
Abstract. We review the evolution of the cosmic ray diffusion
concept from the ordinary (Einstein) model of Brownian motion
to the fractional models that appeared in the last decade. The
mathematical and physical foundations of these models are
discussed, as are their consequences, related problems, and
prospects for further development.

1. Introduction

The physical foundations for the applicability of the classical
isotropic diffusion model to the description of the propaga-
tion of cosmic rays in the Galaxy can already be found in the
pioneering papers by Fermi and Ginzburg. In his first paper
on the nature of cosmic rays [1], Fermi proposed a hypothesis
that ``cosmic rays originate and are accelerated primarily in
the interstellar space, although they are assumed to be
prevented by magnetic fields from leaving the boundaries of
the galaxy... . Such fields have a remarkably great stability
because of their large dimensions (of the order of magnitude
of light years), and of the relatively high electrical conductiv-
ity of the interstellar space. Indeed, the conductivity is so high
that onemight describe themagnetic lines of force as attached

to the matter and partaking in its streaming motions... . The
evidence indicates, however, that this matter is not uniformly
spread, but that there are condensations where the density
may be as much as ten or a hundred times as large and which
extend to average dimensions of the order of 10 parsec... .
Such relatively dense clouds occupy approximately 5 percent
of the interstellar space'' [2]. Fermi argued that the accelera-
tion of a particlemoving in the interstellar spacewas the result
of its scatterings in collisions with magnetized clouds.

Five years later, Ginzburg wrote: ``The motion of charged
particles in the interstellar space resembles Brownian motion
ormotion ofmolecules in a gas. Indeed, due to the presence of
the interstellar magnetic field, in the region where this field is
quasihomogeneous, the trajectory of a particle winds around
a magnetic field line and, upon averaging over the rotation
period, is close to a straight line. However, on passing to a
region with a different field direction, the trajectory changes
and becomes a broken line as a whole. If the size of regions
where the field direction noticeably changes is small com-
pared to that of regions with a quasihomogeneous field, the
particle motion can be treated as themotion of amolecule in a
gas: the motion is free in the homogeneous field, and a change
in the velocity direction at a boundary is similar to a collision
with another molecule and can be usually assumed instanta-
neous. Hence, the size of the region with a quasihomogeneous
field plays the role of the mean free path l. The mean free time
is t � l=v0, where v0 is the translational velocity along the
trajectory, which is by an order of magnitude equal to the
usual velocity of the particle itself (and we therefore assume
below that t � l=v, where v is the particle velocity). If
magnetic fields do not change in time, this collision process
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leads only to the diffusion of particles and the `mixing' of their
velocities over directions but not to a change in the energy of
the particles. It is known from the diffusion theory that the
mean square distance L propagated by a particle in a time t is

L �
��������
6Dt
p

�
������
lvt
p

;

where D � lv=3 is the diffusion coefficient. According to
astronomical data, l > 1019 cm in the interstellar medium,
and for v � c and t � T � 1016 s (the proton lifetime), we
obtainL � 3� 1022 cm, which is of the order of the size of the
Galaxy. Therefore, for l < 1019 cm, protons, and all the more
so nuclei, have no time to escape in great numbers from the
Galaxy'' [3, pp. 368, 369].

Of course, it was clear from the very beginning that the
intricate cosmic-ray transfer process cannot be fully described
by the classical diffusion model. Ginzburg and Syrovatskii
write in the first monograph on cosmic rays [4]: ``The high
degree of isotropy of cosmic rays was one of the first
indications that cosmic rays fall on Earth not directly from
sources but after complicated motion and scattering in
interstellar magnetic fields. This motion can be considered a
`diffusion' of cosmic rays in the interstellar space during
which particles `forget' about their initial direction of
motion. However, the determination of the real nature of
this diffusion is a quite challenging problem.'' Giving the
model of the adiabatic motion of particles along field lines the
due credit, the authors point out that the necessary condition
for this motion (the radius of curvature being much smaller
than the size of inhomogeneities of the magnetic field) is not
satisfied everywhere, and its violation (in shock waves with a
small front width or in regions with a zero magnetic field
strength) eventually leads to the diffusion process.

Despite such apparently intuitive and phenomenologi-
cal,1 rather than physico-mathematical, foundations, the
diffusion direction in cosmic-ray physics exists and is still
being developed. To account for a change in the energy
spectrum of particles with the distance from their source due
to ionization, synchrotron radiation, and additional accelera-
tion by fluctuations of magnetic fields, shock waves, and
supernova remnants, the energy dependence was introduced
for the only material parameter in the isotropic diffusion
model, the diffusion coefficient. In view of the observed
decrease in the fraction of secondary nuclei with energy, the
diffusion coefficient was approximated by a power-law
function

D�E � � D0E
d ; �1�

where E is the particle energy in GeV, with the exponent
d ' 0:3ÿ0:7, which was consistent, in particular, with the
data on the cosmic-ray anisotropy [6].

Along with the isotropic model, the anisotropic diffusion
model is widely used in local problems of galactic cosmic-ray

transfer. This model was initially developed in theoretical
studies of the motion of charged particles in quasihomoge-
neous regions with a fluctuating magnetic field slightly
different from a constant homogeneous field. The develop-
ment of this model led to the separation of the diffusion of
charged particles into the longitudinal and transverse
components, each of which was described by a diffusion
equation of the corresponding dimension with its own
diffusion coefficient [7±10]. The transverse diffusion was the
first example of anomalous diffusion. The transverse diffusion
anomaly was manifested not only in its slowness compared to
the normal diffusion (which could be achieved by simply
introducing a smaller diffusion coefficient) but also in a
different expansion law for a diffusion packet and its
different shape. Some authors believe that the local inter-
pretation of such a composite model of anomalous diffusion
(compound diffusion) can be extended to the entire galactic
disc. For example, Hayakawa writes: ``In this model,
interstellar magnetic fields are assumed almost homoge-
neous along spiral sleeves. Particles are drifting along field
lines and are reflected at mirror points... . Particles captured
and kept on a field line continue to diffuse... in accordance
with the chaotic motion of the field line... . Because the
magnetic field is homogeneous only at the distance of a few
kiloparsecs, we can assume that particles have escaped from
the Galaxy if they have propagated a path longer than the
field homogeneity length'' [10].

Papers byUrch [11, 12] devoted to the study of themotion
of charged particles in random magnetic fields can probably
be considered forerunners of the appearance of fractional
derivatives in the cosmic-ray phenomenology. Discussing the
applicability of the Fokker±Planck equation under the
assumption that the trajectories of particles propagating
along the unperturbed trajectory over distances many times
exceeding the correlation length are only slightly perturbed
and a number of other conditions are satisfied (the gyroradius
r 0g of particles due to the field perturbation is negligibly small
compared to the correlation length Lc of the field, the
stochastic magnetic field consists of unpolarized AlfveÂ n
waves propagating along the main field H0 directed along
the z axis, and the velocity v of particles greatly exceeds the
AlfeÂ n wave velocity), Urch reaches the conclusion that for

vz
v
<

������
Lc

r 0g

s
;

the Fokker±Planck equation leading to Fick's law
Jx � ÿD qf=qx of normal diffusion is inapplicable. Urch
performed calculations not related to the Fokker±Planck
equation and found that the relation between the transverse
component Jx of the particle current density and their
concentration N in the given problem under consideration
differs from the usual Fick law by the presence of the third
derivative instead of the first one:

Jx � ÿDkD2
L

q3f
qx 3

:

In [11, 12], fractional derivatives were not mentioned, but
Webb and coauthors [13] later noticed that the Urch formula
in conjunction with the continuity equation

qf
qt
� qJx

qx
� 0

1 In this connection, we quote a remarkable note by Heisenberg [5]: ``A

`phenomenological' theory is understood as the formulation of regularities

in the field of observed physical phenomena that does not attempt to

reduce the described relations to the underlying general laws of nature

throughwhich they could be understood. Such phenomenological theories

have always played a considerable role in the development of physics... . Of

course, phenomenological theories are always developed where the

observed phenomena cannot yet be reduced to the general laws of

nature. The reason for this can be either an extreme complexity of these

phenomena, which makes such a reduction impossible because of

mathematical difficulties, or the lack of knowledge about these laws.''
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leads to an equation with the fourth derivative with respect to
the coordinate,�

q
qt
ÿDkD 2

L

q4

qx 4

�
f �x; t� � 0 :

Factoring the operator in the left-hand side of this equation,

q
qt
ÿDkD 2

L

q4

qx 4
�
� �����

q
qt

r
�

������
Dk

q
DL

q2

qx 2

�
�
� �����

q
qt

r
ÿ

������
Dk

q
DL

q2

qx 2

�
;

formally leads to a fractional differentiation operator (of the
order 1=2).

The next paper ``in the vicinity of a fractional derivative''
was preprint [14], where various compound-diffusion regimes
were investigated in more detail. The description of one of
these regimes resulted in an equation close to the one with a
fractional derivative (see the details in [15]). The equation
involved an integral of the solution over the time interval
preceding the observation instant, which can be interpreted as
a peculiar effect of `magnetic traps', characteristic of plasma
dynamics [16]. At the same time, estimates in [6, p. 90] based
on a comparison of the anisotropy d � 10ÿ3 and the mean
free path L9 1021 cm in the disc with the size of the disc itself
confirmed the old assumption in [17] that ``cosmic rays
cannot freely propagate along the disc but should also
efficiently shift in the transverse direction. Such a motion
can be caused by themixing and entanglement of lines of force
themselves, which carry the frozen relativistic cosmic-ray gas
away to the disc boundaries. Thus, something similar to
diffusion should obviously take place.''

However, it is reasonable to assume that calculations of
the transverse diffusion performed in the perturbation theory
approximation should not be extended to longer times,
because this method exhausts its possibilities as the cumula-
tive effect of the perturbations builds up. For example, the
calculations in [18] showed that the direct solution of the
compound diffusion problem, which can be obtained in a
simple model, also gives the normal diffusion in transverse
directions in the long-time asymptotics. The authors of [18]
also showed that this conclusion can be obtained in the
perturbation theory by changing the sequence of averaging
procedures. This remarkable fact emphasizes that calcula-
tions based on the perturbation theory should be treated with
caution.

Another important aspect of the propagation of galactic
cosmic rays is the convection transfer mechanism caused by
large-scale motions of a medium as a whole with a convection
velocity u�r; t�. ``The large-scale motions of a medium can be
random, and then on the average at scales greatly exceeding
the main turbulence scale L, the motion of particles in some
cases (forD5 uL=3) is reduced to diffusion with the effective
turbulent diffusion coefficient of the order of uL=3'' [6]. The
most important difference between turbulent diffusion and
molecular diffusion is the nonlocal (specifically, spatially
nonlocal) character of the former: the presence of vortex
formations at different scales gives rise to long-range spatial
correlations of the velocity field.

Following the evolution of the diffusion model as
additional information is being gradually included, we infer
that imitation possibilities of the model are already nearly

exhausted. The reason for this is clear: the diffusion process is
determined by the only parameter (except the space±time
scales), the diffusion coefficient, and this single parameter
(even if split into components, as in the case of compound
diffusion) is insufficient. The natural way out, by replacing
the diffusion coefficient with its random analog and subse-
quently averaging the equation and obtaining its averaged
solution, was mathematically found only in the case of small
fluctuations, which are of minor interest in our problems: in
the turbulent interstellar space, a major role is played by large
fluctuations alternating with different-scale voids and char-
acterized by long-range power-law correlations. To describe
the transfer of such a `ragged' ( fractal ) medium, a special
mathematical apparatus was required, and it was developed
in the framework of fractional calculus.

The introduction of the method of fractional derivatives
for solving a number of relevant problems [19, 20] was
stimulated by the use of the fractional differential technique
in [21, 22] and our experience, described in [23], of working
with stable non-Gaussian distributions. The appearance of
two new parameters, the spatial �a� and temporal �b�
fractional-order derivatives, remarkably extended the family
of solutions of the diffusion equation, formally preserving its
form. The most important feature of new solutions is the
power law of their asymptotic behavior, which is in excellent
agreement with the known properties of the turbulent
interstellar medium, the Fermi acceleration mechanism, and
other processes affecting cosmic rays. At the same time, the
fractional differential approach, unlike other nonlocal
approaches, demonstrated a peculiar `correspondence princi-
ple', incorporating normal diffusion as a particular case
corresponding to a � 2 and b � 1.

Beginning from the abovementioned works, a series of
papers developing this area were published over more than a
decade. But in hindsight, reviewing these papers have shown
the scarcity of a clear physical motivation for introducing
fractional derivatives. The treatment was dry and laconic, and
the papers (although most of them were reports presented at
conferences on cosmic rays) mainly contained formulas that
the readers were not familiar with, plus traditional numerical
materials: plots, tables, and comparisons with experimental
data, which apparently made any additional explanations
unnecessary. Other recent papers using the fractional differ-
ential approach are not free of this drawback either.

In this review, we try to fill this gap as much as possible
and to show that the fractional differential phenomenology
naturally appears in cosmic-ray physics as a direct logical
development of the concepts proposed by its founders.

2. Classical sources

2.1 Brownian motion
To clarify the probabilistic nature of the diffusion process, we
consider Einstein's paper [24] of 1905, where the diffusion
equation was derived based on the probabilistic concept of
Brownian motion. Here is an excerpt from this paper:
``Obviously, it must be assumed that each individual particle
moves independently of other particles; in addition, motions
of the same particle at different time intervals should be
regarded as independent of each other until these intervals
become too small.''

By introducing the probability distribution density f �x; t�
of the coordinate of a particle experiencing a random walk
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along the x axis and letting j�D� denote the symmetric
distribution density of a random displacement of the particle
in the time t, Einstein writes the equation

f �x; t� t� �
�1
ÿ1

f �x� D; t�j�D� dD : �2�

[Instead of x� D in the argument of f, it should be xÿ D, but
the symmetry condition for j�D� neutralizes Einstein's slip of
the pen.]We next quote the Russian translation in [24, p. 115]:
``Because t is very small, we can write

f �x; t� t� � f �x; t� � t
qf
qt
:

Now we expand f �x� D; t� in a power series in D:

f �x� D; t� � f �x; t� � D
qf �x; t�

qx

� D2

2

q2f �x; t�
qx 2

� . . . to infinity :

This expansion can be introduced in the integrand because
only very small values of D are important here. We obtain

f� qf
qt

t � f

�1
ÿ1

j�D� dD� qf
qx

�1
ÿ1

Dj�D� dD

� q2f
qx 2

�1
ÿ1

D2

2
j�D� dD� . . . :

Because j�D� � j�ÿD�, the second, fourth, etc. terms in the
right-hand side vanish, whereas among the first, third, fifth,
etc. terms, each next term is very small compared with the
preceding one. Taking into account that�1

ÿ1
j�D� dD � 1 ;

and setting

1

t

�1
ÿ1

D2

2
j�D� dD � D ;

we restrict ourselves to the first and third term in the right-
hand side of the equation to obtain

qf �x; t�
qt

� D
q2f �x; t�
qx 2

: �3�

This is the known differential equation for diffusion, and
D is the diffusion coefficient.''

We note that in introducing the time interval t, Einstein
defined it as ``very small compared to the observed time
intervals, but large enough to allow considering the motions
of a particle during two successive time intervals as indepen-
dent events'' [24, p. 114]. During time intervals much shorter
than t, the particle can move without collisions with atoms of
the medium; correlations are then strictly determined by
Newton's law of motion. It is for this reason that Einstein
definesj�D� in Eqn (2) separately, not identifying this density
with f �x; t�. Such a step would have led him to the Chapman±
Kolmogorov equation for Markov processes,

f �x; t� t� �
�1
ÿ1

f �x� D; t� f �D; t� dD ; f �x; 0� � d�x� ;
�4�

which underlies the theory of random processes with
independent increments (see review [25]). It is to this class of
processes that the Brownian motion belongs: to separate it
from the entire class, it suffices to require two conditions be
satisfied:

(i) The motion must be self-similar,

f �x; t� � tÿg f �xtÿg; 1�; �5a�

(ii) the motion must have a finite dispersion,�1
ÿ1

x 2 f �x; t� dx <1 : �5b�

As a result, we obtain Eq. (3) with g � 1=2. The solution of
this equation with the initial condition f �x; 0� � d�x� has
form (5a), where f �x; t� is the Gaussian density,

f �x; 1� � 1

2
�������
pD
p exp

�
ÿ x 2

4D

�
;

with the dispersion equal to 2D, and the diffusion coefficient
is

D �

�
X�t��2�
2t

:

We note that Einstein derived diffusion equation (3) as the
asymptotic form of integral equation (2) as t!1, whereas
conditions (5) imply the equivalence of Eqns (3) and (4) for all
times. Such a process is called the Wiener process (Brownian
motion is often understood just as a Wiener process).

Trajectories in a Wiener process are continuous, nowhere
differentiable lines. Such a trajectory observed at any
magnification always represents an infinitely broken line
without any single smooth interval. The length of a part of
such a trajectory, even between closely spaced points, is
infinite, and therefore the velocity of such a particle is
infinite. Neither a magnetic field line with such properties
nor the trajectory of a real physical particle with a charge and
a mass can be imagined. But hardly anyone ponders this: the
`good old Gaussian', familiar since the student desk, inspires
confidence... .

2.2 Some remarks on Einstein's derivation
To understand Einstein's random walk model more clearly,
a few remarks are in order. First, Einstein did not identify
j�D� with f �D; t�, thereby providing the possibility of
introducing additional information into his model (for
example, the velocity of the free motion of particles). But
if we set j�D� � f �D; t�, as in Eqn (4), and at the same time
relax the conditions, retaining only (5a) and removing
constraint (5b), we obtain a broader family of random
processes, which are called LeÂvi motion (like Brownian
motion). This family plays a key role in probability theory,
because it includes exactly the limit distributions in the
scheme of summation of independent identically distributed
random quantities. This explains the wide applicability of
the diffusion model in physics, from atomic to cosmic
scales, and attracts our attention to other members of the
family generated by Eqn (4) under condition (5a). It was
shown in [25] that the problem in (4), (5a) can be identically
transformed into a fractional-derivative equation without
any additional assumptions or simplifications.

November 2013 Fractional phenomenology of cosmic ray anomalous diffusion 1077



Second, only the first term of the expansion is kept in the
right-hand side of the final equation, although other terms
could also be kept. Einstein wrote `to infinity', assuming that
the function is infinitely differentiable, which is of course
unnecessary. In the given case, it is sufficient to assume only
the existence of the second derivative and to use the Taylor
formula containing the function itself at the point x, the terms
with the first and second derivatives, and the residual term,
say, in the integral form:

f �x� D� � f �x� � Df 0�x� � D2

2!
f 00�x�

� 1

2!

�D
0

�Dÿ x�2 f �3��x� x� dx :

This is an exact formula, whereas the Einstein equation is
derived from its truncated version (with the residual term
omitted). In principle, nothing prevents the continuation of
this expansion, somewhat strengthening the conditions on the
function, for example, by requiring the existence of the
fourth-order derivative. Such an equation,

qf
qt
� D2

q2f
qx 2
�D4

q4f
qx 4

;

was derived by Burnett [26] based on physical considerations,
which initiated a series of papers in the area that was later
called `generalized hydrodynamics'.

Because we are always considering symmetric diffusion,
we can pass in these equations to derivatives with respect to
the absolute coordinate:

qf
qt
� D2

q2f

qjxj2 � . . .�D2n
q2nf

qjxj2n ; n � 1; 2; . . . :

Einstein delicately bypassed the problem of the convergence
of improper integrals,� B

A

D2nj�D� dD!
�1
ÿ1

D2nj�D� dD ; A! ÿ1 ; B!1 ;

assuming that j�D� � 0 outside a narrow symmetric interval
near zero; all the moments then converge. This cannot be
applied to Eqn (4): we cannot impose such a condition on the
solution of the problem, which is now the function
j�D� � f �D; t�. However, supplementing the condition that
the process be Markovian with the requirement that the
process be self-similar and its dispersion be finite, we
necessarily arrive at normal diffusion equation (3) [25]. The
next (fourth) moment can be infinite. However, this is
unimportant because we do not use an infinite series, but
take only two of its first terms with finite coefficients, while all
the rest is included in the residual term, which we do not
expand, and therefore higher-order coefficients simply do not
appear, whereas the residual term itself is finite.

It now becomes clear what to do if the coefficient at the
second derivative (i.e., the diffusion coefficient) already
diverges: we must then terminate the series at the derivative
of a fractional order a < 2 such that the corresponding
moment converges. In this case, Einstein would have arrived
at the equation

qf �x; t�
qt

� Da
qaf �x; t�
qjxja ; 0 < a < 2 :

The fractional operator appearing in the right-hand side can
be considered a one-dimensional version of the fractional
Laplace operator

qa

qjxja �
q2a=2

q�x 2�a=2
�
�

q2

qx 2

�a=2

;

which we discuss below.
And the last remark: Einstein was not fully satisfied by the

result he obtained, which clearly contradicted the most
important principle of his theory of relativity: a diffusion
packet, being concentrated at the initial instant at the
coordinate origin, the next instant fills the entire space,
including its remotest regions. Practically, this did not cause
any inconveniences due to the vanishingly small probability
of the residence of the diffusion packet there, but concep-
tually Einstein could not help feeling some discomfort, as has
now become fashionable to say. However, he did not develop
this topic any further.

2.3 Turbulent diffusion
As we saw in Sections 2.1 and 2.2, the fractional differential
concepts of anomalous diffusion are already contained in the
equation for Brownian motion derived by Einstein. But this
fact was realized only after half a century, and it was related to
the very popular topic in the 1950s, the nature of turbulence,
or more exactly, turbulent diffusion (TD). The specificity of
TD is determined by the action of vortices of different sizes on
a particle in a turbulent medium. The distance between two
test particles can considerably change in a short time only
under the action of a vortex whose size is comparable to this
distance. It is this condition that is satisfied in a turbulent
medium filled with vortices of various sizes. The larger the
separation between particles is, the larger the size of vortices
carrying them from each other and the faster the distance l
between them increases. In the framework of the classical
diffusion theory, this effect can be achieved by introducing
the dependence of the diffusion coefficient D on relative
coordinates, i.e., on the distance D � D�l�. This approach
was used by Richardson, who wrote the TD equation for the
distribution density p�l; t� of a random distance between two
advected particles located at the instant t � 0 at one point in
the form

qp
qt
� q

ql

�
D�l� qp

ql

�

with the diffusion coefficient

D�l� / l 4=3

corresponding to the increase in the diffusion-packet width by
the law / t 3=2, which considerably differs from the normal
diffusion law t 1=2.

The Richardson 4=3 law was theoretically substantiated
by Kolmogorov [27, 28] and Obukhov [29, 30] based on the
hypothesis of the self-similarity of locally isotropic turbulence
determined by a single dimensional parameter, the dissipation
rate of the turbulent energy e. It follows from the dimensional
considerations that

D�l� � ce 2=3l 4=3 :

These results were in qualitative agreement with experi-
ments. But the fact that the diffusion coefficient in a
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homogeneous (on average) medium should depend on a
spatial variable gave rise to some inconveniences. The
method for combining the accelerated character of TD with
a constant coefficient characterizing a medium was proposed
by Monin in [31]. That paper can be viewed as the beginning
of non-Gaussian unstable distributions and fractional-deri-
vative equations penetrating into the TD theory (this
terminology itself was introduced into the TD theory a
decade later [32]). Monin considered the diffusion of a cloud
of advected particles in a coordinate system associated with
the cloud center by expressing the concentration distribution
f �r; t� at an instant t in terms of the initial distribution f �r; 0�
using a time-dependent linear operator A�t�:

f �r; t� � A�t� f �r; 0� ; t > 0 :

In the model of stationary homogeneous locally isotropic
turbulence, the operator A�t� can be assumed to be invariant
under displacements and rotations of the coordinate system
and dependent on the only dimensional parameter e (if
molecular diffusion is neglected). After the Fourier transfor-
mation, the operator A�t� becomes a function a�k; t; e� of the
modulus k � jkj of the wave vector k. Based on the
dimensional considerations, Monin represents this quantity
as a function of e 1=3k 2=3t, such that

~f �k; t� � a�e 1=3k 2=3t� ~f �k; 0� :

Monin's hypothesis, as Monin and Yaglom write in the
second volume of Statistical Fluid Mechanics [32], is based
on the assumption that the operators A�t� form a semigroup,

A�t1�A�t2� � A�t1 � t2� ;

and hence

a�e 1=3k 2=3t1� a�e 1=3k 2=3t2� � a
ÿ
e 1=3k 2=3�t1 � t2�

�
: �6�

The solution of Eqn (6) has the form

a�e 1=3k 2=3t� � exp �ÿce 1=3k 2=3t� ;

and the Fourier transformation of the required configuration

~f �k; t� � exp �ÿce 1=3k 2=3t� ~f �k; 0�

satisfies the differential equation

d ~f �k; t�
dt

� ÿce 1=3k 2=3 ~f �k; t� :

Using the interpretation of the factor k 2=3 given by Monin
and Yaglom (``the Fourier transform of the Laplace operator
to the power 1=3'' [32, p. 510]), we obtain the equation

q f �r; t�
qt

� ÿD2=3�ÿD�1=3 f �r; t� ; D2=3 � ce 1=3 ;

which belongs to the family of equations

q f �r; t�
qt

� ÿDa�ÿD�a=2 f �r; t� ; 0 < a < 2 :

Of course, these equations acquire a meaning only after
the operators with a fractional exponent a are defined. This

can be done in several ways; the simplest is to define their
action through the Fourier transformation of differentiable
functions:�

exp �ikr��ÿD�a=2 f �r; t� dr � jkja
�
exp �ikr� f �r; t� dr

� jkja ~f �k; t� :

The inverse transformation (in the d-dimensional case) leads
to the prescription

�ÿD�a=2 f �x; t� � 2aG
ÿ�a� d �=2�

p d=2G�ÿa=2�
�
R d

�
f �x� ÿ f �x 0��dx 0
jxÿ x 0jd�a ;

x 2 Rd ; a 2 �0; 1� ;

where G�. . .� is the gamma function. For a 2 �1; 2�, the
difference in the numerator is replaced with the second-
order difference. The solutions of these equations are
expressed in terms of isotropic stable densities (ISDs):

C �a�3 �r� � C �a�3 �r� �
1

�2p�3
�
exp �ÿikr� exp ÿÿjkja� dk ;

0 < a4 2 :

f �r; t� � �Dat�ÿ3=aC �a�3

ÿ
r�Dat�ÿ1=a

�
:

For a � 2, this expression represents the normal distribution
density corresponding to Brownian motion, and the other
values of the parameter a correspond to LeÂ vi motions. Fixing
the argument value r�Dat�ÿ1=a � x, we see that the width of
this distribution increases with time proportionally to t 1=a,
i.e., for a < 2, faster than in the case of normal diffusion,
which justifies the introduction of the term `superdiffusion'.

The further development of the fractional differential
approach for describing turbulence is presented in mono-
graphs [33±35] and reviews [36, 37].

2.4 Percolation
In inhomogeneous media with irregular, porous, large-grain,
and winding structures, the slowed down diffusion (subdiffu-
sion) of a liquid can be observed (percolation). There are
several models of such a process leading to fractional
differential equations [33]. One of them involves a periodic
lattice each of whose sites can be either occupied or free with a
certain probability. A set of neighboring free points forms a
cluster. Lines (paths) connecting these points can be either
conducting (with their ends coming out to the cluster surface)
or blind. We take one conducting line and stretch it along a
straight line, accurately directing other lines coming out of its
sites perpendicular to it. Those lines can, in turn, branch or,
on the contrary, break; without going into further details, we
assume for simplicity that they are unbranching infinite lines.
In this way, we obtain a `comb' (Fig. 1).

We now trace a liquid particle (a point mass) entering the
main line. For this, we specify the law ofmotion of the particle
along the line; let it be the ordinary diffusion. Having arrived
at the first site, the particle passes to a side branch. According
to the diffusion laws, even in the case of an infinite (more
exactly, a semi-infinite) branch, the particle will necessarily
(i.e., with probability 1) return, but the distribution of the
return time has a power tail P�T > t� / �t=t0�ÿb with the
exponent b � 1=2 and the characteristic time t0. Following
only the coordinate x, we can say that the particle stopped at
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this point for some time (captured in a trap), then continued
to diffuse along the x axis with the coefficient Dx, then was
again captured in the same or neighboring trap and remained
in it for a different time, etc. In the limit of small distances
between traps, such that

t1Dx

tb0
! D > 0 ;

where t1 is the mean diffusion time between hitting the traps,
this process is described by the integral equation

f �x; t� � d�x� � 1

G�b�
� t

0

�tÿ t�bÿ1DD f �x; t� dt ; b � 1

2
;

whose kernel reflects the delay in the diffusion of the
coordinate x caused by the residence of the particle outside
this axis.

We recall Cauchy's integral formula representing the
n-fold integral I n� f �t�� in terms of the ordinary integral,

I n
�
f �t�� � 1

�nÿ 1�!
� t

0

�tÿ t�nÿ1 f �t� dt ; n � 1; 2; 3; . . . ;

and allowing an analytic continuation to fractional (and even
complex) values of the exponent n:

I b
�
f �t�� � 1

G�b�
� t

0

�tÿ t�bÿ1 f �t� dt ; b > 0 :

Introducing the Riemann±Liouville fractional derivatives 2

q b

qtb
f �t� � q

qt
I 1ÿb�t� � 1

G�1ÿ b�
q
qt

� t

0

f �t� dt
�tÿ t�b ; 0 < b < 1 ;

and applying them to the integral equation written above, we
obtain the fractional differential subdiffusion equation

q bf �x; t�
qtb

� DD f �x; t� � d�x� db�t� ;

where db�t� � tÿb=G�1ÿ b�.
We make some remarks. First, the `fractional delta

function' is called so because it is a continuation of the
known definition of the delta function as the derivative (in

the generalized sense) of the Heaviside function

1��t� � 0 ; t < 0 ;
1 ; t > 0 ;

�
namely,

db�t� � db1��t�
dt b

:

Second, a solution of the subdiffusion equation has the
meaning of a probability density, and db�t� ensures that the
integral of the solution is constant in x (normalization).
Finally, the fractional character of the derivative is here a
consequence of the infinite length of side branches. If their
length is limited, we again have the first-order time derivative
instead of a fractional derivative in the x-diffusion equation,
i.e., the usual diffusion equation (albeit with the diminished
diffusion coefficient).

The problem of the percolation of a liquid through a
porous medium (which might look like a very particular
problem) attracted the attention of researchers in different
fields (including cosmic-ray physics) because the percolation
process turned out to be critical. A signature of this important
property is the existence of a numberÐa percolation thresh-
old, the minimum density of free sites of the lattice above
which the liquid percolates over the entire infinite lattice and
below which the liquid occupies only a finite region of the
medium. For densities close to the threshold density,
percolation occurs over a fractal set, and this process is
governed exclusively by the laws of criticality, irrespective of
the macroscopic properties of the medium [34, 38]. A deep
connection between the percolation model and cosmic
electrodynamics (the multiscale interaction of fields and
currents in the distant Earth's magnetotail, self-organization
processes in magnetized plasmas, the evolution of large-scale
magnetic fields in the solar photosphere and interstellar
space, and the construction of a self-consistent model of the
turbulent current sheet) is demonstrated in the remarkable
review by Zelenyi and Milovanov [39].

2.5 Combined equation and its interpretation
We now consider a combined equation containing fractional
derivatives with respect to coordinates (a fractional Lapla-
cian) and time:

q bG

qtb
� ÿDa�ÿD�a=2G�r; t��d�r�db�t� ; a 2 �0; 2�; b 2 �0; 1� :

�7�

We note that the dimension of each terms in this equation is
Lÿ3Tÿb, and the coefficient Da replacing the diffusion
coefficient and having the dimension LaTÿb is strictly speak-
ing the diffusion coefficient only for a � 2 and b � 1.
Typically, Eqn (7) is derived from the random walk pattern
(see, e.g., [40]). To `read' the physical content of this equation,
we should go in the reverse direction. For this, we represent
(7) in the Fourier±Laplace variables:ÿ

lb �Dajkja
�

~G�k; l� � lbÿ1 : �8�

The right-hand side of Eqn (8) can be easily understood
without additional calculations. Indeed, for k � 0, this
equation takes the form

lb ~G�0; l� � lbÿ1 ;

2 For b � 1, an uncertainty occurs in the expressions for derivatives;

however, refining their definition by continuity also allows including this

boundary point in the considered interval of the fractional parameter.

Transitions to the next unit-length intervals are performed by an

additional integer-order differentiation [33].

a b

bb

aa b
x

a

Figure 1. Percolation process (a) and its comb model (b).
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where

~G�0; l� �
�1
0

exp �ÿlt�
��

G�r; t� dr
�
dt

�
�1
0

exp �ÿlt� dt � 1

l

(the spatial integral of the spatial distribution density in
square brackets is unity, according to the normalization
conditions). Multiplying both sides of Eqn (8) by a positive
constantB and settingC � BDa, we transform the operator in
the left-hand side:

Blb � Cjkja � 1ÿ ÿ1ÿ Blb ÿ Cjkja�
� 1ÿ �1ÿ Blb�ÿ1ÿ Cjkja�� BClbjkja :

As jkj ! 0 and l! 0, we have

Blb � Cjkja � 1ÿ �1ÿ Blb��1ÿ Cjkja� ;

and the substitution of the last expression in Eqn (8),�
1ÿ �1ÿ Blb�ÿ1ÿ Cjkja�� ~G�k; l� � Blbÿ1 ;

brings it to the form

~G�k; l� � �1ÿ Blb�ÿ1ÿ Cjkja� ~G�k; l� � Blbÿ1 : �9�

The content of the two parentheses in the first term in the
right-hand side can be treated as the asymptotic expression
for the characteristic functions of the temporal and spatial
probability densities q�t� and p�r�:

q̂�l� �
�1
0

exp �ÿlt� q�t� dt � 1ÿ Blb ; l! 0 ; b4 1 ;

�10�
and, with an isotropic distribution p�r� dr� pR�r� dr dX=4p,

~p�k� �
�
exp �ÿikr� p�r� dr � 1ÿ Cjkja ; k! 0 ; a4 2 :

�11�
We also note that

Blbÿ1 � ~Q�l� �
�1
0

exp �ÿlt�Q�t� dt ; Q�t� �
�1
t

q�t� dt :
�12�

Replacing the expressions in the parentheses and the free
term in Eqn (9) with the left-hand sides of expressions (10)±
(12),

~G�k; l� � ~p�k� q̂�l� ~G�k; l� � Q̂�l� ;

and performing the inverse Fourier±Lorentz transformation,
we obtain the integral equation with a factored kernel:

G�r; t� �
�
dr 0
�1
0

dt 0 p�r 0� q�t 0�G�rÿ r 0; tÿ t 0� �Q�t� d�r� :
�13�

Of course, the densities p�r� and q�t� are not uniquely
determined by the asymptotic form of their transforms
(10) and (11), but, being probability densities, they are
nonnegative and satisfy the normalization conditions�
R 3 p�r� dr � 1 and

� 1
0 q�t� dt � 1 and, in addition, Tauber-

ian theorems relating the asymptotic behavior of transforms

in the vicinity of zero to the long-distance asymptotic form
of the originals,

1ÿ ~p�k� / jkja ; jkj ! 0 , p�r� / jrjÿaÿ3 ; jrj ! 1 ;

1ÿ q̂�l� / lb ; l! 0 , q�t� / tÿbÿ1 ; t!1 ;

determine a power-law behavior of the intermediate densities
for large spatial and temporal arguments.3

The physical meaning of prelimit Eqn (13) (with respect to
fractional differential) is already clear: representing the
solution of this integral equation in the form of a Neumann
series,

G�r; t� � Q�t�d�r� �
� t

0

dt 0Q�tÿ t 0� p�r� q�t 0� � . . . ;

we see that the probability of finding the particle at an instant
t at a point r is the sum of the probability of the permanent
residence of the particle at the initial point without displace-
ments (the first term) and the probability that the particle
performs an instant hop at one of the intermediate instants
t 0 2 �0; t� from the creation point r0 � 0 to the observation
point r and remains there until the observation instant t; the
next term would give the probability of finding a particle that
has performed two instant hops separated by a random time
interval with the density q�t�, etc. The lengths of these hops
are random, mutually independent, and independent of the
residence times of the particle at the traps. This hopping
process is called the continuous-time random walk (CTRW).
Applying the Fourier±Laplace transformation to Eqn (13),
without imposing any conditions on the intermediate prob-
abilities p and q, we obtain the known expression [41]

~G�k; l� � Q̂�l�
1ÿ ~p�k� q̂�l� �

1ÿ q̂�l�
l
ÿ
1ÿ ~p�k� q̂�l�� : �14�

For a � 2 and b � 1, Eqn (7) describes Brownian motion
(Fig. 2a), and for a < 2 and b � 1, it describes Levi motion,
which differs from Brownian motion by numerous disconti-
nuities of the trajectory along the x axis (which is indicated by
horizontal segments corresponding to instant hops by finite
distances). As long as the derivative with respect to x has an
integer (second) order, discontinuities are absent (only kinks
exist), and when the order of the derivative becomes
fractional, discontinuities appear. The distribution of the
coordinate jumps at these discontinuities is described by a
power law, and therefore the discontinuities are observed at
different scales. A process in which a diffusion packet
expands faster than in the normal case, i.e., proportionally
to t g with g > 1=2, belongs to the class of superdiffusion
processes.

Replacing the first time derivative �b � 1� with a frac-
tional derivative �b < 1� gives rise to discontinuities of the
trajectory along the time axis (the particle stops; time goes on
while the particle does not move). For a < 1 and b < 1,
instead of a trajectory, we see point clusters separated by
hopping regions (horizontal segments) and residences at traps
(vertical segments) (Figs 2b, c) [25]).

2.6 Fractionally stable statistics
The self-similar solution of Eqn (7) is expressed in terms of
special functions, which we called isotropic fractionally stable

3 Tauberian theorems are presented sufficiently well in vol. 2 of Feller's

book [42] (see also review [25]).
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densities (IFSDs) and studied in a number of papers (see [40]
and the references therein). We let the IFSD be denoted by
C �a; b�d �r� (where d is the space dimension), such that

G�x; t� � �Dt b�ÿ3=aC �a; b�d

�
jxj�Dt b�ÿ1=a

�
; �15�

0 < a4 2 ; 0 < b4 1 :

Isotropic fractionally stable densities have no general explicit
expression in terms of elementary functions but are defined by
the characteristic function

~C �a; b�d �k� �
�1
0

~C �a�d

ÿjkjtÿb=a� g��t; b� dt ; �16�

where g��t; b� is the one-sided stable density defined by the
Laplace transform:�1

0

exp �ÿlt� g��t; b� dt � exp �ÿlb� :

Because g��t; 1� � d�tÿ 1�, the IFSD class includes the
family

~C �a�d �k� � ~C �a; 1�d �k� � exp
ÿÿjkja� �17�

as a subset, in particular,

~C �2�d �k� � ~C �2; 1�d �k� � exp
ÿÿjkj2� : �18�

To clarify the role of fractionally stable laws in the
hierarchy of probability distributions, we consider expres-
sions (16)±(18). Expression (18), which is the characteristic
function of the normal (Gaussian) distribution with disper-
sion 2, characterizes the limit distribution of the properly
normalized sums of a fixed (nonrandom) number of
independent, identically distributed random vectors with a
finite second moment. Expression (17) is related to a similar
sum of vectors with an infinite second moment, but with a
power-law distribution tail, P�jRj > r� / rÿa; the corre-
sponding limit distributions are expressed in terms of
isotropic stable densities, which are characterized by the
dispersion divergence. Finally, expression (16) characterizes
the asymptotic behavior (as t!1) of the distribution of the
sum of a random number of such terms. This extension of the
family of stable laws to fractionally stable ones provides a
representation of solutions of fractional differential equa-
tions.

One-dimensional symmetric and one-sided stable densi-
ties are represented in Fig. 3. For a � 2, the functionsC �2�1 �x�
and C �2�3 �x� represent the one-dimensional and three-dimen-
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Figure 2. Typical realizations of the xÿt trajectories of particles in the three models under study.
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Figure 3. One-dimensional (a) symmetric and (b) one-sided stable densities.
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sional normal (Gaussian) densities with the dispersion equal
to 2:

C �2�1 �x� �
1

2
���
p
p exp

�
ÿ x 2

4

�
; ÿ1 < x <1 ;

C �2�3 �x� �
1

�2 ���
p
p �3 exp

�
ÿ x 2

4

�
; x > 0 :

As a decreases, the distributions become narrower and
reach higher values in the central part, and, at the same time,
an increasing part of the probability goes from the inter-
mediate region to the tails. For a � 1, we have the Cauchy
distribution densities

C �1�1 �x� �
1

p�1� x 2� ; ÿ1 < x <1 ;

C �1�3 �x� �
1�

p�1� x 2��2 ; x > 0 :

For other values of a, stable densities cannot be expressed in
terms of elementary functions. At large distances, they
decrease in accordance with a power law,

C �a�3 �x� �
a2 aÿ1

p3=2
G
ÿ�a� 3�=2�
G�1ÿ a=2� xÿ�a�3� ; x!1 ;

and are described by a bell-shaped contour centered at the
coordinate origin with the maximum

C �a�3 �0� �
G�1� 3=a�

�4p�3=2G�1� 3=2�
:

In the double logarithmic scale, ranging many orders of
magnitude, we observe a horizontal plateau changing into a
sloping part on the right (Fig. 4). Fractionally stable densities
C �a; b�d �x� retain the same asymmetry type as r!1, but,
unlike stable densities, have a power-law singularity at zero:

C �a; b�3 �x� / xÿ�3ÿa� ; x! 0 ;

xÿ�3�a� ; x!1 :

�
Correspondingly, the plot in the double logarithmic scale is
given by two half-lines with different continuously joining
slopes (Fig. 5).

To date, a large set of physical phenomena demonstrating
power-law distributions has been collected [33]. We here
consider a phenomenon involving a fractionally stable
distribution of particles diffusing in a turbulent medium: the
results of numerical simulation of the motion of charged
particles in an infinitely long cylinder filled with plasma in a
constant homogeneous magnetic field directed along the
cylinder axis [43]. The plasma turbulence excited by the
noise component of pressure was described by a system of
magnetohydrodynamic equations for fluctuating compo-
nents of the pressure and electrostatic potential. The
magnetic field was assumed fixed. The nondiffusion trans-
port of charged particles in such a medium is caused only by
random fluctuations of the electrostatic potential produced
by the generator of the noise component of pressure. Thus,
the problem was reduced to the calculation of the diffusion of
particles in the field of random velocitiesV, which determined
the statistical properties of an ensemble of random trajec-
tories by the equation

dr

dt
� V�r; t� :

Particular details of the model and calculation procedure can
be found in [43] and the references therein. Here, we are only
interested in the conclusion made by the authors of the paper.
They observed the behavior of 25� 103 particles in a
numerical experiment, which were initially homogeneously
distributed over the side surface r � a=2 of a cylinder with the
radius r � a; having obtained the particle distributions over
the variable x � �rÿ a=2�=a for several successive instants of
time, the authors found that:
� The particle distribution density over the variable x at

different instants is well approximated by the self-similar
function tÿn f �xtÿn�, n � 0:66� 0:20.
� The function f �x� is symmetric with respect to x � 0

and its tails decay as jxjÿaÿ1, a � 3=4.
� The density at a fixed point x increases at small times as

� t b and decreases at large times as tÿb, where b � 1=2.
A comparison of the results of these calculations (Fig. 6)

with our representation of this distribution in terms of the
fractionally stable density,

P�x; t� � �Dat
b�ÿ1=aC �a; b�1

�
x�Dat

b�ÿ1=a
�
; a � 3

4
; b � 1

2
;

demonstrates good agreement. The authors of [43] interpret
the meaning of the fractional differential equation in the
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Figure 4. Three-dimensional isotropic stable densities. Curves 1±8 (from
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framework of a CTRW process assuming that particles
entering a vortex can remain inside it for a long time until
they are ejected from it and pass by several vortices during one
flight, until their capture in a next trap.

The impressive coincidence of the simulation results with
the solution of a fractional differential equation does not
eliminate all doubts, however. For a < 1, the mean free path
is infinite, and the authors of [43] report that the displacement
momenta behave in the `superdiffusion way', hXn�t�i / t nb=a.
The spatial fractional operator is written for an infinite
medium, although a finite size of the cylinder cannot be
ignored for such a. The assumption about the infinitely large
velocity of flights is also incompatible with this value of a.
Finally, turbulence must have some special structure for
successive passages to be considered statistically independent.

Another example of a non-Gaussian statistics in a plasma,
involving a velocity distribution, is presented in Section 5.3.

3. Isotropic anomalous diffusion

3.1 Traps and voids
Fermi's picture of magnetic clouds, which was mentioned in
the Introduction, was later supplemented by the concept of
magnetic traps, where charged particles can stay for a long
time. Dorman writes in [44, p. 53]:

``Cosmic rays in the cosmos are confined, in fact, in
magnetic traps of one scale or another, not propagating
freely in space (except for cosmic-ray gamma quanta and
neutrinos, for which traps are absent). Giant traps for cosmic
rays exhibit a wide variety of properties, and the behavior of
charged particles in them essentially depends on the particle
energy. A trap in the vicinity of Earth formed by a magnetic
field close to a dipole field is highly stable, and the lifetime of
particles in it is long. At the same time, traps in the vicinity of
chromospheric flares or in solar corpuscular fluxes of
magnetized plasmas are much more transparent to particles
and the particles escape from them similarly to how diffusion
in irregular magnetic fields occurs. Traps of various types are
also formed in the vicinity of usual stars, in particular, in the
solar system and in supernova shells. On the other hand, the

galaxy (the galactic disc together with the halo) also forms a
certain type of trap a few thousand parsecs in size, which well
confines moderate- and high-energy particles (with a lifetime
of � 107 years) and is quite transparent to ultra-high-energy
particles. It is quite possible that galactic clusters form even
more gigantic traps for ultra-high-energy particles.

... it seems reasonable to treat any magnetic regions where
the motion and lifetime of charged particles considerably
differ from those in free space of the same volume as cosmic
magnetic traps.''

For such a large spread in the size of objects, it is
impossible to imagine their uniform or even independent
position in space. The distribution of visible matter in space
(star clusters, galaxies, and galactic clusters) produces
examples of hierarchic structures, which approximately
preserve their inhomogeneity type upon varying scales in a
broad range. The mathematical model of such inhomogene-
ities, which cannot be smoothed by scale transformations,
uses fractals characterized by power-law correlations of
spatial structures. At the end of the 20th century, a new
avenue analyzing the structure of magnetic fields based on the
fractal concept emerged in the astrophysics of the interstellar
medium [45].

To elucidate the relation between the CTRW model and
the real cosmic-ray transfer process in a galactic magnetic
field, we consider a homogeneous (diffusion-wise) medium
and divide it into cubic volumes (cells) (Fig. 7). We assign the
coordinate ri to each particle entering the ith cell centered at
the point ri at an instant t and leaving it at an instant t� T,
neglecting themotion of the particle inside the cell itself. After
some (random) time T, the particle moves to one of the six
neighboring cells, and the vector assigned to the particle
moves from the center of the previous cell to the center of
this new cell at the instant of the intersection of the face
separating the cells. After a random time T 0, the particle
moves to another neighboring cell, and so on. Thus, in a
coarse-grain description, the particle coordinate moves
jumpwise over three-dimensional lattice sites, staying in
them for a random time. At a large scale, we then see a
random walk, which is very close to Brownian motion (which
it is, in fact).

However, a strong turbulent magnetic field does not
necessarily exist in each cell. A considerable part of space
between magnetic clouds is filled with weaker and quieter
fields with magnetic field lines running smoothly over large
distances. Charged particles in cosmic rays move along these
lines and are sometimes captured in cloud traps, where they
can be confined for a long time, forgetting their initial
direction. To construct such a model, we remove part of the
elements (cells), keeping others in their places. The passage

10ÿ1

10ÿ2

ÿ 0.2 ÿ 0.1 0 0.1 0.2
x

100

101

P

102

Figure 6. Fractionally stable distribution in plasma. Triangles show the

results of numerical simulation [43]. The curve is the solution of the one-

dimensional fractional differential equation expressed in terms of the

IFSDC �3=4; 1=2�1 �x�.

a cb

Figure 7. Passing from (a) Brownian diffusion in a continuous homo-

geneous medium to (b) random walks in the medium alternating with

voids and an example of the Levi random walk trajectory obtained by the

Monte Carlo method, with a � 1:67 (c).
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from one cell to another is then no longer instantaneous, as
was the case with crossing the face between neighboring cells,
and the particle passes through `almost empty' cells, propa-
gating over random distances R. The time spent for these
passages is proportional to the distance propagated in free
space (the mean free path). The character of the entire process
depends on the mutual arrangement of the remaining parts. If
they are scattered homogeneously (in the statistical sense) and
are independent of each other, as in the Bershadskii model
[46], we obtain a normal process with a larger diffusion
coefficient. If they are arranged in a fractal manner, such
that clusters and voids are observed at different scales (the
method for constructing such distributions is shown in [47]),
the particles can move over long distances in one run. In that
case, the resulting process is determined by the order of the
converging moments of a single run. We say that an
anomalous diffusion process is a process of the first kind if
the mean free path hRi � 1, and a process of the second kind
if hRi <1 and hR 2i � 1. Below, we see a significant
difference between these two types of anomalous diffusion.

Wemust note, however, that these considerations, despite
their intentionally schematic and illustrative character, are in
qualitative agreement with the picture of magnetic fields
randomly spread in space, which was already proposed by
Fermi. Quantitative agreement can probably be achieved by
specifying (i) the appropriate distributions of clouds produ-
cing the corresponding distributions of mean free paths of
particles between them and (ii) the laws of interaction of
particles with individual clouds. In such a formulation, the
problem can be considered in the framework of the standard
multiple scattering theory, which, in particular, allows
investigating the interaction of a particle with a cloud (the
scattering cross section) and the transfer itself of particles in
space (solving the kinetic equation) separately. In passing to
the diffusion limit, the integro-differential kinetic equation is
transformed into a differential diffusion equation, while the
interaction cross section containing information on the
mechanisms of this interaction (resonance interaction, scat-
tering by AlfveÂ n and magnetosonic waves, etc.) is trans-
formed into the diffusion coefficient, which then accumu-
lates this information.

As regards the kinetics themselves, there are no grounds to
assume that magnetic clouds are arranged homogeneously
and move independently of each other. In that case, it would
be reasonable to adopt an exponential distribution law for
transits between scattering events. An example is given by an
ideal gas, whose molecules do not interact with each other,
which leads to the independence and exponential range
distribution. But measurements of the electromagnetic radia-
tion of the charged component of cosmic rays show that the
interstellar region is not an ideal gas and is characterized by
long-range power-law correlations, and this can be mani-
fested in the higher probability of the long transits of particles
propagating through voids. The mathematical model of such
a process is already developed. This is LeÂ vy motion: the
random walk of a particle with an asymptotically power-law
range distribution. An example of the trajectory of such a
process is presented in Fig. 7c. We can see that the increase in
the fraction of long free paths is accompanied by the increase
in the fraction of short ones. This occurs due to the decrease in
the probability of intermediate-length free paths. Nowwe can
say that a trajectory consists of clusters of short free runs
separated by long ones. The clusters of short free runs
localized in space are capable of simulating the behavior of a

particle in cells, which wementioned above. At the same time,
stable laws governing LeÂ vymotion are directly and rigorously
related to fractional derivatives [23, 25].

All this appeared quite intriguing and stimulated us
13 years ago to develop a fractional differential model of the
transfer of particles in the Galaxy.

3.2 First studies with a fractional differential model
Among the first studies on galactic cosmic-ray transfer,
whose results can already be explained in the framework of
the fractional differential approach, were preprint [14]
(although the authors did not use the relevant term) and
paper [48]. We discuss preprint [14] in Section 4.4, and here
consider the results in [48].

As pointed out by the authors of [48], although galactic
magnetic fields are located predominantly in the galactic
plane (see [49]) and charged particles with small Larmor
radii (compared to mean free paths) move along these lines,
only slightly diffusing in transverse directions, the observed
angular distribution of particles has a surprisingly high
isotropy degree. The authors explain this by large-scale
fluctuations of the interstellar fields and by exponential
divergence of magnetic field lines. An important mechanism
of active mixing of cosmic rays is also their acceleration at the
leading edges of shock waves from supernovaeÐcosmic
tsunamis that shake the particles off their field lines and
bring them to a chaotic regime [50±52]. Under the action of
these and other factors, particles that initially moved along
`their' field lines lose the connection with them after some
correlation time and enter the isotropic diffusion regime. The
turbulent character of the interstellar medium, which is
manifested in the alternation of weakly irregular magnetic
fields with randomly dispersed islands (clouds, regions) of
strong fluctuations, affects only the distributions of free paths
and residence times of particles in different regions. The
authors of [48] generalized the standard diffusion model to
the CTRW model with power-law distributions of free paths
and lifetimes in traps corresponding to (10) and (11) and
wrote the mean square of the resulting distribution at the
observation instant t in the form�
jrj2G�r; t� dr� 1

2pi
1

2p

�
G
dl
�
dk

�
dr jrj2 exp �ltÿ ikr� ~G�k; l�;

�19�
where

~G�k; l� � Blbÿ1

Blb � Cjkja �20�

in our notation. The last expression is consistent with
expression (8) representing fractional differential equation (7)
in Fourier±Laplace variables. The authors justify the choice
of representations (10) and (11) by the existence of `stability
islets' (traps) in the plasma capturing particles for a long time,
thereby slowing down the diffusion process [52], and by the
property of field lines to perform rapid (compared to
diffusion) and long-range flights, preserving their direction
[8, 53]. The competition between these two processes is
reflected in the distribution obtained.

Two remarks concerning paper [48] are in order.4 First,
expression (19) makes no sense for a 6� 2, because the integral

4 That paper was written fairly long ago, and it would not be necessary to

point out some of its inconsistencies if they were not repeated in other,

later papers.
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diverges and the packet width should be described differ-
ently. However, the authors consider only the case a � 2,
and no objections can be raised here. The seconds remark
concerns the range of the parameter b (denoted by a in their
paper). The authors solved the problem for synchrotron
radiation of electrons with b � 0:5, 1.0, and 1.5, and pointed
out that in contrast to papers [14±16], they extended the
range of b to the region b > 1, and this extension can be
regarded as the passage from subdiffusion to superdiffusion.
At first glance, such an interpretation is quite reasonable:
b < 1 corresponds to subdiffusion and b � 1 to normal
diffusion, and therefore b > 1 should correspond to super-
diffusion, and the authors had no doubts about it. However,
a reason to doubt existed: it suffices to inspect expression
(14) in [48], which has the form

q�t� � 1

t
b

G�1ÿ b�
�
t

t

�ÿbÿ1
; t!1 : �21�

Obviously, a function with such an asymptotic behavior can
never be a probability density for b > 1, simply because it is
negative �G�1ÿ b� < 0�. However, the issue is not that q�t�
has a power-law asymptotic behavior, because nothing
prevents us from taking it, say, in the form

q�t� � b 0

t

�
t

t

�ÿb 0ÿ1
; t!1 ; �22�

where b 0 is any positive number, but that expression (2) is
obtained from expansion (10), which is valid only for
b 0 � b4 1. If 1 < b 04 2, then the expansion

~q�l� � 1ÿ hT il� B 0lb
0
; l!1 ;

holds instead of (10). For small l corresponding to long times,
the term with lb

0
is asymptotically small compared to the

linear term and can be omitted. Hence, for b 0 > 1 and a � 2,
we obtain (and the authors of [48] should have obtained)
normal diffusion, rather than superdiffusion.5 The latter
would only follow for a < 2b. However, the question can
arise: what about the case a > 1? Should a term proportional
to a gradient appear in this case, in addition to the Laplacian?
Indeed, this term should appear, but hRi � 0 for isotropic
diffusion, and this term safely disappears. The duration of the
interval T cannot be negative; therefore, assuming hT i � 0,
we automatically assume T � 0, i.e., we eliminate the traps.
Because the particle velocity is infinite, the particle immedi-
ately escapes to infinity in the absence of traps, and we do not
observe the time sweep of the process.

If for some reason we wish to see a fractional time
derivative of an order b 2 �1; 2� in the equation, then, as
follows from the previous expansion, this derivative should be
introduced together with the first derivative:

hT i qG�x; t�
qt

� B
q bG�x; t�

qt b
� CDa=2

x G�x; t�

� hT id�t�d�x� � Bdb�t�d�x� ; 1 < b < 2 :

Now everything is in place. Only we should bear in mind that
the long-term asymptotic form of the solution already
determines an equation with a lower-order time derivative,
i.e., the asymptotic solution is still characterized by b � 1.

In our first paper written in the framework of the
fractional differential model [19], we discussed the nature of
a `knee' in the energy spectrum of primary cosmic radiation at
E � 3� 1015 eV. The fractional differential character of the
diffusion equation was substantiated in the following way.

Based on the standard diffusion equation

qN
qt
� DDN�r; t� � S�r; t� ;

this knee is related to the decrease in the confinement
efficiency of high-energy particles in the Galaxy, which in
turn requires a long lifetime (107ÿ108 years) of the proton±
nuclear component in the system and the presence of remote
sources [6]. But replacing the diffusion equation with the
superdiffusion equation involving the fractional Laplacian,

qN
qt
� ÿDa�ÿD�a=2N�r; t� � S�r; t� �23�

showed the steepening of the spectrum even without a special
assumption about the leakage of particles, if the sources of
particles are explosions of supernovae nearest to the Solar
System. In this case, the knee appears due to the fractional
Laplacian, caused by a power-law distribution of free paths,
which can in turn be interpreted as a result of averaging the
exponential distribution of free paths over different-scale
(fractal) fluctuations of the interstellar magnetic field (see,
e.g., [54, 55]).

In [19, 20], we introduced Eqn (23) to describe the cosmic-
ray transfer as the limit of a jumpwise process in the three-
dimensional space, described by the integro-differential
equation

q fE
qs
� s fE�r; s� � s

�
fE�r 0; s�W

�
rÿ r 0

E

�
dr 0

E 3
� SE�r; t� ;

where E is an auxiliary parameter, sending which to zero
provides (in the normal case) the passage from the CTRW
scheme to the diffusion approximation. This equation can
also be written in the form

q fE
qs
� s

��
fE�r 0; s� ÿ fE�r; s�

�
W

�
rÿ r 0

E

�
dr 0

E 3
� SE�r; t� :

The equation in the first form describes the process of
independent instantaneous jumps separated by random time
intervals and distributed in accordance with the exponential
law with the mean 1=s. The kernelW of the integral operator
plays the role of the distribution density of the displacement
vector in such a jump, and should therefore be integrable. For
the equation represented in the second form, requirements
imposed on the kernelW are relaxed, because the factor given
by the difference of the solution values at nearby points serves
as a regulator, and the integral can converge even if the kernel
diverges. Assuming that the asymptotic form of the kernel for
large ranges (`LeÂ vy flights') is described by a power-law
function, as is typical for fractal structures,

W�r� � Arÿ3ÿa ; r!1 ;

5 The type of anomalous diffusion is determined by the exponent g � b=a
in the expansion law of the diffusion packet D / t g: subdiffusion

corresponds to g < 1=2 and superdiffusion, to g > 1=2. It is better to call

the process with g � 1=2, a 6� 2 a quasi-normal diffusion, because the shape

of the diffusion packet in this case differs from the normal shape.
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and introducing the notation A 0 � As, t � E as, N�r; t� �
limE!0 fE�r; tEÿa�, and S�r; t� � limE!0 E aSE�r; t�, we obtain
the equation for the three-dimensional isotropic LeÂ vy
motion:

qN�r; t�
qt

� A0
�
N�r 0; t� ÿN�r; t�
jr 0 ÿ rj3�a dr 0 � S�r; t� ; 0 < a < 1 :

The range of a indicated here is determined by the conver-
gence condition for the integral at r 0 � r. We assume that
N�r; t� is a differentiable function of the coordinates, and
therefore, as jrÿ r 0j ! 0, we have��N�r 0; t� ÿN�r; t��� / jr 0 ÿ rj ;

and the integral converges for a < 1. This integral operator
can be continued to the domain of larger a by several methods
[33]. The regularization by calculating the finite (Hada-
mard's) part of the integral brings it to the form

J �
� �

N�r 0; t� ÿN�r; t��
2

jr 0 ÿ rj3�a dr 0; 1 < a < 2 ;

where �. . .�2 denotes a second-order difference.
In all these cases, the equation for the Fourier transform

with respect to spatial variables,

q ~N�k; t�
qt

� ÿAajkja ~N�k; t� � ~S�k; t�

contains a term proportional to the fractional power a of the
wave vector jkj. Because ÿjkj2 is the Laplace operator
transform, this term can be represented as

jkja ~N�k; t� � ÿjkj2�a=2 ~N�k; t� , �ÿD�a=2N�r; t� ;

and the equation is then written in form (23).
From the physical standpoint, the fractional Laplacian

can be regarded as the result of some averaging of the
diffusion operator with a random diffusion coefficient ~D:


H
ÿ

~DHN�r; t��� 7! ÿDa�ÿD�a=2


N�r; t�� :

It seems that the general derivation of this relation from the
fractal structure of a medium where diffusion occurs does not
exist, but there is a good example of a particular process of the
propagation of excitations in plasma by resonance radiation.
When averaging the transfer equation with an exponential
range distribution (asymptotically equivalent to the standard
diffusion equation) over the Lorentzian frequency distribu-
tion, the integral transfer operator is indeed transformed into
the fractional Laplacian [33], and the equation exactly
coincides with the one written above.

The fractional-differential diffusion equation mainly
differs from the standard diffusion equation in the range
distribution: a power-like distribution in the first case and an
exponential distribution in the second case. To elucidate the
problem of cosmic-ray propagation in random magnetic
fields, we refer again to the book by Ginzburg and
Syrovatskii [4, p. 181]: ``Assume that the motion occurs only
along tubes of force, but these tubes themselves are randomly
entangled, for example, consist of rectilinear segments with
the mean length l, any angle between the directions of
neighboring segments being equally probable. Then the

diffusion approximation can be fully applied to analyze the
problem of averaging the spatial distribution of particles
(cosmic rays) over large enough regions.'' What do we know
about the lengths of these segments? Of course, it is natural to
assume that they are random. As a continuous random
quantity, this length is characterized by a distribution density
p�x�, x > 0. The mention of the mean length of a rectilinear
segment can be taken as an implicit assumption of the
existence (i.e., convergence) of the improper integral�1

0

p�x�x dx � hRi � l :

But this is not sufficient for providing the diffusive random
walk of particles. The second moment of this distribution
must also exist,�1

0

p�x�x 2 dx � hR 2i :

The standard diffusion coefficient is expressed in terms of this
moment. These questions do not occur in the standard
kinetics because the initial range distribution is assumed
exponential, and all the moments of an exponential distribu-
tion are finite. We can say, of course, that this distribution is
`derived', i.e., obtained as a solution of the first-order
differential equation dp=dx � ÿsp�x�, but a close inspection
of this derivation shows that it is based on the assumption
that the random numbers of atoms on the segment �0; x� and
the adjacent element dx aremutually independent. In classical
kinetics, a particle moves in an ideal gas of noninteracting and
unrelated atoms. In the case under study, the role of such
atoms, in `collisions' with which the cosmic-ray particles
change the direction of their motion, is played by the ends
(or, it is better to say, breaking points) of the rectilinear parts
of magnetic field lines. Can we agree without any doubt that
two such points lying at the ends of the same segment are
mutually independent? Apparently not. But rejecting this
hypothesis of the independence, we thereby cast doubt on
the validity of the exponential distribution. This is not yet
problematic because many other distributions exist with two
finite first moments; however, the beginning has already been
made. Any such distribution in the long-time limit brings us
again to classical diffusion, but now the question already
arises: What is there behind the convergence of the second
moment? What do we sacrifice when we accept the assump-
tion about the convergence of the second moment? And it
turns out that we sacrifice the entire class of stable laws with a
power-law asymptotic behavior, in problems with plasmas,
turbulence, and randomkinetics, which we are dealing with in
studying cosmic rays. The difference between transfer
processes with exponential and power-law range distribu-
tions is the same as that between molecular and turbulent
diffusion, and cosmic-ray transfer in the Galaxy is the
turbulent diffusion.

3.3 `Knee' in the spectrum and the model parameterization
Of all the measurements performed in cosmic ray physics,
only data on the energy spectra cover more than ten orders of
magnitude, whereas the range of variations of other para-
meters is considerably smaller. This suggests that the effect of
replacing the normal spatial distribution by distributions with
power-law asymptotic forms is manifested, first of all, in
energy spectra. However, it is obvious that a simple introduc-
tion of the energy spectrum S�E � of a source into the transfer

November 2013 Fractional phenomenology of cosmic ray anomalous diffusion 1087



equation,

qN
qt
� ÿDa�ÿD�a=2N�r; t;E � � d�r�d�t�S�E � ;

is not sufficient for estimating this effect: the source spectrum
translates into the observed spectrum

N�r; t;E � � �Dat�ÿ3=aC �a�3

ÿ�Dat�ÿ1=ar
�
S�E �

without changes, because particles with different energies
move in space with the same `diffusion coefficient'. The
situation changes if we introduce the energy dependence of
this coefficient: in this case, different energies correspond to
different values of the dimensional variable x �
�Da�E �t�ÿ1=ar. The choice of a power-law dependence, as in
(1), means that the parameter x � �D0atE

d�ÿ1=ar � x1Eÿd=a of
a high-energy particle lies near the top of the stable density
(the left asymptotic region, for which we conventionally
assume that x < x0), whereas low-energy particles corre-
spond to large values of x lying at the periphery of the spatial
distribution C �a�3 �x� (the right asymptotic region, x > x0). In
the first case,

N�r; t;E � � S0r
ÿ3Eÿp

�
x 3C �a�3 �0�

� / Eÿpÿ3d=a ; E!1 ;

for any admissible a 2 �0; 2�. In the second case �E! 0�, a
power-law asymptotic behavior is observed only for anom-
alous diffusion �a < 2�:

N�r; t;E � / Eÿ�p�3d=2� exp
�
ÿ x 2

1

4E d

�
; a � 2 ;

Eÿ�pÿd� ; a < 2 :

8<:
This was the reason in [19, 20] to pass from the usual diffusion
equation to the equation with fractional Laplacian (23),
which allows relating this Laplacian to the fractal properties
of the medium due to which the free paths of particles acquire
the power-law form. The difference between the exponents of
power-law asymptotic forms for low and high energies
manifested for a < 2 was interpreted as an indication of a
`knee'.

Using experimental data on the position of the inter-
mediate knee region �E<;E>� and the exponent of the
spectrum for E < E< and E > E>, the main parameters
�D0a, d� of the model and the exponent p of particle
generation in a source as a function of the exponent a were
found. In [19], calculations were originally performed for a
source located at a distance r from the observation point and
acting with a constant intensity for a time interval tS
preceding the observation. In this case,

N�r; t;E � � S0E
ÿp�D0aE

d�ÿ3=a

�
�t
max f0; tÿtSg

C �a�3

�
r�D0aE

dt�ÿ1=a
�
tÿ3=a dt ;

and the exponent of the observed spectrum changes from
pÿ d for E4E< to p� d for E5E>. The results of
calculations showed that the best agreement with experi-
mental data on the spectra of protons and nuclei and the
total spectrum of all particles was achieved for a � 5=3,
Erad � �E> � E<�=2 � 3� 104 GeV per nucleon, d � 0:25,
and the injection exponent for all nuclei in the source p � 2:9
(r � 200 pc, t0 � 105 years). The exponent of the spectrum
observed in the kink region then changes from 2.65 to 3.15
(Fig. 8), which does not contradict the hypothesis that the

sources of cosmic rays could be the explosions of the nearest
supernovae during the last 100,000 years.

In [57] (see also [58]), we passed to the equation of a more
general type, containing, along with the fractional Laplacian,
the fractional time derivative to take the influence ofmagnetic
traps into account (which, without a doubt, exist in the
galactic medium):

qN
qt
� ÿDa�E � q1ÿb

qt 1ÿb
�ÿD�a=2N�r; t;E � � S�r; t;E � : �24�

Because the family of these equations includes Eqn (23) as a
particular case �b � 1�, we sacrificed nothing, but simply
extended the class of solutions: instead of the one-parameter
family of solutions expressed in terms of stable densitiesC �a�3 ,
we obtained the two-parameter family of solutions deter-
mined by the fractionally stable densities C �a;b�3 [40]. For a
point-like instantaneous source, the solution has the form

N�r; t;E � � S0E
ÿp�D0aE

dtb�ÿ3=aC �a; b�3

ÿ
r�D0aE

dt b�ÿ1=a� ;
whence it follows (see Section 2.6) that

N�r; t;E � � S0D0at
brÿ3ÿaEÿp�d ; E < E< ;

S0�D0at
b�ÿ1rÿ3�aEÿpÿd ; E > E> :

�
Thus, as the energy increases, the spectrum steepness
increases, which is manifested in the increase in the absolute
value of the exponent of the spectrum by 2d after passing
through the interval �E<;E>�. In the case of a source acting
with a constant intensity for a finite time, the spectrum
steepness also increases, but the exponent changes by
�1� 1=b�d. We note that in both cases, the exponents
characterizing the exponential behavior of the spectrum
outside the knee region are independent of a, but a noticeable
effect is observed in the intermediate region: the smaller a is,
the broader the transition region, and the transition occurs
more smoothly (as shown in Fig. 5).

The choice of numerical values of these parameters was
discussed in [59]: ``To estimate the parameter b, we used
results from paper [60], where the anomalous diffusion of
solar magnetic elements was studied. The authors showed
that the distribution of the lifetime in a trap in asymptotics
takes the form of the LeÂ vy distribution with the spectral
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Figure 8. Results of the first calculations in a model with the fractional

Laplacian �a � 5=3� [19, 20]: comparison of the proton spectrum (curve)

calculated in this model with different experimental data (see the details

in [56]).
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exponent b � 0:8. Assuming that the capture mechanism is
characterized by a certain self-similarity, we can expect the
same value of b at all scales under study. For this reason, we
used the value b � 0:8 in our calculations. Assuming then that
ZE5E0

� 2:63 and ZE4E0
� 3:24, we finally obtain p � 2:9

and d � 0:27.
To determine the next important parameter, the anom-

alous diffusion coefficient D0a, we used experimental data on
the anisotropy of 103ÿ104-GeV particle fluxes within the
framework of the scheme proposed by Osborne and coau-
thors in 1976 [61] and Dorman and coauthors in 1985 [62]. In
particular, we found that D0a � �1ÿ4� � 10ÿ3 pc1:7 yearÿ0:8

for a � 1:7 and b � 0:8 for the three nearest sources.
In the model considered here, only one parameter a

�1 < a < 2�, related to the fractal structure of the medium,
was found by fitting. Test calculations of cosmic-ray spectra
showed that the best fit of experimental data was achieved for
a � 1:7.''

In conclusion, the authors of [59] note that for the
parameters presented above, the results of calculations are
in agreement not only with the experimental increase in the
spectrum steepness but also with the mass content in the
energy region 102ÿ105 GeV per nucleon if the source content
is p � 72%, He � 18%, CNO � 5%, NeÿSi � 3%, and
Fe � 2%.

For a � 1, the stable density can be written in a simple
analytic form (the three-dimensional Cauchy distribution; see
Section 2.6), which was used in [59] in solving Eqn (23) with
the source

S�r; t;E � � S0E
ÿpd�r�1��t� :

As a result, the simple expression

N�r; t;E � � S0E
ÿpÿd

2pD0:1r 2t

�E=Erad�2d
�E=Erad�2d� 1

1��t� ; a � 1 ; b � 1

was obtained with Erad � �r=�D0:1t��1=d, which allows passing
from one set of asymptotic expressions to another. In
particular, we can estimate the energy gap DE � E> ÿ E<
separating these two asymptotic forms. For a 20% agreement
margin (the difference between the exact spectrum and its
power-law asymptotic form), we obtain the energy gap
somewhat smaller than two and a half orders of magnitude,
which does not contradict the experimental data in general.

In [63], a problem with a constant (in time) point-like
source was considered. The solution of the stationary
equation

Da�E ��ÿD�a=2N�r;E � � S0E
ÿpd�r� ;

following from (23) and found by using the known Mellin
transformation of the three-dimensional stable density�1

0

C �a�3 �r�r sÿ1 dr �
2 sG�s=2�Gÿ�3ÿ s�=a�
a�4p�3=2Gÿ�3ÿ s�=2�

under the same assumption about the energy dependence of
the diffusion coefficient, has the form

N�r;E � � S0E
ÿp�Da�E �

�ÿ3=a �1
0

C �a�3

�
r
�
Da�E �t

�ÿ1=a�
dt

� 2ÿaS0

p3=2D0ar 3ÿa
G
ÿ�3ÿ a=2�=2�

G�a=2� Eÿpÿd :

We emphasize that this expression is an exact solution of the
stationary equation, although this diffusion equation itself is
approximate, representing the asymptotic regime of the
process at large distances, and therefore the use of its
solution at small distances is risky. In conclusion, the authors
of [63] made an attempt to obtain the two-parameter (with
b 6� 1) stationary solution as the limit (for t!1) of the
distribution of particles from a source switched on at the
instant t � 0:

Nst�r;E � � lim
t!1N�r; t;E �

� S0E
ÿp�

Da�E �
�3=2 �1

0

C �a;b�3

�
r
�
Da�E �tb

�ÿ1=a�tÿ3b=a dt :
However, this integral diverges, and they were forced to cut
off the time integral at a large upper limit (1010 years), which
would make sense if the limit existed. The divergence is
explained by the fact that a fraction of the particles confined
in traps escape from them after some time and continuously
make up the total flux; however, due to the infinite mean
lifetime in a trap, the equilibrium between particles captured
in traps and those leaving them is not established. Mathema-
tically, the matter is that the Riemann±Liouville fractional
derivative used in this model vanishes when applied to a
constant only for an integer order b, whereas a fractional-
order derivative of a constant is not zero [33]:

q nC

qt n
� Ctÿn

G�1ÿ n� :

Therefore, for a stationary (time-independent) distribution of
particles in a medium to exist, i.e., for the condition
qNst=qt � 0 to be satisfied, as follows from Eqn (24), the
source density must satisfy the equation

S�r; t;E � � Da�E ��ÿD�a=2 q1ÿb

qt 1ÿb
Nst�r;E �

� �Da�E ��ÿD�a=2Nst�r;E �
� tbÿ1

G�b� :

Such a behavior of sources can be explained by the fact that
they themselves are traps of the same type as others, emitting
particles at a rate decreasing in accordance with a power law,
which seems more natural than a source perpetually emitting
particles at a constant rate.

Using the results in [59], researchers in Lagutin's group
calculated the energy spectra and mass composition by
separating the particle flux into contributions from particles
in a direct (unscattered) flux from near (r < 1 kpc) and distant
(r > 1 kpc) sources, represented by three terms in the
expression

Ji � vi
4p

�
C0iE

ÿp�d=b �
X

j: rj<1 kpc

Ni�rj; tj;E � � C1iE
ÿpÿd=b

�
;

i � p;He;CNO;NeÿSi;Fe :

The constants C0i and C1i were determined from the same
experimental data with which the results of calculations were
compared. By introducing the correction for the solar
modulation of galactic rays, the authors of [63, 64] satisfacto-
rily reproduced the energy spectra (the total spectrum is
shown in Fig. 9) and the mass composition of components
with different energies.
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The same model was used in [65, 66] for calculating the
electron and positron spectra. The sources of high-energy
(E5 100 GeV) electrons and positrons observed in the Solar
System were shown to be comparatively young local sources
(the distance is no more than 200 pc and the age is 105 years).

The fraction of positrons obtained from these calculations
was in agreement with experimental data (Fig. 10) and the
exponent pe � 2:95 of the spectrum of the source for electrons
and positrons proved to be close to the exponent pp � 2:9
found previously for protons. The authors believe that this
suggests that the acceleration mechanism of these particles is
the same. The energy losses of relativistic electrons were taken
in the form

ÿ dE

dt
� b�E � � b0 � b1E� b2E

2

(corresponding to a homogeneous medium, however),
whereas the inhomogeneities of the magnetic field were
assumed fractal. Such an approach assumes the absence of a
correlation between the magnetic field and matter in the
interstellar region, which contradicts the conventional con-
cept of magnetic field lines `frozen' into the material medium.
In the case of complete correlation, the term with energy
losses should enter the equation as a part of the material
derivative operator raised to a fractional power (see Section
3.4).

The calculations by Lagutin et al. with the parameters
a � 1:7 and b � 0:8 (which we refer to as the Lagutin±
Uchaikin (LU) model for convenience) were continued in
[67, 68], and it seems that no serious disagreements with
experiments were observed (Figs 10 and 11).

However, the authors of [69] performed calculations with
a � 0:5, 1.0, and 1.5 and concluded that the value a � 1:0
provides the best fit of the experimental data and at the same
time is consistent with the Kraichnan spectrum F�k� / kÿw

known from turbulence theory (the parameter a is related to
the index w as a � �3ÿ w�=2; we have w � 3=2 and a � 3=4 for
the magnetic energy).6 Moving further in this direction,

Lagutin and Tyumentsev [73] took a new value of the key
parameter a � 0:3 (we call this variant the LT version of the
fractional differential model of galactic cosmic ray transfer)
and performed extensive calculations with this parameter in
2004±2010 (which are available in proceedings of cosmic ray
conferences). The motivation for choosing this value of a was
the finding in [74] that the fractional exponent a in the range
distribution does not coincide with the fractal dimension dF of
the medium. In addition, it was desirable to match mean free
paths with the known parameters of the real interstellar
medium. The first calculations of this type were performed
in our paper [75] (see also [76]). Lagutin et al. simulated the
free paths of particles in a medium with randomly distributed
spherical targets and wrote in [77] that because ``for media
with a fractal dimension 1 < dF < 2,

a � 2ÿ dF ; �25�
we find a � 0:3 for the galacticmediumwith dF � 1:7 [51].We
set the exponent b equal to 0.8, as in [58]. Another important
parameter of the model, the anomalous diffusion coefficient
D0a, can be estimated by comparing the position of the knee in
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the observed cosmic-ray spectrum with the position of the
`breaking point' in fractionally stable distributionsC �a; b�3 �x�.
Because the breaking point of C �0:3; 0:8�

3 �x� is observed at
x � 2:3, we obtain

r�D0aE
d
kneet

b�ÿ1=a � 2:3 :

Assuming that near sources are also involved in the formation
of the knee in the energy spectrum, we find for r � 102 pc and
t � 105 years that

D0a � �3ÿ5� � 10ÿ6 pc0:3=y0:8 :

For such D0a and the parameters d, a, and b chosen above, a
unique relation exists between r and t for the sources
providing the knee in the spectrum at Efr � 3� 106 GeV.''

This conclusion is incorrect, because expression (25) is
valid only for extremely small elements forming a fractal. The
size of magnetic inhomogeneities of the galactic medium does
not belong to this type: they occupy 5% of the volume
(according to old estimates made in [2], which, however,
were confirmed by subsequent astronomical measurements:
for example, the volume fraction of the interstellar space not
filled with hydrogen was estimated as 95% in [57]), which
becomes more than 30% on passing to the linear scale. That
formula (25) is invalid for such scales can be clearly seen, in
particular, from [55], where, based on the experimental
studies of the cloudy structure of interstellar hydrogen, the
value dF � 2:3 was obtained, which is obviously incompatible
with expression (25). We also recall that the fractal dimension
alone does not characterize a fractal-like structure comple-
tely: the size of its elements and their concentration in space
are determined not by the exponent dF in the fractal formula
VF�R� � CRdF but by the coefficient C � VF�1� determining
the volume fraction of a unit-radius ball filled with a fractal.
An increase in the size of magnetic clouds, preserving the
same fractal dimension dF, obviously reduces the range
distribution, thereby increasing the exponent a (Fig. 12).
This effect is also clearly seen in Fig. 13 taken from [77].

The original LU model has been used by other authors.
The authors of [78] used the stationary solution for a � 1:8 in
Monte Carlo simulations of cosmic-ray diffusion from a
supernova (in the Erlykin±Wolfendale model) and obtained
good agreement with the observed characteristics. Based on
these results, they concluded that the source of cosmic rays is

a supernova. The authors of [79] in fact repeated our first
calculations and concluded again that the value a � 1:65
provides the best fit of the energy spectrum and radial
gradient in the vicinity of the Solar System, and the
admissible range of a values is 1.6±1.9, whereas the value
a � 2, corresponding to classical diffusion, is unacceptable.
Paper [80] is entirely devoted, in fact, to estimating the
exponent a. The authors studied the transfer of cosmic rays
with the energy in the range 1012ÿ1019 eV from a supernova
with the energy fraction converted to cosmic rays from 0.01 to
0.1 and the supernova age from 104 to 107 years for different
a 2 �0:5; 2:0� and concluded that the propagation of cosmic
rays in the Galaxy is governed by anomalous diffusion of the
second kind (with a � 1:7) and is not described by the normal
diffusion model �a � 2�. Therefore, this conclusion also
rejects the LT hypothesis about anomalous diffusion with
a � 0:3 (diffusion of the first kind).

After our critical paper [81] in 2010, the authors of the LT
version decided to return to the original model. In 2011, they
published calculations with a � 1:1 [82] and presented the
results of Monte Carlo simulations with a � 1:7 at the
European Cosmic Ray Symposium in 2012 [83].

The coefficient D0a suffers the greatest changes under
these variations of a (Table 1). However, the final results (the
spectrum and composition) were practically unchanged
(Table 2). Obviously, a change in the parameter a was
compensated by the corresponding change in the diffusion
coefficient. However, as a changes, the dimension of the
diffusion coefficient also changes, and we cannot quantita-
tively estimate these changes or estimate the difference
between velocity and acceleration values. It is possible that
the coefficientsCi andC0i play an important role here, and the
results can be changed by varying these coefficients. At the
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Figure 12.Difference in the range distribution for the same distribution of

centers and different radii of spheres simulating magnetic clouds: (a) LT

model, (b) LU model.
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Table 1. Parameters of the fractional differential model in different papers.

a b p d D0, pca yearÿb References (year)

1.7

0.3

0.7

1.1

1.7

0.8

0.8

1.0

0.8

0.8

2.90

2.86

2.60

2.85

2.90

0.27

0.27

0.27

0.27

0.27

�1ÿ4� � 10ÿ3

�3ÿ5� � 10ÿ6

2� 10ÿ5

1� 10ÿ4

2:4� 10ÿ3

[64] (2001)

[73] (2004)

[84] (2008)

[82] (2011)

[83] (2012)
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same time, as shown in Sections 3.7 and 3.8, these manipula-
tions drastically change the space±time shapes of particle
trajectories, which was neglected by the authors of the LT
version. If the dynamics of the process described by a
fractional differential equation are not consistent with the
reality, simulations become amultiparametric approximation
of the known experimental results.

We also note that the parameter g � b=a characterizing
the expansion law of a diffusion packet in the LUmodel turns
out to be suspiciously close to the classical value 1=2.Hence, if
we initially attempt to construct a model in which the
expansion of a diffusion packet is consistent with the
standard theory, but the shape is self-similar and has a
power-law asymptotic behavior required for the description
of the observed knee, then, for b � 0:8, we arrive precisely at
the LU model �b=a � 0:5� rather than at the LT version
�b=a � 2:66�. Obviously, the diffusion packet dynamics in the
LT version in the large-time asymptotic regime contradicts he
physical reality, because the packet expansion velocity
increases infinitely, despite the natural restriction imposed
on the velocities of particles in the packet.

3.4 Equations of restricted-speed anomalous diffusion
In the process considered above, flights were assumed to be
instantaneous [we called this process unrestricted anomalous
diffusion (UAD)]. The solutions of random-walk problems
for cosmic rays with a finite velocity of free motion were
considered in our papers [81, 85±88] [restricted anomalous
diffusion (RAD)].

In the case of a finite flight velocity, a particle can be in one
of two states at an arbitrary observation instant: rest (0) or
motion (1) (Fig. 14b±d). We let the 1! 0 and 0! 1
transition rates per unit volume be denoted by F1!0�r; t� and
F0!1�r; t�, in the vicinity of a point r for a particle located at
the coordinate origin at the initial instant. The unit velocity
vector X of a particle leaving a source or a trap has an
isotropic distribution. A particle that has undergone a
transition to the rest state at the instant tÿ t 0 remains there
until the observation instant t with the probability

Q�t 0� �
�1
0

q�t 0 � t� dt ;

and a particle that has left a trap at the point rÿ r 0 intersects,
without interaction, a unit area at the point r with the
probability

P�r 0� �
�1
0

p�r 0 � xX� dx :

Because the particle should spend r 0=v seconds for this
transition, we obtain the total probability density of finding
the particle at the point r at the instant t:

G�r; t� �
�1
0

dt 0Q�t 0�F1!0�r; tÿ t 0�

� 1

v

�
dr 0 P�r 0�F0!1

�
rÿ r 0; tÿ r 0

v

�
: �26a�

The transition velocities (under the condition that the particle
history begins with the particle capture in a trap located at the
coordinate origin) are related as

F1!0�r; t� �
�
dr 0 p�r 0�F0!1

�
rÿ r 0; tÿ r 0

v

�
� d�r�d�t� ; �26b�

F0!1�r; t� �
� t

0

dt q�t�F1!0�r; tÿ t� : �26c�

Applying the Fourier transformation in the spatial
coordinate and the Laplace transformation in the time
coordinate to system of integral equations (26), we obtain
the system of algebraic equations

~G�k; l� � Q̂�l� ~F1!0�k; l� � 1

v
~P

�
k;

l
v

�
~F0!1�k; l� ;

~F1!0�k; l� � ~p

�
k;

l
v

�
~F0!1�k; l� � 1 ;

~F0!1�k; l� � q̂�l� ~F1!0�k; l� ;

where

Q̂�l� � 1ÿ q̂�l�
l

;

~P

�
k;

l
v

�
�
�
P�r� exp

�
ÿ l
v
r

�
exp �ikr� dr ;

~p

�
k;

l
v

�
�
�
p�r� exp

�
ÿ l
v
r

�
exp �ikr� dr :

The solution of this system has the form

~G�k; l� � Q̂�l� � �1=v� ~P�k; l=v�q̂�l�
1ÿ ~p�k; l=v�q̂�l� : �27�

Table 2.Mass composition in the LU model and its LT version.

Model a b p,
%

He,
%

CNO,
%

Ne ë Si,
%

Fe,
%

References
(year)

LU

LT

1.7

0.3

0.8

0.8

72

77

18

16

5

4

3

2

2

1

[64] (2001)
[83] (2012)
[73] (2004)
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Figure 14. Initial segment of a trajectory in the �x; t� coordinates with (a) instant flights, (b, c) a finite velocity of flights in a medium with traps (two
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For v � 1, expression (27) takes the form ofMontroll±Weiss
formula (14) describing the motion of a particle as a sequence
of instant hops from one point in space to another:
irrespective of the distance between these two points, the
particle arrives at one of them at the same instant that it leaves
another point. In this case, the delay time (the lifetime in a
trap) is connected neither with this distance nor with the
motion as a whole. If traps are removed from this model
(which amounts to setting Q̂�l� � 0), then the model has no
meaning at all: the particle instantly flies away to infinity,
disappearing from the system. However, the introduction of a
finite velocity of free motion brings everything back to
normal even in the absence of traps: the particle moves
continuously with time, always remaining within a sphere
with the radius vt centered at the initial point of the trajectory.
In this case, solution (27) becomes

~G�k; l� � �1=v�
~P�k; l=v�

1ÿ ~p�k; l=v� : �28�

Delays in the motion of particles are now not caused by
independent traps and become closely related (directly
proportional) to particle ranges, and this considerably
changes the situation, especially for a < 1 (in the original
paper [81], the RAD equations were derived under the
assumption of independent traps).

We now pass from Eqn (28) in the Fourier±Laplace
variables to the asymptotic equation in natural variables.
For this, we represent (28) in the form

~L�k; l� ~N�k; l� �
�
1ÿ ~p

�
k;

l
v

��
~N�k; l� � vÿ1 ~S�k; l� ; �29�

where the function ~S�k; l� is not necessarily equal to the
function P�k; l=v� characterizing an instantaneous point-like
source, but is related to an arbitrary source (therefore, the
solution N is not necessarily the Green's function). We
assume, as previously, that

P�R > r� � Arÿa ; r!1 ;

whence

p�r� dr � pR�r� dr dX
4p

;

where dX is a solid angle element and pR�r� is the range
distribution density,

pR�r� � ÿ dP�R > r�
dr

� aArÿaÿ1 dr ; r!1 : �30�

The Laplace transform of this distribution behaves differently
in the vicinity of s � 0, depending on the convergence or
divergence of the mean and dispersion:

p̂R�s� �
�1
0

pR�r� exp �ÿsr� dr

�
1ÿ Aas

a ; 0 < a < 1 ;
1ÿ hRis� Aas

a ; 1 < a < 2 ;

1ÿ hRis�
�
R 2

2

�
s 2 ; a > 2 ;

8>><>>:
�31�

and we therefore obtain

1ÿ ~p

�
k;

l
v

�
�
��

1ÿ exp

�
ÿ
�
l
v
ÿ ikX

�
r

��
p�r� dr

�

Aa

��
l
v
ÿ ikX

�a�
; 0 < a < 1 ;

hRi
��

l
v
ÿ ikX

��
ÿ Aa

��
l
v
ÿ ikX

�a�
; 1 < a < 2 ;

hRi
��

l
v
ÿ ikX

��
ÿ
�
R 2

2

���
l
v
ÿ ikX

�2�
; a > 2 ;

8>>>>>>>><>>>>>>>>:
where the angular brackets denote averaging over the
isotropically distributed vector X and the power-law func-
tions are treated, as usual, in the sense of the principal branch
of the analytic function z a in the plane with a cut along the
positive semiaxis [89]:

z a � jzja exp �ia arg z� ; lim
e!0

arg z
���
z�s�ie; s>0

� 0 :

In accordance with this choice,�
l
v
ÿ ikX

�a

�
��

l
v

�2

� �kX�2
�a=2

exp �ÿifa� ;

where

tanf � kX

l=v
:

The functionsP�k; l� corresponding to each of these intervals
are found similarly.

Because the distribution of the random directions of X is
isotropic, the mean of X is zero and the fractional diffusion
asymptotic form of the operator ~L as k! 0 and l! 0 is

~L�k; l� �

Aa

��
l
v
ÿ ikX

�a�
; 0 < a < 1 ;

hRi l
v
ÿ Aa

��
l
v
ÿ ikX

�a�
; 1 < a < 2 ;

hRi l
v
� k 2

�
R 2

6

�
; a > 2 :

8>>>>>>>><>>>>>>>>:
The corresponding equations in natural variables take the
form��

q
qt
� vH

�a�
N�r; t� � Sa�r; t� ; 0 < a < 1 ; �32��

q
qt
ÿ Aa

v aÿ1hRi
��

q
qt
� vH

�a��
N�r; t� � 1

hRi Sa�r; t� ; �33�
1 < a < 2 ;�

q
qt
ÿ vhR

2i
6hRi D

�
N�r; t� � 1

hRi S2�r; t� ; a > 2 : �34�

The pseudo-differential operator in Eqns (32) and (33) can
be considered a fractional power of the material (total)
derivative operator:�

q
qt
� vH

�a

N�r; t� �
�
q
qt
� vH

��
q
qt
� vH

�aÿ1
N�r; t�

�
�
q
qt
� vH

�� t

0

N
ÿ
rÿ v�tÿ t�; t�

G�1ÿ a��tÿ t�a dt :

November 2013 Fractional phenomenology of cosmic ray anomalous diffusion 1093



In an homogeneous distribution of particles, the fractional
material derivative of a function is equal to the fractional
Riemann±Liouville time derivative, and in the stationary
case, it is equal to the fractional directional derivative.

We recall that Eqns (32) and (33) respectively describe
superdiffusion of the first and second kinds, and Eqn (33) can
be simplified. Taking into account that its first term in the
Fourier±Laplace representation contains l to the first power,
and the second term contains l to a higher power, we can
conclude that as l! 0, the term containing l in the second
term can be neglected and the operator can be written in the
form

~L�k; l� � hRi l
v
ÿ Aa


�ÿikX�a� ; 1 < a < 2 :

After averaging over directions in the last term,


�ÿikX�a� � 1

2
k a
� 1

ÿ1
�ÿim�a dm � i

2
k a
� ÿi
i

z a dz

� i

2�a� 1� k
a
�
exp

�
ÿi�a� 1� p

2

�
ÿ exp

�
i�a� 1� p

2

��

� Aa cos �ap=2�
a� 1

k a � ÿAa
��cos �ap=2���
a� 1

k a ; 1 < a < 2 ;

we arrive at the approximate representation ofRAD equation
(32) in the form of the UAD equation�
q
qt
�Da�ÿD�a=2

�
N�r; t� � 1

hRi Sa�r; t� ; 1 < a < 2 ; �35�

where

Da �
Aa
��cos �ap=2���

v aÿ1�a� 1�hRi :

Finally, the third equation describes normal diffusion with
the diffusion coefficient

D2 � vhR
2i

6hRi :

In the exponential distribution of free paths,

pR�r� � 1

hRi exp
�
ÿ r

hRi
�
;

the mean square hR 2i � 2hRi2, and the diffusion coefficient
takes the conventional form

D2 � vhRi
3

:

The inclusion of independent power-law traps would result in
adding a fractional partial time derivative to the left-hand
sides of these equations [81].

In conclusion, we note that the solutions of the equations
presented above are not continuous functions of the exponent
a in the range of its values, changing jumpwise at a � 1 and 2.
For a < 2, the coefficient Da is not the diffusion coefficient
and does not transform into it even as a " 2, because Da is
determined by the asymptotic behavior of the range distribu-
tion at large arguments. But the classical diffusion coefficient
is determined by dispersion, being finite for a � 2, but infinite

for any a < 2, which means that as a approaches 2 from
below, the dispersion limit is also infinite and cannot coincide
with the classical value. This leads to a discontinuity.

3.5 Anomalous diffusion distributions
We see from Section 3.4 that the RAD equations are more
complicated than the UAD equations, and they are more
difficult to solve. However, the RAD equations have a certain
advantage because, due to the boundedness of the spatial
region of the RADmodel, all moments of the RAD equations
are finite. This opens up the possibility of using the method of
moments, which has been tested in the classical theory, and
also allows obtaining asymptotic analytic estimates of the
moments.

In [85, 87], the time evolution of the root mean square��������������������
�
R�t��2�q

�
��

r 2G�r; t� dr
�1=2

of a diffusion packet was considered. The Laplace transform
of the root mean square,�1

0

exp �ÿlt�
�R�t��2� dt � ÿ q2 ~G�k; l�
qk 2

����
k�0
� ÿ ~G 00�0; l� ;

was found from Eqn (28). Using the asymptotic form of the
transforms pR�l� and qT�l� as l! 0,

pR�l� � 1ÿ Ala ; 0 < a < 1 ;
1ÿ hRil� Cla ; 1 < a4 2 ;

�
qT�l� � 1ÿ Blb ; 0 < b4 1 ;

and Tauber's theorems [42], the inverse transformation was
performed, with the result that, as t!1,


�
R�t��2� �

�1ÿ a�v 2t 2 ; a < b < 1 ;

A�1ÿ a�v 2
A� Bv a t 2 ; a � b < 1 ;

2�1ÿ a�Av 2ÿa

BG�3ÿ a� b� t
2ÿa�b ; b < a < 1 ;

2�aÿ 1�Cv 2ÿa

BG�3ÿ a� b� t
2ÿa�b ; a > 1 :

8>>>>>>>>>><>>>>>>>>>>:
We see from the last line that for a > 1 and b � aÿ 1, we have
the normal expansion law for the diffusion packet:
�

R�t��2� � 2�aÿ 1� C
B
v 2ÿat :

However, the packet shape differs from normal, coinciding
with it only for a � 2 and b � 1 (a quasi-normal diffusion
becomes normal). For b < aÿ 1, the packet spreads more
slowly than the normal packet (the subdiffusion regime),
while for b > aÿ 1, it spreads faster (superdiffusion). In all
other cases, the condition a < 1 gives rise to superdiffusion.

The conclusions made in [85] are as follows. For v � 1,
the distribution mean square diverges and cannot be used to
characterize the distribution width. Thus, the assumption of a
finite velocity of motion between collisions in anomalous
diffusion drastically changes the asymptotic behavior of the
diffusion packet width as t!1. In this case, subdiffusion
appears only when the free path is finite (i.e., a > 1), the
waiting time in a trap is distributed by a power law, and the
condition b < aÿ 1 is satisfied. For b > aÿ 1 and any a < 1,
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b < 1 (the mean free path andmean waiting time are infinite),
superdiffusion occurs. The linear time dependence of the root
mean square for a4b means that the ballistic regime plays
the main role in the asymptotic behavior; as a! 0, we obtain
the free motion of a particle in a pure form:��������������������
�

R�t��2�q
� vt :

We next discuss the distributions. We noted above that
superdiffusion in the RAD model has two qualitatively
different regimes: superdiffusion of the first kind �a 2 �0; 1��
and superdiffusion of the second kind �a 2 �1; 2��. The
asymptotic analysis of the system of integral equations for
the process of the second kind leads to the same fractional
differential equation as for the UAD model, but with a
corrected diffusion coefficient.7

To avoid cumbersome calculations, we present only
qualitative considerations leading to the same result [21]. Let
Ti be the confinement time in a trap before the ith jump andRi

be its random length. Then a random instant of time

Yn �
Xn
i�1

�
Ti � Ri

v

�
corresponds to the nth jump of a particle. According to the
law of large numbers, we can write

Yn � t �
�
hT i � hRi

v

�
n :

Hence,

n � t

hTi � hRi=v :

Introducing the notation

tv � t

1� hRi=hvT i ;

we obtain the same distribution as in the case of normal
jumps, but at a shifted instant of time:

G�r; t� � �Dt bv
�ÿ3=aC �a; b�3

�
r
�
Dt bv

�ÿ1=a�
; 1 < a4 2 :

The result is clear: the finite velocity of free motion slows
the expansion of the diffusion packet compared to the case of
unrestricted diffusion, where v � 1. The replacement t! tv
takes this slowing down into account (in the asymptotic
sense). However, it is convenient to add a correcting factor
to the diffusion coefficient by introducing the notation

Dv � Dÿ
1� hRi=hvT i�b

and writing the result in the form

G�r; t� � �Dvt
b�ÿ3=aC �a;b�3

�
r
�
Dvt

b�ÿ1=a� ; 1 < a4 2 : �36�

Figure 15 demonstrates the applicability of this approxima-
tion. At first, of course, ballistic restrictions play their role,

constraining the diffusion packet, but with time the ballistic
bound moves away from the packet, which expands with a
smaller velocity, and the effect of the bound on the
distribution shape decreases with time, disappearing comple-
tely in the asymptotic regime (Fig. 16). Hence, in super-
diffusion of the second kind, which is described by the LU
model, the assumption of a finite velocity in the asymptotic
regime leads only to a change (decrease) in the diffusion
coefficient in the equation, preserving the form of the solution
itself expressed in terms of a spherically symmetric three-
dimensional stable density and satisfying the same fractional
differential equation with the corrected coefficient.

However, this conclusion is valid if two conditions are
satisfied. First, the modified process is constructed based on a
jumpwise process with instantaneous flights alternating with
the rest states of a particle. Therefore, the rest states remain in

7 This concerns only the central part of distributions; the tails, of course,

cannot be made coincident by any scale transformation.
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Figure 15. Influence of a finite velocity on the one-dimensional distribu-

tion in superdiffusion of the second kind (a � 3=2, b � 1, m � 1, t � 103).

The dashed curve is obtained for v � 1, the solid curve is calculated by

expression (36) with v � 5, the histogram is calculated by theMonte Carlo

method for the same velocity v � 5 over 2� 105 trajectories [21].
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Figure 16. Evolution of a superdiffusion packet in the process of the
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and virtually vanishes long before reaching the boundary.
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the modified process, and alternate with flights with a finite
velocity. As a result, the time interval between the beginning
of the one flight and the beginning of the next flight consists of
two parts, one of which is the confinement time of a particle in
a trap, which is independent of other variables of the process,
and the other is proportional to the flight length, which
produces partial correlations of temporal and spatial inter-
vals absent in the initial process. We emphasize once more
that expression (36) is approximate and is derived assuming
the dominant role of traps. The second restriction is the
condition a > 1 (anomalous diffusion of the second kind),
which was used in the replacement Yn ! t.

For a < 1 (the process of the first kind), the situation
drastically changes, as can be seen from the following
considerations. The size (`width') of a superdiffusion packet
increases with time proportionally to t 1=a. Due to a finite
velocity, the distribution density outside a sphere with the
radius vt vanishes. For a < 1, a superdiffusion packet spreads
faster than vt (faster than for free motion) and the kinematic
constraint becomes the main factor determining the asymp-
totic distribution of the diffusion packet.When restricted by a
sphere of the radius vt, this distribution has a completely
different form: it is W-shaped for a > 1=2 and U-shaped for
a < 1=2 (see [90], Fig. 17 and also Figs 18 and 25 below).
However, the authors of the LT version, setting a � 0:3, still
use the unrestricted fractionally stable distribution, which is
no longer related to the process under study. The applicability
of this approach could be substantiated if the coefficient in the
distribution of the residence time in traps was so large that all
the times considered would be related to the beginning of the
process, when the diffusion packet has not yet reached

ballistic bounds. Leaving aside the physical interpretation of
such an unconventional assumption, we note that it is also
beyond reason in this case to use the solutions of fractional
differential equations; these equations describe the asymptot-
ic behavior of a process caused by a large number of
transitions, while the introduction of long residence times in
traps reduces this number and pushes the random walk
process away from the asymptotic region described by the
fractional differential equation.

3.6 Range±time correlations
The trajectory of a charged particle in the interstellar
magnetic field, together with its derivative, is an extremely
complex continuous curve in the phase space, which can be
described in detail by an integer-order differential equation if
the magnetic field and other characteristics of the medium
affecting the particle motion are also specified in detail.
Needless to say, we have no such information.

We return to the idea of passing from a continuous
description to a coarse-grain description (see Section 3.1),
this time focusing our attention on the trajectory shape. If we
were dealing with a homogeneous medium, the partition
elements would be only slightly different from each other,
and, in the finite-element representation, we would again
obtain an analog of the classical differential equation with the
diffusion coefficient somewhat corrected due to the coarse-
graining. But the interstellar medium is not simply inhomo-
geneous in reality: its inhomogeneities have a multiscale
character, as mentioned in the Introduction. This multiscale
(fractal) property of the structure does not allow choosing the
partition size for which the characteristics of elements could
be assumed approximately identical. Selecting one such
element, we find that the magnetic field in neighboring
elements is an order of magnitude lower (and a particle freely
goes away to a remote region) or higher (and a particle
remains confined in one of the elements for a long time).
The fractal structure assumes that this holds in a broad range
of partition sizes. But while crossing the interface between
neighboring elements occurs instantaneously, crossing a
number of large-scale elements almost transparent to parti-
cles can no longer be assumed instantaneous, and the time
spent for the passage should be taken into account. This is the
difference between theRADmodel, taking the time spent by a
particle to move from one trap to another into account, and
the UAD model, in which such a transition is assumed
instantaneous irrespective of its scale. If T is the time interval
separating the instants of a particle arriving at some partition
element and the next nonempty element, then in the RAD
model T consists of two terms: the residence time T0 of a
particle in the first element and the timeT1 spent to pass to the
next element, whereas in the UAD model, this time is the
residence time of a particle in a trap. Ranges and waiting
times in both models are independent of each other, but the
flight time in the RADmodel is proportional to the range (for
a constant velocity) and gives rise to a TÿR correlation,

T � T0 � R

v
:

As shown in Section 2.5, a fractional order b < 1 of the
time derivative means that residence times in traps are
distributed with a density proportional to tÿbÿ1, t!1, and
the fractional order of the Laplacian suggests that ranges are
distributed with a density proportional to rÿaÿ1, r!1. The
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Figure 17. Evolution of a superdiffusion packet in the process of the first

kind [21]. A finite velocity drastically affects the distribution, which

becomes U-shaped (histogram). At large times, the probability concentra-

tion is maximal at ballistic bounds and minimal at the center. In the case

v � 1, the distribution is described by a rapidly spreading stable density

(solid curves near the horizontal axes).
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unrelated terms �q=qt�b and �ÿD�a=2 in the UAD equation
operator mean the absence of correlations between T and R,
and, as a consequence, a jumpwise (discontinuous) form of
the trajectories, whereas the presence of the composite
operator h�q=qt� vH�ai in the UAD equation indicates the
presence of RÿT correlations.

Including RÿT correlations in the model
(i) transforms discontinuous trajectories into continuous

ones, thereby eliminating nonphysical phantoms such as long
instant flights and long rest times followed by instant gains of
an infinite velocity;

(ii) restricts the spatial position of a particle by a spherical
region of the radius vt centered at the initial point, which
allows reconciling the process with the relativistic concept,
restricts the expansion law of the diffusion packet by a linear
velocity, and returns themethod ofmoments to the toolbox of
computational techniques in the transfer theory [88] (which is
inapplicable in the UAD model due to the divergence of
moments);

(iii) for a < 1, considerably changes the shape of the
spatial distribution, giving rise to splashes near the ballistic
boundary r � vt and thereby transforming the usual bell-
shaped diffusion packet to a W-shaped packet, and, for
a < 1=2, to the U-shaped packet.

The differences between the UAD and RAD models are
most strongly manifested for a; b < 1, when mathematical
expectations of random variables are infinite and jumps of
space±time trajectories can be seen at any scale. For a > 1 and
b � 1, the situation is different: as the size of the chosen space±
time region increases, the relative role of jumps becomes less
noticeable and becomes insignificant when the expectation
values are greatly exceeded. This is well seen for a usual
Brownian trajectory: despite the independence of the spatial
and temporal parts of the differential operator, the trajectory
is everywhere continuous (although not differentiable).

To elucidate the role of RÿT correlations in the model
under study, we compare propagators in the RAD and UAD
models. In the RAD model, we assume that independent
traps are absent �T0 � 0�, and therefore T and R � vt
completely correlate, such that their distributions coincide
up to the scale factor v (which we set equal to 1). In the UAD
model, v � 1 and random variables T � T0 and R are
completely independent. We take the same distribution
P�R > x� � P�T > x� / xÿn, n > 0, for them and note that
in this case,

a � n ; n4 2 ;
2 ; n > 2 ;

�
b � n ; n4 1 ;

1 ; n > 1 :

�
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x

n � 0.5
G�x; t�
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The principal difference between the propagators disappears
only for n > 2. We can see from Fig. 18, representing
calculations of one-dimensional and three-dimensional ran-
dom walks in both models, that the RÿT correlations
drastically change the process for n4 1: the propagators
differ in their form, expansion law, and behavior near
ballistic boundaries and near the radiation source (we return
to these distributions in the study of one-dimensional random
walks along field lines in Section 4.5). For 1 < n < 2
(anomalous diffusion of the second kind), the differences are
weaker, although quite noticeable: in one case, distributions
are bounded, while in the other, they are not bounded; in the
RAD model, a front appears near the region jrj � vt and the
densities are quantitatively different near the source.

3.7 Anisotropy
The anisotropy coefficient of a flux in the standard diffusion
theory, determined by the ratio of the current density Jr � J
to the particle flux density vN,

d�r; t� � 3
J�r; t�
vN�r; t� ; �37�

is described at a distance r from a point-like instantaneous
source in a homogeneous infinite medium by the known
expression [10]

d�r; t� � 3r

2vt
: �38�

We note that (i) the derivation of expressions (37) and (38)
a priori assumes a weak anisotropy of the flux at the point
under study and (ii) the diffusion approximation itself is
applicable to random walks at rather large times, when the
number of flights performed by a particle is large enough for
the total displacement to reach the asymptotic regime.

In the case of anomalous diffusion based on the usual Fick
law, this derivation is of course invalid; but the fact that
anomalous diffusion equations preserve the self-similarity of
their solutions is sufficient for finding the general expression
relating the current and concentration, even without specify-
ing the form of a self-similar solution. According to the
physical meaning of J, we have

J�r; t� � 1

r 2
d

dt

�1
r

N�r; t�r 2 dr �39�

in a spherically symmetric problem. Substituting
N�r; t� � G�r; t� from (36) in (39) and changing the variable
r�Dtb�ÿ1=a ! x in the integrand, we find�1

r

N�r; t�r 2 dr �
�1
r

�
Dt b

�ÿ3=aC �a;b�3

�
r
�
Dt b

�ÿ1=a�
r 2 dr

�
�1
r�Dt b�ÿ1=a

C �a;b�3 �x�x 2 dx :

Substituting this result in (39) and differentiating, we obtain a
simple expression for the current density:

J�r; t� � N�r; t� b
a
r

t
:

Therefore, the ratio of the current density J to the concentra-
tion N is given by a simple general relation for any (not
necessarily fractionally stable) self-similar concentration

N�r; t� � tÿ3b=aF�rtÿb=a�:
J�r; t�
N�r; t� �

b
a
r

t
:

If all the particles continuously moved with the same
constant velocity v, the anisotropy coefficient would also
have the model-independent form

d�r; t� � 3
J�r; t�
vN�r; t� � 3

b
a

r

vt
: �40�

This was the case in paper [73] describing the LT version of the
fractional differential model: the anisotropy in this model was
described by classical formula (37), in which the concentra-
tion N was replaced with the product kNnear, where k is the
number of nearest sources and Nnear is the concentration of
one of them. However, it is obvious that in this case, the
motion of particles never satisfies the continuity condition
mentioned above. On the contrary, the concentration of
particles moving at a given instant in the LT model is zero,
while the velocity of particles performing instant flights is
infinite. This gives rise to an uncertainty in the product vN,
which can lead to any result. Another consideration requiring
a careful treatment of general expression (40) is that this
expression is exact with respect to the fractional differential
equation, but this equation itself is only an asymptotic form
of the system of integral equations presented in Section 3.4.
Integral equations include the distributions of ranges and
time intervals between flights, and therefore correctly
describe random walks with specified characteristics,
whereas the fractional differential equation contains some
part of this information in the diffusion coefficient, and the
characteristics of flight lengths no longer can be separated
from waiting times. In considering this model less formally,
we must admit that the concept of particles at rest in traps
cannot correspond to reality. Simply put, we are dealing with
regions which a particle can leave only with difficulty because
of the small diffusion coefficient strongly entangling the
trajectory along which the particle can continue its motion
with the same velocity v (which for light particles (electrons
and positrons) gives enhanced synchrotron radiation). In this
case, we should consider real anisotropy at a point located in a
trap (withNmeaning the total concentration) and anisotropy
at a point located outside the trap (with N being the
concentration of particles not affected by traps).

These problems are eliminated to a great extent in the
kinetic CTRW model: the introduction of a finite flight
velocity gives finite time intervals during which the particle
moves. In the case of diffusion of the second kind �1 < a < 2�,
this procedure does not change the distribution shape but
corrects only the diffusion coefficient. As regards anomalous
diffusion of the first kind �a < 1�, the situation is different.
The LT version is inapplicable, while calculating the
propagator with a finite velocity taken into account for
a < 1 is a more complicated problem. Based on qualitative
considerations, we can conclude that for a < b (we recall that
a � 0:3 and b � 0:8 in the LT version), the diffusion packet is
a thin spherical shell adjacent from the inner side to the front
r � vt. Such a behavior is close to the ballistic regime (and
passes into it as a! 0). This is explained by the presence of
the leading range in the trajectory, which is considerably
longer than other ranges and therefore has the greatest
probability of crossing the observation sphere. Due to the
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overall smallness of other ranges, the intersection virtually
occurs along the radius, and the real anisotropy coefficient in
the LT version is close to unity (Fig. 19, the upper straight
line). We note that even if the LT version corresponded to
reality, it would still bemeaningless to consider randomwalks
with such long ranges without the inclusion of processes at the
Galaxy boundaries.

3.8 Reaching the galactic disc boundary
Because of certain difficulties encountered in the treatment of
boundary conditions in nonlocal problems (see Section 6.2),
we performed preliminary Monte Carlo calculations of
anomalous diffusion in the galactic disc; the method simply
reproduces the motion of particles in a bounded medium and
therefore requires specifying only the characteristics of the
boundaries themselves; no special problems with their
inclusion appears. We considered a particular model pro-
blem of finding the path and time for a particle to reach the
galactic disc [91, 92] and compared the results obtained in the

framework of three models: the standard Ginzburg±Syro-
vartskii (GS)model, the LUmodel (a � 1:67, b � 1:00, v � c,
D0; 1:67 � 2:4� 10ÿ3 pc1:67 yearÿ1), and the LT version
(a � 0:3, b � 0:8, v � 1, D0; 0:3 � 4� 10ÿ6 pc0:3 yearÿ0:8). It
is known that a large fraction of particles leave the galactic
disc through its bases [6, 93], and we therefore considered the
isotropic randomwalk of particles in an infinite layer with the
thickness 2h � 300 pc and with semitransparent boundaries
(Fig. 20).

Introducing the notation t1 for themean time to first reach
the boundary, t2 for the mean time interval between
successive arrivals at the boundary (the same or opposite),
and e for the transparency coefficient of a specularly reflecting
boundary (a particle incident on a boundary is reflected from
it with the probability 1ÿ e, the angle of reflection being
equal to the angle of incidence), we express themean residence
time tG of a particle in the galactic disc as

tG � et1 � e�1ÿ e��t1 � t2� � e�1ÿ e�2�t1 � 2t2� � . . .

� t1 �
�
1

e
ÿ 1

�
t2 :

Figure 21 shows the probability distribution densities for
the time, p�t1�, and path, p�s1�, before the boundary is first
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reached for an homogeneous distribution of creation points
of a particle in a layer for the GS �a � 2�, LU �a � 1:7�, and
LT �a � 0:3� models and for free ballistic motion (some
authors consider the latter as an acceptable type of motion
in the leaky box model; see, e.g., [94]). We can see that the
distribution s predicted in the LT version is a few times
narrower than diffusion distributions and virtually coincides
with the ballistic distribution (this is consistent with the nearly
unit anisotropy in the LT version). At the same time, the
distribution of t1 is an order of magnitude broader than in the
GS model, which is explained by the unjustifiably large
confinement time of particles in the traps. The time until the
complete escape increases by another order of magnitude. As
a result, as follows from calculations, the distribution of
particles from a point-like instantaneous source in the LT
version does not become a homogeneous distribution (over
the transverse coordinate) in the galactic disc even in
107 years, whereas the process of relaxation to the homo-
geneous distribution in the LUmodel is completed in less than
105 years.

4. Anisotropic anomalous diffusion

4.1 Compound diffusion model
By considering the motion of cosmic-ray particles in regions
of limited sizes where fluctuations of the direction and
strength of the interstellar magnetic field are relatively small,
we imagine magnetic field lines on which the trajectories of
charged particles are wound. The leading centers of particles
move along these lines, slowing down their motion in front of
`plugs', reflect from them, and return. In this case, the field
lines do not remain motionless: they are displaced and bent,
carrying the nearby charged particles with them, and the
distances between line condensations and switchings change,
complicating the motion of particles along field lines
randomly walking in space and time. Following a set of such
lines passing through the vicinity of point O in Fig. 22, we see
how they begin to diverge from each other, demonstrating a
statistical ensemble, which has been described inmany papers.

A purely phenomenological model was proposed in [7],
with the ensemble of magnetic field lines represented as a
family of independent three-dimensional trajectories consist-
ing of successive independent segments with random lengths
and random directions along which particles perform one-

dimensional diffusive random walks. Such a compound
diffusion causes the slowing down of diffusion in transverse
directions:


R2
?�t�

� / t 1=2 :

However, this slowing down is caused by the assumption
about the diffusion motion of particles along the field lines: if
we assume that particles move freely along these lines, we
return to the asymptotically normal diffusion (if the root-
mean-square length of segments is finite).

Later, the compound diffusionmodel was used for solving
the problem of the motion of particles in a weakly inhomo-
geneous magnetic field (see, e.g., [4, 10, 13, 95±97]). In the
simplest formulation, a region was considered in a homo-
geneous stationary random field with the mean value

hHi � H0 � H0ez

and the autocorrelation function

Hi�z2�Hj�z1�

� � 
dHi�z2�dHj�z1�
� � H 2

0Ci j�z� ; �41�
z � jz2 ÿ z1j :

The only random process completely determined by these two
characteristics (the mean value and the correlation function)
is a Gaussian process, whose particular case is the Brownian
motion characterized by independent increments and the
distribution density satisfying the standard diffusion equa-
tion

qM
qz
� DLD?M�x; y; z�

with the diffusion coefficient DL > 0. A particle diffuses (in
the modified compound model [10, 13]) with the longitudinal
diffusion coefficient Dk along one of the realizations of this
ensemble symmetrically continued to the region z < 0 (in the
statistical sense). In this case, again,


R 2
?�t�

� ' DL�Dkt�1=2 :

We note, however, that an ensemble of Brownian
trajectories, which are nowhere differentiable fractal curves
[98] with independent increments (Fig. 23), is difficult to
reconcile with the concept of magnetic field lines. Returning

x

dx

z

dy

y

O

Mdx dy

Figure 22. Ensemble of magnetic field lines.
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b

Figure 23. (a) Brownian field line according to [13] and (b) its actual

realization.
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to piecewise smooth lines in [7], but assuming that particles
move in one direction at a constant velocity along these lines,
we obtain the normal diffusion of transverse displacements of
particles in the long-time asymptotic regime. An analysis
based on the kinetic equation performed in [18] yields the
same result.

To approach the real properties of the magnetic field of
the interstellar medium, the authors of [99±101] represented
autocorrelation function (41) in terms of the Fourier
component of magnetic field fluctuations:

Cxx�z� � 1

�2p�6

�
�
dk

�
dk 0

D fdHx�k�fdH �x �k 0� exp �ÿiÿkR�z� ÿ k 0R�0���E :
Using the Corrsin independence hypothesis [102] and neglect-
ing the correlations of field components with different wave
vectors k and k 0, the authors obtained

Cxx�z� �
�

exp

ÿÿikDR�z���Pxx�k� dk ;
�42�

Pxx�k� � �2p�ÿ6
D�� fdHx�k�

��2E ;
where DR�z� � R�z� ÿ R�0� is a random transverse displace-
ment vector over which the exponential is averaged. As a
result, they obtained the expression
ÿ

DX�z��2� � 2

H 2
0

� z

0

�zÿ z�Cxx�z� dz � 2

H 2
0

�
dkPxx�k�

�
� z

0

�zÿ z� cos �kkz� exp
�
ÿ 1

2


ÿ
DX�z��2�k 2

?

�
dz ;

providing a basis for a more natural model of randomly
walking field lines. They continued these calculations using
the hybrid approach, where a turbulent axially symmetric
field is described by a combination of the one-dimensional
planar �kkH0� and two-dimensional �k?H0� components:

Pxx�k� � g 0�kk� d�k?�
k?
� g 00�k?�

d�kk�
k?

�
1ÿ k 2

x

k 2

�
;

where

g 0�kk� � c�n�
2p

l 0dH 2
1D

�1� k 2
k l

2
k �n

; g 00�k?� � 2c�n�
p

l 00dH 2
2D

�1� k 2
?l

2
?�n

;

c�n� � 1

2
���
p
p G�n�

G�1ÿ n=2� ;

with 2n being the spectral index in the inertial interval. The
combination of these components, with an asymptotically
small term neglected (as z!1), gave the equation

d2

dz 2

ÿ
DX�z��2� � 2pg 00�0�

H 2
0

�1
0

exp

�
ÿ 1

2


ÿ
DX�z��2�k 2

?

�
dk?

� 2p
H 2

0

����
p
2

r
g 00�0�������������������������
ÿ
DX�z��2�q :

The solution of this equation
ÿ
DX�z��2� � � ����

p
2

r
9pg 00�0�
2H 2

0

�2=3

z 4=3 ; z!1 �43�

shows that taking the autocorrelations of magnetic field lines
into account in the framework of the Corrsin hypothesis [102]
leads to a superdiffusion behavior of transverse displacements.
We note that the variable z is not time but the longitudinal
coordinate, and therefore the emerging `superdiffusion'
relates not to the development of the diffusion process in
time but to the rapid divergence of a bunch of magnetic field
lines in space. As a result, the decomposition of the
displacement of a particle into independent longitudinal and
transverse components becomes incompatible with the
asymptotic regime of the sought solution. In this case, it is
convenient to pass from the linear coordinate z to the
curvilinear coordinate s measured along a field line, and
finally to the model of isotropically randomly walking lines.
The simulation of these lines by continuous broken lines with
linear segments of random lengths (`ranges') allows represent-
ing the large-scale correlations of magnetic fields by using
nonexponential range distributions. Asymptotic power-law
distributions, which seem to be a natural continuation of the
regularities of large-scale turbulence, are convenient for this
purpose.

Another reason why reliable results at large scales cannot
be expected from the compound model is the limited
possibilities of analytic tools. The motion of particles in
random inhomogeneous fields is analyzed using the pertur-
bation theory, more exactly, the theory of small perturba-
tions. Our experience with the use of this tool shows that it is
reliable only when the calculated correction caused by
perturbations does not exceed 10±15% of the initial
(unperturbed, i.e., already known) solution. Everything
that exceeds this value is a `deception'. This method is very
efficient in problems related to atomic and nuclear physics:
optical measurements are performed with a very high
accuracy and the perturbation theory corrections are under
control. But in cosmic-ray physics, we are typically dealing
with orders of magnitudes, and methods having a narrow
range of applicability, such as the theory of small perturba-
tions, are not particularly useful in global problems where
perturbations become comparable with characteristics of an
unperturbed medium.

4.2 Fractional Brownian model of field lines
Taking a model in which the root-mean-square displacement
is finite but increases faster than in the normal diffusion
model, we return to Richardson's idea of describing turbulent
superdiffusion (now not of particles themselves but of
randomly walking field lines) by using the traditional
mathematical tools (without fractional derivatives), but with
a variable diffusion coefficient. Surprisingly, however, when
the diffusion coefficient increases in accordance with a power
law, we again come to fractional differential operators; there
are two complementary methods for describing the random
motion of particles. One of them, which is themain tool in this
review, is based on the distribution density method 8 and is
related to Maxwell, Boltzmann, Einstein, Fokker, Planck,
Bogoliubov, and others.

Let X�t� be a random coordinate of a moving particle at
an instant t and 1Dx�x 0� be the indicator function of the
element Dx, equal to 1 for x 0 2 Dx and zero otherwise. The
simplest (single-time) density f �x; t� is determined by aver-
aging the indicator function over an ensemble of particle

8 In physics, the distribution density is often called the distribution

function.
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trajectories,

f �x; t�Dx � P
ÿ
X�t� 2 Dx

� � 
1DxÿX�t��� ;
and then the (Boltzmann, Einstein, Fokker±Planck, Bogoliu-
bov, ...) kinetic equation is derived and solved for it.

In the alternative approach (Langevin, Stratonovich, Ito,
and others), the Newtonian equation for a random coordi-
nate (stochastic equation),

m
dX�t�
dt
� F�t� ;

with a random force in the right-hand side is considered first.
Specifying the required properties of the random process F�t�
and solving this equation, we can study the properties of the
solution as an ensemble of random functions (correlations
and higher-order moments of the functions, probabilities of
various events, for example, the time the boundary is first
reached, etc.). It is in this stochastic approach that fractional
operators, which were eliminated from the kinetic approach,
appear.We consider the stochastic approach in greater detail.

We somewhat generalize expression (43) by replacing the
exponent 4=3 with an arbitrary value 2H and the coordinate z
with the curvilinear coordinate s along a magnetic field line,
ÿ

DX�s��2� � Ks 2H ;

and write the distribution of the coordinate x of a point s of a
planar field line in the form of the usual Gaussian density
distribution

f H�x; s� � 1����������������
4pKs 2H
p exp

�
ÿ x 2

4Ks 2H

�
: �44�

This distribution satisfies the normal diffusion equation with
the variable diffusion coefficient

q f H�x; s�
qs

� 2HKs 2Hÿ1
q2f H�x; s�

qx 2

and the initial condition

f H�x; 0� � d�x� :

The distribution f H�x; s�, which is not itself a solution of a
fractional derivative equation, characterizes an ensemble of
trajectories of fractional Brownian motion BH�s�Ða non-
Markov Gaussian process with the zero mean and the
correlation function that, unlike the correlation function of
the usual Brownian motion,


B�s1�B�s2�
� � 1

2

ÿjs1j � js2j ÿ js1 ÿ s2j
�
;

has the form9

BH�s1�BH�s2�

� � 1

2

ÿjs1j2H � js2j2H ÿ js1 ÿ s2j2H
�

(see [103±105]). Similarly to the usual Brownian motion, its
fractional analog is a self-similar process, and the Hurst
parameter value determines the order of the process self-
similarity, BH�as��d aHBH�s� (�d means the equality of the
distributions of random quantities rather than their values).
The parameter H also characterizes the type of the process
memory: long-term memory (persistent motion or super-
diffusion) for H > 1=2 and short-term memory (anti-persis-
tent motion, subdiffusion) for H < 1=2. For H � 1=2, the
process is the usual Brownian motion (memory is absent:
increments are independent of the prehistory).

To elucidate the specificity of this random process, we
note that the classical Brownian motion can be represented
for t5 0 as an integral of the white noise x�s�,

B��s� �
� s

0

x�s 0� ds 0 � 0Isx�s� ; s > 0 ;

whose properties and simulation methods are well known.
Fractional Brownian motion was introduced in [104] by
replacing the usual integral operator with its fractional analog

BH
� �s�� 0I

H�1=2
s x�s�� 1

G�H� 1=2�
� s

0

�sÿ s 0�Hÿ1=2x�s 0� ds 0

� 1

G�H� 1=2�
� s

0

�sÿ s 0�Hÿ1=2 dB��s 0� ; �45�

continued to the entire real axis. Process (45) can be called
conditional fractional Brownian motion, defined such that
B��s� � 0 for s4 0. There is no problem to continue this
process to the entire time axis: it suffices to join it with the
independent time-reflected process B��ÿs�:

B�s��d B��s� ; s > 0 ;

B��ÿs� ; s < 0 :

�

Problems do not appear here because Brownian motions in
adjacent intervals are independent, and it was only necessary
to ensure the continuity, but this occurred automatically
because Brownian motion satisfies the zero initial condition
at one instant of time t � 0. However, fractional Brownian
motion gives rise to correlations of increments, and its
behavior on the positive time semiaxis depends on its
prehistory on the negative semiaxis, t < 0, and not only on
the value at the instant t � 0. The accurate `sewing' of this
past part of the process [104, 105] gives

BH�s� � 1

C�H�
�1
ÿ1

��sÿ s 0�Hÿ1=2� ÿ �ÿs 0�Hÿ1=2�
�
dB�s 0� ;

where

C�H� � G�H� 1=2�����������������������������������������
G�2H� 1� sin �pH�p :

This process is also expressed in terms of a fractional integral
of the white noise x�s� � _B�s� in the form

BH�s� � G�H� 1=2�
C�H�

� s

0
ÿ1I Hÿ1=2

s
_B�s 0� ds 0 ;

which follows from the Lagrangian adjointness of fractional
operators

�j; ÿ1I a
s c� � � sI a

1j; c�

9 We emphasize, to avoid misunderstandings, that B�s� here denotes the
Brownian process rather than the magnetic induction, H is the Hurst

exponent rather than the field strength, and the subscript� at parentheses

(see below) means that the negative values are replaced by zero inside the

parentheses. The Hurst exponent, determining the law of the increase in

the size of the diffusion packet / sH, is simultaneously the fractal

dimension of the trajectory of the anomalous process.
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and the readily verified equality

G�a� 1� sI a
11�a; b��s� � �bÿ s�a� ÿ �aÿ s�a� ;

where �cÿ s�a� � �cÿ s�a1��cÿ s�. Because passing to the
fractional process involves integrating the trajectory over its
prehistory (the inclusion of memory), Brownian lines, broken
at all their points and containing no smooth segments, are
locally smoothed and become suitable for the imitation of real
field lines, while the variable s acquires the meaning of the
actual length. We note that this passage involves the Hurst
parameter, which can be adjusted to efficiently control the
properties of the entire ensemble.

In the model of turbulent divergence of magnetic field
lines considered in (43), the role of time is played by the length
s of the line segment, which for small values is close to the
length of a segment corresponding to the z axis, and theHurst
exponent is H � 2=3. This corresponds to the distribution

f �x; s� � 1�����������������
4pKs 4=3
p exp

�
ÿ x 2

4Ks 4=3

�
; s > 0 ;

which satisfies the equation

q f �x; s�
qs

� 4

3
Ks 1=3

q2f �x; s�
qx 2

with the initial condition

f �x; 0� � d�x� :

4.3 Transverse diffusion in fractional-order operators
We now return to calculations performed in the approxima-
tion of small perturbations, not only to rehabilitate them as
regards the description of the process of cosmic-ray galactic
diffusion (the applicability of this approximation in local
problems with a weakly inhomogeneous magnetic field
raising no doubts), but also because cosmic-ray transfer
equations with fractional-order derivatives appeared for the
first time in these calculations.

Startingwith the collisionless Vlasov equation for charged
particles in an electromagnetic field

q f
qt
� vHf� F

q f
qp
� 0 ; F � qE� q

c
�vH�

and separating fluctuations from the means,

H � hHi �H1 ; hH1i � 0 ;

and then using the quasilinear approximation for a weakly
turbulent plasma with small-scale fluctuations [106±109],

f1 5 h f i ;

the authors of [14, 15] considered the equation

qh f i
qt
� vHh f i � hFi qh f i

qp
� R ;

whose right-hand side, being the usual collisional term
describing scattering of particles by small-scale and small-
amplitude fluctuations, is expressed as a convolution of the
scalar function F1 qh f i=qp and the Green's function of a
linear equation (see [110, 111]). The approximation of this

term by the relaxational expression ÿ� fÿ �f �=t, where
�f � �f �r; p; t� � 1

4p

�
4p
f �r; pX; t� dX ;

leads to the equation

qh f i
qt
� vHh f i � q

c

�
vhHi� qh f i

qp
� ÿ h f i ÿ

�f

t
;

where t is the characteristic time of scattering by a small-scale
inhomogeneity, the angular brackets denote averaging over
small-scale fluctuations, and the bar over f denotes time
averaging. We let h �f i be denoted by N and the anisotropic
component by N1:

h f i � N�N1 ; N1 � 0 :

In the limit of large distances �R4 vt� and large times
�t4R=v�, the angular distribution is almost isotropic and
averaging over directions leads to the equation

qN
qt
� H�vN1� � 0 ;

which in turn reduces to the standard diffusion equation

qN
qt
ÿ Hiki jHjN � 0 ;

with a local tensor diffusion coefficient ki j. The longitudinal,
transverse, and asymmetric components of this equation are
expressed in terms of the velocity v and gyrofrequency
oH � qhHi=�pc� by approximate formulas

kk � v
2t
3

;

k? �
kk

1� �oHt�2
;

kA � ÿ
kkoHt

1� �oHt�2

(see book [108]). These expressions reflect the influence of
weak long-wavelength perturbations of a magnetic field on
the diffusion of charged particles.10 They show, in particular,
that for oHt4 1 (strongly magnetized plasma), we have
k?=kk ' ' �oHt�ÿ2 5 1 and kA=kk ' �oHt�ÿ1 5 1, and
therefore transverse displacements of a particle are small.

Magnetic field fluctuations DH � HÿH0 give rise to
fluctuations of ki j and N. We let double angular brackets
denote averaging over these large-scale fluctuations and Dk
and DN deviations from these averaged values. Then

qN
qt
ÿ Hihhki jiiHjNÿ HihhDki jHjDN ii � 0 :

Fluctuations DN, characterizing rapid random spatial
changes, in turn experience slow variations in both long-
itudinal and transverse directions.

10 We note that the Boltzmann concept of collisions, according to which a

trajectory is divided into ranges alternating with instant changes in the

motion direction, has found its way into the result when transforming the

collisionless Vlasov equation into the diffusion form, even though this

concept was not postulated initially: the diffusion coefficient kk presented
above can well be interpreted as vhRi=3, where hRi is already the path

length between collisions.
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The authors of [14] obtained the equation (Eqn (B11) in
[14])

qN?�r?; t�
qt

ÿD?D?

�
N�r; t�ÿ 1

2

�1
1

N

�
r; tÿ yL2

kk

�
yÿ3=2 dy

�
� 0;

�46�

for the perpendicular diffusion of charged particles in a
magnetic field with relatively small fluctuations
�DH�r� � A�r�H0 with A5H0, r � �r?; z��, where D? �
hhAiikk=2 and L is the correlation length of field fluctua-
tions. Fractional derivatives are still absent here, but if we
represent the expression in square brackets in the form

N�r; t� ÿ 1

2

�1
1

N

�
r; tÿ yL2

kk

�
yÿ3=2 dy

� 1

2

�1
1

�
N�r; t� ÿN

�
r; tÿ yL2

kk

��
yÿ3=2 dy

� L

������
p
kk

r �
1

G�ÿ1=2�
�1
L2=kk

ÿ
N�r; tÿ t� ÿN�r; t��tÿ3=2 dt�

and, using the condition t4 td � L2=kk, replace the lower
integration limit by zero, the expression in braces becomes a
fractional semi-derivative (in the Marchaut form, but
identically equal to a fractional derivative in the Riemann±
Liouville form we used; see [33]). This was done in [97], where
the transverse diffusion equation was represented in the
fractional differential form

qN?
qt
� D?

q1=2

qt 1=2
D?N?�r?; t� �N?�r?; 0�d�t� ;

which, after applying the operator �q=qt�ÿ1=2, yields the
equation

q1=2N?
qt 1=2

� D?D?N?�r?; t� �N?�r?; 0�d1=2�t� : �47�

The authors of [14] point out an important feature of their
equation for the distribution of transverse displacements,
preserved in its fractional differential version: ``The presence
of integrals in the equation means that particles have a good
`memory' during compound diffusion, the values of the
function N at the instant t being dependent on the values of
N at preceding instants. Unlike the usual diffusion, com-
pound diffusion is not a Markov process.''

We note, however, that although these equations were
mathematically obtained for the asymptotic behavior of the
distribution (formally, for t!1), their applicability is also
restricted at long times, because, as mentioned above, a
number of physical assumptions no longer correspond to the
process. The authors of [14] begin the derivation of the
corresponding equations with the comment: ``We assume
that a random magnetic field is small compared to the mean
homogeneous magnetic field, i.e., A5 1. This means that the
field lines weakly deviate from the direction of the mean field
H0 � const. The compound diffusion proceeds in the plane
perpendicular to H0, and the length parameter along a field
line S can be approximately replaced by displacement along
the direction ofH0.'' It is clear that the increase in the effect of
strong large-scale inhomogeneities during the development of
diffusion makes this process isotropic, and the correctness of

the assumptions used in its description and therefore of the
equations derived is rapidly lost. For this reason, long-term
correlations represented by the function yÿ3=2 in the integral
term in Eqn (46) are then shortened, the integral no longer
balances the preceding term, its role decreases with time, and
the transverse diffusion equation in the large-time limit takes
the normal form: 11

qN�r?; t�
qt

ÿD?D?N�r?; t� � 0 :

This confirms the conclusion in [18] that the motion of
charged particles in a random magnetic field eventually
becomes normal diffusion (this conclusion was made assum-
ing that field fluctuations are isotropic and have a small scale,
the kinetic operator is Hermitian, and the first approximation
of the perturbation theory with respect to the ratio of the
particle free path to the field correlation length is valid).

In the conclusion in [18], the authors consider the simple
problem of Brownian motion of a particle in the field of
random velocities and again demonstrate the diffusive
character of the asymptotic regime. This is quite consistent
with the results obtained long ago in paper [112] devoted to
the same problem, where it was also shown that this process at
shorter times is described by an integro-differential equation
like the one derived in [14]. That we are dealing here with
different time regions is confirmed, in particular, in the
second part of [113], where the Parker equation [114]
describing the motion of cosmic rays in plasmas is analyzed
taking convection, diffusion, and transfer into account. The
authors of [113] also showed that the transverse displacement
equation, having a fractional differential form at small times,
asymptotically becomes the normal diffusion equation at
large times. In other words, the solution of the fractional
differential subdiffusion equation describes the pre-asympto-
tic behavior of the process, which is often called the
intermediate asymptotic regime [115].

Using the rules for dealing with fractional derivatives [33],
we can represent the fractional differential subdiffusion
equation in three equivalent forms: 12

q bG?
qtb

� D?D?G?�r?; t� � d�r?�db�t� ; �48�

qG?
qt
� D?D?

q1ÿbG?�r?; t�
qt 1ÿb

� d�r?�d�t� ; �49�

G?�r?; t� � D?D?
qÿbG?�r?; t�

qtÿb
� d�r?�1��t� : �50�

Integral subdiffusion equation (50) in a multidimensional
space was solved in [116]; the solution was expressed in terms
of the Fox function. In the case of two-dimensional random
walk, which is of interest to us, this solution has the form

G?�r; t� � 1

bpr 2
H 20

12

 �
r

2
�������
D?
p

�2=b

tÿ1
���� �1; 1�
�1; 1=b�; �1; 1=b�

!
;

r � jr?j :

11 If the first moment (mean time) of the correlation function is finite [22].
12 We temporarily retain the parameter b 2 �0; 1�, although only b � 1=2
is required for describing the transverse diffusion.
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The Mellin transform of this distribution is expressed in the
form

G?�s; t� �
�1
0

r sÿ1G�r; t� dr

� G�s=2�G�s=2ÿ 1�
23ÿspbG

ÿ
b�s=2ÿ 1�� �D?tb�s=2ÿ1 :

In [22], where Eqn (48) was considered, another form of
the solution was found, which relates it to fractionally stable
distributions,

G?�r; t� �
ÿ
D?tb

�ÿ1C �2;b�2

�
r�����������
D?tb

p �
; �51�

where

C �2; b�2 �r� � 1

4p

�1
0

dt exp

�
ÿ r 2tb

4

�
tbg��t; b�; 0 < b < 1 :

�52�
It was shown in [22] in particular, that the necessary and
sufficient condition for the appearance of the subdiffusion
regime of the fractional differential type is the power-law
asymptotic behavior of the waiting time in a trap with infinite
dispersion,

Q�t� �
�1
t

q�t� dt � B0t
ÿb; t!1 ;

and Eqns (48) and (49) were derived based on simple
probabilistic considerations. According to the generalized
limit theorem, if independent positive random quantities Ti

are distributed with a density q�t� satisfying this condition,
then the normalized sum

Sn �
Xn
i�1

Ti

�nB�1=b
; B � B0G�1ÿ b�

is distributed at large n with a stable one-sided density

g��t; b�, while the distribution density of the usual sumPn
i�1 Ti, characterized by the multiple convolution q �n��t�

�q �1��t� � q�t��, has the large-n asymptotic behavior

q �n��t� � �nB�ÿ1=bg�
ÿ�nB�ÿ1=bt; b� :

To see more clearly how these statements relate to the
transverse diffusion, we discuss the concept of a trap in this
problem in view of the stochastic interpretation substantiated
in Section 2.5. The position of a particle in a plane
perpendicular to the z axis, along which the main magnetic
field is directed and the particle begins to move, is character-
ized by the two-dimensional vector r?. The statement ``a
particle is in a trap at the point r?'' means in this case that the
particle moves along a line parallel to the z axis, and its
passage from one trap to another means its passage from one
field line to another, also parallel to the z axis. Neglecting the
times spent for passages because of their smallness compared
with the longitudinalmotion time, wewrite the distribution of
the number n of captures of particles in traps for the time
t!1 in the form

P�n � n� � Q �n��t� ÿQ �n�1��t� �
� t=�nB�1=b

0

g��t; b� dt

ÿ
� t=��n�1�B�1=b

0

g��t; b� dt :

Representing the upper limit of the second integral in the
form��n� 1�B�ÿ1=bt � �nB�ÿ1=btÿ en�t� ;

en�t� � �nB�ÿ1=bt�nb�ÿ1

and expanding this integral in a series in the small quantity
en�t� (for n!1), we find

P�n � n� � �nB�ÿ1=bt�nb�ÿ1g�
ÿ�nB�ÿ1=bt; b� ; t!1 :

�53�

The required propagator is expressed in terms of the
conditional propagator G?�r?; tjn� by the formula for the
total probability,

G?�r?; t� �
X
n

G?�r?; tjn�P�n � n� ; �54�

in which the conditional distribution

G?�r?; tjn� � 1

4ps 2n
exp

�
ÿ r 2

4s 2n

�
� �s 2n�ÿ1g2

�
r

s
���
n
p ; 2

�
�55�

is a corollary of the central limit theorem. Substituting (53)
and (55) in (54) and replacing the summation over n with
integration over the variable

t � �nB�ÿ1=at ;

we obtain the transverse propagator in (51).
For b � 1=2, the one-sided stable density is expressed in

terms of elementary functions,

g�

�
t;
1

2

�
� 1

2
���
p
p tÿ3=2 exp

�
ÿ 1

4t

�
;

and we obtain the transverse propagator

G?�r?; t� � 1

D?
��
t
p C �2; 1=2�2

�
r?�������������
D?

��
t
pp �

; r? � jr?j :

All moments of this propagator are finite and are given by

hr 2n? i �
�n!�2

G�n=2� 1� �4D?
��
t
p �n ; n � 1; 2; 3; . . . :

The fractionally stable density

C�2; 1=2�2 �x� � 1

4p

�1
0

exp

�
ÿ x 2 ���

t
p
4

� ���
t
p

g�

�
t;

1

2

�
dt

� 1

8p3=2

�1
0

exp

�
ÿ x 2 ���

t
p
4
ÿ 1

4t

�
dt
t
; x > 0 ; �56�

is presented in Fig. 24 together with the normal density with
the same dispersion. We can see that at small and large
distances, the subdiffusion density of transverse displace-
ments exceeds the normal density, whereas for intermediate
distances, the situation is the opposite. Unlike the normal
density, the densityC �2;1=2�2 �x� at the coordinate origin has an
integrable logarithmic singularity. This can be easily verified
by dividing the integral in (52) into two parts and replacing
the density g��t; 1=2� in the second part with its asymptotic
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expression,

C �2; 1=2�2 �x� � 1

4p

�� y

0

exp

�
ÿ x 2 ���

t
p
4

� ���
t
p

g�

�
t;

1

2

�
dt

� 1

2
���
p
p
�1
y

exp

�
ÿ x 2 ���

t
p
4

�
tÿ1 dt

�
:

For small x, the second term dominates in this sum, which
gives rise to a logarithmic singularity,

C �2; 1=2�2 �x� � 1

4p3=2
E1�x 2y 1=8� � 1

2p3=2
j ln xj ; x! 0 :

The process under study also differs from the normal
diffusion in that the transverse coordinates X, Y of a particle
are no longer independent, because their combined distribu-
tion

P
ÿ
X�t� 2 dx;Y�t� 2 dy

� � 1

D?
��
t
p C �2; 1=2�2

 ����������������
x 2 � y 2

p �������������
D?

��
t
pp !

;

does not reduce to the product P
ÿ
X�t� 2 dx

�
P
ÿ
Y�t� 2 dy

�
,

although the coordinates remain uncorrelated because of the
axial symmetry of the distribution.

4.4 Longitudinal finite-velocity random walk
We now discuss the random walk of particles along magnetic
field lines. Because we neglect the time that a particle needs to
pass between lines, the longitudinal motion of particles is
apparently continuous and reverses the direction at random
instants of time. The one-dimensional symmetric random
walk of a particle with a constant velocity v along the z axis in
the absence of traps is completely characterized by the
distribution density of its free paths. In a medium consisting
of independent atoms, free paths are distributed exponen-
tially, and the process is described by a second-order partial
differential equation (the telegraph equation) [117]. The
solution of this equation is expressed in terms of the modified
Bessel functions and transforms into the normal (Gaussian)
distribution in the asymptotic regime of large times. In the
case of an arbitrary density p�z� with a finite second moment,
the asymptotic part of the solution satisfies the telegraph

equation. The authors of [85±87, 118±120] considered one-
dimensional random walks with the asymptotically power-
law range distribution p�x� / xÿaÿ1, 0 < a < 2, which are
sometimes called fractal walks.

We now consider Eqn (28), which takes the form

~Gk�k; l� �
~P�k; l�

v
�
1ÿ ~p�k; l��

in the case of one-dimensional walks. Here,

~p�k; l� �
�1
0

exp

�
ÿ l
v
z

�
cos �kz� p�z� dz

� 1

2

�
~p

�
l
v
ÿ ik

�
� ~p

�
l
v
� ik

��
;

~P�k; l� �
�1
0

�
exp

�
ÿ l
v
z

�
cos �kz�

�1
z

p�z 0� dz 0
�
dz

� 2l=vÿ �l=vÿ ik� ~p�l=v� ik� ÿ �l=v� ik� ~p�l=vÿ ik�
2
��l=v�2 � k 2

� ;

where ~p is the Laplace transform of the range distribution
density:

~p�l� �
�1
0

exp �ÿlx� p�x� dx :

As a result, we have

~Gk�k; l�

� 2�l=v� ÿ �l=v� ik� ~p�l=vÿ ik� ÿ �l=vÿ ik� ~p�l=v� ik�
v
�
k 2 � �l=v�2��2ÿ ~p�l=vÿ ik� ÿ ~p�l=v� ik�� :

�57�
We consider the three cases

~p�l� � 1ÿ cla ; c � A

a
G�1ÿ a� ; 0 < a < 1 ;

~p�l� � 1ÿm1l� c1l
a ; c1 � �A=a�G�2ÿ a�

aÿ 1
; 1 < a < 2 ;

~p�l�� 1ÿm1l�m2

2
l2ÿc2la; c2 � �A=a�G�3ÿ a�

�aÿ1��aÿ2� ; a > 2;

wherem1 � hRi andm2 � hR 2i are the moments of the range
distribution.

In the first case (process of the first kind, 0 < a < 1),
expression (57) takes the form

~Gk�k; l� � �l=vÿ ik�aÿ1 � �l=v� ik�aÿ1
v
��l=vÿ ik�a � �l=v� ik�a� : �58�

For a � 1=2, the transformation

~Gk�k; l� � 1

v

������������������������
�l=v�2 � k 2

q
can easily be inverted to yield the symmetrized arcsine density
[42]:

Gk

�
z; t;

1

2

�
� 1

p
��������������������
�vt�2 ÿ z 2

q ; ÿvt < z < vt : �59�

The explicit expression for the longitudinal propagator in
terms of elementary functions for all a in the specified range is

x420
10ÿ6

10ÿ5

10ÿ4

10ÿ3

10ÿ2

10ÿ1

6

C�2;1=2�2 �x�

Figure 24. Fractional differential density (56) characterizing the distribu-

tion of the transverse displacement vector of a randomly walking particle

(solid curve) and the normal density with the same dispersion (dashed

curve).
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presented in our paper [120]:

Gk�z; t� � 2 sin pa
pvt

� �1ÿ z 2=v 2t 2�aÿ1
�1ÿ z=vt�2a � �1� z=vt�2a � 2�1ÿ z 2=v 2t 2�a cos pa ;

a 2 �0; 1� : �60�

Distributions of this type for several values of a are
represented in Fig. 25.

For 1 < a < 2 (process of the second kind), the transform

~Gk�k; l� � 2m1 ÿ c1�l=vÿ ik�aÿ1 ÿ c1�l=v� ik�aÿ1
v
�
2m1�l=v� ÿ c1�l=vÿ ik�a ÿ c1�l=v� ik�a�

in the asymptotic regime l! 0, k! 0, jl=vkj ! 0 takes the
form

~p�k; l� � 1

l�Dkjkja ;

where

Dk � c1
m1

v

���� cos ap2
���� � v G�2ÿ a�

e 1ÿa

���� cos ap2
���� :

The inverse Laplace transformation leads to the characteristic
function of a random coordinate of the walking particle,

~Gk�k; t� � exp
ÿÿDktjkja� ;

and returning to the spatial variable gives the propagator

Gk�z; t� � �Dkt�ÿ1=aC �a�1

ÿ
z�Dkt�ÿ1=a

�
:

Finally, for a > 2, we obtain

~Gk�k; l��
�
2m1ÿm2

�
l
v

�
� c2

�
l
v
ÿ ik

�aÿ1
� c2

�
l
v
� ik

�aÿ1�
� 1

v

�
2m1

�
l
v

�
ÿm2

��
l
v

�2

ÿ k 2

�
� c2

�
l
v
ÿ ik

�a

� c2

�
l
v
� ik

�a�ÿ1
� 1

l�Dk 2
;

where D � m2v=2m1. This gives

Gk�z; t� � �Dkt�ÿ1=2C �2�1

�
z��������
Dkt

p �
;

where C �2�1 �x� is the standard density of the normal distribu-
tion with dispersion 2.

Direct Monte Carlo simulation confirms the results of
analytic calculations (see Fig. 25). The qualitative differ-
ence of distributions for a > 1 and a < 1 is explained by
the competition between two processes: the diffusion
process, expanding as / t 1=a in the absence of restric-
tions, and the ballistic regime, restricting the position of a
particle to the interval �ÿvt; vt�. For a > 1 and large times,
the first process dominates (the rapidly extending interval
�ÿvt; vt� no longer affects diffusion); for a < 1, the role of
the kinematic constraint increases. Long ranges (with the
infinite mean value) press the distribution against ballistic
boundaries, producing characteristic peaks at its ends; for
a < 1=2, specific U-shaped distributions are formed.

It may seem that we here avoid fractional derivatives, but
the term �l� ivk�a contained in the expressions presented
above is the Fourier±Laplace transform of the material
derivative operator to a fractional power,

�l� ivk�a ~f �k; l�

�
�1
0

dt

�1
ÿ1

dz exp �ÿlt� ikz�
�
q
qt
� v q

qz

�a

f �z; t� ;

as can be verified by direct calculation. For this, it suffices
to represent this operator in the Riemann±Liouville
form�

q
qt
� v q

qz

�a

f �z; t� � 1

G�1ÿ a�
�
q
qt
� v q

qz

�

�
� t

0

f
ÿ
zÿ v�tÿ t�; t��tÿ t�ÿa dt ; 0 < a < 1 ;

and to apply the above transformation to it. Therefore, for
example, Eqn (58) is equivalent to the equation with

0.2
0 0.5 z=vt

Gk�z; vt�

ÿ0.5ÿ1.0

0.4

0.6

0.8

1.0

1.2

a � 0.6

a � 0.5

a � 0.7

a � 0.8

a � 2t

a � 1=2

0 z

a b

Figure 25. Longitudinal RAD propagators of the first kind. (a) Calculation by expression (60) (curves) and Monte Carlo simulations (symbols). (b) The

evolution of the RAD propagator with a � 1=2 compared with the evolution of the normal propagator �a � 2�. The dashed lines show the time

dependence of the width of diffusion packets, and the solid lines show ballistic restrictions.
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fractional differential operators in the form"�
q
qt
� v q

qz

�a

�
�
q
qt
ÿ v q

qz

�a
#
Gk�z; t�

� v aÿ1
"�

q
qt
� v q

qz

�aÿ1
�
�
q
qt
ÿ v q

qz

�aÿ1#
d�z�d�t� :

Other equations, whose integral transforms are �l� ivk�a,
can be represented similarly.

5. Diffusion acceleration models

5.1 Classical Fermi model
In this section, we consider the problem of acceleration (more
exactly, additional or distributed acceleration) of cosmic rays,
and we therefore study the behavior of particles in the
momentum space. Successive interactions (collisions) of a
charged particle with more or less localized inhomogeneities
of the magnetic fieldÐ from magnetic clouds moving at
comparatively small velocities, which were discussed by
Fermi (see the Introduction), to strong shock waves in the
remnants of supernovae, which were considered in review
[121]Ðcan be treated as instant flights from one point in the
momentum space to another. Momentum increments Dpi
imparted to a particle in such collisions are random, and
even in the case of their isotropic distribution, the point

p � p0 � Dp1 � Dp2 � Dp3 � . . . ;

representing a particle in the momentum space, like a
Brownian particle, moves away from the point (momentum)
p0 of acceleration injection, which means the further accel-
eration (additional acceleration) of the particle. True, only a
fraction of the particles moving away from the center are
accelerated. It is this fluctuation component of the cosmic-ray
acceleration mechanism that is of interest to us in this review.

From the statistical standpoint, the main result of the
Fermi model is that for a power-law energy spectrum N�E �
to be formed, it is sufficient to have the exponential increase
in the energy E � E0 exp �at� of the particle being acceler-
ated and the exponential distribution of the age dP �
exp �ÿt=t� dt=t of the detected particles:

N�E � dE � tÿ1
��1

0

d
ÿ
Eÿ E0 exp �at�

�
exp

�
ÿ t

t

�
dt

�
dE

� 1

at

�
E

E0

�ÿ1ÿ1=at
dE

E0
; E > E0 : �61�

That is all, and no fluctuations are needed (except the
abovementioned age fluctuations determined by the mean
value t of this age). In general, what fluctuations can be
discussed here if, according to Fermi's estimates, the incre-
ment in the energy by a factor of e can be obtained only after
100 million collisions?

To study the influence of other fluctuation sources on
the energy spectrum of accelerated particles, it is necessary
to consider processes with more diverse possibilities for
acceleration in each of the collisions and the lower collision
frequency. These processes include the above-mentioned
interactions with strong shock waves in which the energy
of a particle can be increased by a factor of 7 to 13 even in a

single collision with the shock wave front [6, p. 449]. For
this, we pass from the degenerate spectral function
d�Eÿ E0 exp �at��, characterizing the deterministic Fermi
acceleration process, to the continuous function N�E; t�
related to the momentum distribution f �p; t� as

N�E; t� �
�
d
ÿ
Eÿ E�p�� f �p; t� dp :

Assuming, as Fermi did, that the parameter t is independent
of energy, we represent the required spectrum as the spectrum
N�E; t� of observed particles averaged over the exponentially
distributed age,

N�E � �N�E; t� � tÿ1
��1

0

N�E; t� exp
�
ÿ t

t

�
dt

�
� tÿ1N̂�E; tÿ1� ; �62�

where

N̂�E; l� �
�1
0

exp �ÿlt�N�E; t� dt ;

is the Laplace transform of the spectral function over the time
variable. These expressions take only the influence of age
fluctuations on the energy spectrum into account. The
influence of fluctuations caused by rare interactions followed
by large changes in the particle momentum (energy) is taken
into account at the stage of constructing the equations for
f �p; t� or N�E; t� by including additional terms containing
differential and integral operators.

5.2 Fractional differential kinetic equation
The position of a point at rest in the momentum space, not
coinciding with the coordinate origin, means that a particle
moves with a constant momentum (velocity, energy). The
exponent b then characterizes the tail of the distribution of the
random interval duration T between successive collisions of
the moving particle: Q�t� � P�T > t�, t!1. For an ultra-
relativistic particle �v � c�, this interval is proportional to its
free path between successive collisions, and therefore, along
with the replacement of coordinates r by momenta p, the
exponent b in the CTRWmodel is replaced by the exponent a.
The particle is assumed injected by a source at the instant
t � 0 with a distribution f0�p�. Under these conditions, the
process is described by an integral equation similar to (13):

f �p; t� �
�
dp 0

� t

0

dt 0 w�pÿ p 0 ! p� q�t 0�

� f �pÿ p 0; tÿ t 0� �Q�t� f0�p� : �63�

The equation is next transformed by specifying the distribu-
tions of q and w. We begin with the time distribution. Usually
(virtually always), the exponential distribution Q�t� �
exp �ÿmt�, q�t� � ÿdQ=dt � m exp �ÿmt� is selected, and this
is typically done implicitly: the transfer equation is written
beginning from the time derivative q f �p; t�=qt � . . . assum-
ing the process to beMarkovian, which automatically leads to
the exponential distribution. We have discussed the indica-
tions that this distribution is more likely to be power-like
rather than exponential (we recall that here q�t� is the range
distribution up to a scale factor, which has a pronounced
power-law form in a fractal medium, which is quite consistent
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with the self-similar picture of turbulent motions and its
power-law regularities). The attractiveness of this idea
becomes somewhat darkened by having to abandon the
classical exponential, which at first glance produces an
insurmountable barrier between these two distributions. The
best compromise would be a family of distributions including
both exponential and power-law ones. Fortunately, such a
family exists. This is a set of functions

Qa�t� � Ea�ÿmt a� ; a 2 �0; 1� ; m > 0 ;

where Ea�z� �
P1

n�0 z
n=G�an� 1� are Mittag-Leffler func-

tions. For a � 1, the function Qa�t� becomes the usual
exponential, while for a < 1, this `fractional exponential'
has the asymptotic form tÿa, t!1. The corresponding

density (Fig. 26),

ca�t� � maÿ1Ea; a�ÿmt a� ; Ea; a �
X1
n�0

z n

G�an� a� ;

satisfies a fractional differential equation [33], which brings
integral equation (63) to the fractional differential form

qaf �p; t�
qt a

� mA f �p; t� � f0�p�da�t� : �64�

Here, A is the integral acceleration operator with the
transition density w�p 0 ! p�:

A f �p; t� �
�
w�p 0 ! p� f �p 0; t� dp 0 ÿ f �p; t� : �65�

The time sequence of collision instants forms the frac-
tional Poisson process of the order a [122], which for a � 1
becomes the usual Poisson process underlying the classical
kinetic equation (see Eqn (21.1) [123]). A new property of this
process is that the mean number of collisions increases upon
increasing the observation interval proportionally to t a, i.e.,
more slowly than in the case of the usual Poisson process
�� t�, while the relative fluctuations of the number of
collisions do not disappear as t!1 but tend to a limit
distribution depending on a. Event flows obtained in Monte
Carlo simulations are shown in Fig. 27. We can see that a
change in the scale transforms the Poisson flow into the
homogeneous flow, whereas the fractional Poisson flow
remains inhomogeneous at all scales, which suggests that the
point distribution is fractal.

As previously, expressing the solution fa�p; t� of frac-
tional differential equation (64) in terms of the solution

ca�t�
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0.2
0.3

1.0

10110010ÿ2 10ÿ1
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Figure 26. `Fractional exponential density'ca�t�. Ten curves (frombottom

up) correspond to a ranging from 0.1 to 1.0 with the step 0.1.
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b

Figure 27. Acceleration event fluxes in (a) Poisson and (b) fractional Poisson processes.
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f1�p; t� of the equation with the first-order derivative,

fa�p; t� � t

a

�1
0

f1�p; t� g��ttÿ1=a; a�tÿ1=aÿ1 dt ; �66�

performing the time Laplace transformation of (66), and
using the above expressions for the spectra, we obtain the
relation

Na�E; t� � N1�E; t a� : �67�

Expression (67) reflects the influence of the fractal dimension
a 2 �0; 1� of the fractional Poisson collision process on the
energy spectrum of cosmic rays: the spectrum Na�E; t�
formed by the ensemble of particles with a mean lifetime t
accelerated by the fractional Poisson law of an order a < 1
coincides with the spectrum of particles accelerated by the
usual Poisson process �a � 1�, but with the mean lifetime ta

(we recall that the dimensionless lifetime is used here, and the
injection spectra f0�E � in both problems coincide). It is easy
to verify with the example of the Fermi spectrum that as the
order of the process decreases, the acceleration efficiency
decreases (the steepness of the spectrum increases): the fractal
character of the distribution of accelerating regions in space
reduces the acceleration efficiency (of course, for the same law
of elementary accelerations).

5.3 Fractional differential Fokker±Planck equations
As in the classical case, passing from the kinetic equation to
the Fokker±Planck equation involves the transformation of
the collision integral to the differential form by expanding the
integrand in a power series in the momentum increment
through second-order terms. Two versions of this expansion
exist, leading to somewhat different equations (see, e.g.,
[123]). The first assumes that the change in the absolute value
of the momentum jDpj � jpÿ p 0j is small, and therefore the
momentum of the incident particle changes very weakly in
magnitude and direction in one collision event (for example,
as in the collision of a heavy particle with a light particle). The
second version assumes that the change in the absolute value
of the momentum Dp � jpj ÿ jp 0j is small, but the change in
its direction can have an arbitrarily broad distribution, up to
an isotropic one (as in the case of the collision of a light
particle with a heavy particle). Assuming isotropic scattering,
we obtain the fractional differential generalization of the
Fokker±Planck equation in the form

qaf �p; t�
qt a

� Dp

ÿ
K�p� f �p; t��� f0�p�da�t� ; �68�

where

K�p� � m
2

�
�Dp�2w�p! p� Dp� dDp

is the diffusion coefficient in the momentum space. The
energy analog of Eqn (68) (of course, for a � 1) in cosmic-
ray physics has the form

qaN�E; t�
qt a

� q
�
a1�E �N�E; t�

�
qE

� q2
�
a2�E �N�E; t�

�
qE 2

�N0�E �da�t� �69�

(see Eqn (14.2) in [4]). At the same time, Eqn (68), with the
diffusion term

Dp

ÿ
K�p� f �p; t�� � ÿDpK�p�

�
f �p; t� � 2

ÿ
HpK�p�

�
Hp f �p; t�

� K�p�Dp f �p; t� ;

considerably differs from another diffusion equation (see
Eqn (9.57) in [44]),

qaf �p; t�
qt a

� Hp

ÿ
K�p�Hp f �p; t�

�� f0�p�da�t� : �70�

The reason for this difference is that Eqn (68) is derived in the
collision model in which the point representing a particle
instantly moves to another, possibly remote, geometrical
point, violating the continuity of the trajectory in the
momentum space, whereas the dynamic derivation of
Eqn (70) assumes that the trajectory in the momentum space
is continuous and even differentiable.

The classical versions �a � 1� of Eqns (68)±(70) underlie
the standard mathematical tools for describing fluctuation
mechanisms of cosmic-ray acceleration, and their solutions
are well known [4, 6, 44]. The diffusion model in the velocity
space was used in [124, 125] to describe the interaction of
particles with the waves of turbulent pulsations in the short-
wavelength part of the spectrum that accelerate the particles.
This acceleration was shown to be a universal property of
turbulence in plasmas, caused by the most fundamental
features of the corresponding processes, namely:

(i) The resonance character of scattering of particles by
waves;

(ii) the continuity of the turbulent energy flux in the wave
number space;

(iii) the increase in K�v� proportionally to v nÿ1, where n is
the exponent of the spectrum of turbulent pulsations.

Referring to the Parker theory [126], the solution of the
isotropic diffusion equation in the velocity space,

q f �v; t�
qt

� K1

v 2
q
qv

�
v n�1 q f �v; t�

qv

�
; �71�

with the initial condition f �v; 0� / d�v� was written in [124,
125] in the form

f �v; t� � const tÿ3=�3ÿn� exp
�
ÿ v 3ÿn

�3ÿ n�2K1t

�
; �72�

which for n � 1 reproduces the Maxwell spectrum and for
n � 2, the spectrum of protons from solar flares of the type
exp �ÿv=v0�, while the values n > 2 are of no interest because
the acceleration is then determined not by the cyclotron
resonance but by the Fermi mechanism.

The fractional differential version of this problem, in the
form

q gc
qt g
� K1

v 2

q
qv

�
v g

qc�v; t�
qv

�
�73�

with g 2 �0; 2� was considered in [127], where the problem
setting wasmotivated, in particular, by a reference to the non-
Gaussian thermodynamic formalism developed in [128] for
the description of strongly turbulent media exhibiting
pronounced non-Markov behavior. The ideas and conclu-
sions in this work are undoubtedly of interest, but two
remarks should be made.

First, the three-dimensional isotropic density of the
velocity distribution c�v; t� is normalized to the concentra-
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tion n � n�t�:�
c�v; t� dv � n : �74�

Multiplying both sides of Eqn (73) by v 4ÿg and integrating
over the three-dimensional velocity space, the authors of [127]
obtain

q g

qt g

�
v 4ÿgc dv � 3�4ÿ g�nK �75�

and interpret the integral as the mean of the quantity v 4ÿg

over the ensemble. But this is not the case: the mean over the
ensemble is defined by the expression

hv 4ÿgi � 1

n

�
v 4ÿgcdv ;

and Eqn (75) reduces to the form

q g

qt g
hv 4ÿgi � 3�4ÿ g�K

only if integral (74) remains constant. For a homogeneous
equation, this condition is satisfied only for g � 1. For this
condition to be also satisfied for g < 1, it is necessary to
introduce the term with the fractional delta function in time,

q gc
qt g
� K1

v 2

q
qv

�
v g

qc�v; t�
qv

�
� c�v; 0�dg�t� ; 0 < g < 1 ;

into the right-hand side of Eqn (73). We note that in passing
to the classical equation �b! 1�, the fractional delta function
transforms into the usual delta function, equal to zero
everywhere except the only point t � 0, which can be easily
removed by restricting the consideration to the semiaxis t > 0
and specifying the initial condition by the limit
limt!0� c�v; t�. Equation (71) then follows. Conversely, the
fractional delta function

dg�t� � tÿg�
G�1ÿ g� ;

defined as the fractional derivative of the unit Heaviside
function, is nonzero for all t > 0; it describes particles
delayed in their flight from the `point of departure' and
cannot be discarded in a similar manner.

The second remark is related to the applicability (more
exactly, inapplicability) of the probabilistic interpretation of
the equation with g > 1 in the absence of the first time
derivative 13 (see the discussion of this case in Section 3.2).

Returning to the problem considered in [124, 125], we
formulate its fractional differential generalization in the form

qafa�v; t�
qt a

� K1

v 2

q
qv

�
v n�1

q fa�v; t�
qv

�
� d�v�da�t� :

The solution of this equation is expressed in terms of the
solution of Eqn (71) as

fa�v; t� �
�1
0

f

�
v;

�
t

t

�a�
g��t; a� dt ; 0 < a4 1 :

Substituting f �v; t� from (72) in the last equation with n � 2
and a � 1=2, we obtain the solution of the problem in the

integral form

f1=2�v; t� �
�1
0

f

�
v;

���
t

t

r �
g�

�
t;

1

2

�
dt

� const

2
���
p
p tÿ3=2

�1
0

exp

�
ÿ v

K1

���
t
t

r
ÿ 1

4t

�
dt :

The authors of [129] used a different fractional version of
the Fokker±Planck equation (with the first time derivative
and a fractional Laplacian) to describe the motion of a
charge e with mass m in the magnetic field H � const under
the action of the friction force ÿZmv and a random electric
field E. The latter was represented by homogeneous sta-
tionary white LeÂ vy noise with the intensity m and exponent a.
LeÂ vy noise is a sequence of independent stationary increments
of LeÂ vy motion, just as white Gaussian noise is a sequence of
increments of Brownianmotion. The characteristic increment
function is

~p�k;Dt� � exp
ÿÿmjkjaDt� ; 0 < a4 2 :

As a! 2, the LeÂ vy noise transforms intoGaussian noise. The
equation for the velocity distribution density f �v; t� in the
magnetic fieldH � Hez corresponding to the given model has
the form

q f
qt
� oH�vez�Hv f � ZHv�v f � ÿ m�ÿDv�a=2f ; oH � eH

mc
:

By the Fourier transformation

~f �k; t� �
�
dv exp �ikv� f �v; t� ;

it is reduced to the form

q ~f

qt
� ÿoH�kez� � Zk

�
Hk

~f � ÿmjkja ~f :

The solution of this equation found in [129] for the zero initial
condition v�0� � 0 has the form

~f �k; t� � exp

�
ÿ m
aZ

�
1ÿ exp �ÿaZt��jkja� ;

and hence the velocity distribution is expressed in terms of the
isotropic stable density as

f �v; t� �
�
m
aZ

�
1ÿ exp �ÿaZt���ÿ3=a

�C �a�3

��
m
aZ

�
1ÿ exp �ÿaZt���ÿ1=av� :

For small times, we have

f �v; t� � �mt�ÿ3=aC �a�3

ÿ�mt�ÿ1=av� ;
and we are dealing with LeÂ vy motion (the scaling factor is
linear in time). In the large-time limit, the time dependence
disappears, and we obtain the stationary velocity distribution

f �v;1� �
�
m
aZ

�ÿ3=a
C �a�3

��
m
aZ

�ÿ1=a
v

�
:

This solution coincides with the equilibrium Maxwell dis-
tribution only for a � 2, when C �a�3 is a three-dimensional
Gaussian (with doubled dispersion). For other values of a, it
significantly differs from the equilibrium distribution by a
redistribution of probability from the intermediate velocity

13 For this reason, we here retain the notation c for the solution, used in

[127]: the distribution density is denoted by f in our review.
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distribution to the regions of small and large velocities,
forming asymptotic power-law tails:

f �v;1� / jvjÿaÿ3 :

In the problem of energy losses by a fast particle in the
absence of acceleration, its energy distribution is bounded by
the initial energy, and all the moments of this distribution are
finite. In the presence of acceleration, such a strict upper
bound of the energy spectrum is absent, which gives
additional grounds to examine the region with infinite
dispersion, which is acquiring increasing popularity among
researchers studying anomalous diffusion processes. Interest-
ing results (in the asymptotic sense) are here obtained only
when the infinite dispersion is caused by the power-law
behavior of the distributions:�

jDpj>p
w�p 0 ! p 0 � Dp� dDp / pÿg ; p!1 :

For the exponent g > 2, the second moment is finite, and
we are in the `classical' diffusion region. For g < 2, the second
moment of the increment is infinite and we arrive at equations
for the momentum distribution f �p; t�,

qaf �p; t�
qt a

� ÿK�ÿDp�n=2f �p; t� � f0�p�da�t� ; �76�

and the energy distribution N�E; t�,
qaN�E; t�

qt a

�
qn
�
anN�E; t�

�
qE n �N0�E �da�t� ; 0 < n < 1 ;

q
�
a1N�E; t�

�
qE

� qn
�
anN�E; t�

�
qE n �N0�E �da�t� ; 1 < n < 2 :

8>>><>>>:
Here, n � g for g4 2 and n � 2 for g > 2, and it is important
for the derivation of the equations themselves that the
coefficients K, a1, and a2 are constant. Fractional differential
equations are typically derived by integral transformations,
which are efficient only if the coefficients are constant.
Therefore, it would be incorrect, for example, to derive
Eqn (76) with constant coefficients and then to place the
variable diffusion coefficient K�p� in front of the fractional
Laplacian (as can already be easily verified in the example of
Eqns (68)±(70) with an integer Laplacian).

A diffusion packet described by Eqn (76), propagating
from the origin of momentum coordinates, has the form of
the three-dimensional isotropic fractionally stable distribu-
tionC �n; a�3 �x�, n 2 �0; 2�, a 2 �0; 1� `spreading' by the t a=n law:

f �p; t� � �Kta�ÿ3=nC �n; a�3

ÿ�Kt a�ÿ1=np� :
The tails of this distribution are described by a power-law
function with the exponent n. Physically, this means a peculiar
leading-term effect: in the sum Dp1 � Dp2 � . . .� Dpn of a
large number of independent terms, one of them always plays
the leading role. This effect disappears for n � 2, when the
distribution becomes Gaussian (sub-Gaussian). As a result,
for n < 2, we obtain a spectrum of the form

N1�E � dE / Eÿnÿ1 dE ;

which is only superficially similar to the Fermi formula. The
main difference is that the exponent n here is not related to the
age of the particles detected, being entirely determined only
by the acceleration mechanism in an individual local event
(collision). For this reason, the fractal distribution of
accelerating regions in space also has no effect on the slope
of the spectrum obtained.

5.4 Integro-fractional differential model
A disadvantage of the model presented in Section 5.3 is that
momentum increments in the acceleration event are indepen-
dent of the momentum of the particle involved in the
interaction, whereas the energy increment (and therefore the
momentum increment) in the Fermi model and its later
versions is proportional, on average, to the particle energy
(momentum) before the interaction. In this case, the energy of
the accelerated particle is expressed not by the sum but by the
product of independent random quantities. We call this
model the multiplicative random walk to distinguish it from
the additive random walk model considered above.

In the multiplicative model, the momentum increment is
proportional (in the statistical sense) to the absolute value of
the momentum p 0 of the interacting particle,

Dp � p 0q ;
�
jDpj>p

w�Dp; p 0� dDp /
�

p

p 0

�ÿg
; p!1 :

Assuming that the distribution of the proportionality vector q
is independent of p 0 and is isotropic, W�q; p 0� dq �
�1=2�V�q� dq dx, x � cos�q; p�, we transform kinetic equa-
tion (64) into

qaf �p; t�
qt a

� m
�� 1

ÿ1

dx
2

�1
0

V�q� f
ÿ
p=

���������������������������
1� 2xq� q 2

p
; t
�ÿ ���������������������������

1� 2xq� q 2
p �3 dq

ÿ f �p; t�
�
� f0�p�da�t� : �77�

This equation, derived in [130], is a modified version of the
model in [131] (taking a change in the direction upon
acceleration into account). To make it closer to real addi-
tional-acceleration processes, for example, during the inter-
section of shock-wave fronts in supernova remnants, we
assume, as in [132], that

V�q� � gqÿgÿ1 ; g > 1 :

The obtained model can be called the multiplicative LeÂvy
random walk model.

We consider equations for the spectral function in two
cases.

Case 1. g > 2, there exists a second moment of the
momentum increment, proportional to E 2, and we return to
the region of classical diffusion with variable coefficients:

qan�E; t�
qt a

� q
�
a1En�E; t�

�
qE

� q2
�
a2E

2n�E; t��
qE 2

� n0�E �da�t� :

Case 2. g5 2, and hence all the terms in the radicand in
(77) except q 2 can be neglected,

qan�E; t�
qt a

� m
��1

1

gqÿgÿ1n
�
E

q
; t

�
dq

q
ÿ n�E; t�

�
� n0�E �da�t� :

�78�
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(We do not discuss the validity of this approximation here and
point out that it is this acceleration operator that was used in
[132] in specific calculations.)

Solving Eqn (78) with the use of the Mellin±Laplace
transform and expressions (62) and (67), for a monoenergetic
source n�E � � d�Eÿ E0�, we obtain

Na�E; t� � mtag

�1� mta�2
�
E

E0

�ÿ1ÿg=�1�mta�
1

E0
: �79�

Expression (79) was derived under the assumptions
considerably simplifying the real situation, and it is largely a
qualitative formula, but it nevertheless compactly reflects the
influence of all three sources of the fluctuation acceleration on
the shape of the energy spectrum of cosmic rays: fluctuations
of the particle age (the parameter t), fluctuations of the
number of acceleration events (the parameters a and m), and
fluctuations of the energy imparted in a single event (the
parameter g). Representing the scale parameter m in the form
m � taA, where tA is the characteristic time interval between
accelerations of particles in the remnants of different super-
novae (we recall that t is the mean lifetime in nuclear
collisions), we can write the absolute value of the exponent
of the integrated spectrum in a more transparent form:
g 0 � 1� g=�1� �t=tA�a�. For a � 1 and mt4 1, we obtain
Fermi formula (61) with a � m=g.

6. Problems and outlook

6.1 Fractional time derivative
From the physical standpoint, cosmic rays are the high-
energy component of the cosmic plasma, and it is not
surprising that along with the development of fractional
differential models describing cosmic-ray transfer consid-
ered in this review, these tools are also used in plasma
physics. For example, Balescu [16] combined the collisionless
plasma equation with the equations of motion for a charge in
a homogeneous magnetic field and a fluctuating electric
component with a random potential represented by homo-
geneous Gaussian noise, deriving a non-Markov equation for
the mean concentration of particles, which he called the
hybrid equation,

qn�r; t�
qt

�
� t

0

dtL�t�Dn�r; tÿ t� ;

whereL�t� is thememory function related to the properties of
the velocity field. In the case of weak turbulence, the delay can
be neglected, n�r; tÿ t� � n�r; t�, and the t integration can be
extended to infinity. As a result, we obtain the usual diffusion
equation. In the case of strong turbulence, the consideration
of the self-similar (power) character of turbulence led to the
integro-differential equation [16]

qn�r; t�
qt

ÿ D
�
Dn�r; t� ÿH0

� t

y
n�r; tÿ t�tbÿ2 dt

�
; b � 0:58 ;

which coincides with Eqn (46) and transforms into a
differential equation as t! 0.

Like any phenomenological derivation, this derivation is
open to question. In most doubt here is not the non-
Markovian property or even the power-law reduction of
correlations, but the assumed unboundedness of the power-

law distribution. The assumption that the power-law tail
extends to infinity gives rise to a fractional Riemann±
Liouville derivative: if the power-law tail is cut off, this
operator transforms at large times into a standard first-
order differential operator. Are there any physical reasons
for restricting this distribution except for purely psychologi-
cal ones (we do not like themean confinement time in a trap to
become infinite for b < 1)? This last possibility, incidentally,
does not contradict anything: the mean (mathematical
expectation value) is defined in terms of an improper integral
(with an infinite upper limit), and the existence of such an
artificial construction in Nature is unreasonable. Physically,
the meaning of the retarded integral and its kernel is the
retardation of particle motion caused not by the stopping of
the particle but by its coming into a small turbulent region
with a small diffusion coefficient.

Numerical simulation of the trajectories of particles in a
turbulent plasma has shown [133] that charged particles are
indeed captured by vortices (`traps') formed in the turbulent
plasma and are confined in them for a long time. This time is
random, and its probability distribution is characterized by a
sufficiently long power-law region tÿbÿ1, b � 0:83� 0:22,
followed by a rapid decay (Fig. 28a). A similar situation
occurs in the dynamics of bright magnetic elements in the
solar photosphere [60], with b � 0:83� 0:05 in the interval
0.3±22.0 min, behind which the distribution also rapidly
decays (Fig. 28b). In [134], we simulated the Brownian
motion of a particle in a cube with a smooth surface and
also found a power-law interval of the confinement time
distribution (with the exponent b � 1=2) terminated by a
rapid drop. The difference between the last value of b and the
values indicated above can easily be explained by the
influence of the boundary of the confining region: the natural
porosity of the boundary surface reduces the confinement
time in the trap, thereby increasing b. Although the value
b � 0:8 introduced in [20] is consistent with the results of
plasma simulations, the boundedness of power-law intervals
suggests that the results of these calculations should be
considered with care. Obviously, such truncated distribu-
tions in the large-time limit yield first-order derivatives, but
they can lead to fractional derivatives in the pre-asymptotic
region. These two regions can be combined into a single
equation in the case of soft decay by introducing an
exponential factor in the kernel of the fractional differential
operator [135]:

q1ÿbn�r; t�
qt 1ÿb

� 1

G�1ÿ b�
d

dt

� t

0

�tÿ t�ÿ�1ÿb�n�r; t� dt

7! 1

G�1ÿ b�
d

dt

� t

0

�tÿ t�ÿ�1ÿb� exp �ÿg�tÿ t��n�r; t� dt
� exp �ÿgt� q1ÿb

qt 1ÿb
�
exp �gt�n�r; t�� :

The subdiffusion equation then takes the form

qn
qt
� DD exp �ÿgt� q1ÿb

qt 1ÿb
�
exp �gt�n�r; t��� d�r�d�t�

)
qn
qt
� DDn�r; t� � d�r�d�t� ; t!1 ;

q bn

qtb
� DDn�r; t� � d�r�db�t� ; t! 0 ;

8>><>>:
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or, in terms of the Laplace transforms,

ln̂�r; l� � �l� g�1ÿbDDn̂�r; l� � d�r� :

For small times (i.e., for l4 g), in the expression

ln̂�r; l� � l1ÿbDDn̂�r; l� � d�r� ;

we recognize the Laplace transform of the fractional differ-
ential subdiffusion equation, which we previously wrote in
the form

lbn̂�r; l� � DDn̂�r; l� � d�r�lbÿ1 ;

whereas in the large-time limit �l5 g�, the same equation
gives the transform of the parabolic equation of normal
diffusion:

ln̂�r; l� � D0Dn̂�r; l� � d�r� ; D 0 � g 1ÿbD :

It is clear that this effect can be obtained not only for the
exponential but also for other factors providing a rapid decay
(or indeed termination) of the asymptotic part of the power-
law distribution, such that the mean time would become
finite; the exponential factor can easily be incorporated into
the result due to the use of the Laplace transform.

6.2 Fractional Laplacian
In light of the criticism of the LT version, the question can
arise: How should we treat the Monin equation for turbulent
diffusion, in which a � 2=3 and the velocity is not mentioned
at all, and this is in relativistic hydrodynamics, in fact under
laboratory conditions rather than in cosmic-ray physics with
its astronomical scales and velocities close to the speed of
light? In answering this question, we first note that theMonin
equation has not found practical applications (incidentally, as
many equations derived in theoretical physics and never
used). Moreover, even in Statistical Hydromechanics [32] by
Monin and Yaglom, the derivation of this equation is
presented, but nothing is said about its applications. The

important reason behind this omission is that the power-law
spectrum on which the derivation is based is valid only in a
limited range of wave numbers k, whereas the fractional
Laplacian corresponds to the unbounded power-law spec-
trum. There is an obvious discrepancy between expression (6)
in [32], eventually leading to a fractional Laplacian, and the
statement that the self-similar representation of the function

a�k; t� � a0�e 1=3k 2=3t�

used in this case is valid only in a limited interval of the
arguments: ``Restricting ourselves to the consideration of
quasi-asymptotic diffusion times t3 < t < t1, we should
admit that the function a�k; t�, besides k and t, depends on
only one other dimensional parameter e and therefore has
the form a�k; t� � a0�e 1=3k 2=3t�... . Monin's hypothesis is
that operators A�t� form a semigroup, i.e., have the
property A�t1�A�t2� � A�t1 � t2�. This gives a0�x1 � x2� �
a0�x1�a0�x2�... .'' [32, p. 510]. Obviously, the last expression is
incompatible with the restriction presented above. This
restriction itself follows from the fact that turbulence has a
power-law spectrum only in the inertial interval of wave
numbers k 2 �kmin; kmax�. As shown in Section 2.5, the
fractional Laplacian is determined by the behavior of the
spectral function of the free path in the region k � 0, but it is
this region that is excluded from the inertial interval. There-
fore, the exponent a cannot be smaller than unity in a
continuously turbulent medium, which is the case in the LT
version. If a > 1, the mean free path becomes finite,
producing a scale. The multiple excess of this scale allows
approximating possible trajectories in a medium by such
segments in the medium. At the same time, if particles are
propagating in regions with relatively small localized turbu-
lent zones with a fractal distribution, this objection can be
ignored. An example is given by cosmic-ray transfer in the
metagalaxy: here, a model with a < 1 and b < 1, i.e., with
long linear flights between galaxies and with confinement in
the traps formed by galaxies, can be quite acceptable.

In the three-dimensional case, if the divergence of
moments of an elementary displacement begins with the
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Figure 28. Confinement time distribution in a magnetic trap. (a) Results of the numerical simulation of plasma [133]; a segment of the straight line

corresponds to b � 0:83. (b) Data of observations of the motion of magnetic elements on the solar surface [60]; the straight line corresponds to b � 0:76.

1114 V V Uchaikin Physics ±Uspekhi 56 (11)



next, the fourth, order, the fractional generalization of the
Barnett equation can be introduced in the form

q f �r; t�
qt

� D2D f �r; t� ÿDa�ÿD�a=2f �r; t� ; 2 < a < 4 : �80�

The inclusion of the additional term in the equation violates
the important property of the self-similarity of its solutions,
but at the same time imparts an interesting feature to it. The
Fourier transformation in x gives terms with k 2 and
jkja � �k 2�a=2 in the right-hand side; as k! 0, the first of
them is leading, and as k!1, the second one is (we recall
that a > 2). Therefore, the process described by Eqn (80)
looks like usual diffusion at large scales and like delayed
diffusion at small scales. The same equation with a from the
lower range,

q f �r; t�
qt

� D2D f �r; t� ÿDa�ÿD�a=2f �r; t� ; 0 < a < 2 ;

describes usual diffusion at smaller scales and superdiffusion
at larger scales. The difference between these processes is
explained, of course, by the different properties of the
medium at different scales.

Another problematic aspect is the nonlocality of the
fractional Laplace operator caused by its integral nature.
Unlike the usual Laplacian

D � q2

qx 2
� q2

qy 2
� q2

qz 2
;

whose form is independent of the boundaries and boundary
conditions, the fractional Laplacian depends on them. In the
fractional Laplacian, it is necessary to specify not only the
properties of the sought function at the domain boundaries,
but also its values outside this domain. The popular Fourier
transform jkja=2 of the fractional Laplacian in a bounded
medium is no longer applicable. In this case, the interpreta-
tion in terms of flights is very useful for determining the
influence of the boundary quality (reflecting, transparent,
semitransparent, diffusive) on the solution and for better
understanding characteristics that are not so obvious, such as
the times the boundary is first reached and first crossed. We
note that the expansion of the Laplacian in Cartesian or other
orthogonal coordinates, providing a theoretical basis for the
method of separation of variables, is not applicable in the
fractional differential case: the fractional three-dimensional
Laplacian cannot be written as a sum of one-dimensional
Laplacians along x, y, and z. This is obvious in the Fourier
representation, where

jkj2 � k 2
x � k 2

y � k 2
z

and

jkja � �k 2
x � k 2

y � k 2
z �a=2 6� jkxja � jkyja � jkzja; a 6� 2 :

Similarly, it is impossible to separate the fractional Laplacian
into the radial and angular components. The use of only a
radial fractional Laplacian in any equation can only mean
that the motion only along radial trajectories is considered,
whereas in the case of the usual Laplacian, its radial
component reflects the evolution of the radial coordinate of
a complex spatial trajectory.

The authors of [136] introduced amatrix representation of
the one-dimensional fractional Laplacian, which was used for

numerical solutions of problems with absorbing boundaries.
The authors of [137] showed that in the presence of a reflecting
wall, the fractional Laplacian for an infinite medium

ÿ �ÿD�a=2f �x; t� � ÿ 1

2 cos �ap=2�G�2ÿ a�

� q2

qx 2

�1
0

jxÿ xj1ÿaf �x; t� dx ; 1 < a < 2 ;

transforms into an integro-differential operator with a
modified kernel:

ÿ �ÿD�a=2refl f �x; t� � ÿ
1

2 cos �ap=2�G�2ÿ a�

� q2

qx 2

�1
0

�jxÿ xj1ÿa � �x� x�1ÿa� f �x; t� dx :
In [138], the fractional Laplacian was introduced as the
generalization of the one-dimensional expression for the
fractional Marchaut derivative on a limited segment of the
axis for a bounded domain of the d-dimensional space:

D a
G f �x� � C�a�

�
aG�x� f �x� �

�
G

f �x� ÿ f �y�
jxÿ yjd�a dy

�
;

x 2 G � Rd ; a 2 �0; 1� ;

where

C�a� � a2 aÿ1G
��d� a�=2�

pd=2G�1ÿ a=2� ;

aG�x� �
�
RdnG

dy

jxÿ yjd�a :

The authors of [139], who studied reflected symmetric stable
processes, called the limit

ÿ�ÿD�a=2G f �x� � lim
e#0

C�a�
�
G; jxÿyj>e

f �x� ÿ f �y�
jyÿ xjd�a dy

the regional fractional Laplacian.
Because of the abovementioned difficulties encountered

in the consideration of boundary conditions, the best method
for formulating boundary value problems in the nonlocal
theory is still based on the use of integral equations and
Monte Carlo simulations.

6.3 Gradient and material derivative
Considering the problem of cosmic-ray transfer from the
standpoint of the hypothesis of hidden variables, we see that
the appearance of fractional time derivatives is quite expected
because themotion of cosmic rays affects magnetic fields, and
vice versa. The usual diffusion theory neglects this relation,
whereas the fractional character of derivatives can suggest
that this relation is partially taken into account in the
remaining equations. However, there is a very serious
question we must solve to acquire complete confidence in
following the fractional differential way. Namely, as soon as
we pass to the kinetic description (`include velocity'), the
partial derivative q=qt transforms into the material derivative
d=dt � q=qt� vH. In the fractional differential approach, this
gives rise to the transformation �q=qt�a 7! �d=dt�a. The
problem is that fractional operators are nonlocal, and it is
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therefore necessary to indicate the domain in which the
function involved in the calculation procedure is defined.
Strictly speaking, the notation for the fractional time
derivative we used is not quite satisfactory and should be
replaced, for example, with the expression

aD
a
t f �t� �

1

G�1ÿ a�
q
qt

� t

a

f �t 0� dt 0
�tÿ t 0�a ; ÿ14 a < t; a 2 �0; 1� :

The lower limit is determined by physical conditions: if an
object (a particle) was created at some instant, which we take
as the onset of time counting, then a should be set equal to
zero, and if an object exists always (say, in the visible past), it
is natural to set a � ÿ1. By substituting different a in the
expression presented above, we obtain different values of the
derivative of the same function f �t� at the same instant of
time t.

In some recent papers (see, e.g., [140, 141]), the concept of
the fractional operator is extended to the gradient as

H a f �x; y� � f �a�x �x; y�ex � f �a�y �x; y�ey :

The reader may find this generalization natural (indeed, we
are not aware of critical remarks in this respect), but this is
only at first glance and as long as the picture of a particular
process is not examined closely. The authors of [142]
considered the motion of a point mass in a plane where the
function f �x; y� plays the role of the potential energy and x
and y are the projections of velocities. For a 2 �0; 1�, the
system of corresponding equations has the form

dx

dt
� ÿf �a�x �x; y� � ÿ

1

G�1ÿ a�
q
qx

� x

0

f �x 0; y� dx 0
�xÿ x 0�a ;

dy

dt
� ÿf �a�y �x; y� � ÿ

1

G�1ÿ a�
q
qy

� y

0

f �x; y 0� dy 0
�yÿ y 0�a :

But what physical interpretation can be attached to these
equations? Apparently, it is natural to integrate over the
particle trajectory segment whereby the particle arrives at the
given point P, but different components of the gradient at the
specified point are calculated over different trajectories O00P
and O0P intersecting only at this point (Fig. 29). This
operation denies physical interpretation.

Integrating along particle trajectory OP seems to be more
natural,

dx

dt
� ÿ 1

G�1ÿ a�
q
qx

� x

0

f
ÿ
x 0�t 0�; y 0�t 0�� dx 0�t 0�ÿ

xÿ x 0�t 0��a ;

dy

dt
� ÿ 1

G�1ÿ a�
q
qy

� y

0

f
ÿ
x 0�t 0�; y 0�t 0��dy 0�t 0�ÿ

yÿ y 0�t 0��a ;

where x 0�t 0� and y 0�t 0� are coordinates of the particle that
arrived to the point with coordinates x and y by the instant
t 0 < t.

Similarly, the definition of the fractional material deriva-
tive in the form�

q
qt
� vH

�a

f �r; t� � 1

G�1ÿ a�
�
q
qt
� vH

�

�
� t

ÿ1

f
ÿ
rÿ �tÿ t�v; t�
�tÿ t�a dt

can be naturally replaced by the definition�
q
qt
� vH

�a

f �r; t� � 1

G�1ÿ a�
�
q
qt
� vH

�
�
� t

ÿ1

f
ÿ
R�t; r; t�; t�
�tÿ t�a dt ;

where R�t; r; t� is the radius vector at the instant t < t of a
particle that is found at the observation point r at the
measurement instant t, with

R�t; r; t� � r :

For different trajectories leading the particle to the observa-
tion point, the gradients at this point are different. Interest-
ingly, however, as a approaches 1, the ever shortening
segment of this curve adjacent to the point r affects the
gradient and, finally, for a � 1, using the limit

lim
a!1

�tÿ t�ÿa
G�1ÿ a� � d�tÿ t� ;

we obtain the usual independence of the gradient from the
trajectory prehistory.

7. Conclusions

This review, the third in Physics±Uspekhi to reflect our
experience in the application of the fractional differential
apparatus to solution of physical problems, is devoted to
the same goal as the two previous reviews [25, 143], the goal
of rehabilitating this approach, removing some tinge of
artificiality from it, and revealing its direct relation to the
physics of natural processes. The problem is that fractional
operators are nonlocal, and we cannot therefore derive
master equations by the usual method, considering the
relation between infinitesimal changes in a chosen quantity
and infinitesimal increments in time and coordinates.
Meanwhile, the number of publications devoted to the
application of this apparatus to various physical problems
is increasing, currently exceeding 3±4 thousand by our
estimate. Many of these papers are constructed following a
very primitive scheme: a known differential equation (for
example, Newton's equation) is taken, a few magic words
(like memory, fractality, complexity) are uttered, then
integer-order (specifically, second-order) derivatives are
replaced by fractional-order derivatives, some mathemati-
cal corollaries are discussed, and the paper can go to the
printer! Some authors practice such a technique exclusively.
Fractional differential analogs of the Lagrange, Hamilton,

f
�a�
x

y

O00

O 0 xO

f
�a�
y Haf

P

Figure 29. The fractional gradient problem.
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Liouville, and Boltzmann equations, the chains of the
Bogoliubov±Born±Green±Kirkwood±Yvon equations, dif-
fusion equations, rheology equations of viscoelastic media,
the Fokker±Planck, Navier±Stokes, Ginzburg±Landau,
SchroÈ dinger, Heisenberg, Klein±Gordon, and Dirac equa-
tions have been derived (although this procedure can hardly
be called a derivation). It would appear that theoretical
physics should receive a powerful impetus, if this opening
up of `new lands' can be compared to passing from integers
to real numbers.

But the modesty of genuinely new results is discouraging.
This is natural: it would be naive to assume that by simply
replacing two in the derivative symbol with a fractional
number a and solving the equation using the known scheme,
we would at once arrive at `new post-Newtonian physics'.
Rather tedious work is required to provide a reliable under-
standing of natural reasons for the appearance (not the
introduction) of fractional derivatives in a given problem, the
specificity of reflection of the observed relations by them, a
reliable interpretation of the results obtained, and an accurate
establishment of the applicability limits of the relevant
models.

More infallible are papers where fractional derivatives
appear due to mathematical transformations of standard
classical equations. An excellent example of this is the Basse
or hereditary force acting on a sphere moving randomly in a
viscous liquid (the last term in expression (4) in [144, p. 132]):

FB � 6prR 2

����
n
p

r � t

ÿ1

du

dt

dt����������
tÿ t
p :

We saw in Section 4.3 how the fractional derivative
appears in discussing the transverse diffusion of cosmic rays.
However, additional assumptions, which are inevitable in
using the perturbation theory, significantly restrict the
validity of the obtained results to the region of weak
turbulence. The kinetic equation for particles in strongly
turbulent plasmas derived in [145] contains an integral
operator in the momentum logarithm (which is, generally
speaking, not a fractional derivative, but which reflects the
nonlocality of the process in the momentum space). The
generalized hydrodynamics developed by Alekseev [146,
147] is also essentially nonlocal. In discussing its application
to turbulent currents, the author points out that in the
framework of the correlation approach using time-averaged
products of the differences of velocities at two close points of
the type

Bik � �v2i ÿ v1i��v2k ÿ v1k� ;

it remains unclear what the term `close points' means and how
the time averaging is realized. In this connection, he quotes
Hydrodynamics by Landau and Lifshitz [144, p. 200]: ``One
could think that there is the principal possibility of obtaining
the universal formula (applicable to any turbulent motion)
determining Brr and Btt for all distances that are small
compared to lL. In reality, however, such a formula cannot
exist at all, as is evident from the following considerations.
The instant value of �v2i ÿ v1i��v2k ÿ v1k� could theoretically
be expressed through the dissipation of energy e at the same
instant of time t. However, upon averaging these expres-
sions, the law of changing e during large-scale motions (of
the order of lL), which is different for different particular
motions, is important. Therefore, the result of averaging

cannot be universal.'' In other words, we cannot perform
this averaging using only information about the infinitesimal
vicinity of a given point: it is necessary to known the
evolution of the field in a large region, including possible
boundary conditions. However, the turbulent diffusion
coefficient belongs to the same type of characteristics, and
therefore the appearance of a nonlocal operator (fractional
Laplacian) in the turbulent diffusion equation, which we
observed, is a consequence of the fact pointed out in the
above quotation.

It is likely that Ginzburg, who read Alekseev's manuscript
and gave him advice, did not relate the potential possibilities
of the nonlocal model of turbulent diffusion to the problem of
cosmic-ray propagation in the Galaxy, where turbulence
plays no less important role than in `earth hydrodynamics'.
Most likely, he no longer considered this problem among the
urgent problems in cosmic-ray physics [148].

We can present other examples of the `penetration' of
nonlocal operators to plasma hydrodynamics and kinetics.
Each time we meet an argument substantiating the introduc-
tion or explaining the appearance of nonlocal operators. Is
there a general substantiation of the appearance of a nonlocal
operator (e.g., in time), not related to a particular process and
its approximate description? Yes, there is, and we find one,
for example, in [149]. The authors consider a closed system of
N particles, whose motion in the 2N dimensional phase space
is governed by the Liouville differential equation of the
Markov type, i.e., by the equation containing only the first
time derivative. However, if we are interested only in the
momentum distribution, then, using the technique of Zwan-
zig±Mori projection operators, we obtain an equation for the
momentum distribution without any simplifications and
approximations, but that equation already contains a
retarded integral, i.e., is not Markovian. The same is
obtained for other variables. And we see the same if we
observe a part of a conservative closed system, not seeing its
other part. The invisible (hidden) part of the system affects the
behavior of the visible part during the entire period before
observation. By observing only the momentum distribution
of particles, we ignore coordinates (assign them to the class of
hidden variables). The state of the hidden part at the
measurement instant is unknown, but it can, at least in
principle, be reconstructed by analyzing the prehistory of
the observed part. In attempting to describe the motion of
cosmic rays without a detailed description of the evolution of
the interstellar magnetic field, we assign the characteristics of
the latter to the class of hidden variables and again arrive at a
hereditary (non-Markov, retarded) equation for the cosmic-
ray distribution. Physically, the information is delivered from
different elements of the hidden part of the system to the
observed characteristics at the observation point with a finite
velocity, which in turn gives rise to a spatial nonlocality
related to the appropriate structure of the medium. Frac-
tional differential operators containing singular kernels of the
power-law type are a consequence of the additional assump-
tion about the self-similarity of the process. This is the
`philosophy' of the fractional differential phenomenology as
we see it today.
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