
Abstract. Bernstein's classical paradox of a regular colored-
faced tetrahedron, while designed to illustrate the subtleties of
probability theory, is strongly flawed in being asymmetric.
Faces of tetrahedron are nonequivalent: three of them are
single-colored, and one is many-colored. Therefore, even prior
to formal calculations, a strong suspicion as to the independence
of the color resulting statistics arises. Not so with entangled
quantum states. In the schematic solutions proposed, while
photon detection channels are completely symmetric and
equivalent, the events that occur in them turn out to be statisti-
cally dependent, making the Bernstein paradox even more
impressive due to the unusual behavior of quantum particles
not obeying classical laws. As an illustrative example of the
probability paradox, Greenberger±Horne±Zeilinger multiqu-
bit states are considered.

An important role in the history of the advancement of

science has been played by conflicting viewsÐparadoxes.

Two kinds of views come into contradiction with each other,

and this results in the further progress of science, which

gives rise to the development of this conflict.

L I Mandelstam

The words placed as epigraph to this paper were pronounced
by L I Mandelstam when delivering a lecture on selected
problems of opticsmore than 80 years ago [1]. L IMandelstam
emphasized the important role of paradoxes in the course of
education: ``There are two stages of comprehension,'' he said,
``The first one is when you have studied some problem as if
you know everything you need, but still cannot answer
independently a new question relating to the problem under
study. And the second degree of comprehension is when a
general picture, a clear understanding of all relations emerges.
We call those questions which cannot be answered without
achieving this second degree of understanding the paradoxes.
Analyzing such paradoxes is highly beneficial for achieving
complete comprehension'' (Ref. [1, p. 8]).

Progress in quantum optics in the last several decades
abounds in the formulation and solution of a variety of
paradoxes, which favor a deeper understanding of the
features of entangled quantum states. Cases in point are the

Einstein±Podolsky±Rosen (EPR) paradox [2]1, Bell's theo-
rem, inequalities, and a series of paradoxes [10], and the
Greenberger±Horne±Zeilinger (GHZ) paradox [11, 12] (see
also review [13]). The last named paradox is remarkable in
that, unlike Bell's inequalities, it boils down to the equality of
the type �1 � ÿ1, i.e. the classical description of experiment
results in�1, while the quantum one yields minus unity. This
enhancement of the effect is achieved through increasing the
number of observers, who record triples, quadruples, etc. of
correlated photons. At the same time, not only is �1 � ÿ1
realized when the number of observers is greater than two, but
also statistical inequalities like Bell's ones become stronger,
i.e. the contrast between quantum and classical results
becomes greater. In this regard, of interest is the recurrent
generalization of Clauser±Horne±Shimony±Holt inequalities
[14] to the case of an arbitrary number of observersÐ the
Mermin±Ardehali±Belinsky±Klyshko paradox [15±17] (see
also Refs [18, 19])Ðand several inequalities which take into
account actual detection loss [20, 21]. Also amazing is the
nonlinear beam splitter paradox [22]. The number of
references to paradoxes in optics may be extended; the
authors of Refs [23±28], for instance, discuss Zeno's para-
dox, which casts doubt on the principle of causality itself, i.e.
quantum nonlocality manifests itself not only in space, but
also in time (see also book [29] and a recent paper [30]).

Why has the interest in this subject area not declined to
date? An important role in the quest for an adequate
interpretation of the quantum theory is played by the
revelation of inherently nonclassical effects whose descrip-
tions by quantum and classical theories are radically
different. Strictly speaking, it was precisely an effect of this
kindÐan ultraviolet catastropheÐ that marked the begin-
ning of the new area in physics.

There is a long-established prejudice that the passage from
quantum physics to classical physics is accomplished by
letting Planck's constant h tend to zero. If this were so, the
classical description would be merely a special case of the
quantum one. But, in reality, there are radical differences
between them in a large number of cases, whereas the decrease
in hwould entail only quantitative changes. A qualitative step
ensues only at h � 0. This is attested to not only by a variety of
macroscopic quantum effects (like current quantization in a
superconducting closed loop or the squeezing of quantum
fluctuations of the quadrature component of a light field), but
also by the above-listed family of quantum paradoxes, which
are inconsistent with our usual classical intuitions.We call the
reader's attention to one suchlike paradoxÐ the quantum
analogue to Bernstein's paradox [31]. This paradox is,
perhaps, not as impressive as quantum nonlocality or
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causality violation, but is, in our view, also quite interesting
and highly instructive.

The classical Bernstein paradox (see, for instance,
Refs [32, 33]) serves as a perfect illustration of the nontrivi-
ality of criteria for the statistical independence of random
processes. When there are more than two such processes, one
would think that a conclusion about their independence
follows obviously from all possible pairwise statistical
independences, by analogy, for instance, with the following
fact: from the pairwise equality of all numbers entering into
some closed set there necessarily follows the equality among
all numbers of this set. This `common sense', however, is far
from the truly sufficient criterion for statistical independence,
and intuition fails in this case.

Concerning three events, A, B, and C, their pairwise
independence alone,

P�AB� � P�A�P�B� ; P�AC� � P�A�P�C� ;
P�BC� � P�B�P�C� ; �1�

whence it follows that

P�A�P�B�P�C� � �P�AB�P�BC�P�CA��1=2 ;
may prove to be insufficient for the independence of all three
events. To ascertain this proposition, we take, following
Ref. [33], a regular tetrahedron, whose three faces are single-
coloredÐred (R), green (G), and blue (B)Ðand whose
fourth face is many-colored, or, more precisely, tri-colored,
i.e. contains all three colors (Fig. 1). We throw the tetra-
hedron on a table. Let event R consist of the tetrahedron
having fallen on the face painted with a red color. The
probability of event R, like the probabilities of the other two
possible events, G and B, is defined in a similar way:

P�R� � P�G� � P�B� � 2

4
� 1

2
; �2�

because there are only four outcomes (the number of
tetrahedron faces) and two faces correspond to every
eventÐa single-colored face and the many-colored one.

It is easy to calculate the intersection probabilities of any
of the two events under consideration, because only one
many-colored face corresponds to the simultaneous occur-
rence of two colors:

P�RG� � P�RB� � P�GB� � 1

4
: �3�

Therefore, the pairwise independence conditions (1) are
fulfilled, but the intersection of all three events, RGB, is also
favored by the fall on the many-colored face, namely,

P�RGB� � 1

4
6� P�R�P�G�P�B� � 1

8
: �4�

Consequently, in the aggregate, the events under considera-
tion have turned out, against all expectations, to be
statistically dependent, and to state their independence
requires supplementing conditions (1) with fulfillment of the
right-side equality in expression (4). In the general case of N
events, it is required to verify 2N ÿNÿ 1 conditions.

Although this paradox is amazingly beautiful, from the
very beginning one feels that there must be a catch to it. For
the tetrahedron faces are not equivalent: three are single-
colored, and one is many-colored. That is why a suspicion
creeps in even prior to performing formal calculations. But in
the quantum world it is possible to avoid this `stretch'. There,
more freedom is present in the behavior of elementary
particles, and complete design symmetry is attainable.

As noted above, a number of paradoxes related to
entangled states with discrete or continuous quantum vari-
ables have been theoretically predicted in optics and experi-
mentally tested over the last few decades. We recommend the
reader to turn to review [34] to familiarize himself with the
methods of generating quantum states with continuous
variables, and to recent review [13] to familiarize himself
with the methods of generating quantum states with discrete
variables. Below, we discuss another possibility for observing
a quantum paradoxÐan analogue to the classical Bernstein
paradoxÐby the example of entangled states with discrete
variables, for which we consider three- and four-photon
states.

We address ourselves to three-cubit and four-cubit GHZ
states:

jGHZ3i � 1���
2
p ÿjHHHi � jVVVi� ; �5�

jGHZ4i � 1���
2
p ÿjHHHHi�jVVVVi� ; �6�

where use is made of the following notation:

jHHHi � jHijHijHi � j1iaHj0iaVj1ibHj0ibVj1icHj0icV ;

jVVVi � jVijVijVi � j0iaHj1iaVj0ibHj1i bVj0icHj1i cV :
�7�

A similar representation may be written out for the four-cubit
states. Next, let jHi � j1iaH � â a�

H j0iaH be the single-photon
state of mode a with horizontal polarization (j0iaH is the
vacuum state). Similarly, jVi � j1iaV � â a�

V j0iaV is the single-
photon state of mode a with vertical polarization. The
production â� and annihilation â operators for a mode of
the same polarization satisfy ordinary commutation rela-
tions:�

â g
F ; â

g�
F

� � 1 ; F � H;V ; g � a; b; c : �8�

Operators relating to different modes and polarizations
commute with each other.

The vector of the jGHZ3i quantum state is not factorable:
it cannot be represented in the form of the product

jGHZ3i 6� jc aijcbijc ci ; jc ji � 1���
2
p ÿjHi � jVi� :

It is precisely such states that are termed entangled [13, 35].
The state of polarization in them is `entangled' with a concrete
triplet of photons: all three photons are polarized either in one

R

R

B

B

G

R

R

B

G

G

Figure 1. Tri-colored regular tetrahedron, which serves to demonstrate the

classical Bernstein paradox.
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plane or in the orthogonal one. Meanwhile, the polarization
of every single photon in one channel will be absolutely
random. Only the triple correlation is not random.

The simultaneous generation of three photons (a pump
photon of frequency op decays into three photons a, b, and c
with frequencies op � oa � ob � oc) is possible in nonlinear
crystals or optical fibers due to cubic nonlinearity w �3� under
the action of coherent laser light [36, 37]. In this case, it is
possible to achieve perfect correlation of the polarization
states of all three photons: they all are polarized either
horizontally (H) or vertically (V).

Those readers who do not want to delve deeply into the
subtleties of the mathematical substantiation of correlation
calculations may go over directly to Fig. 2.

To describe the correlation properties of three-cubit GHZ
states, we take advantage of the normally ordered character-
istic function [38, 39]

C3�Z; x� � Tr

�
r
Y

j�a;b; c
Q̂H�Zj� Q̂V�xj�

�
; �9�

where r � jGHZ3ihGHZ3j is the state density matrix.
Operators Q̂H have the form

Q̂H�Zj� � exp �Zjâ j�
H � exp �ÿZ �j â j

H� ; �10�

and Zj is a complex coefficient. The averaging in expression (9)
is performed over the states of all modes. The derivatives of
characteristic function (9) with respect to Zj, Z

�
j result in

normally ordered moments of the production and annihila-
tion operators.

Since we are dealing with single-photon states inmode (5),
in the calculation of the characteristic function (9) it is
expedient to restrict ourselves to the expansion of exponen-

tial functions (see below) as follows:

exp �Zjâ j�
H � � 1� Zjâ

j�
H � . . . ;

exp �ÿZ �j â j
H� � 1ÿ Z �j â

j
H � . . . ;

and, on their substitution into expression (9), retain only
the terms containing the first powers of coefficients Z, Z �,
x, x �. As a result, prior to calculation of the trace we
have

C3�Z; x� � Tr
ÿ
r�ĤaĤbĤc � V̂aV̂bV̂c�

ÿ �Zaâ a
HZbâ

b
HZcâ

c
Hx
�
a â

a
Vx
�
b â

b
Vx
�
c â

c
V � h:c:�� ; �11�

where h.c. signifies Hermitian conjugation:

Ĥj � 1ÿ jZjj2 n̂ j
H ; V̂j � 1ÿ jxjj2 n̂ j

V ; j � a; b; c ;

and n̂ j � â j�â j is the photon number operator.
According to expressions (10), (11), the correlation of

photon triplets (or mixed photon moments) with horizontal
polarization is defined as

G
�3�
H � hn̂ a

Hn̂
b
Hn̂

c
Hi � Tr �r n̂ a

Hn̂
b
Hn̂

c
H�

� �ÿ1�3 q6C�Z; x�
qZa qZ �a qZb qZ

�
b qZc qZ

�
c

����
Z�Z ��0

: �12�

Triple correlations with vertical polarization are defined in a
similar way: G

�3�
V � hn̂ a

Vn̂
b
Vn̂

c
Vi. It is easily seen that photon

number correlations for orthogonal polarizations are absent.
The moments of the number of photons in the form (12) are
pseudoclassical and may be defined in terms of joint
cumulants using classical formulas [31].

Purely quantum correlations are contained in the inter-
ference terms of expression (11). The quantum Bernstein
paradox is related to precisely these two terms. In accordance
with expression (11), the superposition of sixth-order field
correlations is given by

G �6�HV � hâ a�
H â b�

H â c�
H â a

Vâ
b
Vâ

c
Vi � c:c:

� �ÿ1�3 q6C�Z; x�
qZa qZb qZc qx

�
a qx

�
b qx

�
c

����
Z�x ��0

� c:c: ; �13�

where c.c. signifies complex conjugation.
We emphasize that all operators in expression (13) apply

to different modes, which differ in polarization or frequency.
The photodetector response is related to the photon number
operator. In themeasurement of correlations of the form (13),
this expression should be transformed so as to contain photon
number operators.

A possible experimental arrangement is depicted in Fig. 2.
Each photon of a photon triplet arrives at a polarization
Wollaston prism (see Fig. 2), which divides orthogonal
polarizations into two directions: towards photodetectors
`�' or `ÿ' (the reason for this notation will be clear from the
subsequent analysis). In this case, the prisms are symmetri-
cally oriented relative to the H and V polarization directions,
i.e. at an angle of p=4 to them. This is all done to achieve
perfect equivalence of the channels. Such a prism comprises,
in fact, a 50% beam splitter. In the Heisenberg representa-
tion, its action in channel a is described by the following

ÿ

ÿ

+

+

c

b

a

ÿ

+

Figure 2. Schematic of the three-photon quantum realization of the

Bernstein paradox: correlated photon triplets with arbitrary orientations

of polarization planes but strictly correlated relative to each other are

generated in the nonlinear medium under a laser pump incident from the

left. The photons next arrive at polarization Wollaston prisms which

separate the photons with mutually orthogonal polarizations and direct

them to positive and negative detection channels. In this case, all pairwise

probabilities of the simultaneous detection of two plusses are found to be

equal to the product of single probabilities, which seemingly testifies to the

independence of the events, but the probability for the detection of three

plusses is not.
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relations

â a
� �

1���
2
p ÿ

â a
V � exp �ija� â a

H

�
;

â a
ÿ �

1���
2
p ÿ

â a
V ÿ exp �ija� â a

H

�
:

Here, â a
� and â a

ÿ are the photon annihilation operators
corresponding to the light traveling towards photodetectors
`�' and `ÿ' in channel `a', while operators â a

H and â a
V pertain

to light polarizations at the input to the beamsplitter
polarization prism, and ja is the relative phase delay between
the orthogonally polarized photons in channel a. Similar
relations apply to the other two channels, `b' and `c' (also on
the strength of their equivalence).

The photon number operators at the input of the
photodetectors, which are assumed to be ideal for simplicity
(possessing unity quantum efficiency), are expressed as

n̂ a
� � â�� â� ; n̂ a

ÿ � â�ÿ âÿ ; n̂ b
� � b̂�� b̂� ;

n̂ b
ÿ � b̂�ÿ b̂ÿ ; n̂ c

� � ĉ�� ĉ� ; n̂ c
ÿ � ĉ�ÿ ĉÿ :

�14�

The difference between photon number operators after
the beam splitter, for instance, in channel `a', has the form

N̂a� n̂ a
� ÿ n̂ a

ÿ�exp �ÿija� â a�
H â a

V � exp �ija� â a�
V â a

H : �15�

The value of the N̂a operator averaged over theGHZ state
(5) is equal to zero: hN̂ai � 0. At the same time, the average
number of photons recorded by photodetectors `�' and `ÿ'
separately is hn̂ a

�i � hn̂ a
ÿi � 1=2, i.e. the probabilities are the

same and equal to 1/2.
The N̂a operator, which describes the events in channel a,

should be ascribed the numerical value �1 or ÿ1, depending
on whether the photon is recorded by photodetector `�' or
`ÿ'. For two other channels, b and c, the situation is similar.
Photon detection represents, therefore, a dichotomous
event.

The correlation value to record photons simultaneously in
two channels, for instance, in channels a and bÐ the event
described by operator N̂ab � N̂aN̂b Ðalso turns out to be
equal to zero: hN̂abi � 0. The results of experiment are given
in Table 1.

The photon correlation is defined by the expression

hN̂abi � hN̂aN̂bi � 1

2

1

2
� 1

2

�
ÿ 1

2

�
�
�
ÿ 1

2

�
1

2

�
�
ÿ 1

2

��
ÿ 1

2

�
� 0 ;

and events in channels a and b turn out to be uncorrelated. It
is evident that events in channels a and c are also so, as are
those in channels b and c.

The picture is radically different in the observation of
triple events. The average value of triple photon number
correlations is defined as

hN̂aN̂bN̂ci � hGHZ3jN̂aN̂bN̂cjGHZ3i
� G �6�HV � cos�ja � jb � jc� : �16�

The triple photon correlations implement the measure-
ment of the G �6�HV correlation (12) in the setup under
consideration. They exhibit a periodic dependence on the
phase delays in detection channels (see also Ref. [13]). The
pairwise photon correlations considered above do not exhibit
this dependence.

Let the phase delays satisfy a condition ja � jb � jc � 0
and, consequently, hN̂aN̂bN̂ci � G �6�HV � 1. The results of the
simultaneous recording of three photons in the case of interest
are presented in Table 2.

As is clear from Table 2, only 4 out of 23�8 possible
outcomes are realized in the three-photon recording. In this
case, the probabilities of recording photons in each of the
detection channels `�' and `ÿ' are equal to (1/2), in
accordance with the results obtained above. The pairwise
`�' probability is equal to 1/4 in any two channels. The events
in the channels seemingly are again statistically independent,
but the probability of all three being `�' is also equal to 1/4.
On the one hand, this confirms the nonfactorable character of
state (5); on the other hand, this is a complete reproduction of
the statistical Bernstein paradox. It is significant that the
channels are perfectly equivalent, i.e. the paradox is imple-
mented `in pure form', unlike the tetrahedron case.

In the classical Bernstein paradox, triple correlations are
attributable to the tetrahedron configuration, i.e. to its
structure, while in the arrangement shown in Fig. 2 they are
attributable to the structure of the GHZ state (5). The
polarization beam splitters transform this initial structure,
and the dependence of the result on phase delays confirms the
wave nature of quantum objects. As a result, the experiment
under consideration also exhibits a specifically quantum
character, which is nonexistent in the classical Bernstein
paradox.

One can see from Table 2 that the probability of
simultaneously recording three photons by detectors `ÿ' is
equal to zero, while the probabilistic situation with the
recording by one and two detectors is the same as in the
previous `�' case. The aforesaid suggests the following
conclusion. From the standpoint of recording three plusses,
the photons are correlated, and from the standpoint of
recording three minuses, the photons turn out to be anti-
correlated. It is easily seen that the situation with the
detection of three photons simultaneously is inverted if we
take a value of hN̂aN̂bN̂ci � ÿ1. When a value of
cos �ja � jb � jc� � 0 in expression (16) is selected, the
photon correlation in the detectors is completely lacking.

It is pertinent to note that some idealization of the
experimental setup, which implies the utilization of photo-

Table 1. Photon detection realizations in channels a and b; � (ÿ)
corresponds to recording by detector `�' (`ÿ').

a b

�
�
ÿ
ÿ

�
ÿ
�
ÿ

Table 2. Photon detection realizations in channels a, b, and c; � (ÿ)
corresponds to recording by detector `�' (`ÿ').

a b c

�
�
ÿ
ÿ

�
ÿ
�
ÿ

�
ÿ
ÿ
�
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detectors with a unity quantum yield, will not impair anything
in practice: it is easily comprehended that account should be
taken of only those experimental realizations in the final list in
which all three detectors were actuated; the remaining
realizations should be discarded.

Even more impressive is the four-channel version of the
experiment involving a four-cubit state (6), i.e. the simulta-
neous detection of quadruples of entangled photons. To form
this state, use can be made of piezocrystals which possess
quadratic nonlinearity w �2� usually attended by fourth-order
nonlinearity w �4�, although the latter is considerably weaker
than w �2�, i.e. one would have to wait for the emergence of a
quadruple of photons for a relatively long time (much longer
than for the emergence of a correlated photon pairÐa
biphoton). In this connection, certain hopes may be pinned
on the use of aperiodic photonic crystals [40, 41], which
implement quasiphase-matched parametric interactions.
These are precisely the states which were first proposed for
the realization of the quantum GHZ paradox (see, for
instance, Ref. [17]).

As in Fig. 2, we introduce beam-splitting prisms with the
same spatial orientation into the channels. If a difficulty arises
in that the photon quadruples should now possess alternately
one plane polarization and a mutually orthogonal one, it is
possible to mount two crystals with a common laser pump,
one of the crystals producing photons of one polarization and
the other producing mutually orthogonally polarized
photons, as shown in Fig. 3. The result will be the same.

Calculations similar to those made earlier lead to the
same average, i.e. to perfect correlation of the product
hN̂aN̂bN̂cN̂di, provided that equality cos �ja�jb�jc�jd��1
holds true:

hN̂aN̂bN̂cN̂di � G �8�HV � 1 : �17�

The experimental outcomes possible in this case are
collected in Table 3.

Only 8 out of possible 24 � 16 outcomes are realized here.
The probabilities for the occurrence of � and ÿ in every
channel are, of course, equal (1/2). The pairwise probability
of recording + is equal to 1/4 in every channel pair.
Furthermore, the probability of three plusses occurring is
also equal to 1/8, i.e. there are better grounds to draw a
conclusion about the statistical independence of the events in
different channels than in the previous case. Everything is
`marred' by the probability of the occurrence of all four
plusses: it is equal to 1/8!

A further increase in the number of channels would yield
even more paradoxical results. Such are the possibilities of
entangled quantum states.

As noted byMBMensky, a classical analogue of the four-
channel version described above is a regular octahedron
painted with different colors, with the understanding that
the results of photon detection given in Table 3 are considered
the reproduction of equiprobable outcomes of polyhedron
faces. Also, a many-colored regular dodecahedron may be an
analogue of the three-channel scheme.

Putting plusses and minuses on every octahedron face
according to the rows of Table 3 simplifies the situation still
further. The paradox is also implemented in this manner.

So, our proposed quantum paradox, strictly speaking, is
not such in a pure form: its results may be imitated by regular
classical polyhedrons. The special quantum nature may be
seen in that our experimental setups are perfectly symme-
trical. The colored polyhedral figures are not symmetrical,
and the asymmetrical result of experiments with them
(throwing on a table) is a consequence of precisely this
structural asymmetry. The asymmetry of the quantum result
for a symmetric quantum scheme is a consequence of the
special nature of purely quantum entangled states. In this
sense, our paradox is purely quantum, indeed.

We emphasize once again that the quantum Bernstein
paradox demonstrates clearly the peculiarities of entangled
quantum states in probabilistic terms. A consequence of
these peculiarities is the violation of relationships derived
from the standpoint of classical calculations Ð a fact which
has been experimentally demonstrated more than once, as
noted at the beginning of the paper. No classical signals or
wave packets can produce a like effect. Only three- and
larger-component entangled quantum states of photons,
spins, phonons, etc. permit demonstrating the Bernstein
paradox in its most impressive, attractive, and nontrivial
embodiment.
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Figure 3. Schematic of the four-photon quantum realization of the

Bernstein paradox: two nonlinear crystals generate correlated photon

quadruples under the action of a common laser pump, one crystal

producing photon quadruples only in one polarization plane, and the

other crystal producing them in the mutually orthogonal plane. The

photons from adjacent channels are then mixed using beam splitters,

which are polarization Wollaston prisms, and directed to a detector with

the sign � or sign ÿ.

Table 3. Photon detection realizations in channels a, b, c, d: � (ÿ)
corresponds to recording by detector `�' (`ÿ').

a b c d

�
�
�
�
ÿ
ÿ
ÿ
ÿ

�
�
ÿ
ÿ
�
�
ÿ
ÿ

�
ÿ
�
ÿ
�
ÿ
�
ÿ

�
ÿ
ÿ
�
ÿ
�
�
ÿ
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