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Abstract. B B Kadomtsev’s turbulent diffusion models are
reviewed. Some of the current approaches to describing ‘long-
range correlation’ effects are presented that are directly based
on B B Kadomtsev’s ideas (diffusion renormalization of quasi-
linear equations, the percolation approach to strong turbulence,
stochastic instability and the transverse diffusion of plasma
particles as factors affecting transport in a ‘braided’ magnetic
field). It is shown that B B Kadomtsev’s analytical methods have
great heuristic power and will undoubtedly influence the further
development of turbulent transport theory.

Science thrills us only when we, taking
an interest in the life of great research-
ers, begin to follow the history of their
discoveries.

James Clerk Maxwell

1. Introduction

The name B B Kadomtsev is well known to physicists working
in various branches of science. This notwithstanding, the
‘tokamak’ specifics of many fundamental papers by Boris
Borisovich impede the understanding of their significance by
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Boris Borisovich Kadomtsev (1928-1998) at the Kurchatov Institute of
Atomic Energy (1992).

a scientist not directly involved in research on magnetic
plasma confinement. This comes as no surprise, because a
high level of theoretical research in high-temperature plasma
physics demands invoking refined mathematical tools which
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allow one to account for the peculiarities of the toroidal
geometry of the tokamak plasma column.

Rather unexpectedly, for a reader willing to learn the
particulars of B B Kadomtsev’s original papers, it turns out
that he often used surprisingly clear physical models and that
his mathematical apparatus is entirely accessible if aided by
intuition common to physicists. This paper presents some of
Kadomtsev’s ideas in a language comprehensible to a broad
audience of researchers. It is certainly impossible to address
the whole spectrum of works by Boris Borisovich [1, 2] in a
short paper, and we limit ourselves to an analysis of new
models for turbulent transport proposed by him, and their
current developments.

One of the main problems faced by B B Kadomtsev in the
analysis of anomalous transport under the conditions of the
strong turbulence in a high-temperature magnetized plasma
was the need to account for the contributions of large-scale
vortex structures. Similar problems are not uncommon in
hydrodynamical turbulence, where the notion of inverse
cascade was coined, which implies that the direction of
energy transfer is paving towards larger scales. And yet, in
tasks of classical hydrodynamics the transport of particles is
disassociated from questions of confinement of the ‘working
material’ with temperatures measuring a million degrees.
Serious difficulties are also brought about by the need to
account for interactions between plasma and a magnetic field,
and even the geometry of toroidal traps on its own creates
issues reaching beyond technical ones.

Under these conditions, proposing a theoretical model
that adequately simulates the main properties of the physical
system being explored is a true art. Indeed, in analyzing
B B Kadomtsev’s work, we are amazed to see how broad his
views were and how far ahead of time his ideas advanced. For
instance, the study of the impact of convective cells on
transport processes, which he initiated in 1965, led to the
construction of adequate models only in the mid 1980s. A
similar situation occurred with Boris Borisovich’s proposal in
1978 to consider the nontrivial (fractal) topology of equipo-
tential lines in two-dimensional turbulence. The first scalings
for electron transport coefficients relying on this concept
appeared only in 1991.

Many of B B Kadomtsev’s ideas are interdisciplinary in
character and may, therefore, be expressed in a language
sufficiently universal for physicists. This task, however,
cannot be solved in one or two papers. Moreover, with time,
ever new parallels between Boris Borisovich’s work in plasma
physics and other research avenues have become apparent.
Nevertheless, the range of problems centering on a descrip-
tion of turbulent transport has been worked out sufficiently
well to date. In this paper, we briefly review the impact of
B B Kadomtsev’s ideas on the current views on turbulent
transport.

2. Kolmogorov spectrum and discussion
via correspondence with Kraichnan

In this section, we will briefly touch on the important
comments made by B B Kadomtsev in one of the first reviews
covering the theory of plasma turbulence [3]. Interestingly,
these comments, frequently cited in the current literature,
were concerned not with the aspects of plasma theory but with
the general approach to the description of well-developed
turbulence put forward in the works by A N Kolmogorov and
A M Obukhov at the beginning of the 1940s [4-7]. Review [3]

was largely devoted to questions emerging in studies of
numerous plasma instabilities that develop in magnetized
plasmas, but the author had apparently realized the inevit-
ability of switching from a description of particular instabil-
ities to a scaling description of a turbulent state as a whole.

At this early stage of his research, Kadomtsev was already
well familiar with Kolmogorov’s ideas on turbulence, which
underlie one of the most general approaches to the problem.
Indeed, judging by the recollections of the colleagues he
worked with in Obninsk on one of the variants of the
thermonuclear charge, he carried out a detailed theoretical
analysis of the ignition of a large spherical mass of deuterium
[8]. An explosion of that power would unavoidably lead to a
turbulent mixing of matter.

On the other hand, the qualitative description of the
turbulence energy cascade given in the works by Kolmo-
gorov and Obukhov prompted theorists to formulate the
theory of turbulence based on the ‘first principles’. We note
right away that even now, 70 years later, such a theory has not
materialized. However, in the 1960s, many physicists con-
sidered developing a rigorous theory of turbulence as a
promising task and tried to exploit all available means to
achieve the goal. Here, we begin very briefly with the
Kolmogorov approach and then show how Kadomtsev was
able to point out the principal errors made by one leading
American theorist in the field of the theory of turbulence.

According to modern views, first accurately formulated
by Kolmogorov, pulsating motion in a turbulent flow may be
considered to be the result of the simultaneous existence of
‘vortices’ of various sizes, which are responsible for velocity
fluctuations on different scales. In the framework of this
approach, only the largest vortices appear as a result of mean
flow instability. Indeed, let a fluctuation of order ¥; in
velocity evolve for some reason in a domain of a laminar
flow with the size I. The energy associated with this pulsation
is proportional by order of magnitude to V}? or Vj, if we
consider scales in terms of the Fourier components, where
k o« 1/1, and the time needed for it to evolve is estimated as

/ 1
~—. 1
VvV, kVy (1)

Notice that the energy equal to an order of magnitude to

12 13 3
T (l) / k™o ( )

1 3\ /4
l<l\,zk—’z <:—;>

is transferred from the mean flow to pulsations per unit time.
It is assumed that the turbulent flow maintains a continuous
energy flux from large to small vortices. For large Reynolds
numbers, Re = VyLo/vp > 1, because of the negligible
influence of drag on vortices at all scales except the smallest,
there is almost no dissipation in a turbulent flow (it will
become essential only for / < /, = 1/k, = (vé/sK)l/4). Here,
Vy is the characteristic velocity scale, L is the characteristic
spatial (external) scale of flow, vg is the viscosity, and
ex = const is the Kolmogorov spectral energy flux. As a
consequence, one has for I > [, =~ 1/k,:

3 v
Vk:k%T%sK = const. (3)
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Then, V) ~ (eKk)l/ 3 ie. the velocity of pulsations in vortices
of size 1 is proportional to /'/3 and depends otherwise on the
single parameter & :

Vi(l) ~ (ex )" . (4)

The preservation of the flux ex hinges on energy conservation
in nonlinear interactions. In the general case of homogeneous
isotropic turbulence considered here, it is convenient to
introduce the notion of spectral energy density E(k), putting
[4-7]
2
| a, (5

where V2 /2 oc kE(k). It is then straightforward to derive the
Kolmogorov—Obukhov scaling for the spectrum of turbu-
lence [4, 5]:

p2 (e k)2/3 82/3
E(k)ochocKTaCKﬁ. (6)

Here, Cx ~ 1.6—1.7 stands for the Kolmogorov constant. In
spite of its phenomenological character, the scaling for the
turbulence spectrum E(k) o< 1/k>/3 is in excellent agreement
with experimental data and presents a milestone in the theory
of turbulence [6, 7].

At the beginning of the 1960s, when the subject of plasma
turbulence surfaced as the most pressing in the research on
hot plasma confinement, the problem of interaction between
waves and particles was one of most important [9, 10]. Despite
the successes of quasilinear theory [11], the description of
nonlinear effects had called for attracting the wave kinetic
equation [3, 9, 10]. A similar technique [the direct interaction
approximation (DIA)] was adapted by R H Kraichnan to
describe interaction between vortices as well [12]. Schemati-
cally, this method can be viewed as adding random links
(correlations) between numerous ‘copies’ of the Navier—
Stokes equations with a random Gaussian force:

Va1) + 3 1(1,2,3) Vp(2) Va(3) = $:(1). (7)

Here, Nis the number of copies, I' is a nonlinear operator, V7,
Vg, and Vs are the velocities, and S, are random forces. This
representation reflected the formal Hopf approach to writing
the Navier—Stokes equations,

%VJrf(V, V)y=1LV, (8)
where I" is the bilinear operator describing nonlinear effects,
and L is the linear operator describing viscous effects. We
will refrain from describing the rather intricate diagram
technique used in this branch of research, since it is the
subject of extensive literature [6, 7]. We present below only
qualitative estimations which help to understand the argu-
ments of B B Kadomtsev, who proved the incorrectness of
DIA, even though the equations it leads to share a number of
properties with the Navier-Stokes equations (conservation
laws, scaling transformations, invariance with respect to
shifts in time and space). We also note that at the time
Ref. [3] was published, its author Robert Kraichnan enjoyed
a reputation as a leading American researcher in the field of
turbulent transport processes among specialists developing
the theory of turbulence [13].

Working with an integral equation describing nonlocal
interaction between vortices, Kraichnan devised a spectrum
for the inertial range which was very distinct from the
Kolmogorov scaling:

1/2
&
E(k) o< Cx V) 55 (9)

Kadomtsev realized that, despite the underlying powerful
formalism, the derivation of the spectrum suffers from a
fundamental flaw. Indeed, Kraichnan overestimated the role
of large-scale structures in the description of the evolution of
the small-scale component. In fact, he expressed the spectral
energy flux as the product of stress o1 by the strain rate
;  1/79. Since the stress can be written as the product of
turbulent viscosity

/
VT X Vlz‘L'() = V12 —

- (10)

and the strain rate w;, we get

2
eK O V,27:0<?> ~ kE(k) ﬁ K E(k).

(11)
Simple manipulations give the Kraichnan spectrum in the
form

1/2

&
E(k) o V2 =55

(12)

It should be noticed now that it is just the use of the
external scale V7 incorrectly accounting for the effect of large
vortices, which, in fact, only convey small vortices, thus
slightly deforming them (adiabatic interaction of distant
harmonics). Kadomtsev in Ref. [3] managed to easily handle
the intricate technique of Kraichnan’s computations, and his
arguments were immediately accepted by the majority of
specialists. Possibly, namely this error prompted Kraichnan
to formulate almost philosophically the thesis “With scaling
we can explain everything without understanding anything”
— well known not only to hydrodynamicists. In the Russian
translation, it sounds even harder, yet revealing.

Despite the ‘precautions’ stressed by Kraichnan, Boris
Borisovich effectively tapped the concept of scaling in many
papers exploring questions of anomalous transport. More-
over, Kraichnan’s arguments for the existence, at large
Reynolds numbers, of very distinct, stretched, and strongly
entangled vortex filaments with a spatial scale on the order of
the external flow size were later used by Kadomtsev in
formulating his original approach to the description of
anomalous transport in the presence of large-scale vortex
structures.

3. ‘Anomalous’ plasma diffusion
in a magnetic field

The term ‘anomalous diffusion’ appeared for the first time in
a joint paper published in 1960 by B B Kadomtsev and
A V Nedospasov both as a preprint of the Kurchatov
Institute of Atomic Energy [14] and a journal paper [15].
This work evolved as a result of discussions with V D Shafra-
nov on questions concerning the instability of a positive
discharge column in a magnetic field. The authors showed
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that applying the longitudinal magnetic field leads to stability
loss in the current-carrying plasma column and that the
oscillations appearing as a consequence give rise to an
azimuthal electric field. This inevitably triggers drift motions
of electrons in the radial direction. Such drift motion in the
direction transverse to the magnetic field were viewed by the
authors as the cause of the anomalous diffusion observed in
experiments.

The authors had clearly realized that the development of
oscillations would end up in plasma turbulence. In this
regard, they pointed out at the end of the paper the now
classical Bohm idea on the nature of the turbulent diffusion
coefficient [16]. Bohm’s arguments can be schematically
explained by resorting to the equation for the drift velocity
of charged plasma particles in the crossed electric E and
magnetic B fields:

BxE Vo

VE:CTO(BO .

(13)

Here, Vg is the drift velocity, and ¢ is the electric potential.
For fluctuations of an electric field which are slower than
the ion cyclotron frequency (the low-frequency limit), the
motion of particles in plasma can be represented as the
superposition of rotational motion around the magnetic
field line and the drift motion of a leading center with the
velocity V.

Under the conditions of well-developed plasma turbu-
lence, one may anticipate the appearance of vortex structures
similar to those generated in hydrodynamical turbulence,
which would lead to chaotic fluctuations of the electric field.
Let Lp be the characteristic scale of emerging structures. By
applying traditional approach, one can easily derive the
estimate of the particle diffusion coefficient:

2

DB(LB) X LB ;

Tcor

(14)

where Lg plays the role of the characteristic correlation scale,
and 1., 1s the characteristic correlation time. Based on
dimensionality arguments, one can estimate the character-
istic correlation time in terms of the particle drift velocity Vg
in the crossed electric and magnetic fields:

Ly L}
~—~— B 15
Tcor 5V CS(,D 05 ( )
where the drift velocity is estimated as
c ¢ 0p
Vg~ —0FE,~ — —. 16
E= By " T By Ly (16)

Here, 8¢ ~ 8 E, L is the potential perturbation on the vortex
scale, and 8, is the related perturbation in the electric field
strength. This simplified estimate of the correlation time can
be considered as justified at this stage, because even the more
elaborate Kolmogorov—Obukhov approach resorts to a
purely dimensional estimate for the interaction time between
vortices of size [ as tx(/) o< I/V(l), where V() is the
characteristic velocity of turbulent pulsations on the scale /.
The fluctuations of the electric field can be easily related to the
plasma temperature:

edp = edEy Ly = Ty . (17)

On substitution, we arrive at the Bohm scaling for the
anomalous particle diffusion in a turbulent plasma:

c cT, edp \*\ 2
poxtive= oo~ ((50) )
p

(18)

The expression obtained lacks the characteristic spatial scale
L of vortex structures, which we introduced at the first stage
of our analysis. In a certain sense, this can be regarded as the
universality of the estimate proposed by Bohm. Indeed, the
Kolmogorov theory of turbulence hinges on the existence of a
hierarchic structure of vortices and the uniformity of the
spectral energy flux. In this sense, the presence of a fixed
vortex structure scale would be too simplistic, and the fact
that this parameter dropped out the final expression is
undoubtedly a huge success of this approach.

Beginning from Ref. [14], the questions of plasma
turbulence and anomalous transport became major topics of
B B Kadomtsev’s work. This becomes apparent if one looks
through Boris Borisovich’s publications in the collection of
his papers [1, 2]. The key words ‘turbulence’, ‘turbulent
transport’, and ‘anomalous diffusion’ are encountered in
most articles over almost 40 years. B B Kadomtsev himself
paid special attention to the anomalous (turbulent) transport
in relation to the research of plasma confinement in
tokamaks. So, in a paper entitled “My view on controlled
fusion” [17], published in 1995, there are the following words:
“In 1967, L A Artsimovich and I published (separately from
each other) short papers in Uspekhi Fizicheskikh Nauk
(Physics—Uspekhi) where the prospects of the development
of tokamak type machines were discussed... . In my paper, the
problem of anomalous transport was discussed. I always
believed that a complete suppression of plasma instabilities
is impossible—so that a residue of weak drift turbulence
should always exist in a tokamak plasma. But this turbulence,
I thought, is not an absolute obstacle which cannot be
overcome. Utilizing theoretical estimates for obtaining drift
turbulence scaling (at present it is called ‘gyro-Bohm’ scaling),
I have estimated the quantity

roBo = 10 [m x T] (19)
as a criterion for plasma ignition (here, r( is a minor radius of
the tokamak, and By is the toroidal magnetic field). All the
experimentalists considered this estimate to be unreachably
large. However, this quantity is currently corrected to be
roBo =~ 15 [m x T, thus defining the necessary condition for
the performance of a tokamak reactor with a noncircular
plasma column cross section. My arguments of a theorist
convinced L A Artsimovich, and he issued orders to the
industry to construct the T-10 facility (T-10 was put into
operation in 1975 after L A Artsimovich had already gone).”

Indeed, Kadomtsev clearly understood the importance of
the scaling concept for the description of the turbulent plasma
state. So, for example, considering high-frequency plasma
oscillations, one commonly employs the estimate of correla-
tion time in the form

1

Teor (@) =~ o

(20)

Here, w is the characteristic frequency of plasma oscilla-
tions. Then, the standard expression for the turbulent
diffusion coefficient acquires a quasilinear form [18] which
is based on defining the velocity autocorrelation function
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(VE(0) VE(D)):

SVE  (SE\" 1
Dr= | (V V NSV 2 Ter —Er Py —.
! J< £(0) E(Z)>d[ OV Teo w < By ) w

(1)

Understandably, by relying on this expression one cannot
describe low-frequency regimes of plasma turbulence, since
the decrease in characteristic frequency cannot lead to an
infinite increase (Dl ,_,, — oo) in the diffusion coefficient, as
follows from the scaling above.

To describe low-frequency regimes, it is essential to take
into consideration the reorganization of a flow topology. In
this case, the characteristic correlation times determining the
transport turn out to be only indirectly connected with the
external frequency. Then, if we introduce a parameter which
formally characterizes the path travelled by a particle for the
time 1/w, it is not difficult to find that in low-frequency
regimes it will essentially exceed the characteristic scale Lg of
structures contributing most to the transport:

Vg CBEI,I
I P i Nl
10) By w

l, ~

> Lp.

w—0

(22)

In the presence of reconnection processes, turbulent mixing
will inevitably emerge as a key factor. We need, therefore, to
relate the characteristic correlation time to both the scale of
the structures and the effective transport coefficient. A simple
dimensional estimate at high values of the turbulent diffusion
coefficient Dr is given by the expression tapped by Kadomt-
sev on repeated occasions:

Ly 1 1

T ~— < —.
©“Dr kiDr o

(23)

~

Notice that this approach later received a more rigorous
mathematical framing in the well-known paper by Kadom-
tsev and Pogutse [19] devoted to the anomalous transport of
electrons in a stochastic magnetic field. We will consider it
below. Additionally, this illustrates in an obvious way the
importance of accounting for the phenomenological principle
of choosing the fastest mode, which proved its efficiency not
only for the description of transport processes in plasmas, but
also for the analysis of turbulent diffusion of scalar particles
and processes of thermal convection [20].

Inserting the expression obtained for the correlation time
into the original formula, we find

8E,\ " L}
Droc | =2 ) =B 2, (24)

By Dt
Taking into account the estimate 8E,Lp ~ d¢, one readily
arrives at the final expression for the turbulent diffusion
coefficient in low-frequency regimes, which coincides in
form with the Bohm scaling:
SEpLB 5(/)

~c¢—x Ku.
B, cBoo<u

DT X C (25)

The transition from quasilinear regimes with a quadratic
dependence Dy ox Ku? to linear (Bohm) regimes with
Dt o< Ku [21] happens at the Kubo numbers Ku & 1, which
characterize the transition from weak turbulence regimes to
the well-developed structural turbulence (Fig. 1). These

Dr(Ku)

. DrxKu
DT o I(U.2 . g !

Ku>1

Ku=1 Ku

Figure 1. The dependence of the turbulent diffusion coefficient on the
Kubo number. The interval Ku < 1 corresponds to a quasilinear transport
regime, where Dr o Ku?. In the region Ku > 1, the transport regime is
described by the Bohm linear dependence Dt o Ku. In the regimes with
strong turbulence, the dependence becomes more quiet and is determined
by the specific character of vortex structures evolving in a plasma.

strong turbulent regimes demand a more thorough analysis
of the coherent structures evolving in them, and, as we shall
see further, Kadomtsev proposed an effective method to
analyze transport processes in such flows.

4. ‘Braided’ magnetic field
and the quasilinear approximation

The specifics of the magnetic configuration of toroidal
plasma traps lead to the appearance of resonant magnetic
surfaces and the formation of island structures (Fig. 2), with
magnetic field stochastization in the vicinity of their separa-
trices. B B Kadomtsev in his work repeatedly turned to this
problem, beginning with paper [21] in 1970. Already in this
work attempts were made to explain the anomalous character
of electron transport in a tokamak plasma based on a model
of a stochastic magnetic field.

However, in a joint paper with O P Pogutse he proposed a
fundamentally new approach [19]. Unfortunately, this work

Figure 2. Island structures in a tokamak, evolving as the axial symmetry is
broken.
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was published only in conference proceedings and was,
therefore, known to many physicists by indirect references.
In Sections 5-10, we will consider in detail several ideas that
are important for the theory of turbulent transport and which
have been proposed in this report.

The first theoretical works (see papers [22] and the
references cited therein) devoted to a description of the
stochastic magnetic field have already suggested exploiting
the analogy with the behavior of scalar particles in the field of
hydrodynamic turbulence. This approach is built around the
stochastic equation for the field lines:

dl‘J_ B,

i (26)
Here, a weak random field B’(By, By, 0) is superimposed on a
strong stationary field B(0,0, By) directed along the z-axis,
and by is the characteristic relative scale of perturbations. In
tasks concerning magnetic field line diffusion in a high-
temperature plasma, by order of magnitude the perturba-
tions by are estimated as by ~ 103 —10* [23]. Then, the
classical Taylor expression [19] for the coefficient of trans-
verse diffusion of magnetic field lines takes the form

D = H d=(b(z0)b(0,0)) o b

(27)

Here, () stands for the commonly accepted notation for
averaging, and /. is the longitudinal correlation scale of the
stochastic magnetic field:

;L[

d = bT%J,x dz(b(z,0)b(0,0)). (28)
This makes it possible to consider the diffusion coefficient Dy,
of magnetic field lines from the correlation viewpoint. In our
anisotropic case, the longitudinal and transverse correlation
effects need to be thoroughly analyzed. For this reason, the
omission of the transverse displacement A, in the Taylor
expression

b(z,11) = b(z,0) (29)
is a serious drawback and will be valid only when the diffusive
displacement in the transverse direction is much less than the
transverse correlation scale: bgA, < A, . However, in tasks of
strong turbulence of the most interest is the case where the
transverse correlation effects play an essential role: boA, = 4, .
Kadomtsev and Pogutse [19] proposed that a new approach
be used and formulated its applicability criterion in terms of a
dimensionless parameter — the magnetic Kubo number
characterizing the ratio of longitudinal and transverse
correlation effects:

bo.

)”L

Kuy = > 1. (30)
Kadomtsev and Pogutse related this regime to the percolation
character [24] of the behavior of streamlines, which allows
one to explore the effects of ‘long-range correlations’. In fact,
it is supposed here that the actually appearing kinematic
decorrelation by, is larger than the formally introduced
transverse correlation scale 4, .

In order to compute the magnetic diffusion coefficient in
this limit, it has been proposed to modify the quasilinear
equations for the description of scalar particles [25] with due
regard for ‘turbulent mixing’. Kadomtsev and Pogutse

considered a three-dimensional problem, based on the
continuity equation for the magnetic field line density 7:

(1)

0

S2 bV um(rL,z) = 0.
The quantity n, has been represented as the sum of mean
density ny = (n,) and the fluctuating part n;:

np(z,x) =no +n . (32)
Upon averaging, we then obtain

S LY ) =0 (33)

oz 1 1) =Y,

6n1 _ am 6n1

E-f—bvino—\)] a—<\)1§> (34)

In the quasilinear approximation, the nonlinear term in the
equation for the mean density is preserved, but in the
equation for perturbation the terms of the second order,
v Ony /Ox — (vy Ony /0x), are routinely dropped. This allows
one to readily solve the equation for perturbations and go
over to averaging in the equation for the mean density.

An important step taken by Kadomtsev and Pogutse was
the ‘renormalization’ of the equation for perturbations, based
on the idea that turbulent mixing exhibits a diffusive behavior
because of the effects of long-range correlations. They
replaced the terms of the second order in the equation for n;
by the diffusion term DmVinlz
% + bVlno = DmVinl .
Notice that, in contrast to the diffusion coefficient in models
of scalar transport constructed by Corrsin [26] and Dreizin
and Dykhne [27], they tapped an effective diffusion coeffi-
cient Dy, of magnetic field lines, yet to be found by solving the
renormalized equations. On a qualitative level, we have
applied such an approach in Section 3, when analyzing the
Bohm scaling in the low-frequency limit.

After these manipulations, the system of renormalized
equations is still in a form convenient for solution. The linear
character of the equation governing perturbations has not
been compromised, but the equation has become a parabolic
(diffusion) one instead of hyperbolic, which it was in the
standard quasilinear approximation for a passive scalar.
Applying the mathematical apparatus of Green’s functions
for the parabolic equation describing density perturbations,
we obtain

oG 24 ,
g—DmVleé(r—r).

The final expression for the mean density 7, takes the form of
a diffusion equation
Onp(z,r1)
0z
where the magnetic diffusion coefficient and the Fourier
spectrum of perturbed amplitudes are expressed as

(35)

(36)

= DmVin;, s (37)

[ PK)
Dm*ijm‘“" (38)
2 = ! r))exp (—ikr) dr
b2 (zmzjumb(»ep( ke) dr. (39)
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For Ak, > k? Dy, one gets the classical quasilinear expression

D =~ J dkb2(k) 8(k.) x b2: ox K2, | (40)

2 zZ

where A, is the transverse correlation scale. In the case of
strong transverse correlations, Ak, < kam, we arrive at a
Bohm expression:

2
D? :ljb &) dk o (ho/1)* ox Ku?, . (41)

mT2 ) k2

Despite the simple form of the estimate obtained,
Dy =~ byl , the linear character of the dependence of the
effective diffusion coefficient D on the ‘stochastic layer’
width A, is widely used to describe turbulent transport in
models with convective cells and percolation streamlines,
which helped to derive numerous scalings and carry out a
comparison between theoretical estimates and data of
laboratory and numerical experiments.

5. Kadomtsev—Pogutse scaling

A broad range of problems devoted to turbulent transport
involves anisotropic media, which necessitates describing the
interaction between longitudinal and transverse correlation
mechanisms. This problem is closely connected with the
research of processes of turbulent plasma particle diffusion
in a stochastic magnetic field. Kadomtsev and Pogutse [19]
considered several decorrelation mechanisms responsible for
the effective electron transport in a stochastic magnetic field.
Their analysis hinges on the idea of magnetic field lines
randomly walking in the transverse direction (Fig. 3).

In order to move to the description of particle transport, it
is convenient to introduce the diffusion coefficient of
magnetic field lines in the classical form [21]:

D o £ (42)

where L) > /.. Here, r, is the displacement of a perturbed
field line in the transverse direction upon displacement over

Figure 3. Random wandering of magnetic field lines, which can be
described in the framework of the diffusive approximation.

the distance L along the field line. Finding the relationship
between the magnetic diffusion coefficient Dy, and the
effective coefficient D, of transverse particle diffusion in the
braided magnetic field presents a difficult task, because the
charged particles may ‘leave’ the field line.

If we assume that a particle in its motion strictly follows
the displacement direction of the initially selected magnetic
field line (as if the streamline pierces the particles as beads), we
readily get the expression for the particle transverse diffusion
coefficient:

2
ri Ly L
D, x-+—"~p, 1. 43
L LH t m t ( )
When the particles move ballistically along streamlines, the
estimate of the transverse diffusion coefficient becomes

D, ~DuV). (44)
Here, V) is the speed of a particle as it moves along the field
line.

A nonstandard situation arises when collisions between
particles in a braided magnetic field are considered. In this
case, it is natural to assume that the particle motion in the
longitudinal direction bears a diffusive character (random
walks along the field line without the possibility of quitting
the initially ‘selected’ field line):

2 L2
Leor o Il

2t 2t (45)

~
X~
L

Here, L., is the longitudinal correlation length, and 7 is the
correlation time. The estimate of a longitudinal displacement
then assumes the form

LH(I) S /ZXHI.

Inserting this diffusion-assisted estimate into the formula for
the transverse diffusion coefficient, we get the Getmantsev
scaling [28]:

(46)

2XH[
t

D
D, (t) = Dy, ~ /2 i (47)

The result demonstrates an essential difference between the
transverse (compound-diffusion) transport and the classical
diffusive transport, since

AimDm,/Z;{H\/;mtl/2<t for t> 1.

This corresponds to subdiffusive transport [29] with the Hurst
exponent H = 1/4. The result obtained points at the non-
trivial character of the relationship between longitudinal and
transverse correlation effects occurring in the description of a
particle transport in a stochastic magnetic field.

It should be noted that, in this model, particles never leave
their magnetic field lines, which is a significant limitation that
was overcome by Kadomtsev and Pogutse through consider-
ing the decorrelation mechanism based on the particle change
in the field line by virtue of transverse diffusion y, . In the case
of high-temperature plasma confinement in tokamak facil-
ities, the longitudinal diffusion coefficient is much larger
than the transverse one: y > y, . This condition can easily
be rewritten in plasma physics terms: y ~ Vitg, and

(48)
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1L Rl T & l/rei(VT/QHe)Z. Here, V't is the thermal elec-
tron velocity, vei = 1/1¢ i the electron—ion collision fre-
quency, r. is the Larmor radius of electrons, and Qye > v 1S
the electron gyrofrequency. We then get the condition
w1~ (Quetei)* > 1. To account for transverse decorrela-
tion effects, it is necessary to replace the time parameter ¢ in
the Getmantsev formula for the effective turbulent diffusion
coefficient by the characteristic correlation time:

1

D, (1) x Dy T (49)

Substituting this latter time, we obtain the Kadomtsev—
Pogutse formula for the effective transverse diffusion coeffi-
cient of particles in a stochastic magnetic field:

VAL
DKP ~ Dm I

ro

: (50)

where y, o« r¢/t, ro is the characteristic transverse spatial
scale which equals the Larmor radius of electrons in the case
of anomalous electron diffusion in a braided magnetic field.

The consideration is frequently carried out in terms of
thermal conductivity coefficients in order not to complicate
the analysis with issues of plasma ambipolarity. We will,
however, keep the diffusion notation for the uniformity of
presentation.

It should be kept in mind that the magnetic diffusion
coefficient Dy, and the longitudinal and transverse diffusion
coefficients y; and y, are assumed to be known, and
Dxp (7, %1) > 71 Under the conditions of strong turbu-
lence Dy, (bg) ox boly, and, consequently, we obtain the
expression

Dxp o< bo\ /210 > %1

which transforms into the condition bgQpete; > 1. Addition-
ally, the Kadomtsev—Pogutse regime assumes the smallness of
the transverse decorrelation time, as opposed to the long-
itudinal time scale (the principle of fast mode dominance):

(1)

2 2 22
() x—rR—=<1|~—=. 52
(o) XL XL ! 1 52

Then, the applicability condition for the transverse decorrela-
tion takes the form

Ly

bOQHeTei < Kup =~ P
1

(53)

where Ku,, > 1 (Fig. 4).

To conclude this section, it is worth noting that the
Kadomtsev—Pogutse result can be cast in a different form by
making use of a collisionless diffusion coefficient with an
additional correcting factor. The longitudinal particle velo-
city enters the expression for the longitudinal diffusion
coefficient:

X” ~ VHZTCQII . (54)
On the other hand, the transverse diffusion coefficient takes
the form y, ~ Xi /Teoll, Where A, is the transverse correlation
scale. After simple calculations, we arrive at the formula for
the effective diffusion coefficient relevant to the Kadomtsev—

1139
bOQHeTei
bOQHeTei > I/Kum
boQnetei < Kup
~
boQuetei > 1 // Py
Ve
7
Ku, =1 Kuy,

Figure 4. Diagram showing the applicability regions for anomalous
regimes of electron transport in a steady ‘braided’ (stochastic) magnetic
field, which were set up by Kadomtsev and Pogutse.

Pogutse regime:

Der ~ DV, % (55)
We treated the Kadomtsev—Pogutse model in terms of the
correlation scale A, and the characteristic time 7. To
describe plasma physics problems [19], these quantities can
readily be related to the electron Larmor radius p, and the
electron—ion collision frequency ve;.

6. Stochastic instability and transport

Kadomtsev and Pogutse also examined a decorrelation
mechanism which fundamentally differs from the transverse
diffusion, is linked to the dispersion of initially close field
lines, and owes its existence to the effect of stochastic
instability [19, 30], which plays an important role in
problems occurring in plasma physics and astrophysics
(Fig. 5). It is assumed that on average two initially close

\ L7
. N P
Separatrix ~

N

Figure 5. Stochastic instability of phase trajectories in the vicinity of a
separatrix. Two initially close trajectories disperse exponentially with time
over a distance on the order of /(7).
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field lines deflect from each other according to the law )
2
z
I(z) = lyexp (—) . (56)
)»](

Here, [, is the initial distance between the field lines, and z is
the distance travelled along the field line. The quantity
hx = 1/2g is called the Kolmogorov entropy:

(57)

Based on the equation of motion in the Lagrange form,
already used earlier for the analysis of the field line diffusion,
namely

dr B’

d—; =b(zr), b= b, (58)
Kadomtsev and Pogutse derived the expression

) ob

e (ro=r1) =b(z,12) = b(z,11) = > (r2 —r1) (59)

describing the dispersion of field lines of a stochastic field for
a small departure r, — r; [19]. Formal calculations result in
the exponential dependence

r2(z) — r1(z) = Ar(z = 0) exp <J0 % dz> .

The increment of stochastic instability can be found by
averaging this expression with the assumption that the
random quantity b is Gaussian in character, which allows
the mean value to be evaluated by the standard formula

(42)
>

(60)

(exp A) = exp

(61)

Whence we obtain

4.(z) = (ra(z) = n(2))

soo (L[ [ araen(BEN I

The integral expression in formula (62) is analogous to the
expression for the quasilinear diffusion coefficient and, after
simple manipulations, allows obtaining the increment y. of
stochastic instability in the form

./::lro <MM>dz, (63)

2 or or

—00

In terms of the dimensionless parameter —the magnetic
Kubo number Ku,, — this result takes the form

~ ~ 2
_N)z ~)2~/1 Kug, .
L R ¥4

(64)

Naturally, the applicability limits of this estimate coincide
with the applicability limits of quasilinear approximation
Kuy, ~ b())vz/}.i < 1.

Kadomtsev and Pogutse utilized this scaling to estimate
the transport effects in which the main decorrelation mechan-
ism is provided by stochastic instability (Fig. 6). Writing out
the correlation time, based on dimensional considerations, in

%

%

Figure 6. The evolution of a cell as a result of emerging stochastic
instability. The characteristic cell size grows with time under the action
of a random (turbulent) field: [y < /(1) < I(t2) < (13).

5

/(fl)

the form

LI

Ku 65
VZZ,{H vl (65)

m

they modified the expression for the transverse diffusion
coefficient on scales z > A.:

4l

DL (‘C) 0.8 Dm T s (66)
having obtained the formula
Ku?
Dy o< D - = Dy — - (67)

P2

We emphasize that, because the quasilinear approximation
has been used for the increment of stochastic instability, the
same quasilinear approximation should also be tapped for the
field line diffusion coefficient: D,, o b()zlz. In this case, we
arrive at a fundamentally new scaling for the effective
coefficient of transverse particle diffusion in a stochastic
magnetic field:

Az

Such a regime of electron transport was later obtained in the
well-known study [31]. The applicability condition for this
regime can also be found from the principle of fast mode
selection, 1/y, ~ )L/[DL(M\)] < )l//L ~ 1,, which corre-
sponds to the condition DLocyHb (2z/41)? >y, . Perform-
ing calculations for the applicability region of the regime
alluded to, we obtain the inequality boQuetei > 1/(Kuy) ~
2.1 /(boA;) (Fig. 4), where Kuy, < 1. Let us mention that this
condition can be interpreted in terms of characteristic spatial
scales as well: Leor (7)) o (XH/M)I/Z ~ ./ Kuy > ;.

It should be mentioned that a broad diversity of regimes
are encountered in particle diffusion in a stochastic magnetic
field. A discussion of all the existing variants is beyond the
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scope of this article, and we utilized the simplest model of
randomly walking field lines in order to demonstrate, based
on simple dimensional estimates, the importance of Kadomt-
sev’sideas on the crucial connection between longitudinal and
transverse correlations in the analysis of anisotropic trans-
port problems.

7. Vortex structures and anomalous transport

The development of views on strong plasma turbulence has
led to the recognition of the importance of convective cells
generated in the course of thermal convection in a plasma
column with current. This question was addressed in detail in
the review by Kadomtsev and Pogutse [32] in 1966 and in
Review of Plasma Physics [33], where the first estimates were
obtained for the transport coefficients in a tokamak plasma
with due regard for the presence of large-sized convective
cells. It is noteworthy that, in the discussion devoted to
Kadomtsev’s talk at the conference of the International
Atomic Energy Agency (IAEA), these results were called
outstanding.

Further research in the field of drift-convective turbulence
confirmed the need to account for the impact of vortex
structures on turbulent transport processes. Simple estimates
can be obtained by considering regular vortex structures
(convective cells) (Fig. 7), as has been done in Ref. [34].

In the case of two-dimensional plasma flow, the system of
streamlines in a model of convective cells can be described in
terms of steady streamfunctions Y(x,y)=¥sin(kyx)x
sin(k,y), with the component of velocity expressed as

ve=2L y =2

dy ’ 0x (69)

Let us select the cell size 4 and the characteristic velocity Vy of
convective flow as the parameters. The effective transport in
the system of vortices can be described by relying on the
decorrelation mechanism involving the diffusive escape of
particles from a convective layer of width 4. It is natural to

Dy Dy

\J

Figure 7. Convective cells: Z is the characteristic cell size, 4 is the width of
the stochastic (diffusive) layer, Dy is the coefficient of molecular (seed)
diffusion which provides the particle decorrelation in a steady vortex flow.

use the characteristic time it takes a particle to leave the
boundary (convective) layer as the correlation time
T~ A 2/Do. Here, D, is the coefficient of the ‘seed diffusion’
or the diffusion which shows its worth because of stochastiza-
tion of plasma particle trajectories in the vicinity of separa-
trices between the vortices. We write down the effective
diffusion coefficient in the convective form

Deff ~ /IV()POO y (70)

where P, is the portion of space responsible for convection.

The portion P, can readily be estimated for convective cells:
N i A

Pam RS (71)

The expression for the turbulent diffusion coefficient now
coincides with the renormalized quasilinear Kadomtsev—
Pogutse estimate considered in connection with the field line
diffusion [19]:
A

Dcff 0.8 )»V() I = V()A . (72)
The estimate of stochastic layer width A follows from the
balance of particles in the layer. This balance suggests that
NpxDy(n/A) 2 particles come from the convective cell per
unit time, while the convection along the boundary layer
removes N¢ony X nV4 particles. As a result, we obtain

Do’
A(Vy) = 700 ~ /Dot (73)

Finally, the formula for the coefficient of effective diffusion in
a system of convective cells assumes the form

Deir = consty/ Dy Vol o VOI/Z .

As is seen, this result formally differs from both the quasi-
linear estimate Deg o< VO2 and the linear dependence
Desr o< V.

Nondiffusive transport regimes can also be obtained for
chaotic structures [35]. Consider random velocity fluctua-
tions in the form of narrow convective flows of width /, and
velocity V), which, as a whole, compose a system of randomly
directed plane-parallel flows (Fig. 8). These flows act in the
transverse direction on a particle diffusing with the molecular
diffusion coefficient Dy. To calculate the transverse diffusion
coefficient D, , we employ the estimate

(74)

(75)

where the transverse displacement is furnished by a quasibal-
listic estimate A, (1) = VotP(¢). Here, A, is the transverse
displacement over time ¢, and P, is the relative fraction,
Py (1) = dN(1)/N(t), of velocity pulsations 6N noncompen-
sated on the mean [27]. The quantity

V2Dt

N(t) = 0

(76)

represents the number of shear flows a particle crosses while
executing longitudinal (diffusive) motion. We can discard the
transverse diffusive displacement of a particle, since it is small
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Figure 8. A Dreizin—Dykhne shear flow formed by an ensemble of
randomly placed plane-parallel flows; /y is the flow characteristic width.
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Figure 9. A two-dimensional random flow (Manhattan grid flow) formed
as superposition of two mutually perpendicular random Dreizin-Dykhne
shear flows.
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compared to the convective transport. Then, estimating
SN(t) = 1/ N(¢) with the help of ‘Gaussian statistics’, it is a
simple matter to make up the formula for the effective
diffusion coefficient:

t
Dy (1) o« Viloy )=, (77)
Dy
or for the root-mean-square particle displacement:
23(6) o< Do (1)t o< 32 (78)

In the superdiffusion case under consideration, we obtain the
Hurst exponent H = 3/4 > 1/2.

The model we consider can be generalized by super-
imposing two mutually perpendicular shear flows: ¥(x,z) =
Y¥(z) + ¥Y7(x). In this case, we create a random steady
system of vortices (Fig. 9), in which the Kadomtsev—Pogutse
renormalization method based on the ‘isotropization’ related
to long-range correlations is applicable to the description of
particle transport. Thus, replacing the seed molecular diffu-
sion coefficient in the Dreizin—-Dykhne formula (for the
diffusion coefficient) by the effective diffusion coefficient

lo 1/2

Deff(t) X V(%\/T_ff t 5
€

(79)

we get the expression which coincides with the exact problem
solution obtained using renormalization group methods [35-
37]:

1/3 2/3
Desr(t) x Vol (? t) , R(1) x Degr(t) toxly (? t> .
0 0
(80)

This example of superdiffusive transport in a ‘mathemati-
cally’ organized random steady vortex flow demonstrates
how nontrivial the transport regimes can emerge in the
presence of vortex structures.

B B Kadomtsev undoubtedly realized that under condi-
tions of strong turbulence the appearance of large-scale

vortex structures would inevitably lead to turbulent mixing
and an enhancement of the effective transport. He attributed
the anomalous character of diffusion in such regimes to the
percolation character of streamline behavior [19] in two-
dimensional random flows (Fig. 10). Such streamlines
embrace nearly the entire flow because of their convoluted
character (fractality). The criterion of strong turbulence
formulated by Kadomtsev and Pogutse in terms of the
magnetic Kubo number can be readily interpreted for a
system of streamlines of a two-dimensional turbulent flow,
Ku = Vy/(Aw) > 1. Here, ¥V is the characteristic amplitude
of turbulent pulsations, 4 is the characteristic size of vortices,
and o is the characteristic frequency of perturbations. In this
framework, one not only succeeds in considering random
steady flows, but can also take into account the mechanisms
of flow topology reorganization important for low-frequency
drift turbulence. We will briefly consider how the percolation
approach has been adapted to two-dimensional and quasi-
two-dimensional flows in Sections 8-10.

8. Coherent structures and percolation transport

In Section 2, we briefly mentioned Kraichnan’s idea about the
importance of large-scale vortex formations for the descrip-
tion of hydrodynamical turbulence. B B Kadomtsev pointed
out the errors of that approach in relation to the description
of the Kolmogorov energy cascade. Nevertheless, the idea
itself that coherent (vortex) structures influence the processes
related to turbulence did not escape Boris Borisovich’s
attention. In 1978, he succeeded in proposing an approach
[19] in which largely stretched vortex lines contribute
substantially to particle transport, even though they occupy
only a small volume portion (see Fig. 10).

Until the publication of the work by Kadomtsev and
Pogutse [19], which proposed the idea of percolation
equipotentials, a rigorous mathematical expression for their
description had not yet been available. Only in 1987 was it
rigorously demonstrated that the ‘shell’ of a percolation
cluster, which is a prototype for the percolation streamline
in the framework of the topographic model, is described by
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L(z)

Figure 10. A percolation streamline in a two-dimensional random flow: 4is
the characteristic cell size, 4(¢) is the stochastic (diffusive) layer width,
a(e) is the correlation scale governing the transport, and L(¢) is the length
of the percolation streamline.

the scaling [38]
1\ 4 1
L Al - ==, Dg=1+-. 81
(8) X <8> y Vv 3 H + N ( )

Here, Ais the characteristic size, Dy is the Hurst exponent, v is
the correlation exponent, and ¢ is a small parameter
indicating how close the system is to the percolation thresh-
old [24].

The streamlines ¥ = ¥(x, y) in this approach are treated
as coastlines appearing because of flooding of a hilly land-
scape by water (Fig. 11). It is expected that there is a sharp
transition from ‘separate lakes on an infinite stretch of land
to separate islands in an infinite ocean.” The percolation
theory relies on the existence of at least one coastline of
infinite length. The related streamfunctions can be modelled
by ‘perturbing’ the relief corresponding to the system of
convective cells [32, 36, 37, 39-44]. In fact, ¢ = 8¥/1Vy,
where 3% is the magnitude of the streamfunction in the
vicinity of the percolation threshold, and V is the character-
istic flow velocity. In the theory of continual percolation, the
correlation length a(e) (the transverse size of the percolation
cluster) in the vicinity of the percolation threshold, ¢ — 0, is
given by the scaling

a(e) = }(%) ~ A(#)UDH.

(82)

Figure 11. Flooding of a hilly landscape enabling one to model the phase
transition in the framework of the continual percolation model.

It is assumed that the particles move along streamlines
and, consequently, in the percolation limit A., =
a(e),_, — oo. This difficulty can be overcome through
renormalization of the small percolation parameter e.
Whereas detailed coverage of the renormalization methods
can be found in reviews [25, 36, 45], we discuss some important
findings in the theory of turbulent transport, which were
derived following the method proposed by B B Kadomtsev.

Reference [40] explores a one-scale unsteady random flow
with the streamfunction ¥(x, y, t), such that

b4

V_‘I’ ’ (83)

Wo%/‘LV(), ;L%’

where the unsteadiness furnishes the reorganization of the
streamline topology. In conditions of low-frequency drift
turbulence, when

Ku:/%)>l7 or w<%, (84)

namely the reorganization of the flow is a dominant
decorrelation mechanism. Here, w is the characteristic
oscillation frequency. The formal expression for the diffu-
sion coefficient in the percolation limit is written out as

aZ(‘I’l)
()

< dy
Deff:J Tlpoo('lyl) (85)
0 1
where the perturbation of the Hamiltonian in the framework
of the mean field theory is given by the expression
¥, =~ &.AV). Calculations lead to the scaling
Desi(e) ® — P =

~ V()A(S) .

a’ a’ L(s) A(e) (6)

a?

Here, the correlation time 7 is estimated on the basis of the
conception that particles move ballistically along streamlines,
T 1~ L(e)/ Vo, Ps = L(e) A(g)/a*(e) is the portion of the
volume occupied by percolation streamlines, 4 is the width of
the percolation layer, and a is the correlation scale. In fact, the
problem of obtaining the turbulent diffusion coefficient has
been reduced in the approximation employed here to
computing the width of the stochastic (percolation) layer,
whereas the estimate De(e) = Vod(e) is equivalent to the
expression proposed by Kadomtsev and Pogutse for strong
turbulence regimes.

Having estimated the time over which the flow pattern
changes considerably as T ~ 1/w, the authors of Ref. [40]
supposed that the main parameter in the case of low-
frequency perturbations is the lifetime 7 of a single percola-
tion line, which also represents the correlation time. In this
case, the equation for the small parameter ¢ can be written
down as
L(e,)

Ex
or =—.
’ Vo w

(87)

(&) = &

el=

Having used the scaling from the percolation theory, L(¢) =
Aa/2)P", and taken the stochastic layer width for the
‘physical analog’ of the small parameter, 4 ~ l¢, we easily
find ¢, as a function of flow parameters w, V), and 4:

1/(2+4v) |\ 310
=) () o (&)
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Further manipulations now lead to the final expression for
Der (see Fig. 1):

Desr(es) ~ Poo(e.) = 220 Ku"/1 V07/10w3/'0‘

(89)

The dependence Degr(w) here differs fundamentally from the
quasilinear scaling Degr(w) < Vi#/w. The length of the
percolation streamline and the correlation scale, defined as

1 ,
L(e,) ~ A P AKu! /G (90)
1 (2t
a(e.) =4 — = 1 Ku"/+) (91)

are not infinitely large in this approach, because the small

parameter ¢, does not tend to zero, but takes a specific value

of &, for all flow types with the characteristic Dy, Vy, and /.
It is readily seen that by considering low-frequency

regimes of drift plasma turbulence we may interpret the

magnetic Kubo number in terms of drift velocity:
Ku ~ ﬁ ~ ko

~— . 92
Ao wBy (92)

Here, k is the wavenumber, ¢ is the electric potential
perturbation, and B is the amplitude of the magnetic field.
Notice that the problem of particle transport in a
tokamak, which is in its essence three-dimensional, has been
reduced to a two-dimensional one. Indeed, the equation of
motion for leading centers has the form
dr B x Vo(r,z,1)

G- ietvVi=rete—

dr 3)

In the limit when the collision frequency is smaller than the
characteristic oscillation frequency, we can assume that the
longitudinal velocities are constant and represent the electric
potential in a simplified form

QD(I') = (p(x7y720 + VHt7 t)7 (94)

where z, is the particle’s initial coordinate. The respective
Hamiltonian (the two-dimensional streamfunction) is given
by the expression

¢
Y(x,y,1) = —— @(x,,20 + V)1, 1) . (95)

B
In fact, we are dealing with a Hamiltonian system with
1.5 degrees of freedom [46, 47]. Namely for this reason we
have been considering the reorganization of equipotentials in
low-frequency drift turbulence on the basis of ideas asso-
ciated with the Hamiltonian diffusion:

0P (x,y,t
Vi) = - 82 (96)
0P (x,y,t
Vy(x,y, l) = % . (97)

Thus, the scaling obtained for the effective coefficient of
turbulent diffusion can be written down, with account for
fluctuations of the electric potential, as

o (k2 7/10 s ¢ 7/10
P s /10 P
pem i (20) " wo(8)" -

The applicability of this formula was repeatedly tested in
numerical experiments, which showed that scalar particle
transport in drift turbulence is well described by the
percolation model [48-52].

9. Long-range correlations
and the Bohm scaling

The percolation approach to the description of transport in
two-dimensional drift turbulence, presented in Section 8,
neglects numerous aspects having a bearing on the configura-
tion of actual plasma traps. Indeed, the description of particle
transport in a tokamak plasma requires refinements in
accounting for the toroidal geometry of the facility. Addi-
tionally, new specific effects linked to the toroidal drift arise
here [23, 51]. Let us use the classical expression for the
magnetic field in a tokamak with concentric magnetic
surfaces [1, 2, 23, 51]:

B = (By¢ + By(r)0)(1 — er cos¥), (99)
and utilize the traditional notation for the parameters of
tokamak plasma: et = r/R, and By = erBy/q (Fig. 12). The
equations of ion motion in the tokamak magnetic field, with
account for turbulent fluctuations, take the form [53, 54]

dl'L

5= é Exb + Vb + Ug (6 cos9(r) + sin 9(1)). (100)
0

For longitudinal motion, we obtain the equation

dy e uBoer . _dz

W—EE‘— Sln07 VH E, (101)
z(1) '

0(t) = R z(t) = J V(1) de (102)

The magnetic moment is given by the expression u = V' 2/B,
and the drift velocity by the formula [23, 51]

VE+VE2  vE

d ~ ~ .
wB;R

o R (103)

Ftor

Figure 12. The onset of toroidal drift in a tokamak. Here, Vg, is the
electron drift velocity, Vy; is the ion drift velocity, Fi,, is the force creating
the toroidal drift, and j, is the current in the tokamak plasma column.
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For the problem in question, it is assumed [23] that
o=k cT/(eByL,)~(103—10%) s7! < wp ~ 108 s™!  and
that the amplitude of turbulent fluctuations lies within the
limits Uy < Vy < 10U4. In accordance with the approxima-
tions made, we get the Hamiltonian describing the motion of
plasma particles:

O(r, )+ V(1) Alr, t
H(x’y7[):6 (V )+ H() (r )+UdCOS |:9([)+1:|
B ro
(104)
Here, the notations B = rot X, x=r—ry, and y = ry0(t) are

used. As in Section 8, we are dealing with a Hamiltonian
describing a system with 1.5 degrees of freedom. This is a
classical problem in the theory of dynamical systems [55],
because chaos does not emerge in Hamiltonian systems with
one degree of freedom. Getting a description of dynamical
chaos requires the methods of statistical analysis, which
substantially complicates the application of traditional
methods of Hamiltonian dynamics. Splitting of separatrices
arising in such problems, which leads, in turn, to the
emergence of stochastic layers, results in the need to consider
specific features in the behavior of equipotentials and new
decorrelation mechanisms [56—59]. In terms of the stream-
function, we obtain

'P(xay7t):TO(X’y7[)+'}/1(X’y7I)’ <'f/0>:0 (105)

In our case, the impact of turbulent fluctuations is described

by the function

c@(r,1) Vo
B k.’

Wo(xvyvt) = (106)

The contribution of drift effects, which are related to the
toroidal drift velocity, is defined by the expression

(107)

P1(x,,t) = Uqrcos (()(z) +rl> i
0

In the framework of the scaling analysis, we have the estimate
for the ratio between characteristic velocities of the chosen
model:

VO N'Di VT‘ (DB‘R o R

~10>1 108

Us L, Vr L, > 5 (108)
eB n

= L,=—=~15 109

“B mic’ " Vn o, (109)

where we have exploited the relationship for the potential
perturbation (mixing rule):

TVn~enVo, (110)
first proposed by Kadomtsev [21], which assumes that
electrons rapidly reach equilibrium and that the problem of
transport description reduces to the analysis of ion diffusion
in plasma. It is then not difficult to give the estimate on the
amplitude of potential fluctuations:

equS”NpiN 1
T n"

~ . 111
Ln kLLn ( )

Note that we assumed earlier that the characteristic frequen-
cies (stochastic resonance) w pertaining to the decorrelation
time of drift turbulence and the frequency characterizing the
toroidal motion of particles, w. = V};/(¢R), are of the same
order of magnitude.

In the problem posed here, the decorrelation mechanism is
directly linked both to the presence of drift causing a
reconnection of equipotentials and to topology reorganiza-
tion under the conditions of low-frequency turbulence. We
introduce the Hamiltonian diffusion coefficient Dy, which
makes allowance for both these factors [54]:

Dy ~ (8¥)’0 ~ Uld*(e)o. (112)
Here, a(e) ~ Ale| " is the correlation scale in the percolation
approximation. It is convenient to write out the renormaliza-
tion condition for the small parameter in the form
T (es) = tp(es) [54]:

(6. AVo)? _L(z) (113)
Ula®(e.)w Vo
where we introduced the notation
A? L(e)
) & ) R —— 114
i)~ g )R (114)

Here, 4 is the percolation layer width. The solution of the
equation yields the scaling

. ﬂ 2/B3(14v)] L 1/[3(&'+1)]O(U2/7V73/7w1/7 V:i
* VO Ku ¢ ’ ’ 3 ‘
(115)

In the end, we arrive at the formula for the effective transport
coefficient which accounts for drift motions in the low-
frequency percolation regime:

Vo\22 1 1\ 10
Degr ox Dplato(?(j) (E) ) Dplato X U(?TB .

(116)

In the conditions of tokamak plasma, one has
Ku= Vy/(lw) =5, Vy/Uq = 10, and, consequently, the
transport indeed exceeds traditional neoclassical values in
the regimes when the collision frequency is unessential:
Deff(Kua V07 Ud) ~ 5Dplato~

It should be note that the question concerning the
transport of particles and heat in tokamaks is one of most
important, for the characteristic time 7z of plasma confine-
ment entering the Lawson fusion ignition criterion

ntg >3 x10%° sm™3 (117)
can be estimated through the effective transport coefficient:
15 o 1¢/(Derr(Bo, Ty))- Here, n is the plasma density, rg is the
minor tokamak radius, By is the magnetic field induction, and
T}, is the plasma temperature.

From the viewpoint of small-scale turbulence, the
classical estimate of the turbulent diffusion coefficient is
furnished by the gyro-Bohm scaling:

Ty pi 1 Ty 1

p4
DGBN—IDBN— — BN — X —

118
L, By L, B}’ B <3 Y
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B B Kadomtsev (left) and M K Romanovskii in 1975 at a scientific seminar
devoted to the discussion of turbulent diffusion effects in the tokamak T-3
in comparison with neoclassical estimates.

where Dy is the Bohm diffusion coefficient. As an example, at
T, =1keV and By =1T, the Bohm scaling provides
magnitudes which are one order of magnitude higher than
the observed magnitudes of Dy ~ 1—5 m?s~!. Namely for
this reason, the gyroscaling derived by Kadomtsev and
containing the factor p;/L, < 1, was considered as a more
appropriate candidate for describing plasma confinement.
However, the dependence on the magnetic field proves to be
too sharp:

2

Py
15(By) x —2— Bz,
E( 0) DGB(BO) 0

(119)
because experiments point to a much smoother dependence.

The percolation scaling presented above, which takes into
account both the drift effects and low-frequency turbulence,
allows one to obtain a smoother dependence on the magnetic
field intensity, and at the same time contains a reducing
factor:

Degr = Vo4 %iVOA%DBAT, @%8<1.

A A A

(120)

Typical parameters of emerging structures can be estimated

to an order of magnitude (Us=103ms~!, Ax=1072m,
Vo2 10~*ms~"). Calculations, in fact, yield
2o\ [ U\ |
Do = AV — — — 121
off 0<V0> <V0) OCBOG/W (121)

where AV, corresponds to the Bohm estimate by order of
magnitude. As a result, we arrive at

15(Bpy) ocBgﬁ. (122)

o
Desi(Bo)

Itis of interest to compare these theoretical estimates with the
data from experiments conducted on modern tokamaks.
Thus, in the tokamak JET (joint European torus), the scaling
1S TyET X B(?‘zﬁ [60, 61]. In the framework of ‘single-facility
scalings’ [60], one needs to allow for the invariance of
parameters f. = nT,/By = const and vex = (n/T7) Lex =
const, which leads to the degendences for temperature and
density of plasma as T, o B; /3 and n 33/3. Then, for the

gyro-Bohm scaling, we get 7z o« By, for the Bohm formula
15 o< B33, and for the percolation model 1z oc B2, It is
apparent that the percolation approach provides the best
approximation. It is also worth noting that even insubstantial
(15-20%) deterioration in plasma confinement may hinder
reaching the thermonuclear ignition in the ITER (Interna-
tional thermonuclear experimental reactor), now under
construction [61].

We see that the effects of long-range correlations— which
allow us to consider the impact of large-scale structures
forming in plasma—on transport can be analyzed with the
help of the percolation concept framed by Kadomtsev and
Pogutse.

10. Evolution of the stochastic layer and scalings

A salient feature of the results obtained by B B Kadomtsev is
their universality, owing to which their range of applicability
stretches far beyond the bounds one may anticipate based on
the assumptions made by the author. For example, work by
Isichenko [62, 63], who developed ideas of long-range
correlations, offers calculations of electron transport in a
stochastic magnetic field in the percolation approximation. A
new regime proposed by the author of these studies takes into
account both the evolution of the fractal structure of a
magnetic field tube (Fig. 13) and the particle collisional
decorrelation through the modification of the balance
between characteristic scales. Nevertheless, the final expres-
sion for the diffusion coefficient turned out to be coincident
with the scaling proposed by Kadomtsev and Pogutse [19] and
derived qualitatively.

We dwell on the main elements of the analysis made in
Refs [62, 63] in order to show how Kadomtsev’s ideas are
enriched if applied to studies of ever more complex transport
mechanisms (Fig. 14). Let us consider the stage of percolation
structure formation based on the formula for the perimeter
L(7) of a percolation cluster (shell). Then, the characteristic
correlation size will be expressed by the formula

a(t) « }LL(L/I(I)>1/DH.

We can now express the evolving width of the stochastic layer
based on the following scaling (Fig. 15):

(123)

(124)

4.

Figure 13. The evolution of a tube of magnetic field lines as a result of the
action of stochastic instability. Here, 4 is the stochastic layer width in the
percolation limit.
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In agreement with the ideas of Batchelor, Rechester, and

Dynamical Percolation Turbulence Rosenbluth [65, 66], decorrelation will ensue as a result of
chaos concept particle transitions from one field line to another when the

| !

Statistical Cascade
topography and scalars

l ‘ l

Stochastic layer

E al Percolation equipotentials I -
! Xl’f’glfﬁ“a || (Kadomtsev and Pogutse nver:ie
mstability [19], 1978) cascade
L ;
Role of drift Tearing instability

(Zeldovich [56], 1983) (Galeev, Kuznetsova,

Zelenyi [64], 1986)

Percolation streamlines /
(Isichenko et al.
[39], 1989)

¥
Flow reorganization
(Gruzinov, Isichenko,
Kalda [40], 1990)

I i

Stochastic magnetic field
and transport

Many-scale
models

Tokamaks and toroidal drift Magnetohydrodynamical flows

and the inverse cascade

Figure 14. Schematic illustrating the inception and development of the
percolation approach in application to the description of anomalous
transport under conditions of strong turbulence in the presence of large-
scale vortex structures.

L(1) x boz(1)

Y

Figure 15. Evolutionary stage of percolation structure growth. Here A is
the characteristic cell size, 4(7) is the width of the stochastic (diffusive)
layer, a(r) is the correlation scale governing the transport, and
L(1) o boz(t) is the length of the percolation stream line.

Substituting the ballistic estimate for the projection of the
path travelled by a magnetic field line onto the transverse
section of the plasma ring, L(z(t)) =~ byz(t), in this relation-
ship, we get the scaling describing the reduction in the
stochastic layer width:

il > 1/(vDu) 1

boz(1) > (boz)*T

A4,(1) fNV}LL( (125)

characteristic scale of the stochastic layer would compare
with the characteristic diffusive scale: 4, (1) = 4g4is. In our
case, it is the transverse diffusion coefficient y, of particles:

AL 1/(vDu)
| —— ~ Ay T.
“(bozm) rt

(126)

Assuming, as in the model constructed by Kadomtsev and
Pogutse, that longitudinal motions of particles bear a
diffusive character, z%(1) ~ 2y, we can resolve Eqn (126)
and determine the characteristic correlation time

_ /,Li < 7L )1/(\’+2) _ ( 7L >1/(\’+2)
T — > ~ T 2 .
1o \byy ]

This result is valid provided 7 < 7, = ﬂvi /x 1, which is correct
if the inequality

pa
<1 128

(127)

holds true, where by < 1 and z, /y < 1. As a result, we get
the expression in terms of the small percolation parameter
and characteristic model parameters:

PN 1/(v+2)
) 2
tthsf{Ai(T)} %nef(ﬂ> . (129)
A \AL

TL
Using the expression for the effective diffusion coefficient in
the percolation limit, already mentioned several times in the
preceding sections, we get the scaling

@20 P (v) gi(L(z))”D{

1/(v+2)

>
R
R

(130)

T T T AL

where we took into account that the Kolmogorov spatial scale
Ak for the development of stochastic instability is approxi-
mately equal to the mixing scale Ap,:

1 1/(v+2)
)L:<Z<)vm%8*)‘€%)~z<ﬁ> . (131)
m

As before, Py, = 1 /a is the effective portion of space
contributing to the percolation transport: L(z)=
boz = bo/2yt. On substituting, we arrive at the scaling
which describes the evolution of the stochastic layer width:

N 1/(vDu)
AL(I)N;LL<[)02(I)> 0(13/]4 )

and the expression for the effective transverse diffusion
coefficient, which coincides with the formula devised by
Kadomtsev and Pogutse:

(132)

bo\/ T 4
92 | _(v+2)/R0v+1)] - _
Di(r)m il == IBOHOl e bo s V=3
(133)
which is valid under the conditions
Y 1
1> A s (134)

boy ~ Kug
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In fact, these are the conditions of strong turbulence, for
which the percolation method has, in reality, been proposed:
Kuy, > 1[19].

These results point to the feasibility of the evolution
model being proposed. Additionally, with the help of a
similar method, one succeeds in obtaining principally
new regimes of electron transport in a stochastic magnetic
field in the presence of effects of unsteadiness [55, 62-64,
67], which proves the efficiency of models that can be
treated analytically. The percolation approach to the
description of anomalous transport in plasma under
conditions of strong turbulence was only B B Kadomtsev’s
first step in the search for mechanisms of self-organization
liable for plasma confinement in tokamaks [59, 68—71]. It is
actively being developed at present as well [69, 70]. One
may with certainty argue that this and other ideas of Boris
Borisovich will invariably attract newer and newer
researchers.

11. Conclusion

This paper considers models proposed by B B Kadomtsev
to describe turbulent diffusion. We discuss some of the
current approaches to the description of the effects of ‘long-
range correlations’, which are directly based on the ideas of
B B Kadomtsev concerning the diffusive renormalization of
quasilinear equations, the percolation approach to the
description of strong turbulence, and the impact of
stochastic instability and transverse diffusion of plasma
particles on transport in a ‘braided’ magnetic field. It is
shown that the methods of analysis developed by
B B Kadomtsev carry an immense ‘heuristic potential’ and
will undoubtedly influence further advancement of the
turbulent transport theory.
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