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Abstract. A universal form of the equations for acoustical and
optical wave fields in absorptive crystals is obtained. On this
basis, a unified formalism is constructed and used to describe
the effect of absorption on the topology of polarization fields
and wave surfaces of elastic and electromagnetic waves close to
conical acoustic and optical axes. Unless forbidden by symme-
try, both types of axes are split by absorption, with the conse-
quences that the wave surfaces acquire self-intersection lines
connecting pairs of split axes and that new singular points with
the Poincaré indices n = +1/4 arise in the polarization fields.
Near the split points, the waves of degenerate branches show an
abrupt increase in ellipticity, which transforms the internal
conical refraction from a local property along the degeneracy
direction into a continuum phenomenon occurring throughout
this entire region. For each direction of the wave normal, there is
a universal refraction cone, the same as for zero absorption. The
ends of ray velocity vectors move along the universal section of
this cone. This section is elliptic in acoustics and circular in
optics. The kinematics of this precession depend in an essential
way on the direction of the wave normal.
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1. Introduction

Equations determining the structure of waves in the optics
and acoustics of crystals are essentially different. Electro-
magnetic waves are described by the Maxwell equations [1-4],
while elastic waves are described by the Christoffel equations
[5-7]. On the other hand, polarization fields and wave
surfaces in the optics and acoustics of crystals near the
degeneracy directions of phase velocities give similar topolo-
gical responses to incorporating the absorption, which, as we
see in what follows, allows a unified description.

The influence of absorption on the optical and acoustic
properties of crystals does not simply reduce to the trivial
attenuation of the wave field during its propagation.
Principally new degeneracy directions, so-called singular
axes, appear. This occurs due to the splitting of conical
optical and acoustic axes, not coinciding with symmetry
axes. As the wave normal m approaches such singular axes,
the wave ellipticity drastically increases and becomes circular
at the degeneracy points. On the refraction and absorption
surfaces, self-intersection lines connecting the split degener-
acy points appear.

The fundamentals of the optics of absorptive crystals are
associated with the names Voigt, Drude, and Fedorov (see
review [8]). A concise description of the optical properties of
absorptive crystals is given in [2-4]. The topological aspects of
the problem have also been actively studied in recent decades.
In particular, it was shown in [9-11] that split axes define
singular points in the complex polarization field correspond-
ing to the topological charge (Poincaré index) n = 1/4. In
addition, according to [11], at the ends of the self-intersection
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wedge of the velocity surface corresponding to degeneracy
points, geometric singularities appear in the form of cusps
characterized by a flat fan of normals and an infinite
curvature. The replacement of a conical contact point by a
self-intersection wedge strongly affects the internal conical
refraction as well [11].

Similar effects in crystal acoustics were investigated in
[12-16]. The inclusion of absorption again leads to the
splitting of conical degeneracies into pairs of singular
points. The vicinity of the split axes is then characterized
by similar geometrical and polarization features [12, 16] and
a nontrivial transformation of the properties of internal
conical refraction [16].

In this paper, we show that despite all the differences
between the master acoustic and optical equations, they can
be represented in a unified form thanks to the generality of the
wave phenomena in the vicinity of degeneracies. This opens
up the possibility of a universal description of the topological
characteristics of electromagnetic and elastic waves. We
describe not only the known acoustic and optical properties
of absorptive crystals but also a number of qualitatively new
features of their acoustics and optics, which have never been
discussed before.

2. Wave equations
in the vicinities of degeneracy directions

In this section, we derive equations describing elastic and
electromagnetic waves in an absorptive crystal in the vicinity
of the directions of acoustic and optical axes. We see that
although the master equations in optics and acoustics are
different, plane electromagnetic and elastic waves can be
described using a unified mathematical formalism.

2.1 Acoustic equations for absorptive crystals

We consider a viscoelastic medium with an arbitrary aniso-
tropy, described by the elastic modulus tensor ¢ = {c;jx}, the
viscosity tensor 7 = {n,;;,}, and the density p. The elastic
displacement field u(r, 7) in such a medium is described by the
known equation of motion [5]

Pl = Cijk il 1+ ks U, » (1)

where dots over the function u denote time derivatives, while
the derivatives with respect to spatial coordinates are denoted
as 0/0xy ... = ... ;. For an elastic wave

u(r, 1) = CUexp [ik(mr — vt)] (2)

with the amplitude C, polarization U, wave vector
k=k'+ik"”, phase velocity v, and frequency w = kv,
Eqn (1) reduces to the generalized Christoffel equation [12,
16]

[m(¢ — iwi)m]U = po*U. (3)

Equation (3) determines complex polarization vectors
U, =U, +iU, and phase velocities v = v, —iv, of three
eigenwaves (o = 1,2, 3).

When absorption is neglected, the elastic waves of
degenerate branches propagating along the acoustic axis my
have real polarization vectors U, which can be arbitrarily
oriented in the degeneracy plane D orthogonal to the
polarization vector Ags of the nondegenerate wave.

Ao1

Figure 1. Choice of the basis vectors Ay, Ag, and Az in acoustics; my is
the direction of the initial acoustic axis and D is the allowed polarization
plane in the absence of absorption.

We take two arbitrary unit, mutually orthogonal vectors
Ag; and Ay, in this plane, which together with Ay; form an
orthogonal basis (Fig. 1). The vectors Ay, and Ay, enter the
key relations of the acoustics of absorptive crystals, their
arbitrary choice in the plane D not affecting the invariance of
final results.

2.2 Optical equations for absorptive crystals

We consider a nonmagnetic crystal with an arbitrary
dielectric anisotropy and weak absorption. We specify an
electromagnetic wave propagating in the crystal by its
magnetic component

h(r,7) = CHexp [ik(mr — vr)] 4)

where the polarization H and the phase velocity v are defined
by the Maxwell equations [2]
1 1

H=—mxE, E=-——("'—id)mxH. (5)
Ul V&)

Here, E is the polarization of the electric component e(r, 7) of
the wave, 2 ~! is the inverse permittivity tensor describing the
optical properties of the medium in the absence of absorption,
0 = {0;;} is the tensor taking the influence of absorption into
account, and y, and g are the permeability and permittivity
of free space. The components of the tensors ¢! and ¢ are
dimensionless: all the physical quantities are written in the SI
system, in which the permittivity of a crystal is defined as &g
and the speed of light in the vacuum is ¢ = 1/, /g,.

Eliminating the electric field E from (5), we obtain the
equation for H:

—m x [(&7! —i6)m x H] = G)zH, (6)
which is
2
—{m[e(" —id)e]mIH = (g) H (7)

in terms of the Levi-Civita antisymmetric unit tensor
é = {e;jir }. Equation (7) specifies velocities v, and polariza-
tion vectors H, as eigenvalues and eigenvectors of the
corresponding tensor in its left-hand side. Among three
eigenvectors, the purely longitudinal polarization vector
H; || m is also present. But we see from (6) that its eigenvalue
is v3 = 0. Therefore, the longitudinal solution is static and
cannot describe a wave. It is for this reason that electro-
magnetic waves are always purely transverse (H, L m), and
only two independent isonormal waves can propagate in
nondegenerate directions of m.
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Figure 2. (a) Section of the phase velocity surface v; »(m) of an optically
transparent biaxial crystal. (b) Choice of the (Ao, Az, Ag3) basis.

According to [2-4], the real tensor 8! can be written in
the invariant form

A1 5

il =al-blag@en+en®e), o =ci=1, (8)
where 1 is the unit matrix, ¢; and ¢j; are the directions of two
optical axes of the crystal in the absence of absorption, and
the scalars a and b and the vectors ¢; and ¢j; are expressed in
terms of invariant parameters 1/¢;, the eigenvalues of & ~!:

1 b_83*8]

=8 = ee 0 M7 (Fc1,0,¢3), (9)
C]ISian m, Q:cosf: M
2 (&3 — 1)e2 2 (63 — €1)ea

(10)

Here, the indices i = 1,2, 3 of the components ¢&; correspond
to those in the inequality &; < & < &;3. In this case, the optical
axes of a transparent crystal lie in the XZ plane of the
coordinate system {X, Y, Z} constructed on the eigenvectors
of ¢! (Fig. 2a).

The real phase velocities of isonormal waves in the
directions ¢ and ¢y coincide, and conic degeneracies appear.
In what follows, we take the vector my = ¢; as the unper-
turbed degeneracy direction. Then the degeneracy plane D is
orthogonal to the optical axis ¢;. Similarly to the introduction
of a basis in the acoustic case (see Fig. 1), it is convenient to
introduce the new orthonormalized basis (Fig. 2b)

(CI X CH) X €[ Cr X €11

Ayy=—"——, Ap=—"—, Ap=c=mg,
|C] X C“| |cl X cll|
(11)

corresponding to the {x, y, z} coordinate system rotated with
respect to the { X, Y, Z} system around the ¥ = y axis to make
the z axis coincident with the ¢ axis.

2.3 Universal wave equation and its solution
in the vicinity of degeneracy directions
We introduce the universal wave

a(r, 1) = CAexp [ik(mr — vr)]

(12)
) U :
SHEES
and generalized material tensors
F g (ac), i - %ﬁ (ac), (13)
—c2& e (op), —c2é0¢  (op),

which are simultaneously related to optics (op) and acoustics
(ac). In these terms, instead of (3) and (7), we obtain the
generalized Christoffel equation for elastic and electromag-
netic waves in an absorptive crystal:

(Ql—in/)A:UZA7 (14)

Q// :m/il/m.

As mentioned in Section 2.2, we consider complex phase
velocities v, and elliptic polarizations A, (« =1, 2, 3 for
acoustics and « = 1, 2 for optics):

vy =wv, —iv),  A,=A,+iAl. (15)
The vectors A, are assumed normalized in accordance with
the rule

A, =1, ALAl=0. (16)
These vectors are mutually orthogonal in nondegenerate
directions: A,Ag =0 (o # f).

We consider solutions for the universal wave, Eqn (14),
with the propagation directions m lying in a close vicinity of
the conical degeneracy direction my:

m=my+Am, |m=|my|=1, |Am|<I. (17)
In a crystal without absorption, the phase velocities of two
isonormal waves along the degenerate direction my coincide,
vy = v, =1y, and their polarization is arbitrary in the
D-plane, called the degeneracy plane. When absorption is
included, the velocity changes Av; » and polarization vectors

A, of isonormal waves near the direction mg are given by
.} s
Avi ) =s'Am —is” F R,

A1 || —(qQAm —ig")Ag; + (pAm —ip” £ R)Apa,  (18)

R=\/(pAm —ip")? + (qAm —ig")?

The vectors s°, p, and q and the scalar absorption parameters
p", q", and s” introduced in (18) are determined by
convolutions of the vectors Ag;, Agz, and mg with tensors A’
and A"

0 1 . 1
I } =5 (ApiA'Ag1 + App A Agr)my ,

PJ 2u (19)
q= %W(Am/i/Aoz + ApaA'Ag1)my
n)oohres . ok
p 4uyg ’ 2ug (20)
0fi = AuQj Ao,  Of =0"(mo).

Here, the vectors s°, p, and q have the properties
s‘my = vy, pmy=qm,=0. (21)

The smallness of the deviation Am = m — mg of the unit
wave normal m from the direction my of the initial degeneracy
in (18) is determined by the possibility of neglecting the
components of vectors A; , along Ag; of the order (Am)2
in (18).
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For weak absorption, the components of complex
velocities and wave numbers are related as

/_2 _A'Uo/c "o 2
qum(l ) k=)

We can see from (18) and (22) that the requirement of the
decay of isonormal waves during propagation, k; > 0,
determines the stability criterion s, > [Im R|.

In isotropic media, material tensors A’ and A" in (13) are
such that their convolutions with basis vectors Ag; and Ag,
the quantities p, q, p”, and ¢” in (19) and (20), vanish (but s
and s” do not in this case). Therefore, the effects considered
here are entirely caused by anisotropy and are specific
exclusively to crystals. A

Optical second-rank tensors ¢ ' and ¢ are simpler than
acoustic fourth-rank tensors ¢ and #. Because of this, the
vectors sQ,, Pop» Gop and the scalars s, pJ. gl can be
explicitly calculated as compact functions of the eigenvalues
of ¢~! and components of ¢ in basis (11):

(22)

1

Sgp = (—AAg1 + Ao3)vy Sgpmo =,
Pop = Z00A01 ) Qop = Zv0Ap ) Poplop = 0, (23)
/1:1 (83—82)(82—81)7 UO:L’
2 £183 \/5
‘S(,)/p Vo€2 " Vo2
=—"(0p =——9013. 24
Pélp 4 (022 1) 9op 5 ‘n (24)

An important remark must be made here. A transparent
biaxial crystal has a rhombic symmetry with respect to its
optical properties, even being triclinic with respect to other
properties, for example, acoustic ones. This is explained by
the fact that the permittivity tensor &, as any second-rank
tensor, has the symmetry of its characteristic ellipsoid: it has
three mutually orthogonal symmetry planes coinciding with
the coordinate planes of the {X, Y, Z} system (Fig. 2a). The
inclusion of absorption adds another second-rank tensor o,
which, of course, has the same symmetry elements. But these
tensors are diagonalized in different coordinate systems in a
triclinic crystal, i.e., their symmetry planes do not coincide in
general. In the particular case of monoclinic crystals, both
tensors & and J share one symmetry plane.

We have thus arrived at a unified mathematical formalism
that can be used to describe both elastic and electromagnetic
fields in triclinic crystals. General solutions (18)—(20) deter-
mining the key characteristics of the waves, with the
correspondence relations (12) and (13) taken into account,
describe both the acoustics and the optics of absorptive
crystals. Of course, the main topological features of the
wave fields of the two types are then similar near degen-
eracies.

However, for the abovementioned reasons, geometrical
and topological features in optics are often more symmetric
than in acoustics. For example, in acoustics, the vectors p and
q in (19) are not orthogonal and have different lengths in
general, whereas the corresponding vectors (23) in optics are
orthogonal and have the same length. We can see from Fig. 1
that the vector Ay; in acoustics generally deviates from the
direction m,, whereas these vectors coincide in optics
(Fig. 2b), Ags =my. Moreover, polarization topological
singularities can appear in acoustics, which are impossible in
optics.

3. Topological features of wave surfaces

3.1 Splitting of acoustic and optical axes

The inclusion of absorption leads to the splitting of the initial
conical degeneracy along mg into two new degeneracies,
mg® = mgy + Amy. Singular optical and acoustic axes appear,
the complex velocities of isonormal waves propagating along
them being coincident: v; = v,. The directions of singular
axes are determined from the general condition R(Am) =0,
where the radical R is defined in (18). This gives the splitting
vector Amy, which is the same for acoustics and optics:

AmozzmoxM. (25)
g

Here, the notation

M = psina + qcosa,

" "
sine =-—, coso=—,
r r

r = /])//2_;'_q//27

is introduced. It follows from (25) and (26) that

(26)

g=my(p x q)

Amgp = —¢",  Amoq =p". (27)
The splitting angle A¥Y ~ 2|Amy| of the axes is proportional to
absorption, the factor r in (26).

General expressions (25) and (26) can now easily be

specified in optics:

M:}.U()‘L'L7 moxM:ivorH,
(28)
Voé&
r= o0 o sy =i

Here, the unit mutually orthogonal vectors 7, and 7| are
introduced as (Fig. 3a)

T, = Agpsina + Ay cosa,

7| = —Aq1 cosa + Agzsina, (29)
T X T =mg.

The relation between unit vectors {Agi, Ag2} and {z,,7)} on

which the two coordinate systems, {x,y} and {x’,y’} are
respectively constructed is shown in Fig. 3a.

7Amo

Figure 3. (a) Mutual orientation of two pairs of unit vectors {Ag, Ag } and
{z1,7)} on which coordinate systems {x, y} and {x’, y'} are constructed.
(b) Vectors Amg and yt in the {x’, '} system on the contour I.
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Now, expression (25) for Amy takes the form (Fig. 3b)

\/((311 — 522)2 +45122 .

&2

Am() = ‘L'H ﬁ

(30)
As can be seen from Fig. 3 and expressions (25) and (30),
both in acoustics and in optics, the splitting vector Amy is in
a general position in the plane perpendicular to the vector
my, which is natural for triclinic crystals. The concrete
orientation (the angle ) of Amy in this plane is determined
by the relation between absorption parameters p” and ¢”, as
follows from (26).

It follows from (30) that the splitting of optical axes is
determined by the ratio of the anisotropy parameter of the
absorption tensor J in (5) to the dielectric anisotropy
parameter /4 in (23). In optics, therefore, the splitting can be
increased not only by increasing absorption but also by
selecting crystals for which 4 < 1 (see Section 6).

The foregoing applies to crystals with an arbitrary
anisotropy. The inclusion of symmetry elements can be
significant. For example, it can be shown [12] that tangential
acoustic axes [17] are not split along symmetry axes 6 and 4
because p,. =q,. = po = ¢qm =0 along these axes and
Am, = 0 according to (25). Along symmetry axis 3, a conical
degeneracy is realized [17], but absorption does not likewise
split it [12] because, in this case, p) =¢) =r=0 and
therefore Amy = 0. In the optics of uniaxial crystals, all the
symmetry axes mentioned above correspond to tangential
degeneracies and do not split in the presence of absorption for
the same reasons. On the other hand, if an absorptive crystal
has a symmetry axis S and the initial degeneracy direction my
belongs to this plane, splitting occurs in both acoustics and
optics, its description being simplified. In this case, ¢” = 0,
o = 1/2, the vector q is orthogonal to the plane S, the vector p
belongs to S, and Amy ||q. Here, 6, = 0 and expressions (28)
and (30) are simplified.

3.2 Self-intersection lines of the phase velocity surface
We consider the wave normal m, specified by the relation

m, =mg + yAmy . (31)
As the value of y ranges the interval —1 < y < 1, the end of the
vector m, on the unit sphere traces a line connecting the
directions of singular axes m; (for y = —1) and m(T (for
y = 1). It is easy to verify that the radical R in (18) is purely
imaginary on this line, and therefore these lines are equal-
velocity lines in both acoustics and optics: v{ (m,) = v;(m,).
Only the difference in the intensity of absorption of isonormal
waves is preserved. Due to absorption, intersection lines
appear instead of conical point contacts between the velocity
surface sheets, which means that the topology of the surface
changes (Fig. 4).

We consider the features of the local geometry of such a
surface near degeneracies in the simpler optical case. Let the
wave normal m go around the singular axis m§ = ¢; + Am,
along a small circular contour I" with a radius y (Fig. 3b):

m=mg + xt(0), t(0) =7 cosd—z, sind,

(32)

0<y<|Amg|, 0<0<2m.

The dependence of the complex velocities v; > in (18) on the
parameters y and 6 on this contour has the form

vi2 =vy FR(x,0), (33)

Figure 4. Geometry of sheets of the velocity surface v{ ,(m) and the
absorption surface v{’,(m): (a) in a three-dimensional scheme near the
singular axis mg, (b) section of surfaces by the plane of split axes mj and
m;.

where

+ _ 0 /]
vy = vy + 8o Amg — is,)

D (34)

is the phase velocity along the singular my" axis and R is the
radical in (18), which has the form

i0
R(y, 0) = /2y rvy exp%

up to terms ~ /2. Hence, the velocity surface v{ ,(y, 0) in the
region of parameters y and 6 under study is given by

0
”{ﬁz(X, 0) = vy + SgpAmo F /2y rvy cos 3

—-n<O0<m.

(35)

(36)

For 6 = +m, we have v{ = v = v{* in this approximation,
which means that the wave normal is on the equal-velocity
line, which can be treated as a wedge edge (Fig. 4a). In each
section 0 = const # £, the derivative of v{ ,(x,0) with
respect to y,

av{yz Arvg 0
o F p cos 5, (37)

L L

tends to infinity as y — 0. Such a singular dependence of this
function at the wedge edge corresponds to a cusp of the
velocity surface and a flat fan of normals n(6) to this surface
on the contour under study for y — 0. The local geometry
described by expressions (36) and (37) is illustrated in Figs 4
and 5a. Figure 5b illustrates another feature of the contact

Figure 5. (a) Cusp configurations on the refraction surface near one of the
ends of the wedge edge. (b) Change in the geometry of the sheet contact on
the line y in a series of sections of the same surface by planes perpendicular
to the edge.
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Figure 6. Scheme of the topological reconstruction of equal-velocity lines
(solid lines) and equal-absorption lines (dotted lines) with varying the
dielectric anisotropy parameters. Stereographic projections are presented.

geometry under study: at a very short distance from the wedge
middle (y = 0) to the singular axis (y = 1), the section of the
surface perpendicular to the wedge edge is transformed from
an obtuse angle to an infinitely sharp joint of two touching
parabolas.

3.3 Self-intersection lines of the absorption surface

The inclusion of dissipation in both acoustics and optics leads
to the appearance of absorption surfaces, which were initially
absent. They characterize the decay of waves depending on
the propagation direction m. Such a surface is a locus of the
ends of radius vectors v;m as the vector m ranges the unit
sphere m?> = 1. In crystal optics, these are two-sheet surfaces,
o =1, 2, while in acoustics they are three-sheet surfaces,
o =1, 2, 3. In acoustics, however, we are also interested only
in two sheets (= 1,2) between which intersection lines
appear.

In optics, according to (33)—(35), the dependence of the
absorption intensity v, (y, 0) on the position of the observa-
tion point on the contour I' (Fig. 3b) surrounding the m{ axis
is similar to (36):

'Ul/l,z(lye) ~ Sgp + \/2yArvy sin

2’ (38)
0<0<2m.

We can see from (38) that for 6 = 0, the wave normal falls on
the equal-absorption line, v{(x,0) = vy(x,0) ~ s5,. The
radical R is then real and the difference between the velocities
v] , of isonormal waves is preserved. We can see from Fig. 4
that such lines on the sphere m?> = 1 appear as a continuation
of the wedge edge of the velocity surface on both of its ends.
Being a continuation of each other on the direction sphere,
the equal-velocity and equal-absorption lines share points
corresponding to singular axes. Of course, due to weak
absorption, the angular extension of the equal-velocity lines
is much smaller than that of equal-absorption lines.

The configurations of lines of these two types in the optics
of absorptive crystals were considered in [18]. The analysis
was performed for weak dielectric anisotropy at which sheets
and velocity surfaces, as well as absorption surfaces, are close
to each other. The curves under study are closed and consist
of alternating fragments corresponding to equal velocities
and equal absorptions. As the tensors & and J are varied,
drastic changes in topology can occur [19]: for example, a
closed curve can split into two closed curves, as shown in
Fig. 6.

We note, incidentally, that the nontrivial aspects of the
influence of absorption on the properties of optical and
acoustic waves in crystalline materials, including topological
effects, are currently attracting increasing attention (see, e.g.,
[20, 21]), in particular, due to their diverse applications in
acoustoelectronics and acoustooptics.

4. Topological features in polarization fields

4.1 Distribution of polarization ellipses
in the vicinity of split axes
In this section, we consider the features of the distribution of
complex vector polarization fields in the vicinity of a pair of
split axes.

After normalization (16), the vectors A »(m) in (18) take
the form

_Au+ [+ 0)An

A exp (—i0x), (39)
L+ |f+0P
where
pAm —ip”
f=——, 0=V1+f2,
qAm — ig (40)

0. = are[0(0+/)].

Complex vectors A, = A, +iA] (o« = 1, 2) describe two
conical polarization ellipses with half-axes whose length and
orientation are specified by mutually orthogonal radius
vectors A, and A!. The ellipticity ¢ of isonormal waves is
defined as the ratio of the minor and major semiaxes 4, and
A!. According to [6],

Al l—x
_ A2 41
‘=i Vite: (41)
where, in accordance with (39), we should set
2|Q|F1,>
K= |Af72| =5, (42)
1+ F7,
Fio=10%f]. (43)
The ellipticities of two isonormal waves are equal,
Al Af
— —— == 44
et (44)

which follows from the orthogonality of the vectors A and A,
and is also seen from (42). Taking (40) and (43) into account,
we see that the parameters F| and F, are mutually inverse:

FiF,=|0*—f*=1. (45)
This allows us to bring expression (42) to the form
2|10|F 2|0
A3 = ~ A3 = x. (46)

71+F1/F2:F1+F27

Accordingly, expression (41) is also independent of the
branch number.

We consider the distribution of vector fields A; >(m) on
the unit sphere m?> = 1 beginning from the line y in (31) of the
self-intersection edge of wave surfaces, which passes through
the degeneracy points mi® = my & Amy. We recall that the
y axis has its origin at the edger center corresponding to the
vector my and its scale is measured by the length of Amy,
Eqn (25):

Am = yAm, . (47)
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The positions of singular axes mi~ correspond to the values
y = £1. Between the axes in the region |p| < I, we are at the
self-intersection edge of the slowness surface, and for |y| > 1,
we pass to self-intersection lines of the absorption surface.
With the initial assumption |[Am| < 1 of our formalism, it is
obvious that the region of admissible values of |y| =
|Am|/|Amg| is bounded above, but it can be broad enough
for small splittings |Amy|, which is almost always the case due
to weak absorption.

Substituting (47) in (40) and taking (25)-(27) into
account, we obtain
pr—1

= 4
0 ysino —icosa (48)

ycoso +isina

f

ysing —icosa’

It follows from (48) and (40) that the parameters f, Q, and @
at the points y = £1 corresponding to singular axes take the
values

In this case, expression (39) gives
Apy £ 1A
Ai(mi?) = Aa(my) = ===, (50)

which means that degenerate waves along singular axes
m =mg are circularly polarized. The same conclusion
follows from (41) and (42): for Q = 0, we obtain x = 0 and
e=1.

At the point y = 0 corresponding to the direction my, we
have

f=—tana, Q= —seca, OL=0 (51)

instead of (49). In this case, the parameters f and Q are real,
and therefore polarization is linear:

. T o T o
Ay = Ag; sin <Z_§> — Ago cos (Z_§> 7

T oo . (n o«
Ay = Ay cos (Zf§> + Agz sin <Zii> .

It is important that the discovered linear polarization is
preserved on the entire line intersecting the wedge edge at its
center m =mgy. Obviously, the orientation of this line
corresponds to the direction of Am along which the real
value of the parameter f in (40) is preserved. Indeed, the
parameter Q in this case is also real and « in (46) is equal to
unity, while ellipticity (41) vanishes. The requirement
Im /=0 applied to expression (40) is equivalent to the
equation

AmN =0, N=—pcosa+qsina. (53)

In other words, the zero-ellipticity line on the sphere m? = 1
must be directed along the vector my x N. According to (25)
and (26), the wedge edge is parallel to the vector my x M.
Hence, the wedge-edge line and zero-ellipticity line belong to
a plane perpendicular to my, and the angle between them is
equal to that between the vectors N and M, which are not
orthogonal to each other in general (Fig. 7).

In optics, the direction of the line # of solutions for zero-
ellipticity lines is orthogonal to the wedge edge because we
then havemg x N|| 7., mg x M|z, and 7, L 7 (Fig. 3a). In

\
—Amg \ Amg
\
\

\\ Im A1_2:0

Figure 7. Zero-ellipticity line (dashed straight line » L N) and the self-
intersection line (solid straight line y 1. M) in a plane orthogonal to the
vector mg.

Am() —
mo N = q

: 7AM’M=])

(I
P
m;
m,
AY
Symmetry
plane

Figure 8. Geometry of the mg — m¢ splitting of the acoustic (optic) axis
from the symmetry plane of a crystal when taking absorption into account.

acoustics, such orthogonality appears when the initial
degeneracy direction my belongs to the symmetry plane m of
the crystal, because in this case, ¢” = 0,0 = /2, M =p C m,
and N = q L m (Fig. 8). But as we see in what follows, the
parameter f remains complex for ¢” = 0, while the linear
polarization along the direction Am||M is provided by the
symmetry.

Below, we consider the polarization distribution just in
this case, convenient for the analysis, in the geometry shown
in Fig. 8. As mentioned above, the vector q|| Ag, which is
orthogonal to the m plane, specifies the splitting direction
Am, of the axes, while the vectors Ay and A3 are parallel to
the m plane; the vector Ag; is necessarily collinear to the
vector p C m only in optics, Eqn (23), but not in acoustics in
general.

Because the lines y||Amg|q=N and 5|jp=M are
orthogonal (see Fig. 8), it is convenient to use them as an
auxiliary coordinate system by decomposing the vector Am as

"

Am:yAmo—&-nlI%p. (54)

The scale along the y axis is the same (|]Amg|), while the scale
along the n axis is different (p”/p). The latter scale differs
from the former by a factor of the order of unity:

n
P~ |Amo| 4.
14 14

(55)
Such a difference makes expressions derived below more
compact. However, these scales are the same in optics,
because pop = ¢op according to (23).
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10 /
e(y.m)
0

8

Figure 9. Two peaks of the ellipticity surface ¢(y, #) in the vicinity of split
axes.

Substituting (54) in (40), we obtain

1 1 :
S=limm, Q= w2, w=y>+n>=1. (56)

With these expressions, after a number of transformations of
(42), we find

2
K = = 57
\ 1+ G 57)
where
G— w42 (58)

VWt dn?

Combining expressions (57) and (58) with (41), we readily
find the total ellipticity distribution ¢(y,#) in the vicinity of
the split degeneracies under study. The result is presented in
the form of the three-dimensional plot in Fig. 9.

We consider cross sections of this surface. We begin with
the distribution of the polarization ellipticity on the y axis.
Setting n = 0 in (57) and (58), we obtain from (41) that

T2\ 12
(ﬂ) 7 <1, 7]

_ 1+ 1_7)2 - 77 |’Y|<1a
VANV > 1 - > 1.
s e

(59)

It follows from Fig. 10a, where the ellipticity distribution is
shown, that polarization is circular at the reference points
y = £1 corresponding to singular axes (Am = +Amy), as
before, and is still linear at the point y = 0.

We note that after the substitution

sing,  Pl<l, —S<é<?,
2 2
V= n n (60)
cosec(, [|y|=1, —=-<{(< =
) ) 2 2 )
expressions (59) become remarkably compact:
an S|, pl<t,
€= ¢ (61)
tan Ik [y =>1.

-5 4 -3 -2 -1 0 1 2 3 4 5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 10. Cross sections of the surface ¢(y, ) shown in Fig. 9, by vertical
planes: (a)n =0, (b) y = £1.

Similarly, polarization vectors (39) in the cross section n = 0
under study become

A1 = A02 COS g — iA()l sin g N

: <, (62)
Ay = A()1 COoS 5 + iA02 sin E s
A12:L (A()]:i:A()z)COSE—i—i(A()z:FA()l)SiIlg b)| > 1.
' V2 2 2| (©3)
63

The second cross section of interest to us is the vertical
plane y =0 passing through the 5 axis. As noted when
discussing Figs 7 and 8, linear polarization should occur on
the n axis, which is partially seen in Figs 9 and 10a (in Fig. 10a,
the zero-ellipticity line is projected to the point y = 0). We
demonstrate this analytically. Substituting w = #> — 1in (59),
we obtain G = 1. It then follows from (58) that x = 1.
Therefore, according to (41), the ellipticity is zero, ¢ = 0, i.e.,
the polarization is linear.

Also of interest are two other vertical sections passing
through the degeneracy points y = £+1, which are also
orthogonal to the y axis. These sections have the same
symmetry and are of course identical. They are analytically
described by the same expression (41) after the substitution of
(57) and (58) in it, with the relation w = 5> assumed. Here, we
present only approximate dependences in the limit cases
[n| < 1and|g| > 1:

1—/2In, Inl<1,

(] 1
2—1727 In| > 1.

(64)

The shape of sections for y = +1 is shown in Fig. 10b. We can
see from expressions (59), (64) and Figs 9 and 10 that the
cusps of the ellipticity profile at the points ) = +1 and np =0
have vertical tangents in the vertical sections under study (and
in any others) passing through these points.
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4.2 Polarization singularities around degeneracy directions
As shown in Section 4.1, if the wave normal m slightly
deviates from the degeneracy direction, circular polarization
becomes elliptic. We study the rotation of polarization
ellipses when the wave normal goes around this degeneracy
using the example of a crystal with a symmetry plane, which
was investigated in Section 4.1 (see Fig. 8). The presence of the
symmetry simplifies and clarifies the analysis, preserving the
generality of final conclusions. Our discussion still applies to
both acoustics and optics.

Let the wave normal m go around the singular axis mg
along a small contour I' (Fig. 11). As in (32), we have

Am = Amg + #t(0), (65)

where y is a dimensionless small parameter and the vector t(0)
draws a closed finite contour as 6 changes form 0 to 2m.
According to the laws of topology, the magnitude of rotation
of polarization ellipses in going around the full contour is
independent of its shape. This allows optimizing the analysis
by selecting the contour shape. In our case, it is convenient to
select the contour I' in the form of an ellipse with the semiaxes
equal to y along q and yq/p along p:

t:gcose_m
q

sin 0 (66)
(see Fig. 11). In optics, when ¢/p = 1, the contour I" becomes
a circle (Fig. 3b).

As before, the value of y must be small compared to the
vector length |Amg| = p”/q. This allows introducing a new
smallness parameter:

V4 x4
s = == 1. 67
‘ |Amg|  p” < (67)

Substituting (27), (65), and (66) in expressions (40) and taking
into account that pq =0, g=p(q x my) = pgsgng, and
¢" = 0 in the case under study, we obtain

fai[l —eexp (i0)], Q%\/2_86Xp§a

, i0

finli\/Z‘sexpE, (68)
1~ & 0
om0 T oo,
where
0=0sgng (69)
P
ot
24/p
0
b
b4
qxmg

Figure 11. Contour I around the m{ axis on the m* = 1 unit direction

sphere in the {p, q} plane (the vector p is shown in the case g < 0).

These relations, together with expression (39), specify the
polarization vectors A ; of isonormal waves on the contour I
in the first order in +/e:

1 0+mn
—< (A 1A —i
o+ itmgenn (5557)
' . 0 .
:I:\/g(A02+1A01)exp (1 In)} = A\, +iA],. (70)

We do not explicitly separate the real and imaginary parts.
We can easily verify that major semiaxes A} , and A7 , of the
polarization ellipses of isonormal waves are mutually ortho-
gonal and their lengths differ by terms of the order of /. Itis
also easy to verify that after going around the full contour T,
the polarization vectors transform as

A=

A|(9+2TE) :7A2(9), A2(0+2TE) :Al(Q) (71)
Therefore, after the wave normalm = mg" + yt(6) completely
goes around the m," axis, each of the ellipses rotates through
the angle nt/2, transforming into the initial ellipse of another
isonormal wave. However, for a combination of these
conjugate ellipses after going around a closed contour, a
pair of polarizations of two branches identically transform
into themselves. It follows from (69) and (70) that the rotation
directions of the vector t in the {p,q} plane and the vectors
A1, in the {Ag;, A2} plane are the same for g >0 and
opposite for g < 0.

Such an orientational singularity is characterized by the
Poincaré index [12, 16]

1
n=_sgng, (72)

4
which is defined as the total rotation of the polarization
ellipse (in 2m units) after completely going around the
degeneracy point. Of course, the index of the second singular
axis m; is equal to the same value (72). This already follows
from the fact that the m;” and m; axes are separated by the
symmetry plane (see Fig. 8). We note, however, that the
identity of the indices of split axes is also preserved in a
triclinic crystal [16]. We do not demonstrate this here.

From Fig. 12, where the picture of orientational singula-
rities for split axes is presented, we see that after going around
each of the points m;” and m, pairs of polarization ellipses
rotate through a quarter-turn, irrespective of the contour
shape. The ellipticity value can change with a broadening of
the contour, but the Poincaré index does not change.
However, this occurs until two degeneracy points are both
within the contour. After that instant, the total turn of a pair
of ellipses increases jumpwise up to a half-turn, correspond-
ing to the total Poincaréindexn = 1/4 +1/4 =1/2.

For the rotation of polarization ellipses considered here,
the passage through an equal-velocity line and an equal-
absorption line involves the exchange of branches: the ellipses
‘pass’ from one sheet to another. Such a continuous passage
between the external and internal sheets of the slowness and
absorption surfaces when completely going around the
singularity axis is shown in Fig. 4a. The physical identity of
polarization pictures at points 0 and 0 + 2= is realized in the
combined field of two branches rather than due to the
coincidence of wave characteristics within each of the
branches, as in nonabsorbing crystals. This became possible
because of the new topological property of wave surfaces,
their self-intersection along lines (see Figs 4-6).
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Figure 12. Elliptic polarization field in the vicinity of singular mi" axes of
an absorptive crystal for g > 0, n = 1/4 on small contours around split
degeneracy points. The total index n=1/2 on the external contour
coincides with the index of the unperturbed linear polarization field
around the initial degeneracy direction of a nonabsorbing crystal. The
dashed vertical straight line corresponds to linear polarization. A thicker
contour of an ellipse corresponds to a higher velocity; absorption is higher
for an ellipse drawn over another ellipse.

In the absence of absorption, the sheets of the velocity
surface usually have only contact points (see Fig. 2a, which
applies to optics). Polarizations of isonormal waves near such
a point can be conventionally represented by a cross, with the
fragments forming it being orthogonal and having the same
length but different thicknesses, because one of the two
isonormal waves on any contour around the degeneracy
direction is always faster than the other. When absorption is
neglected, a pair of singular axes collapses into one, and the
ellipses on the external contour in Fig. 12 transform into such
crosses. To make a cross coincident with itself, it is necessary
to turn it through the minimum angle +m, which corresponds
to the index n = +1/2.

In optics, negative Poincaré indices do not appear. We
recall that according to (28), the factor g is always positive in
optics: g = (/lvo)z‘ Because of this, expression (72) gives only
one value, n = 1/4, of the index of a singular optical axis in an
absorptive crystal. This result was first obtained in [9] (see
also [10, 11]). A singularity in the polarization field near the
optical axis in a transparent biaxial crystal has the Poincaré
index n = 1/2. The decomposition of such a singularity into
two singularities with the indices n = 1/4 caused by the
inclusion of absorption satisfies the law of conservation of
topological charges (see Fig. 12).

The patterns of topological singularities in the acoustics of
crystals are more diverse. In particular, unlike in optics, the
Poincaré¢ indices of polarization singularities can have
different signs [12, 16, 17]. For example, during propagation
along a conical acoustic axis parallel to symmetry axis 3, we
always have n = —1/2. During propagation along a tangen-
tial acoustic axis parallel to symmetry axis 6 (the only optical
axis in the optics of uniaxial crystals), we always have n = 1.
But along symmetry axis 4, which is also a tangential acoustic
axis, the index n = —1 is also possible along with the Poincaré
index n =1 [17]. Almost all acoustic axes in directions not
coinciding with the symmetry axes of a crystal are conical and
have Poincaré indices n = £1/2. It is these axes that are split

into pairs of singular axes characterized by the indices
n==+1/4(72).

4.3 Rotation of real polarization vectors

along elliptical trajectories

We now discuss the kinematics of polarization vectors of
isonormal waves moving along elliptic trajectories. For this,
we need a new time-dependent real characteristic

.A],z = Re I:A]A’Q exp (i(pl.z)} s (pl«,Z = k]"2mr — wt, (73)
instead of the complex vector A,,. We recall that the isonormal
waves described here are independent, and the time origin in
their phases @, is selected arbitrarily. Taking this into
account and applying procedure (73) to general expression
(39), we can easily obtain that

Ay 2 = Agcos fcos (P — o)

+ Apasin . cos (P2 + oy), (74)
where the angles 5, and o, are defined by the relations
1
tanf, = |f£ 0], ox=5arg(f+0). (75)

2

The real part of a generalized wave a,(r, 7) in (12) [elastic
u,(r, 7) in (2) or electromagnetic h,(r, ¢) in (4)] can be written
in terms of the polarizations A, in (73) as

Rea,(r,t) = CA,exp (—k"mr). (76)
Here, the trivial effect of absorption related to the attenuation
of a wave during its propagation is separated from the
fundamentally different effects discussed in this paper.

In what follows, we are specifically interested in the
change in the kinematics of rotation of the vectors A »
along polarization ellipses when the wave normal scans the
self-intersection line y of wave surfaces both between singular
axes, |y] <1, and in equal-absorption regions |y| > 1. To
avoid cumbersome expressions, we still consider a crystal
with a symmetry plane in the geometry presented in Fig. 8.

First, we find real polarizations .A; , corresponding to the
vectors A » in (62) and (63):

A = Ay sin g sin @ + Agy cos % cos P; ,

<1, (77)

Ar = Agy cosgcos D: — Ap sin§ sin P
A= ! {(A + A )cochosd5
1,27\@ 01 02 > ¢

— (A()z F A()l) sin % sin @C:|

= % |:A01 CcoS (%$ (pg) + Ag, cos (%:I: @C>:| s |"/| > 1.
(78)

The indices & and { at the phases @ in (77) and (78) mean that
wave normals present in them scan certain parts of the self-
intersection line y:

m; =my + |Amg|siné, m; =mg + |[Amg|cosec{. (79)
We note that the phases @ and @, contain parameters kj ,,
Eqn (73), which are identical on the line y between the axes
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(7l € 1), but different outside the wedge edge (|y| > 1).
Therefore, for the same choice of the time origin, the phases
@; are independent of the wave branch number, whereas the
phases @, are different for two isonormal waves due to
different k7 ,.

Expressions (77) and (78) parametrically define two pairs
of orthogonal polarization ellipses along which the vectors
A > run for the wave period. The first pair has semiaxes
|sin /2] and | cos £/2| oriented along the coordinate vectors
Ao and Ay, while the second pair with semiaxes | sin {/2| and
| cos (/2| is turned with respect to the first one through n/4,
which corresponds to our analysis in Section 4.2. As the line y
is scanned by the wave normal from the wedge center £ = 0 to
the singular axis £ = +n/2, the ellipticity increases from zero
to unity (i.e., changes from linear to circular). After passing
through the point ¢ = { = £1/2, the orientation of a pair of
ellipses changes jumpwise by /4 and ellipticity (61) begins to
decrease with decreasing |{| (with increasing |y|) as | tan (/2|
(see the polarization distribution along the horizontal line
passing through the degeneracy points mg® in Fig. 12).

The motion of the radius vectors A, (¢« =1,2) over
polarization ellipses can be conveniently described in polar
coordinates (A,, ¢,):

-A(x = Ai(Am Cos ¢, =+ A02 sin (poc) . (80)
As a point moves along a fixed elliptic trajectory, the lengths
A, of the radius vectors vary consistently with the azimuth
¢,. The radial and azimuthal motions play different roles,
depending on the ellipse shape. In the case of a small
ellipticity, obviously, radial (quasivibrational) motions dom-
inate, whereas for a nearly circular polarization, the
kinematics are mainly determined by the azimuthal compo-
nent.

General expression (74) for the real polarization of a pair
of isonormal waves propagating in a triclinic crystal in an
arbitrary direction m in the vicinity of split degeneracies in
polar coordinates has standard form (80), where

A= \/cos2 B cos? (D) 5 — ox) + sin? B, cos? (P + o),
(81)
cos (@1 s+ Oti)

tan =tanff, ——————~. 82
(pl,Z ﬁj: COS((pl,szCi) ( )
Returning to a simpler case of the crystal with a symmetry
plane (see Fig. 8), where the observation point lies on the line y
containing degeneracy directions mg", we obtain the polar
coordinates of the vectors A; » in (77) and (78) in the more

compact form

1
Ay = \/5(1 + cos Ecos2;)
tan ¢, = cot g cot P¢, <1, (83)
tan ¢, = —tan % tan @

1
A= \/5(1 + cos {cos29;),

=>1. 84
tan _ 4008 (/2 + &) i (84)
P12 cos ((/2 F &)

Differentiating expressions (83) and (84) with respect to
time, we find the radial (A, ») and angular (¢, ,) velocities of

motion of the ends of A; ; on the line y:

o cos Esin 2P

Al,z = ;

V/2(1 + cos & cos 2;) (85)
. wsin &

=—> <1,

P12 1 +cos&cos2d;’ o
; o cos {sin 2
A= = ,

V/2(1 + cos { cos 29;) (86)
. wsin{
Q1,2 [ =1.

1 + cos{cos2P; ’

Here, we took into account that ¢, = —w, Eqn (73). We note
that the period of these velocities is half the wave period. This
reflects the fact that all the physically different situations are
already exhausted after the half-turn of the nondirectional
polarization vector.

The sectorial motion velocities are described by even
simpler expressions. By definition, they are equal to the area
swept by the radius vectors A; » per unit time:

(e bl<t
sec

1 )
U1,2 =3 A12,2‘P1,2 =749 | (87)
Y

~

=1

These velocities are the same for both isonormal waves and
are time-independent, being dependent only on the coordi-
nate y on the self-intersection line. The time independence of
the sectorial velocity of polarization vectors of elliptically
polarized waves was pointed out already in [6]. This general
property appears only due to the ellipticity and is not
necessarily related to absorption.

The sectorial velocity v;* in (87) vanishes at the wedge
center for y =0 (¢ = 0), where polarization becomes linear
(see Fig. 12). The value of v} increases proportionally to y
with the distance from the center, reaches the maximum
v = w/4 at y = £1, and then slowly decreases proportion-
ally to 1/v. It follows from (87) that the vectors A, , passat a
large angular velocity ¢, , through the part of the trajectory
at which their lengths A, > are small, and at a small angular
velocity, through the part of the trajectory where their lengths
are large (i.e., the respective vicinities of the minor and major
semiaxes of polarization ellipses). Because these ellipses for
isonormal waves are mutually orthogonal, the points of the
extremal angular velocity ¢;, occupy fixed positions on
polarization ellipses, corresponding to orthogonal radius
vectors Aj ». This is not affected by the independence of the
phases @; , and by the arbitrary choice of the time origin in
them.

It follows from (85) and (86) that during the propagation
of waves along singular axes for y = +1 (¢ = +n/2), when
isonormal polarization ellipses merge into one circle Ay, the
circular motion has a constant angular velocity ¢, =
¢, = . Here, the upper and lower signs correspond to
rotation directions at the points ¢ = +7n/2. As the observa-
tion point moves away from singular axes to both sides,
polarization ellipses gradually elongate (see Fig. 12). Accord-
ingly, rotation of the vectors A » along these ellipses becomes
less uniform. For |y| < 1, the azimuthal angles ¢, , in (83)
remain almost fixed (near major semiaxes) during half the
period and then sharply change by 180°:

2cot P¢
<

1
tan @, ~ , tang@,~ —= ftan P;.
1 2 2 S
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Evidently, the instant of this jump depends on the phase ..
Of course, no singularity of motion occurs as £ — 0. Simply,
all kinematics is more and more determined by the radial
motion component A; » &~ | cos @¢|. As follows from (83) and
(85), the motion becomes purely vibrational at £ = 0.

5. Conical refraction in absorptive crystals

If a circularly polarized electromagnetic wave is incident
normally on the boundary of a transparent biaxial crystal
such that the boundary is perpendicular to the optical axis,
then a cone of rays appears in the crystal. This phenomenon,
called the internal conical refraction in crystal optics [1, 7, 22,
23], has been known since the 19th century. The origin of this
cone is related to a conical contact point between the sheets of
the surface of refraction along the optical axis in a transparent
crystal (Fig. 2a). Normals to the surface at the contact point
of the sheets form a cone of refraction rays. Obviously, such
refraction cannot exist in uniaxial crystals, where the contact
between sheets is tangential.

Similar considerations are also valid for conical refraction
in acoustics [24-28], which was theoretically predicted and
experimentally observed in cubic Ni crystals [24]. The most
comprehensive theory of this effect in the case of an arbitrary
elastic anisotropy is presented in [26] (also see [6]). Absorp-
tion leads to new features of conical refraction, which are
analyzed for crystal acoustics in [16].

This phenomenon in the optics and acoustics of non-
absorbing crystals is caused, first of all, by the conical shape
of the refraction surface and the orthogonality of the ray
velocity to this surface. Absorption, as we showed, consider-
ably complicates the geometry of the contact of refraction
sheets, eliminating the conical point. In addition, we show in
Section 5.3 that the orthogonality of the ray velocity to this
surface, strictly speaking, disappears. It is therefore impor-
tant to generalize the theory of conical refraction taking
absorption into account for acoustics and optics simulta-
neously, using the developed universal formalism.

5.1 Ray velocities in the acoustics

and optics of absorptive crystals

In this section, we use the concepts of the Umov—Poynting
vector and the ray velocity of a wave. Introducing these
quantities for absorptive crystals requires some care. We
discuss the case of acoustics as an example. Multiplying
equation of motion (1) by #;, we obtain two exact relations
in the left- and right-hand sides:

L.ood /1 .
puu; = & (5 P”fZ) ) (88)
. . d . /
Wi(Cijkt i, kj + Nij g U, kj) = d, {ti(oi; +0]))}
df1 . .
T {E Ui j Cijkl ul,k} = Ui jMijks Yk - (89)

Combining these equations, we arrive at the continuity
equation (energy balance),

d .
—— W=divP+D, (90)
dt
where
1o, 1
W = Wiin + Wel = 5 pttj + 5 i j Cijki s,k o1

2 2

is the total density of kinetic and elastic energies in the wave,

D = 15tk (92)
is the energy dissipation per unit time, P is the energy flux in
the wave (the Umov—Poynting vector),

Py = —ii(oij + ;) , (93)

and the tensors o;; and ¢/; are defined by the contractions

Oij = Cijkitk, 07 = Nijpg Uik - (94)

By definition, the ray velocity of the wave is s = P/W.
With the general expressions (93) and (91) found for the
energy flux and the total energy density, the exact expression

for the ray velocity in an absorptive crystal becomes

i(Cijkt Ur, ke = M Ui, k)
Sj:_ ) . . (95)
(1/2) pu; + (1/2)u,,/ Cijki Ul k

Comparing (95) with the usual expression for a nonabsorbing
crystal, we see that the numerator in (95) contains an
additional term proportional to the viscosity. The denomi-
nator has a more customary form, but also contains similar
additions in the displacement field itself. This is expressed, in
particular, in the fact that the elastic energy differs somewhat
from the kinetic energy, depending on the absorption
intensity.

However, the following must be borne in mind. It is shown
in Section 4.1 that the polarization of waves in the vicinity of
degeneracies drastically changes due to absorption. Linear
polarization transforms into an elliptic one, the ellipticity not
being weak despite weak absorption, and polarization can
even become circular. Therefore, the main effect of absorp-
tion on ray velocities s is already manifested in the leading
order, via the polarization vectors. Below, we always describe
ray velocities taking this leading-order effect into account and
neglecting small additions proportional to absorption.

Of course, we should substitute not complex expression
(2) but its real part Reu in quadratic forms in the displace-
ment field u(r, ) in (95), as in (73) and (76):

Reu(r,7) = CUexp (—k"mr), U=Re{Uexp [id(r,1)]},

(96)

where the real polarization Y can be found by replacing
A — U in universal expression (74),

U=Agicosfcos (P r—or)+ Agpsinff, cos (P2 +ay).
97)

For compactness of expressions, we omit isonormal wave
indices at the vectors U and u in this section. Displacement
field (96), (97) satisfies equation of motion (1) in a crystal with
an arbitrary anisotropy for propagation directions in the
vicinity of split axes. We note that differentiating the
exponential exp (—k ”mr) in the calculation of spatial deriva-
tives of Reu(r, 7) in (96) gives small terms proportional to k",
which can be neglected. In this approximation, in (95), we can
substitute the real polarization U(r, ) given by (97) instead of
the total field Reu(r, ), setting

ou . — ou

u:—@z—a)u, Ll,,-za—(p

= ! ¥
3 b, =k'mlU,

(98)
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where the vector Uis given by formula (97) with a phase shift:

— s
u:u<@+§>.

The phase shift (i.e., the shift of the time origin
t —t—mn/2w) in (99), of course, does not principally
change anything in our stationary problem, but shows that
the ray velocity s, is delayed in phase with respect to the
polarization U by n/2. Taking these remarks into account,
we obtain from (95) that

(99)

20'U[(¢ — wif)m|U
s= 2 _[g" _w")fn] -y (100)
pv"2U” +U(mém)U

We now find relations between two terms in the denomi-
nator in (100), which are proportional to the kinetic and
elastic energy densities in the wave. For this, we substitute the
vector function U(r, t) in equation of motion (1), which must
be satisfied by this function up to small corrections propor-
tional to k", and multiply the obtained result by 2. This gives
the important relation

pv"*U* =U[m(¢ — wip)m|U ~U(mem)U (101)
where we omitted the term proportional to the viscosity 7 in
the right-hand side, which has the same smallness order as the
terms ~ k" omitted previously. In the leading approximation
of interest to us, the kinetic and elastic energies therefore
coincide, even in the region of anomalous ellipticity.

For the same reason, we can omit the second term
x i ~k” in the numerator in (100) and set m=
m + Am =~ my and v, = vy, because the size of the region
considered here and variations of the phase velocity in it are
also proportional to the absorption. Taking this into account,
we can write the ray velocity of the elastic wave in the leading
order in the form

Up~'emg)U

— 102
Uo”z ( )

Sac =

In optics, similarly and with the same accuracy, we obtain

H[(—c?ee'e)mo | H
’U()H2 '

(103)

Sop =

It follows that the ray velocities s, along with other wave
characteristics, are described in acoustics and in optics by the
same expressions if correspondence relations (12) and (13)
supplemented with U « M are taken into account. In
Sections 5.2 and 5.3, staying in the framework of the unified
formalism, we use the relation

A, (A'mg) A,
U()A;

Sy =

, (104)

in which additional phase shift (99) is assumed for acoustics.

5.2 Universal refraction cones in acoustics and optics

According to the original formulation of the problem,
in the absence of absorption along the direction my,
conical degeneracy occurs and waves with any polariza-
tion, in particular, with the circular polarization A =
(Agr £1Ap)/ V2, can propagate in the degeneracy plane D

Figure 13. Universal refraction cones in (a) the acoustics and (b) the optics
of absorptive crystals. Shown are the universal motion trajectories of the
ends of the vectorss.

(see Fig. 1). In this case, expression (73) gives

1 .
.A() = — (A01 CcoS (150 F A02 sSin (150) y

V2

Dy = kmor — wt .

(105)

Substituting the expression for Ay in (104) and taking (19)
into account, we obtain the ray velocity

s(t) =< +5(f), §=pcos2®, F qsin2d;. (106)
This is the classical picture of conical refraction along the
acoustic/optical axis mg in a nonabsorbing crystal. According
to (106), during the wave period, the ray velocity vector s()
runs over the refraction cone twice (Fig. 13) and the vector
§(7) runs over the elliptic/circular section of this cone in the
plane orthogonal to the vector my.

We recall that the inclusion of absorption splits the
degeneracy direction my into two singular directions m; and
m, (Fig. 4b). The polarization of isonormal waves in the
vicinity of these axes is characterized by ellipticity, which can
be quite high and strongly dependent on the wave normal
direction m. The most general expressions in the case of an
arbitrary anisotropy are given by (80)—(82). Using these
expressions and (104), we can readily find the required ray
velocities. Similarly to (106), we have

sl,z(m,t):so+§1,2(m,l), (107)
S1,2(m, 1) = pcos2¢, , +qsin2g 5,

where polar angles ¢, (m, ¢) are determined by Eqn (82). It is
easy to see that expressions (106) and (107) describe the
precession of ray velocities over the same cone.

Thus, the inclusion of absorption extends the existence
region of conical refraction from the local direction mg to a
whole continuum region in the vicinity of split axes. Here, we
should not be misled by the fact that expression (104) for the
ray velocity s related to the whole region around singular axes
explicitly contains the wave normal my instead of m. This only
reflects the fact that the operator A’m weakly depends on
small variations of m and can be replaced by the operator
A'my in the leading approximation. The high sensitivity of the
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ray velocity to small variations of the direction m in the region
under study is related to the polarization .A(m, ¢), which, as
we saw, can change from circular to linear with small
variations of m.

Expressions (106) and (107) differ by the phases
®o(mg,¢) and ¢, ,(m,?). The first phase, locked in the
fixed direction my, has simple time dependence (105). The
second phase, being the polar azimuth of the polarization
vector A(m, ), has a much more complicated time depen-
dence (82), which is quite sensitive to the wave normal
direction m. All this can considerably affect the precession
kinematics of the vectors s; . However, the trajectories of
their motion, described by (106) and (107) in a parametric
form, are in fact identical. The vectors p and q in these
formulas are the conjugate half-diameters of an ellipse
drawn by the end of the vector §(¢) with changing time ¢.
The elliptical section of the cone by the (p,q) plane is
universal, and its principal semiaxes s+ are independent of
phases and are determined by the invariant combinations of
the vectors p and q [6],

Siz%(pﬂqzi\/(P2+q2)2—4(pxq)2),

si[px(qxp)—siq, s_||px(qxp)—sq.

(108)

In acoustics, as mentioned in Section 5.1, the polar angles
¢}, in (82) should be replaced by the phase-shifted angles

_ T
P12 = 901,2(@+§) :

In optics, phase shift (109) is absent, and the general picture is
simpler and more symmetric. According to (23), the vectors p
and q are then orthogonal and have equal lengths. As a result,
the universal ellipse transforms into a circle lying in the
(Ao1,Ag2) plane orthogonal to the vector my = ¢ = Ags.
The center of the circle with the radius Avg is located at the
point specified by the end of the vector s’ = (—1Ag; + Ag3)vo
in (23). The perpendicular to this plane drawn from the apex
of the cone has the length vy and meets the circle at a point
corresponding to the end of the vector p = AvgAg (see
Fig. 13b). Correspondingly, the cone opening angle y in the
{Ao1,Ap3} plane is determined by the equation

(109)

tany, = 24. (110)
The axes s of the acoustic and optical cones are tilted
with respect to the direction my, this tilt being independent of
the absorption parameters in both cases. But, as shown in
Section 2.3, in the absence of absorption in optics, the optical
axismg = cp lies in the symmetry plane of the tensor & (Fig. 2a).
Therefore, the cone axis s°, inclining to mg, remains in the
same plane. The inclusion of absorption restores the optical
triclinity of the crystal, but this does not concern the
refraction cone in the leading approximation used here. In
acoustics, a triclinic crystal remains triclinic without absorp-
tion as well, and therefore the cone tilt is not connected to any
selected planes. Of course, the inclusion of symmetry changes
the situation in acoustics. For example, in a particular case
where the degeneracy direction m coincides with symmetry
axis 3, through which three symmetry planes always pass, the
refraction cone not only becomes circular but also loses its tilt,
because s” || my. However, precisely due to the symmetry, the
absorption does not split the acoustic axis my here [12, 16].

5.3 Precession kinematics of ray velocities
As mentioned in Section 5.2, the absorption intensity affects
the kinematics of the ray velocity precession over the
universal cone rather than the trajectory of ray velocity
motion. These kinetics, in turn, strongly depend on the
propagation direction m in the vicinity under study. A
convenient characteristic of such precession can be the
angular velocity of rotation of the vector s,(f) (¢ =1,2)
over a circle in optics or over an ellipse in acoustics.

In the first case, by substituting expressions p,, = AvgAo;
and q,, = ZvpA¢ from (23) in (107), we immediately obtain
the final formula in polar coordinates:

§;_)p(l) = )LUO(AOI COSZ([)a + Ay sin2(pa) R (111)
where the polar angle is ¢,° = 2¢,.

In acoustics, because the vectors p and q are not
orthogonal and have different lengths, the relation between
the polar angle ¢ and the angle 2@, is more complicated and
can be found from the condition

ac

$2°(t) = pcos2q, + qsin2q,
= 81@ cos ¢, + _mopx P sin d);C) ,

where S, is the length of the radius vector §2¢. This gives
. 1 L .
cot e :§(pq +p*cot2p,), sin¢® :]% sin2¢p, , (113)

S? = p*cos’2p, +q° sin® 29, + pqsin 4, .

(112)

(114)

With these relations, the angular precession velocities in
optics and in acoustics are determined by the respective
expressions

¢,° =2¢,, (115)

. 2g7
(b;czﬁ(pa'

o

Therefore, the angular precession velocity ¢, of s, (1) in both
optics and acoustics is completely determined by the kine-
matics of the motion of the vector A, over the polarization
ellipse, which occurs in acoustics with the phase delay
&, — @, + /2. The same concerns the sector velocity of the
vector §,(1):

_sec 1 21 g(pfx (Op) ’

N L (o
Unlike sector polarization velocity (87), velocity (116) is not
constant and is phase-delayed in acoustics. In optics, we can
set g = (/Ivo)2 in (116). It hence follows that in optics, the
rotation signs for the vector §,(z) and the corresponding
vector H,(7) always coincide with each other. In acoustics,
the coincidence occurs only if g > 0. For g < 0, a possibility
occurs that is forbidden in optics, when the rotation signs of
the ray velocity and polarization are opposite.

We can see from expressions (115) that all the kinematic
features of polarization rotation over ellipses discussed in
Section 4.3 should also be reproduced in the precession of ray
velocities. Along the singular axes, two conjugate polariza-
tion ellipses degenerate into a circle, producing circular
polarization (50). Expressions (77) and (85) for & = +mn/2
give the constant angular velocity ¢, = wsgn £. This exactly
corresponds to the kinematics of the usual conical refraction
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in a nonabsorbing crystal, Eqn (106). In this case, absorption
affects the geometry of the refraction surface rather than the
kinematics. In the absence of absorption, the refraction cone
completely repeats the orientation of the cone of normals to
the slowness surface at the conical contact point of its sheets.
If dissipation along the singular axis is taken into account, the
cone of normals is replaced with their flat fan (Fig. 5a), while
the refraction cone remains invariable. This illustrates the fact
that under the conditions under study, the convenient
correspondence between the directions of ray velocities and
the normal to the refraction surface is unfortunately lost.
However, the collinearity of these directions is completely
restored on the zero-ellipticity line.

According to (115) and (116), along singular axes, where
¢, = —®, sgn ¢ = wsgn &, both angular and sector velocities
of ray vectors remain constant in optics:

—sec
Uy =gwsgng,

hP = 2w sgn &, (117)
while only the sector velocity, determined by the same
expression (117), remains constant in acoustics. Angular
precession velocity (115) of the vectors s; () during
propagation along the singular acoustic axis continues to
vary in time as long as the vectors p and q remain
nonorthogonal and have different lengths.

However, as the observation point moves along the wedge
edge from its ends to the center (¢ = 0), the nonuniformity of
the motion of the vectors s; »(¢) in terms of both angular and
sector velocities rapidly increases. The same should take place
on any observation point trajectory intersecting the zero-
ellipticity line. As a result, the illumination of a screen should
depend on the ellipticity of the wave for a given direction of
the wave normal. In optics, the polarization of a wave
propagating along the singular axis is circular and the
precession of the ray s,(f) occurs at a constant angular
velocity +2w, Eqn (117). In this case, the screen illumination
represents a completely drawn circle (Fig. 14).

As the ‘observation point’ moves away from singular axes,
the illumination pattern ceases to be uniform. The parts of the
refraction ellipse through which the vectors s; »(7) pass
rapidly become less illuminated than the parts through

24— b -

46 —wé

Figure 14. Schematic distribution of illumination rings on a screen in the
vicinity of split singular axes in optics. The full uniform circular illumina-
tion of the screen corresponds to the usual circular refraction of circularly
polarized waves. Two points on a circle correspond to the usual
birefringence of linearly polarized waves. The edge of an equal-velocity
wedge is shown by a segment of the horizontal straight line. The vertical
dashed straight line corresponds to zero ellipticity.

which these vectors pass more slowly. The phase velocity of
this motion ¢, ° =2¢, in Eqn (115) is exactly twice the
velocity of the polarization vector A,, which, as shown in
Section 4.3, has extrema along the semiaxes of the polariza-
tion ellipse for ¢, = ¢/". The illumination regions of interest
to us correspond to the vicinities of major semiaxes of these
ellipses and are uniquely related to their orientations. The
motion of the vector A,(z) over one ellipse from one end
position A, (") = A, to another, A,(p" + 1) = —A,, does
not affect the orientation of the ray velocity, because
according to (111), both these positions correspond to the
same direction s,[2(¢" + )] = s,(2¢)"), and therefore the
additional illumination falls on the same place in the
refraction ellipse, thereby enhancing the first illumination.
Obviously, for the second isonormal wave, the extreme
positions ¢)" of the vector A, in its polarization ellipse,
which is orthogonal to A, differ from the first ones by /2,
@' = @[" £ n/2. Therefore, they should correspond to the
extreme ray velocity s;(2¢3") = s1(2¢{" & n) directed along
the opposite generatrix of the refraction cone, which adds a
new illumination region on the opposite side of the same
refraction ellipse. On the zero-ellipticity line, precession
completely disappears, in both optics and acoustics, and the
screen illumination contour contains only two points corre-
sponding to usual birefringence.

Such refraction circles with a double illumination from
pairs of isonormal waves are shown in the case of optics in
Fig. 14. The positions of illumination regions in circular
contours correspond to orientations of polarization ellipses
in Fig. 12. In the acoustics of absorptive crystals, the
illumination pattern is similar, but the circle is replaced by
an ellipse described by (107).

6. Possibilities of observing
topological absorption effects

We now discuss the prospects of experimental observations of
the predicted subtle effects in optics and acoustics caused by
the splitting of the optic and acoustic axes due to absorption.
To observe these effects, the diffraction-limited divergence
angle A4 of a probe wave beam should be smaller than the
splitting angle AY of the optical or acoustic axes. The
divergence angle can be estimated from the relation

(118)

where A is the wavelength in the vacuum and dj is the beam
diameter in the crystal. The splitting angle AY is controlled by
the choice of the absorption level, which must nevertheless
provide a large enough free path for the wave.

We begin with optics. According to (32) and (33), the
splitting angle AY (see Fig. 8) is estimated as

&d

AY ~ 2|Amg| ~ 2 (119)
Here, ¢ and 6 are the characteristic values of the components &
and 0 of the absorption tensor, and the parameter 4, Eqn (23),
is determined by optical anisotropy, which is small enough in
most crystals. For example, 4 is almost the same and quite
small in topaz and Seignette salt crystals: 1 = 1.6 x 1073 [7].

In handbooks, absorption in crystals is usually specified
not by components of the tensor ¢ but by linear absorption
coefficients k" along the principal axes of the tensor &. In the
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typical weak-anisotropy case, the relation between ¢ and k”
can be easily found:

2 2 0
k' +ik" ~ T~ ”‘ﬁ<1+i8—>. (120)
love !l —id Ao 2
This gives
Ao
~ Lk (121)

Substituting this estimate in (119) and comparing the result
with (118), we obtain the sought criterion for observing the
splitting of optic axis and accompanying effects:

k"dy > 2miN/e. (122)

We see from (122) that in crystals with the weak anisotropy
A ~ 1073, the requirements imposed on the absorption level
are rather weak: k”dy > 10~2. For example, for k” ~ 1cm™!,
when the free path of the wave in a crystal is ~ 1 cm, the
fulfillment of this condition is provided for reasonable values
dy ~ 3—5 mm. However, we should bear in mind that the
refraction cone opening angle (110) for small 4 also decreases:
W, ~ 2/ (for example, for 4 = 1.6 x 1073, we have iy, ~ 0.2°),
which can complicate experiments. We note that typical
refraction cone angles i/ in acoustics are a few dozen degrees.

For example, taking k” =~ 1 cm~! and Ay ~ 5 x 107> cm,
we obtain the estimate 5 ~ 107> from (121). For this value of
5 and A ~ 1073, expression (119) gives the splitting angle
AY¥Y ~ /4 ~ 1072 ~ 0.5°. For such a splitting of optical axes,
the condition Ayy < AY imposed on the laser beam diver-
gence can be casily satisfied. Hence, the predicted effects can
be observed beyond any doubt in optics in properly chosen
crystals.

In making similar estimates in acoustics, we take into
account that absorption increases as the wave frequency
v = w/2m increases, and hence the angle AY increases, while
the beam divergence angle Ayy ~ ¢;/vdy, on the contrary,
decreases (here, ¢ is the speed of sound in a crystal). In this
case, the lower frequency threshold of the effect should
therefore exist.

Taking expressions (13), (19), (20), (25), and (26) into
account, we now have the estimate AY ~ 2mnvy/u instead of
(119), where 7 is the viscosity parameter and u is the shear
modulus. As a result, the criterion

s
123
2nndy (123)

V> Vi~
follows from the condition Ayy < A¥Y. Because we are
dealing with rather high frequencies and room temperatures
T ~ 300 K, the wave decay n can be naturally estimated by
using the phonon viscosity

nanhNTph:;lZ—lz’T7 (124)
where 7y, is the phonon relaxation time, kg is the Boltzmann
constant, and « is the lattice constant. Substituting (124) in
(123) with ¢;~3x10° cm s~!, pu~10"" dyn cm™2,
dy ~0.5cm, tpn ~ 10715, and a =~ 3 x 1078 cm, we estimate
the threshold frequency as

v ~ 100 MHz . (125)

Although the threshold frequency turns out to be rather high,
an acoustic experiment seems possible.

7. Conclusions

We have shown that even very weak absorption leads to
radical topological changes in wave properties in the vicinity
of degenerate directions. We emphasize that these effects exist
due to a combination of absorption with the anisotropy of
crystals, whereas absorption in isotropic media results in a
trivial attenuation of the intensity of wave fields.

We have derived Eqns (14), which, with the correspon-
dence relations (12) and (13), are a universal tool for
describing the features of wave parameters both in the
acoustics and in the optics of absorptive crystals, in
particular, in the vicinity of a conical degeneracy. A unified
analysis based on these equations gave a new insight into the
wave phenomena being studied in optics and in acoustics and
demonstrated not only their similarity but also their differ-
ence. We note that some of the subtle topological effects
discussed above were theoretically described for the first time.

This primarily applies to all the results presented in
Sections 4 and 5. Most of the results on distributions of
elliptic polarization fields presented in Section 4 are new. In
Section 5, we also obtained some new results in the theory of
conical refraction in absorptive crystals. We have shown that
this phenomenon exists not only on a wedge edge, as was
established previously[11, 12, 16], but also in the whole region
of propagation directions of waves in the vicinity of spit axes,
where the polarization ellipticity is not small. In addition, we
have for the first time described the kinematic features of the
motion of ray velocities s, over the universal refraction cone
and established an exact relation between azimuthal angles of
the precession of polarization vectors and the corresponding
velocities s,. In optics, we for the first time considered the
general case of an arbitrary anisotropy of a crystal. The
theory of refraction has been developed in terms of ray
velocities (in [11], the analysis was performed in terms of
Umov—Poynting vectors for rhombic crystals only).

Finally, we emphasize that we are not merely dealing here
with the mathematical elegance of describing the topological
behavior of electromagnetic and elastic waves in absorptive
crystals. Numerical estimates performed in Section 6 have
shown that the effects under study can be experimentally
observed in both optics and acoustics.
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