �
_f1�t� 2M ln �1ÿ 2M=r��, where f1 is the scalar field at
infinity. In [90], this solution was shown to be approximately
valid for some scalar fields with a nonzero potential V�f�. In
calculating the accretion of a scalar field with the canonical
kinetic term, we have T r

0 � ÿ�2M�2 _f2
1=r

2, and, accordingly,
_M � 4p�2M�2 _f2

1. The energy±momentum tensor con-
structed using the solution in [89] exactly coincides with that
of a perfect fluid with the ultrahard equation of state p � r
after the substitution p1 ! _f2

1=2, r1 ! _f2
1=2.

4.2 Induced metric and causal structure
Theories with a nontrivial kinetic structure allow the
propagation of perturbations on the background of a
nontrivial solution with a velocity different from the speed
of light. In particular, superluminal propagation is possible.
But despite the presence of superluminal signals, no causal
paradoxes arise in these theories [116, 165±167].

In recent years, spontaneous breaking of the Lorentz
invariance and related topics were attracting much interest.
One of the main questions is whether the theories with
superluminal propagation are self-consistent and whether
they respect the causality principle, for example, due to the
emergence of closed time-like geodesics. Different models
with superluminal propagation have been discussed, includ-
ing nonlinear scalar field theories [168], noncommutative
theories [169], waves in modifications of Einstein's theory
with ether [170], and `superluminal' photons in the Drum-
mond±Hathrell effect [171±174]. The propagation of an

object is called superluminal if its moves with a superluminal
velocity in the vacuum of ordinary quantum electrodynamics
in an unbounded empty space. Arguments have been put
forward that superluminal propagation in some cases can
lead to causality paradoxes, for example, in the thought
experiment with two black holes [175] or with two plates in
the Casimir effect, which move with high relative velocities.
To avoid the emergence of closed time-like geodesics in such
thought experiments, the authors of [176] introduced the
`chronology security principle' [177] and showed that
photons propagate in the effective metric that is different
from the Minkowski metric. We note that superluminal
propagation is not the only case where time-like geodesics
can appear. There are several examples of GR space±times in
which the local causality postulate is valid but closed time-like
geodesics nevertheless emerge [178±187].

We consider the k-essence defined by Lagrangian (41).
Equations of motion (46) for the scalar field can be rewritten
in the form

~G mnHmHnf � 0 ; �51�

where the induced metric is defined as

~G mn � LXg
mn � LXXHmfH nf : �52�

This equation is hyperbolic, and its solutions are stable with
respect to high-frequency perturbations if 1� 2XLXX=LX > 0
[118, 120, 121]. Small perturbations propagate in the effective
metric

G mn � cs

L 2
X

~G mn ; �53�

where the sound velocity cs is given by formula (45). Using the
matrix inverse to G mn,

G ÿ1mn �
LX
cs

�
gmn ÿ c 2s

�LXX

LX

�
Hmf0Hnf0

�
; �54�

we can find the induced metric interval

dS 2 � Gÿ1mn dxm dx n ; �55�

which determines the cone of influence of small perturbations
of k-essence in the given background. (The indices are raised
(lowered) using g mn (gmn).) This influence cone is wider than
the one determined by the metric gmn ifLXX=LX < 0 [120, 121,
188±192]. As a result, superluminal propagation of small
perturbations is allowed. Here, we consider the k-essence as
a secondary source of the gravitational field and ignore the
back reaction of this component on the metric.

Small perturbations can propagate with a velocity
exceeding the speed of light because the light cone lies within
the sound cone.

We next discuss causality problems for the superluminal
propagation of perturbations in the nontrivial background
for different solutions, including the case of accretion of a
noncanonical field onto a BH.

First of all, we consider the well-known paradox [193],
often referred to as the `tachyon anti-telephone', which arises
when hypothetical superluminal particlesÐ tachyons propa-
gating with a velocity ctachyon > 1Ðare present. In this case,
it is possible to send a signal to the past. Indeed, let some
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observer (Fig. 6), located at the point x � 0 at rest in some
reference frame �x; t�, send a tachyonic signal in the direction
OR to an astronaut moving in a rocket R. The astronaut,
after having received the signal, sends the return tachyonic
signal in the direction RP. The proper time of the astronaut t 0

increases while the signal is propagating. However, if the
rocket velocity exceeds 1=ctachyon, the signal RP propagates
back in time in the original observer's reference frame. Thus,
the observer in this case is able to send information from his
future to his past. Clearly, this situation is physically
inadmissible.

We now turn to the Minkowski space±time with a scalar
field, which allows the superluminal propagation of perturba-
tions in its background. For simplicity, we consider a time-
dependent homogeneous field f�t�. The velocity qmf is
directed along the space-like vector u m � �1; 0; 0; 0�. Why
does a similar paradox not arise in this case? The point is
that the superluminal propagation of signals (sound pertur-
bations) is possible only in a nontrivial scalar field back-
ground. This background determines a preferential reference
frame, and the equation of motion for sound perturbations is
no longer Lorentz invariant except in the special case cs � 1.
In the moving astronaut's frame, equations for the perturba-
tion propagation have a more complicated form than in the
rest frame, and a special analysis is required to derive them.
However, bearing in mind that signals in the k-essence
propagate along the characteristics, which are coordinate-
independent hypersurfaces, we can understand the character
of propagation of signals in the astronaut's frame and in the
rest frame to show that the signals always propagate forward
in time in both frames (Fig. 7). Hence, no closed time-like
geodesics emerge in this case.

A note on themeaning of signals directed to the future and
to the past should be made. As pointed out in [194], in order
that no closed causal geodesics emerge in the k-essence during
the superluminal propagation, the observer moving with a
high velocity relative to the background must send signals
only in certain directions. However, we note that the notions
of the future and the past are defined by the respective future
and past cones, regardless of the particular choice of the

reference frame. Thus, the signals forwarded to the future in
the rest frame remain such in the reference frame of a fast
moving rocket, in spite of the decrease in the time coordinate
t 0 for these signals. The contradiction appears because of a
bad choice of the reference frame, due to which the decreasing
time t 0 corresponds to signals forwarded to the future, and
vice versa. An example that illustrates the above considera-
tions is shown in Fig. 8. Even without superluminal signals,
the increase in the coordinate time does not imply the
direction to the future.

Another question that frequently leads to misunderstand-
ing is what velocity, exactly, must be considered as the
propagation speed of signals: the phase velocity, the group
velocity, or the velocity of the wave front. These points are
discussed in [116], where, notably, it is shown that physical
paradoxes do not arise during superluminal propagation of
signals in a nontrivial background.

Past
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Future

x 0

t 0

Figure 6. Schematic representation of the tachyon causal paradox. Some-

body living at the world line x � 0 sends a tachyon signal in the direction

OR to an astronaut in a rapidly moving rocket R. In the rocket reference

frame �x 0; t 0�, the astronaut sends the tachyon signal back along the

trajectory RP. From the standpoint of the astronaut, the signal RP

propagates in the direction of increasing t 0 but moves back in time in the

original reference frame. Hence, according to such a representation, it is

possible to send signals to the past.
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Figure 7. The causal paradox does not arise when the superluminal signal

propagates in a background violating the Lorentz symmetry (cf. Fig. 6).

The observer cannot send a signal to his own past.
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Figure 8. How to create the `paradox' described above without using

superluminal signals. The fluid is at rest, and sound perturbations are

subluminal, cs < 1. The reference frame �t 0; x 0� is obtained from the rest

frame by a Lorentz transformation with the invariant velocity cs. If the

velocity of the moving reference frame exceeds the speed of sound, the

hypersurface of constant time t 0 lies inside the light cone, and the initial

condition problem for the electromagnetic field is ill-posed. But if, instead

of the frame �t 0; x 0�, we use the `correct' frame �~t; ~x� obtained from the rest

frame by Lorentz transformations with the invariant speed of light, the

Cauchy problem is well-posed.
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4.3 Is it possible to look inside the black hole horizon?
Of interest is the behavior of noncanonical scalar fields near a
BH, and we next consider the superluminal propagation in
this case. First, by neglecting the back reaction of the fields on
themetric, we find the solution for stationary accretion onto a
BH, and then we examine the propagation of perturbations in
such a background.

We consider a scalar field with the Lagrangian density

L�X � � a 2

 ���������������
1� 2X

a 2

r
ÿ 1

!
ÿ L ; �56�

where a and L are free parameters of the theory. The kinetic
part of the action is the same as in [105], and for small values
of derivatives in the limit 2X5 a 2, the ordinary massless
scalar field is recovered. It can be shown that no ghost
solutions emerge in the theory with Lagrangian (56).

As we already discussed in Section 4.1, if the vector Hnf is
time-like (i.e., X > 0 in our conventions), the field described
by Lagrangian (56) is formally equivalent to a perfect fluid
with the density, pressure, and sound velocity determined by
Eqns (44), (43), and (42). Equation (45) implies that he
effective sound velocity for a perturbation is

c 2
s �

qp
qe
� 1� 2X

a 2
; �57�

and for X > 0, it is always greater than the speed of light. In
what follows, it is convenient to express the density and
pressure in terms of this sound velocity:

e � a 2�1ÿ cÿ1s � � L ; p � a 2�cs ÿ 1� ÿ L : �58�

It is easy to see that the null energy condition is satisfied, and
therefore the Hawking theorem on the nondecreasing area of
the BH horizon [101] is valid.

First of all, we find the stationary spherically symmetric
background solution for the scalar field falling onto the BH.
Here, we use the Eddington±Finkelstein coordinates with the
metric

ds 2 � f �r� dV 2 ÿ 2 dV drÿ r 2 dO ; �59�

where f �r� � 1ÿ rg=r, with rg � 2M being the BH gravita-
tional radius. The coordinate V is related to the Schwarzs-
child coordinates t and r as V � t� r� rg ln jr=rg ÿ 1j. We
assume that the accreting scalar field does not produce any
back reaction on the metric. The stationarity condition
dictates the following ansatz for the solution:

f�V; x� � a
��������������
c 21 ÿ 1

q �
V� rg

�
F�x� dx

�
; �60�

where x � r=M and c1 is the sound velocity at infinity. The
common factor in (60) is chosen so as to reproduce the
cosmological solution at infinity, f�V; x� ! at

��������������
c 21 ÿ 1

p
,

and the factor rg in front of the integral is separated for
convenience. The solution of (51) that is not singular at the
BH horizon is given by

F�x� � 2

f

 
B

����������������������������������������������������
c 21 � fÿ 1

f x 4c 81=16� B 2�c 21 ÿ 1�

s
ÿ 1

!
; �61�

where B is the integration constant to be determined below.
The sound velocity can then be found using Eqns (57), (60),

and (61):

c 2s �
x 3c 81�xc 21=2ÿ 1�

�x=2ÿ 1�x 3c 81 � 8B 2�c 21 ÿ 1� : �62�

We note that the velocity of sound becomes infinite at
x � xsing, and this singularity is physical if there is a real
solution of (61) for all x > xsing.

We now consider small perturbations on top of back-
ground (60), (61). The characteristics (vector Zm) for Eqn (51)
satisfy the equations (see, e.g., [120, 121])

Gÿ1mn Z
mZ n � 0 : �63�

The vector Zm describes the wave front propagation. It is
possible to derive the following equation for the character-
istics Z��x� � dV=dx:

Z� �
1

f
� 1

x�
; �64�

where

x� � � f

���������������
c 21 ÿ

2

x

r �������������������������������������������������
B 2�c 21 ÿ 1� � c 81x 4f=16

p
c 41x 2f=4� B�c 21 ÿ 1� : �65�

We note that the equation x� � dx=dt describes the wave
front propagation in the Schwarzschild coordinates x and t.

Equation (64) does not specify the propagation direction
completely. In addition to the value of dV=dx, it is necessary
to choose the future and past cones for each event. However,
the location of the future and past light cones helps us to
choose the sound cones. Using characteristics (64), we then
determine the sound cones as follows: 1) the future and past
sound cones do not intersect; 2) the future and past light cones
are respectively contained inside the future and past sound
cones. This is justified because this is the case at the spatial
infinity, and sound characteristics (64) coincide there with
radial light geodesics. As a result, we conclude that the signals
propagating along Z� and Zÿ are respectively directed in the
positive and negativeV-directions (Fig. 9). If the propagation
vectors are known, we can find the location of the sound
horizon. The sound horizon is defined as a surface on which
the spatial velocity is equal to the sound velocity. Signals that
escape from the region above this surface can travel to the
spatial infinity, and sound cannot come out from inside,
because its propagation is limited by the superluminal motion
of the fluid (as in the case of light capture by the event horizon
in a gravitational field). The acoustic signal forwarded
outside from the BH corresponds to Z�, and therefore the
sound horizon is located at x � x�, where Z� � �dV=dx��
becomes infinite (see Fig. 9). We can now determine the
integration constant B in Eqns (60) and (61). We assume that
in physically admissible cases, there must be no singularity at
the sound horizon or outside it, as in the case of accretion of a
perfect fluid. Hence, we have:

1) at B 6� 1, either the physical singularity coincides with
the sound horizon or the sound velocity becomes imaginary
(indicating absolute instability) inside some region outside the
singular surface. In both cases, the solution is unphysical;

2) at B � 1 and c 21 > 4=3, the sound velocity becomes
imaginary before reaching the sound horizon or singularity.
This solution is also unphysical;

3) at B � 1 and c 21 < 4=3, the sound horizon is located at
x� � 1=c 21, and the singularity is hidden inside the sound
horizon. This is the only acceptable physical solution.
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Therefore, we should set B � 1 in (60), (61), which
completes the construction of the background solution. The
accretion rate onto the BH is then expressed as

_M � 4pM 2a 2 c 21 ÿ 1

c 41
: �66�

It is possible to show that for the found background
solution, acoustic signals can indeed escape from the BH,
which allows looking inside the BH using these signals. This
becomes possible because, in the considered case, the sound
horizon �x� � 1=c 21� is located inside the Schwarzschild
horizon. As long as the signal is generated at sufficiently
large x, namely, at x > x�, it travels to the spatial infinity by
propagating along Z�. For example, at the event horizon,

Z�h �
1

2

�c 41 � 1�2
c 21 ÿ 1

: �67�

The propagation vector Z�h is positive, and therefore the
signal can freely escape from the Schwarzschild horizon and
come out of the BH. Figure 9 illustrates the way the signal
escapes from a BH.

The main result in this section is that in the case of
accretion of a special Born±Infeld-like field onto a BH, the
information can be sent from inside the BH horizon to the
outside. This result has a purely classical nature. It also
changes the usual concept of the event horizon of a BH as
the absolute barrier for outward motion. Here, the cosmic
censorship principle (see Section 5.1) is not violated, because
the central singularity is hidden under the sound horizon. The

null energy condition in this model is also satisfied, and the
BH mass during accretion does not decrease. A similar (in
some sense) possibility of escaping from a BH also occurs in
bimetric theories [195].

4.4 Ghost condensate in the black hole field
The ghost condensate is a scalar field theory in which the
Lagrangian has the form of a k-essence with additional
higher-order derivative terms. (See [31] for a discussion of
the ghost condensate.) Specifically, the k-essence part can be
taken in the form

L � 1

2 ~M 4

ÿ
Xÿ ~M 4

�2
: �68�

It can be shown that for smallX, namely,X < ~M 4, this theory
contains a ghost, while for X > ~M 4 ghosts do not appear.
This is why this theory is referred to as `ghost condensate'. It is
assumed that the ghost condensate is an effective field theory
considered at X � ~M 4. The cosmological evolution implies
that X! ~M 4 for a homogeneous solution. It is easy to see
from (43) and (44) that this solution corresponds to r�X � ! 0
and p�X � ! 0. Thus, a nontrivial field configuration
_fc � const appears, but the energy and pressure in this
homogeneous solution vanish.

Formulas (49) allow calculating that the critical point is
located at the radius 3rg, and here ~A � 1 and, accordingly, the
BH mass increases at the rate _M � 2p ~M 4r 2g . Such a calcula-
tion was first carried out in [96]. A paradoxical situation
arises: the ghost condensate field does not contribute to the
cosmological evolution (because, as noted above, the pressure
and density at the point of interest, X! ~M 4, are zero), while
the accretion rate is nonzero; moreover, it is proportional to
~M 4. Therefore, by a special choice of ~M (we recall that ~M is
the parameter in the Lagrangian), the energy flux can bemade
very high, while leaving the cosmological density and pressure
equal to zero.

Using Eqn (50), it is possible to explain why this situation
arises for the ghost condensate. The dimensionless accretion
parameter ~A is usually of the order of unity, and _f1 is then
unrelated to pressure and density, while, for example, in the
case of the canonical field, _f1 uniquely determines density
and pressure. In fact, such a strange behavior of accretion is
explained by the pathological behavior of scalar field (68) at
the point X � ~M 4: the ghost condensate at X � ~M 4 behaves
like dust. That is why additional terms with higher-order
derivatives were originally included in the ghost condensate
Lagrangian. This pathology can also be seen from another
accretion equation, Eqn (10), which implies that _M � 0 if
r1 � p1 � 0. This result contradicts what we have just
obtained from the critical point consideration, but in fact it
corresponds to the choice of another branch of the solution.
Due to the dust-like behavior of the ghost condensate, we can
choose branches of the solution that have no critical point
(supersonic branches). In particular, it is possible to explicitly
write the solution for f (see [96]) with the vanishing actual
flux, similarly to what is obtained from (10). Therefore, this
paradox is resolved by the `correct' choice of the physical
solution, namely, the one that arises as a result of the
evolution. A more detailed analysis of the ghost condensate
accretion onto a Schwarzschild BH taking higher-order
derivative terms at the point X ' ~M 4 into account (which
are necessary to make the theory regular at this point) can be
found in [97]. The accretion rate was found to be very small.
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Figure 9. Emission of a sound signal from a falling rocket in the

Eddington±Finkelstein coordinates. The internal cones correspond to

future light cones, and the external cones correspond to future sound

cones (64). The curve connecting the cones is a world line numerically

obtained from (60), (61) for the rocket comoving with the infalling photon

field. When the rocket is located between the Schwarzschild �r � rg� and
the sound �r � r�� horizons, a sound signal is emitted (along the curve

marked with the arrow directed to the top right corner), which reaches the

remote observer in a finite time interval. The signal trajectory is obtained

by numerical integration of Eqn (64).
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We consider another paradox related to the motion of the
ghost condensate in the gravitational field of a BH. As shown
in [196], it is possible to violate the second law of thermo-
dynamics using the ghost condensate. Namely, it is possible to
obtain the event `horizons' with different temperatures for
one state of a BH (in particular, with a zero accretion rate). To
create the second event horizon around a BH, in addition to
the ghost condensate field, it is necessary to introduce another
field kinetically connected with the first field, such that the
effective metric of the second field is different from the
standard one (in analogy with the situation in the case of
k-essence).

We consider the ghost condensate described by (68), and
in addition introduce the field described by the Lagrangian

Lc � 1

2
�qmc�2 � e

2
�qmf q mc�2 ; �69�

where e is a parameter. It is then possible to find a regular
solution for the ghost condensate, such thatX �M 4 (for this,
it is necessary to pass to the coordinate frame regular on the
horizon and to assume that f is proportional to the time in
these coordinates). Because the solution for f is nontrivial,
themetric for thec field is nonstandard, with the signal (small
perturbation) propagation velocity v � 1=�1� e�1=2. By
choosing positive or negative values of e, it is possible to
obtain subluminal or superluminal propagation of signals
for c. Hence, we can find that the Hawking radiation for
particles is c � v 3TH, where TH is the Hawking radiation for
ordinary particles (for example, gravitons). Themere fact that
another (induced) metric and another temperature exist is not
astonishing: we have seen that a similar situation occurs for
the k-essence; moreover, phonons in an ordinary fluid also
propagate in the induced metric background (with the
exception of an ultrahard fluid). Another aspect is interesting
here: no accretion of matter occurs in this case (because the
energy flux for the considered solution vanishes), and the
state of the BH does not change, i.e., the BH mass does not
increase! In other words, we have a situation in which a body
(the BH in this case) emits different particles (for example,
gravitons and the field c) with different temperatures, but the
state of the body does not change if the Hawking radiation
can be neglected.

Such a system violates the second law of thermodynamics.
Namely, let the Hawking temperatures of two particles be T2

and T1 and T2 < T1 for definiteness. We encircle the BH by
two shells: one (shell A) interacts only with particles c1, and
the other (shell B) interacts only with particles c2. We take
the temperatures TA and TB of these shells to be such that
T1 < TA < TB < T2. Clearly, the net flux of particles 1 is
directed toward the BH, while the net flux of particles 2 is
directed outward from the BH. It is possible to find
temperatures TA and TB such that these fluxes are equal
(not violating the previous condition). Then the total flux
onto the BH vanishes, but the heat flows (through the BH)
from the colder shell (with the temperature TA) to the hotter
shell (with the temperature TB).

4.5 Galileon accretion
Scalar and scalar±tensor models, which are currently widely
known under the name of Galileon, have been studied in
physics and mathematics in different `reincarnations'. The
nonlinear fourth-order partial differential equation (now
called the Monge±Ampere equation) applied to different
problems of Riemann geometry, conformal geometry, and

so on was investigated as early as the 18th century. In 1974,
Horndeski formulated the most general scalar±tensor theory
in four dimensions, whose equations of motion include
derivatives of the order not higher than two [197]. Then, in
the 1990s, Fairlie et al. [198] developed the so-called universal
field theory, which is constructed step-by-step: the next
Lagrangian is determined from the equations of motion of
the previous one. Recently, the model known as the Galileon
was proposed [32], which has been further elaborated inmany
papers (see, e.g., [33, 34, 199]). A remarkable property of this
theory is that its Lagrangian has higher-order terms, but only
derivatives of the second order and below enter the equations
of motion.

TheGalileonmodel is interesting in several respects. First,
this is a theory with a nonquadratic kinetic coupling, which
leads to the propagation of perturbations in the effective
metric different from the gravitational one, as in the case of
k-essence. Another interesting feature of the Galileon is the
possibility to reproduce the cosmological model with phan-
tom behavior, but without ghost solutions for some para-
meters and initial conditions.

We consider the spherically symmetric accretion of a
Galileon onto a Schwarzschild BH in the test fluid approx-
imation. We assume that the Galileon evolves on a cosmolo-
gical time-scale. The general form of the covariant action for
the Galileon as a scalar field is given by [33]

Sp �
�
d4x

�������ÿgp Lp ; �70�

where the Lagrangian density can be represented as the linear
combination

Lp �
Xi�5
i�1

ciLi �71�

with

L1 � p ; L2 � p; mp ; m ; L3 � p; mp ; m&p : �72�
The terms L4 and L5, which have a more complicated
structure and contain higher-order derivatives of p, are not
considered here. We also set c1 � 0, i.e., exclude the
`potential' term.

The energy±momentum tensor derived from (71) and (72)
in the formT

�i�
mn � 2=

�������ÿgp �dS�i�=dg mn�was calculated in [117],
where equations of motion were also obtained by varying (70)
with respect to p.

To simplify formulas, it is convenient to introduce
dimensionless variables

x m ! rgx
m ; p! Crgp ; �73�

where rg � 2M is the BH gravitational radius and the
constant C can be associated with the cosmological quantity
qtp.

We examine accretion of a Galileon with nonzero L2 and
L3, and other terms set to zero. This type of action (up to
coefficients in front of L2 and L3) appears in the effective
actions for the scalar field in a certain limit of the Dvali±
Gabadadze±Porrati (DGP) model [200]. In the new variables,
the action takes the form

Sp � r 4gC
2

�
d4x

�������ÿgp �
E�qp�2 � k�qp�2&p

�
; �74�
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where E � 0; �1, k � Cc3=rg, and we allow both positive and
negative values of k. Positive E correspond to the canonical
kinetic term, and positive E and k yield the Lagrangian of the
DGP scalar field.

The equations of motion obtained from (74) are

Hm j m � 0 ; jm � 2E p; m � k
ÿ
2p; m&pÿ qm�qp�2

�
; �75�

or

E&p� k
ÿ�&p�2 ÿ �HHp�2 ÿ R mnp; mp; n

� � 0 : �76�

We also need the equation for perturbations dp in the
nontrivial background p�t; x� in the high-frequency limit.
From (76), we obtain the equation

G mnHmHn dp � 0 ; �77�

where

G mn � �E� 2k&p�g mn ÿ 2kH mH np : �78�

The propagation vector for small perturbations can be found
from the relation

Gÿ1mn Z
mZ n � 0 ; �79�

where Gÿ1mn is the matrix inverse to G mn.
Because we are interested in solutions for the scalar field,

in some region under the Schwarzschild horizon in particular,
we use the Eddington±Finkelstein coordinates, which are
regular at the horizon. The Eddington±Finkelstein coordi-
nates �v; r� are connected with the ordinary Schwarzschild
coordinates �t; r� by the relation

v � t�
�
dr

f
; r � r ;

where f � 1ÿ 1=r in dimensionless variables. The Schwarz-
schild metric in the Eddington±Finkelstein coordinates
becomes

ds 2 � f dv 2 ÿ 2 dv drÿ r 2 dO : �80�

To study stationary accretion, we use the ansatz

p�v; r� � vÿ
�
dr

f
� c�r� : �81�

We note that in adopting ansatz (81), we have freedom in
choosing the normalization in (73). Thus, we can take the
constant C equal to qtp at the spatial infinity,

C � qtp
���
r�1
� qvp

���
r�1

;

thereby setting the coefficient v in (81) equal to unity. Because
the current depends only on r, Eqn (75) can be integrated
once. As a result, we obtain

r 2 j r � A ; �82�

where A is a constant that determines the total flux. For
ansatz (81), the r-component of the current takes the form

j r � 2E fc 0 � k
�
ÿ f 0

f
� f f 0c 0 2 � 4 f 2c 0 2

r

�
: �83�

Equations (82) and (83) can also be derived from Tmn
; n � 0,

which yields r 2T r
v � const, whence for ansatz (81) we find

T r
v � j r. Equations (82) and (83) yield an algebraic equation

for c 0. The solution contains a free parameter A:
c 0 � c0�A; r�. The physical solution is obtained from the
condition of the absence of singularities at the Schwarzschild
horizon and the sound horizon. In general, Eqns (82) and (83)
have two solutions:

c 0�2; 3� � ÿ
E r 2f� �������������������������������������������������������������������������

E 2 r 4 f 2 � kr�Af� kr 2 f 0��rf 0 � 4 f �p
kr f �rf 0 � 4 f � ;

�84�

where the index �2; 3� means that the solution is obtained in
the theory with the L2 and L3 terms in the Lagrangian.
Solutions p 0�r� for different values of E and k are shown in
Fig. 10 [117].

Because we are considering the problem in the stationary
case for a test fluid, the rate of the BH mass change can be
found from the total flux at infinity, r!1. In the Schwarz-
schild coordinates, the total flux / r 2T r

t . Expressing T r
t

through components in the Eddington±Finkelstein coordi-
nates, we obtain

dM

dt
� 4pA r 2g _p 2

1 : �85�

In the final expression (85), we changed back to physical
units. The flux can bemade negative by changing the common
sign of the Lagrangian for p, and the BHmass then decreases.
Usually, this sign change is associated with the appearance of
ghost solutions. However, it was shown in [56] that although
the term L2 has a `ghost'-like form, the total Lagrangian
L � L2 � L3 does not have ghosts near the cosmological
attractor.

5. Accretion with back reaction

In the models considered in Sections 1±4, accretion was
considered in the test fluid approximation. This means that
the fluid `felt' the gravitational field of a BH and moved in a
given external gravitational field, and the gravitational field

ÿ2.5

ÿ2.0

ÿ1.5

ÿ1.0

p 0

ÿ0.5

0

10ÿ2 10ÿ1 100 101 102
r

E � 0; k � 1

E � 1; k � 10

E � 1; k � 1
E � 1; k � ÿ10
E � 1; k � 0

Figure 10. Solutions p 0 � ÿ1=f� c 0�r� for different model parameters in

the case L � L2 � L3. The locations of the sound horizon are shown by

dots. At k < 0 and k > 0, the sound horizon respectively lies outside and

inside the Schwarzschild horizon.
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of the fluid itself was ignored. But the gravitational field of the
fluid sometimes becomes fundamentally important and can
qualitatively change the process. The field of the accreting
fluid and related phenomena are referred to as back reaction
effects. In this section, we study the back reaction of the
accreting matter on a spherically symmetric BH using
methods of the theory of perturbations in the stationary
accretion case.

5.1 Approaching the extreme state
and shortcoming of the test fluid model
In the accretion of a phantom fluid with r� p < 0, the
Reissner±Nordstrom BH mass decreases. The question
arises as to whether this process allows transforming a
Reissner±Nordstrom BH into a naked singularity. If the
back reaction effects are neglected, such a transformation
seems plausible, because the BH mass decreases, while the
electric charge is conserved. The transformation of a
Reissner±Nordstrom BH into a naked singularity through
the accretion of a fluid with r < 0 was discussed in [105, 201].

The transformation of a BH into a naked singularity
means the violation of the cosmic censorship principle. This
principle was formulated by Penrose [202] in 1969 on the basis
of theorems about singularities in GR [101, 203, 204] and the
general properties of BHs. The cosmic censorship principle
states that for any physical process, the central singularity
remains hidden from a remote observer by the BH event
horizon. Notably, a BHÐand not a naked singularityÐ is
always formed during gravitational collapse. The cosmic
censorship principle remains unproved and is only a plausi-
ble hypothesis [205±208]. This principle underlies the third
law of BH thermodynamics [112], which states that it is
impossible to reach the extreme state of a BH and, accord-
ingly, to transform the BH into a naked singularity in a finite
number of steps. The cosmic censorship principle was verified
for electrically charged and rotating BHs in the test particle
approximation [209±214]. Well-known examples of the
cosmic censorship principle violation have been realized
under extremely unphysical conditions of matter collapse
with an unrealistic strongly anisotropic energy±momentum
tensor.

The decrease in the black hole mass via phantom energy
accretion opens up the principal possibility of violating the
third law of BH thermodynamics in the case where the BH
rotates or has an electrical charge. The charge and angular
momentum conservation during such accretion allow an
extreme state to be reached in a finite period of time.
According to this logic, if accretion continues, the event
horizon should disappear, and the BH must transform into
a naked singularity. We note that this possibility is realized in
the test fluid approximation. In Sections 5.2 and 5.3, we argue
(but do not prove) that the third law of BH thermodynamics
remains valid during the phantom energy accretion if the back
reaction of the accreting matter on the metric of an almost
extreme BH is taken into account.

We always assumed in the foregoing that the fluid has no
back reaction on the metric. This approximation fails for
nearly extreme BHs. The presence of an arbitrary light fluid
can dramatically change the metric, and the back reaction of
the accreting matter can prevent the BH from converting into
a naked singularity. The possibility of back reaction in such
problems was considered in [215] in the context of the
absorption of scalar particles with large angular momenta
by a nearly extreme BH.

In [114], accretion onto an extreme BHwas studied. At the
BH event horizon with r� �M, the radial component of the
4-velocity u r was shown to tend to zero, u r ! 0, and the
density r to infinity, r / n 2 / �rÿM�ÿ1 !1. The total
mass of the fluid near the BH also increases infinitely. Such a
behavior signals a violation of the test fluid approximation.
For this reason, the obtained solution is not fully self-
consistent, and to obtain correct solutions, the back reaction
effects should be considered.

5.2 Perturbation theory and corrections to the metric
In this section, we present the perturbative method for the
accretion problem [132], which in the first approximation
takes the back reaction effects into account. We find
corrections to the metric that appear due to the influence of
accreting matter with an energy±momentum tensor of the
general form Tmn on the metric by assuming quasistationary
accretion, when the accretion rate onto a BH is small. The
appearance of a small parameter in the case of quasista-
tionary accretion significantly facilitates the calculation of the
back reaction effects on themetric. In this case, in the Einstein
equations, we can neglect both second-order derivative terms
and products of the first-order derivative terms, which are
quadratic in the small parameter. The solution for Tmn�r� as a
function of radius is assumed to be known from the test-fluid
approximation, i.e., when ignoring the back reaction effects.
Then, using Tmn�r� as the zeroth approximation, we find
corrections to the metric due to the back reaction.

We first apply this scheme to a Schwarzschild BH in the
free-falling reference frame. A spherically symmetric metric
can be written in the form (see, e.g., [148, 216])

ds 2 � exp
ÿ
n�V; r� � 2l�V; r�� dV 2

ÿ 2 exp
ÿ
l�V; r�� dV drÿ r 2 dO ; �86�

where n�V; r� and l�V; r� are arbitrary functions. This
reference frame is by construction similar to the Eddington±
Finkelstein frame and is connected with radially falling
photons (null geodesics). A similar metric was introduced in
[217] using `radial coordinates'. The vacuum Schwarzschild
solution is recovered by setting l � 0 and exp

ÿ
n�V; r�� �

1ÿ 2M0=r, whereM0 is the BH mass, whence

ds 2vac �
�
1ÿ 2M0

r

�
dV 2 ÿ 2 dV drÿ r 2 dO : �87�

We note that Eqn (87) is a solution for themetric in the zeroth
approximation.

Similarly, instead of the metric coefficient n�V; r�, we use
the functionM�V; r� defined as

exp
ÿ
n�V; r�� � 1ÿ 2M�V; r�

r
; �88�

such thatM�V; r� �M0 � const in the zeroth approximation.
Substituting (86) and (88) in the Einstein equations, we

arrive at the system of equations

8pT 0
0 � ÿ

�
1

r 2
� n 0

r

�
exp n� 1

r 2
; �89�

8pT 1
0 �

exp n
r

_n ; �90�
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8pT 0
1 �

2
�
exp �ÿl�� 0

r
; �91�

8pT 1
1 � ÿ

�
1

r 2
� n 0

r

�
exp n� 1

r 2
ÿ 2l0

r
exp n ; �92�

8pT 2
2 � 8pT 3

3 � ÿ
�
l00 � n 00

2

�
exp nÿ _l0 exp �ÿl�

ÿ
�
l0 2 � n 0 2

2
� l0 � n 0

r
� 3

2
l0n 0

�
exp n ; �93�

where the dot denotes q=qV and the prime denotes q=qr. The
left-hand sides of Eqns (89)±(93) contain the energy±
momentum tensor components taken in the zeroth approx-
imation, i.e., the solution for the stationary accretion of
matter in which back reaction is ignored. Not all equations
in system (89)±(93) are independent. Using the Bianchi
identity, it can be shown that (93) is a combination of
Eqns (89)±(92).

Substituting (88) in (89) and (90), we obtain

M 0 � 4pT 0
0 r 2 ; �94�

_M � A : �95�
In Eqn (95), we introduce the notation

A � ÿ4pT 1
0 r 2 �96�

for the total energy flux crossing the surface of a radius r. The
right-hand sides of Eqns (94) and (95) are taken in the zeroth
approximation. The energy±momentum tensor components
in this approximation are independent of time, and the fluxA
is independent of r, i.e., A � const.

Integrating (94) and (95), we find

M�V; r� �M0 �AV� 4p
� r

r0

T 0
0 �r�r 2 dr ; �97�

l�r� � ÿ4p
� r

r0

T 0
1 r dr : �98�

If the energy±momentum tensor components are suffi-
ciently smoothly varying functions of the radial coordinate
(which seems to be quite reasonable for nonpathological
matter), then from (97) and (98) it is possible to find
corrections to the metric near the BH horizon:

M�V; r� �M0 �AV� 4pr 20 �rÿ r0�T 0
0

���
r�r0

; �99�

l�r� � ÿ4pr0�rÿ r0�T 0
1

���
r�r0

: �100�

The obtained results can easily be generalized to a
Reissner±Nordstrom BH, if instead of (88) we write the
metric coefficient n in the form

exp
ÿ
n�V; r�� � 1ÿ 2M�V; r�

r
�Q 2

r 2
; �101�

where Q is the BH charge.
We calculate the shift of the visibility horizon due to the

corrections found above. For metric (86), the location of the
visibility horizon rh can be found from the equation [218]

exp
ÿ
n�V; r�� � 0 : �102�

This equation can be obtained from the condition that
dr=dV � 0 for radially moving photons. Indeed, from
ds 2 � 0, we find two radial null geodesics:

dV � 0 ;
dr

dV
exp �ÿnÿ l� � 1

2
: �103�

The visibility horizon satisfies the condition that photons do
not cross the surface r � const for increasing r. This yields
dr=dV � 0, and from (103), we obtain exp �n� l� � 0; hence,
exp �n�V; r�� � 0. The last transition is based on the regularity
of the function l. For a Schwarzschild BH, from (97) and
(102), we now derive an explicit equation for rh:

M0 �AV� 4p
� rh

r0

T 0
0 �r�r 2 dr �

rh
2
: �104�

For small shifts of the horizon,

rh � 2M0 � 2AV : �105�

Hence, the horizon shift is mainly due to the total flux A and
does not depend on other components of the energy±
momentum tensor.

Similarly, for the horizon shift of a charged BH, instead of
(104), we find

M0 �AV� 4p
� rh

r0

T 0
0 �r�r 2 dr �

rh
2
� Q 2

2rh
; �106�

rh �M0 �AV�
������������������������������������������
M 2

0 ÿQ 2 � 2M0AV
q

: �107�

In the case of accretion of phantom energy, the horizon does
not exist for positive V, which means that our method of the
theory of small perturbations cannot be applied here. This is
because the phantom energy accretion decreases the BHmass
and an arbitrarily small amount of phantom energy can
transform the BH into a naked singularity, and such a
transformation cannot be described in terms of the quasista-
tionary approximation that we use. On the other hand, if
normal (not phantom) matter is accreted, Eqn (107) is fully
applicable. We note that in static coordinates, the test-fluid
approximation is violated during accretion of any type of
matter (either phantom or nonphantom) [133].

It is also interesting to note that near the horizon of a
Schwarzschild BH, irrespective of the form of the energy±
momentum tensor of the accreting fluid, the metric has the
Vaidya solution form [126].

We now consider the accretion of a perfect fluid with
energy±momentum tensor (4). In the reference frame used
here, the 4-velocity has the form

u m �
�

1����������������
f0 � u 2

p
� u

; ÿu; 0; 0
�
; �108�

where u � jdr=dsj > 0 is the absolute value of the radial
component of the 4-velocity in the static coordinates and
f0 � 1ÿ 2M0=r. It easy to verify that the components u m and
um do not diverge at the horizon. The corresponding
components of the energy±momentum tensor are expressed
as

T 0
0 �

r
���������������
f0 � u 2

p
ÿ pu���������������

f0 � u 2
p

� u
; T 0

1 � ÿ
r� pÿ ���������������

f0 � u 2
p

� u
�2 : �109�
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Near the horizon, f0 ! 0, and we obtain

T 0
0 !

1

2
�rÿ p� ; T 0

1 ! ÿ
r� p

4u 2
: �110�

Thus, from (99) and (100), it is possible to calculate
corrections to the metric in the form

M�V; r� �M0 �AV� 2pr 20 �rÿ p��rÿ r0� ; �111�

l�r� � pr0
r� p

u 2
�rÿ r0� : �112�

Expressions (111) and (112) are valid for any perfect fluid
near the BH horizon. We note that the energy flux onto the
BH is given by expression (96) withT 1

0 � ÿ�r� p�u
���������������
f0 � u 2

p
for a perfect fluid [85]. Therefore, it is evident from (111) that
the accretion of phantom energy with r� p < 0 leads to a
decrease in the BH mass. Therefore, we have confirmed that
taking back reaction into account does not change the result
obtained in Section 2, where only the zeroth approximation
was analyzed.

A similar calculation carried out in the static reference
frame [133] showed that the test fluid approximation is
violated due to the back reaction of the fluid gravity on the
metric when accretion occurs onto a BH approaching the
extreme state M! Q. Namely, corrections to the BH event
horizon and the internal Cauchy horizon diverge for
arbitrarily small accretion rates _M as M! Q. This conclu-
sion is in agreement with the cosmic censorship principle [202]
and the third law of BH thermodynamics [219], according to
which the extreme state is unreachable by finite processes. In
other words, it is impossible to transform a BH into a naked
singularity by such processes. However, to fully clarify the
back reaction mechanisms, an analysis of the full nonlinear
Einstein equations is required, which is beyond the scope of
this paper.

5.3 Accretion of thin shells
Models of a thin self-gravitating shell can also be used to
investigate the back reaction of accreting matter on the
metric. Although a medium with nonzero pressure cannot
be fully represented in the thin shell model, this approach
turns out to be very useful because it allows making precise
conclusions about the global structure of a spherically
symmetric space±time. Models with shells can be quantized,
and the corresponding solutions prove to be useful in
understanding the Hawking radiation mechanism. The shell
models have been applied not only to solving problems with
BHs but also to calculating phase transitions in the early
Universe.

An elegant generally covariant formalism of thin shells
was developed by Israel [134, 135] (also see [136] for a detailed
derivation and discussion). We choose some hypersurface S
separating the space±time into two regions, `in' and `out',
with Gaussian normal coordinates,

ds 2 � dt 2 ÿ dn 2 ÿ R 2�t; n� dO 2 ; �113�

where t is the proper time of the observer located atS, and the
coordinate n increases from the in-region to the out-region
along the outer normal to the hypersurface S. The hypersur-
face S located at n � 0 is called a singular shell if some
energy±momentum tensor is localized on it, for example,
Tk
i � Sk

i d�n� � . . . ; where Sk
i is the energy±momentum

tensor on the shell �i; k � 0; 2; 3�. In the opposite case, the
hypersurface is nonsingular.

From the Einstein equations, we can straightforwardly
find sufficiently simple equations of motion and expressions
for Sk

i . Using them, the accretion of ordinary (nonphantom)
shells has been considered in many papers (see, e.g., [136] and
the references therein). The accretion of shells, to some extent,
can also serve as a model for dark energy accretion.

The case of accretion of a shell with a phantom equation
of state was studied in [220]. The linear phantom equation of
state for the shell has the form S 0

0 � kS 2
2 , where k > 1. Both

finite and infinite motions of the shell are possible. The
phantom shell was found to have even more `repulsive'
properties in comparison with a shell made of ordinary dark
energy with p < 0. The Schwarzschild geometry surrounded
by a phantom shell has the form of a wormhole in all cases
except one. In the wormhole geometry, the remote observer
cannot see the shell because it is located behind the throat (the
Einstein±Rosen bridge).

The back reaction of the accreting matter on the metric
can be fully taken into account in the model of thin shells. In
the case of a phantom shell, this back reaction can be the
critical factor for the formation of global space±time
geometry.

In a number of papers, phantom energy was considered a
necessary ingredient for constructing complicated topological
structures, like wormholes (variations and generalizations of
Einstein±Rosen bridges) [221, 222]. In particular, realizing
transversable wormholes requires a bridge made of phantom
energy between two throats that are asymptotically flat at the
spatial infinity.

6. Conclusion

In recent years, the notion of dark energy, in spite of its
uncertainty, captured the imagination of cosmology physi-
cists. Dark energy, which in the standard interpretation
appears as a substance with negative pressure and provides
the observed accelerating expansion of the Universe, repre-
sents an extremely important and enigmatic component of the
Universe, lying beyond the Standard Model of elementary
particles.

Presently, the physical nature of dark energy remains
completely unknown, despite many hypotheses offered for
its explanation. The modern level of observational technique
reveals the presence of dark energy in the Universe only on
large scales, in the form of accelerating expansion of the
Universe and its effect on the large-scale structure of galaxies
and on the CMB anisotropy. Studies of the local interaction
of dark energy with black holes, besides being of abstract
mathematical interest, seem to be important in the search for
new possible appearances of dark energy.
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