
Abstract. Theoretical results concerning the PoincareÂ recur-
rence problem and their application to problems in nonlinear
physics are reviewed. The effects of noise, nonhyperbolicity, and
the size of the recurrence region on the characteristics of the
recurrence time sequence are examined. Relations of the recur-
rence time sequence dimension to the Lyapunov exponents and
the Kolmogorov entropy are demonstrated. Methods for calcu-
lating the local and global attractor dimensions and the Afrai-
movich±Pesin dimension are presented. Methods using the
PoincareÂ recurrence times to diagnose the stochastic resonance
and the synchronization of chaos are described.

1. Introduction

The so-called PoincareÂ recurrence is one of the fundamental
features pertaining to the time evolution of dynamical
systems. Recurrence, according to PoincareÂ , implies that
practically any phase trajectory leaving a point x0 of the
phase space will pass infinitely many times arbitrarily close
to its initial state as it evolves in time. PoincareÂ termed this
type of motion in dynamical systems stable in the Poisson
sense [1, 2].

Since the appearance of the pioneering papers by
PoincareÂ , the analysis of statistical characteristics of the
recurrence times has remained in the focus of modern

science. The fundamental importance of this problem also
follows from the fact that the idea that the system returns to
the vicinity of its initial state as time progresses actually
extends beyond its rigorous theoretical framework; in a
certain sense, this idea has become one of the philosophical
concepts of modern natural science.

A fundamental mathematical theory of the PoincareÂ
recurrence has been developed. It describes statistics of the
time of return both to the vicinity of the initial state [3] (the
so-called local approach) and to a chosen set in the system
phase space [4] (the global approach). A number of theorems
generalizing and extending the classic PoincareÂ results [1, 2]
are proved in [5±7]. In [8±10], it is proved theoretically that
the probability density for the random sequence of recur-
rence times in the vicinity of the initial state obeys an
exponential law. An important result concerning the con-
nection between the mean recurrence time and the prob-
ability that the trajectory will stay in an e-vicinity of a given
initial state (the Kac theorem, local approach) is proved in
[11, 12]. A number of important results obtained in studies of
the recurrence time statistics in a stochastic layer in the
vicinity of nonlinear resonances of Hamiltonian systems is
proposed in the well-known paper [13]. Chetaev generalized
the PoincareÂ result [1, 2] in Refs [14, 15] to the case where the
right-hand sides of ordinary differential equations of the
dynamical system are ``in fact periodic with respect to time t
with the same period'' [15].

Relatively recently, studies considering a novel, so-called
global, approach to the PoincareÂ recurrence problem have
appeared [4, 16±18]. In the global approach, the PoincareÂ
recurrence time averaged over all elements of a covering of the
set as a whole is analyzed. The mean recurrence time in this
case depends on the ensemble of initial points specified in each
element of the covering and is a function of the entire set.
Among the main characteristics of the PoincareÂ recurrence in
the global approach is the fractal dimension of the set of
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recurrence times, called the Afraimovich±Pesin (AP) dimen-
sion in Refs [19, 20].

We note that a direction of research based on the
method of recurrence plots, which in essence relies on the
PoincareÂ recurrence concept, has been successfully develop-
ing recently [21, 22].

The references mentioned above mainly represent rigor-
ous mathematical results, which lay the basis for much
experimental work on numerical modeling of the PoincareÂ
recurrence statistics for concrete systems. We are interested
in work on the analysis of PoincareÂ recurrence statistics in
low-dimensional discrete dissipative systems with a chaotic
attractor (see, e.g., Refs [23±26]). Chaotic systems are
characterized by Poisson stability and are ergodic because
of the presence of mixing. This allows using mathematical
results to analyze the results of computational experiments.
However, the systems being studied do not, as a rule, fully
satisfy the properties of hyperbolicity, can be irreversible,
and can involve complications related to the existence of a
probability measure; therefore, the experimental research on
such systems would also enable estimates of the extent to
which the rigorous results are applicable to them.

This review presents numerical modeling results con-
cerning statistical characteristics of the PoincareÂ recurrence
in discrete maps based on both local and global approaches.
It offers an analysis of the impact of an external noise
source on the characteristics of the recurrence times,
including the AP dimension, and it corroborates the
correspondence between the AP dimension and the positive
Lyapunov exponents (in the absence of noise) and the
relative Kolmogorov entropy (for systems with noise). We
discuss applied aspects of the PoincareÂ recurrence theory for
carrying out the tasks of diagnosing stochastic resonances,
synchronization, and computing the dimensions of chaotic
attractors.

2. Main theoretical results
concerning the PoincareÂ recurrence

The problem of PoincareÂ recurrence, as discussed in the
Introduction, has been fully solved and described in the
mathematical literature for ergodic systems with a given
probability measure. The fundamental mathematical result
is expressed by the Kac theorem [11, 12], which states that the
mean time htr�D�i for returning to some subdomain D
belonging to the phase space domain under consideration is
inversely proportional to the probability of the phase
trajectory visiting this domain P�D�:


tr�D�
� � 1

P�D� : �1�

The proof of statement (1) was given under the conditions
that the system has an ergodic probability measure and is
reversible. No constraint was imposed on the domain of
returns D. Further research has indicated that the condition
that the system is reversible is not a necessary one. A proof of
Kac theorem (1) proposed in [4] does not rely on the
reversibility, exploiting the ergodicity only.

We here analyze the recurrence for the domain D defined
as an N-dimensional cube (N is the dimension of the system
phase space) with an edge e, centered around the initial state
x0. As is discussed in what follows, for a small e5 1, the
probability that the trajectory enters the e-vicinity of the

initial state can be expressed as

P�e� ' p�x0�e df ; �2�
where p x0� � is the probability density function and df is the
fractal dimension of the set of possible states. Then, defining
the region D as a cube with the edge e and taking P�e� in form
(2), we arrive at an alternative form of the Kac theorem:


tr�x0; e�
� ' 1

p�x0� e
ÿdf ; e5 1 : �3�

Equation (3) plotted in the double logarithmic scale describes
a straight line with the slope k � ÿdf, which is used in
carrying out numerical experiments and analyzing their
results. The averaging is performed in Eqn (1) over an
ensemble, or over time for ergodic systems. For dynamical
systems, the sequence of first recurrence times has the form
trk � tk�1 ÿ tk �k � 1; 2; . . . ; kmax� and the mean time is



tr�e�

� � 1

kmax

Xkmax

k�1
�tk�1 ÿ tk� ; kmax 4 1 ; �4�

where the index k corresponds to the discrete time of the
trajectory visiting the e-vicinity.

An important mathematical result is the proof of the
statement that the probability density for the random process
of returns obeys the exponential law [8±10]

p�tr� � 1

htri exp
�
ÿ tr
htri
�
; tr 5t �r ; �5�

for ergodic systems that have the mixing property, where t �r is
a certain value of tr. Law (5) describing the probability
distribution of a random sequence of returns to the e-vicinity
of some given point holds in the limit e! 0 for all tr 5t �r .

We note that to prove Kac theorem (1), it suffices to
assume that a probability measure exists, but the proof of
Eqn (5) relies on a stronger assumption, the existence of
mixing. Mixing implies ergodicity, but the converse is not
true. For example, motion on a two-dimensional torus is
ergodic if the rotation number is irrational, but mixing is
absent. In this review, we analyze chaotic systems that have
mixing by definition and are therefore ergodic.

The discussion above pertains to the problem of returns
to a given e-vicinity of a selected point of the set explored
and, consequently, to the description of local PoincareÂ
returns. There is an alternative approach to the PoincareÂ
recurrence problem, based on the subdivision of the entire
set into e-elements and subsequent averaging of minimum
return times over the subdivisions. Because averaging
involves the entire set, the approach can be termed global.
The mathematical theory of the global approach was
proposed in Refs [4, 16±18].

The essence of the global approach is as follows. The
selected set of phase trajectories of a dynamical system (for
example, its attractor) is covered by cubes (or spheres) e5 1
in size. The covering must be complete for the set studied. For
each element of the covering ei �i � 1; 2; . . . ;m�, the minimum
time of the first recurrence of the phase trajectory in the
ei-vicinity, tinf�ei�, is determined. Then the mean first
recurrence time over the entire set of covering elements ei is
found:


tinf�e�
� � 1

m

Xm
i�1

tinf�ei� : �6�

956 V S Anishchenko, S V Astakhov Physics ±Uspekhi 56 (10)



It follows that [16]

tinf�e�

� � fÿ1�e d=ac� ; �7�

where ac is the dimension of recurrence times introduced by
Afraimovich and Pesin [16±18] and d is the dimension of the
set considered. The function f in Eqn (7) can take one of the
forms

f�t� � 1

t
; f�t� � exp �ÿt� ; f�t� � exp �ÿt 2� ; . . . ; �8�

depending on the topological entropy ht of the system [27] and
on the multifractality of the set studied, whenever it is
relevant. If the topological entropy ht � 0, then f�t� � 1=t
and it follows from Eqn (7) that


tinf�e�
� � eÿd=ac : �9�

If ht > 0, then f�t� is commonly written as an exponential,
f�t� � exp �ÿt�. Equation (7) can then be written in the form
[28]


tinf�e�
� � ÿ d

ac
ln e : �10�

As is well known [29], the topological entropy ht is the upper
bound for the Kolmogorov±Sinai (KS) entropy, which is in
turn defined by the positive Lyapunov exponents l�. Hence,
it follows that for chaotic dynamical systems with exponen-
tially divergent trajectories, the topological entropy is positive
�ht > 0� andEqn (10) is valid. For chaotic systems, expression
(9) is valid only for critical values of the parameter for which
the KS entropy (and hence ht) vanishes.

Such are, in brief, the main results related to the PoincareÂ
recurrence problem used in this review. In the literature on
nonlinear dynamics, in addition to theoretical results,
numerous issues of practical relevance are discussed. Among
them, we mention the use of recurrence times to solve the
problem of controlling chaos (the so-called targeting problem
[26]) and the use of the AP dimension to diagnose synchron-
ism between coupled chaotic oscillators [28, 30] and to
diagnose the effect of stochastic resonance for noise-induced
transitions in bistable systems [31]. Because rigorous results
have been obtained only for hyperbolic systems with a given
probabilitymeasure, the analysis of PoincareÂ returns in quasi-
hyperbolic systems is important.

We mention an important detail. Numerical modeling of
the PoincareÂ recurrence relies on algorithms and programs
that do not require immediate knowledge of the probability
measure. For this reason, in numerical solutions, the results
are usually not compared with the form and evolution of the
probability measure when the system parameters are varied
and external noise is added. This juxtaposition is undoubtedly
necessary because, as follows from the mathematical theory,
just the changes in the probability density p�x� must
determine the results.

3. Local approach.
Kac theorem in the presence of external noise

As a system for study, we consider a cubic map with a chaotic
quasi-attractor [32]

xn�1 � �axn ÿ x 3
n � exp

�
ÿ x 2

n

B

�
�

�������
2D
p

xn ; �11�

where a is a control parameter, B � 10 is the coefficient in
the exponent introduced to limit the growth rate of xn, D is
the noise intensity, and xn is the source of bounded white
noise.

Map (11), which is one of the basic models of bistable
systems demonstrating the effect of stochastic resonance [33],
allows constructing the probability density p�x� numerically
and carrying out a detailed comparison between the char-
acteristics of PoincareÂ recurrences and theoretical predic-
tions. Importantly, map (11), being a system with a quasi-
attractor [32], does not belong to the class of hyperbolic
systems [34]. Therefore, the analysis of recurrences in system
(11) enable us to learn whether the results of the theory
developed for hyperbolic systems are applicable to nonhyper-
bolic ones.

Bistability in system (11) allows modeling the crisis of
two symmetric attractors that occurs when the parameter a
passes through a certain critical value a � [32, 35]. The crisis
can be induced by noise of a certain intensity D for a < a �.
In view of the importance of this effect for studies of
stochastic resonance, we analyze the characteristics of
PoincareÂ recurrences in the regime of the noise-induced
crisis of attractors [35].

As can be seen from Fig. 1, which illustrates the evolution
of the probability density p�x;D� in system (11) for a � 2:7,
two symmetric attractors �xn ! ÿxn� are realized in this
system for D < 10ÿ4. At D � 1:1� 10ÿ4, the attractors
merge into one. From the figure, it is apparent that as the
intensity D increases, the function p�xn� changes noticeably.
This must result in corresponding changes in qualitative
characteristics of the recurrence times. We note that in
numerical experiments, the density p�xn� was determined
approximately,

p�xn� � DP�xn � Dxn=2�
Dxn

; �12�

where DP is the probability of the trajectory visiting the
vicinity of the point xn and Dxn 4 10ÿ3 is the size of this
vicinity. The computational results for p�xn� in the entire
domain of x were normalized such that the sum of all
probabilities is zero.

We select five points �i � 1; . . . ; 5� on the attractor of
system (11) with different values of the probability density
p�x i

0�: x 1
0 � 0:37, x 2

0 � 0:65, x 3
0 � 0:95, x 4

0 � 1:25, and
x 5
0 � 1:46. We compute the mean recurrence times htr�e�i in

the e-vicinity of these points for e � 0:1 as functions of the
noise intensity D. From the computational results presented
in Fig. 2, it follows that 1) on passing the threshold value as
the noise increases,D > 10ÿ4, an abrupt increase in the mean
recurrence time for all five points is observed; 2) the mean
recurrence time behaves in a principally nonlinear way with
an increase in the noise intensity: it may increase or decrease
as a function of the noise intensity. From a comparison of
Fig. 1 and Fig. 2, it can be clearly seen that an increase in
htr�D�i is caused by a decrease in P�xn�, while a decrease in
htr�D�i is caused by an increase in P�xn�, in perfect agreement
with Eqn (1).

We now turn to the character of the dependence tr�e� and
compare the computational results with theoretical ones.
With this aim, consider a fixed point x 3

0 � 0:65. We compute
mean recurrence times for the e-vicinity of x0 for e ranging
from 10ÿ2 to 10ÿ1. The results of numerical experiments are
displayed in Fig. 3.
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By performing a least-squares fit, we find that the
dependences plotted in Fig. 3 in a double logarithmic scale
correspond to the straight lines

lg


tr�e�

� � lgC�D� ÿ k lg e ; �13�

with k � 1:00� 0:02 for all lines in Fig. 3, and the noise has an
impact only on the coefficients C:

C1 � 3:756 �D � 10ÿ5� ; C2 � 1:958 �D � 10ÿ4� ; �14�
C3 � 3:900 �D � 10ÿ3� ; C4 � 4:012 �D � 10ÿ2� :

The coefficients C�D� in (14) and the coefficient
k � 1:00� 0:02 are obtained by direct approximation of the

data plotted in Fig. 3. If theKac theorem also holds in the case
where system (11) contains a source of noise, the coefficients
C�D� in (14) must correspond to the pÿ1�x0� values given by
the distributions plotted in Fig. 1 and computed for D in the
range 10ÿ5ÿ10ÿ2. Computations indicate that the values of
coefficients derived from the probability density p�x0;D�
agree with approximation (14) within �5%.

In the case considered, expression (1) can be written as

tr�e�

� � Ceÿ1 ; C � 1

p�x0;D� : �15�

We conclude that the experimental data in Fig. 3, which are
approximated by Eqns (13) and (14), fully agree with (1) both
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Figure 2.Comparison of the dependence of the mean recurrence times htri
on the noise intensity for five selected points on the attractor.
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Figure 3.Dependence of the mean recurrence time htri on e for five points
selected on the attractor (in logarithmic scales).
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Figure 1. Probability density p�xn� of the attractors of system (11) for noise with the intensity (a)D � 10ÿ5, (b)D � 10ÿ4, (c)D � 10ÿ3, and (d)D � 10ÿ2.
There are two symmetric attractors in panels a and b, and a merged attractor in panels c and d.
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in the absence and in the presence of additive noise in
nonhyperbolic system (11).

A distinctive feature of the local approach is that the
recurrence times depend on the vicinity of the selected point
on the attractor ht�x0�i. This fact is very important for certain
applied problems, such as chaos control (see, e.g., [26]). For
example, Fig. 4 depicts computational results for htri as a
function of a point x on the attractor of system (11).We select
the regime of merged attractors �a � 2:84� in the absence of
noise. The recurrence time htri for 04 xn 4 1:7 (Fig. 4b) fully
corresponds to changes in p�xn� (Fig. 4a) and can be
computed based on the Kac theorem. On adding noise, the
correspondence to the Kac theorem is preserved.

This result, generally speaking, could be anticipated. If we
regard system (11) with noise as being represented by a
stationary random process, then we are dealing with the
equivalent of an ergodic system, and in this case the Kac
theorem holds. Hence, the results described above provide an
experimental proof that the fundamental Kac theorem
remains valid for noisy systems.

4. Probability density of recurrence times.
Impact of noise

As discussed in Section 2, for a given chaotic attractor
domain, the times of the first PoincareÂ recurrence tr
D � x0 � e=2 satisfy exponential law (5) in the limit e! 0
for tr 5t �r , where t

�
r is some value of the recurrence time [8±

10, 25, 36]. We write (5) in the form

p�tr� � C exp �ÿgtr� : �16�
We test the correspondence between Eqn (16) and law (5)

in a numerical experiment in terms of the coefficients C and g

in the cases with and without the external noise [37]. In the
absence of noise, the coefficientsC and g depend on the choice
of x0 and e. In the limit e! 0, P�e� also tends to zero and the
equality g � P�e� � 1=htri holds, where htri is the recurrence
time mean value [25, 36]. In numerical experiments for small
but finite e5 1, this equality can be violated, depending on
the precise values of e and the system being studied. The
coefficient g can be determined experimentally by considering
Eqn (16) in the logarithmic scale. The slope of the linear
dependence

ln p�tr� � lnCÿ gtr �17�

yields the value of g, while its intercept gives C.
We consider the results for p�tr� computed for map (11).

We select the same five points x i
0 as in Section 3, on the

attractor of system (11), and compute the respective prob-
ability densities pi�tr� for their vicinitiesDi � x i

0 � e=2, setting
e � 10ÿ2. We begin with the case of no noise �D � 0� taking
the parameter value a � 2:7 (before the crisis of attractors).
The results are plotted in Fig. 5a. For t > 25, all the
dependences can be approximated by straight lines, yielding
the slopes gi and the coefficients Ci. The computations show
that the coefficients gi agree rather well with the probabilities
P�Di� for e � 10ÿ2. The comparison is presented in Table 1,
where the two last columns give the values of the quantities
jP�Di� ÿ gij=P�Di� and jgi ÿ Cij=gi characterizing errors.

As follows fromTable 1, the computed probabilitiesP�Di�
and the coefficients gi and Ci obtained by approximating the
results presented in Fig. 5a are approximately equal to each
other (with an error of less than 15%). Special computations
have shown that this error decreases as e decreases. It can be
assumed that in the limit e! 0, the equality g � C � P�D� is
satisfied. In that case, expression (16) can be rewritten in the
form

p�tr� � g exp �ÿgtr� � 1

htri exp
�
ÿ tr
htri
�
; �18�

which just coincides with law (5).
We consider the influence of noise on the distribution of

recurrence times p�tr�. As follows from Fig. 5b, the density
p�tr� for tr 5 20 qualitatively repeats the dependences in the
absence of noise plotted in Fig. 5a. The difference between the
results lies in the change in the slope (coefficients gi) in the
presence of noise. This allows concluding that in the presence
of noise, the exponential law in (5), (16)±(18) remains valid. It
is only necessary to keep inmind that the coefficient g depends
on the noise intensity D and the size e of the interval around
the given point x i

0 �g � g�D; x i
0; e��.

Detailed computations performed for system (11) for
a � 2:7 and the noise level D � 10ÿ5ÿ10ÿ4 (before the crisis
of attractors) have shown that p�tr� obeys law (5). The
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a

Figure 4. (a) Probability density p�xn� on the attractor of system (11) for

a � 2:84 and D � 0. (b) Mean recurrence time for the e-vicinity of the

point xn for e � 0:01.

Table 1. Comparison of the computed P�Di� with the data of
approximation (17) for the points x i

0 selected on the attractor �dP; g �
jP�Di� ÿ gij=P�Di�, dg;C � jgi ÿ Cij=gi�.
i x i

0 P�Di� gi Ci dP; g, % dg;C, %

1

2

3

4

5

0.37

0.65

0.95

1.25

1.46

7:468� 10ÿ3

3:071� 10ÿ3

5:224� 10ÿ3

4:091� 10ÿ3

9:714� 10ÿ3

6:872� 10ÿ3

3:174� 10ÿ3

5:532� 10ÿ3

4:241� 10ÿ3

8:361� 10ÿ3

6:26� 10ÿ3

3:24� 10ÿ3

5:87� 10ÿ3

4:40� 10ÿ3

7:13� 10ÿ3

7.9

3.3

5.8

3.6

13.9

8.9

2.0

6.1

3.7

14.7
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coefficients g and C in (16) are close to the values of the
probability P�e� in the presence of noise. For example, the
error is less than 5% for e � 10ÿ5. The impact of noise
modifies the probability measure, and P�e� varies, in contrast
to P�e� in the unperturbed system.

As the intensity of noise increases past the value
D � 1:1� 10ÿ4 at which the attractors merge, the results
undergo qualitative changes. The crisis of attractors shifts
the dynamics of map (11) to the regime of chaos±chaos
intermittance. The trajectory fxng of the system spends
some time in the domain of one of the two symmetric
attractors, randomly hopping between them under the action
of noise [32]. The system acquires two characteristic time
scales, a global and a local one. Their presence explains the
character of the dependences P�tr� (Fig. 6), which clearly
manifest the regions of local �tr < 100� and global �tr < 100�
dynamics.1 Each of these dependences can be approximated
by two straight lines, which give the respective coefficients
g 1; 2i �xi0�. Computations show that for e � 0:1 in the neighbor-
hood of all five points x i

0, the inequalities

g 1 > P�e� > g 2 �19�

hold. For example, for x 4
0 � 1:25 and e � 0:1, we have

g 1 � 0:457, g 2 � 0:004, and P�e� � 0:035. The departure of

the dependences p�tr� in Fig. 6 from behavior (18) stems from
the finiteness of the quantity e � 10ÿ1 [37].

We turn now to Fig. 7, which plots the results of
computations of p�tr� for the point x 4

0 � 1:25 �i � 4� and
various values of e. As can be seen, with a reduction in e, the
influence of intermittency noticeably decreases, practically
disappearing for e � 10ÿ3. In this case, g 1 and g 2 also
decrease, tending to the value P�e�. For example, for
e � 10ÿ3, we obtain g 1 � 0:0043, g 2 � 0:00033, and
P�e� � 0:00035. We therefore believe that in the limit e! 0,
the equality g 1 � g 2 � P�e� is practically satisfied. However,
we note that in this case P�e� ! 0, and the recurrence times
sharply increase, tending to infinity. It can be assumed that
exponential law (5) holds in the limit e! 0 for purely
dynamical systems as well as for systems affected by noise.

The results presented above lead to an important
conclusion. For small but finite values of e, deviations of
p�tr� from distribution law (5) can occur depending on
particular physical characteristics of the system, which may
be used for solving applied tasks.

5. Diagnostics of the effect
of stochastic resonance using
the PoincareÂ recurrence time distribution

As demonstrated in Section 4, the recurrence time probability
density obeys exponential law (5) for infinitely small e! 0.
For small but finite e, this law can be violated, as is suggested
to by the results presented in Fig. 7 and by the data inRefs [24,
35, 37]. The probability density p�tr� computed for a finite e
may reflect certain important features of the system
dynamics. For example, the dependence p�tr� for e � 10ÿ1

(Fig. 7a) clearly reflects the intermittent character of
dynamics in system (11) realized after the crisis of attractors.
We demonstrate that just these properties of p�tr� can be used
for 0 < e < 1 to diagnose the regime of stochastic resonance
(SR).

The classical phenomenon of SR is described in Refs [33,
38] using the example of an overdamped bistable Kramers
oscillator

_x � xÿ x 3 � A cos �Ot� �
�������
2D
p

x�t� ; �20�

where A and O are the amplitude and frequency of weak
external forcing and D is the intensity of a d-correlated noise
x�t�.

1 We mention the results in Ref. [13], where a qualitatively similar effect

was discovered by analyzing recurrences in a stochastic layer in the vicinity

of a nonlinear resonance.
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It was established and then repeatedly confirmed experi-
mentally (see Ref. [39] and the references therein) that in the
regime of noise-induced transitions, the intensity of the
periodic component in the spectrum of the output signal
x�t� attains a maximum at a certain optimal noise level
D � D �. It was shown that the optimal noise level D � in the
SR regime is associated with the Kramers transition
frequency [40], which is close to the external signal
frequency O in Eqn (20). The dependence of the signal-to-
noise ratio (SNR) on the noise intensity D has a shape
resembling the resonance curve with a maximum at D � D �,
which was the reason why the name stochastic resonance was
chosen.

Discrete system (11) considered in this review is one of the
simplest systems inwhich the SR effect occurs both because of
noise-induced transitions in the classical case and because of
variations in the control parameter in the absence of noise
(under the conditions of the attractor crisis) [32, 39, 41]. To
realize the SR effect, we augment system (11) with an additive
periodic forcing:

xn�1 � �axn ÿ x 3
n � exp

�
ÿ x 2

n

b

�
� A sin �On� �

�������
2D
p

xn : �21�

System (21) represents a one-dimensional cubic map excited
by a small �A5 1� periodic signal and a source xn of
d-correlated noise of the intensity D. The exponential factor
in Eqn (21) is introduced, as previously in Eqn (11), to avoid
the drift of trajectories toward large values of xn.

We consider the dynamics of system (21) in the absence of
perturbations �A � D � 0�. If a < a � � 2:839, two chaotic
attractors, symmetric with respect to the saddle equilibrium
point x 0

n � 0, coexist in the system. At a � a �, bifurcation
occurs, the attractors merge, and intermittent chaos±chaos
behavior emerges. Stationary probability densities p�x�
before and after the merging are plotted in Figs 8a and 8b.

The effect of stochastic resonance in system (21) is
thoroughly described and explored in Refs [38, 39, 41]. We
mention that the effect has been diagnosed by the classical
filtration method (the method of two states) with the help of a
telegraph signal model. As can be seen from Fig. 9a, the SR
effect induced by noise (curve 1) attains a maximum at the
optimal noise intensity D � � 0:01. Without noise, the SR
effect is observed (Fig. 9b) for the control parameter a � 2:84
(curve 1) [41].

We discuss another possibility of diagnosing SR by using
a computed probability distribution for the PoincareÂ recur-
rence times [31]. We perform computations of p�tr� for some
region x0 � e=2, taking x0 � ÿ1:1 and varying e.

Figure 10a plots the density p�tr� found numerically for
e � 10ÿ1 (curve 1) and e � 10ÿ4 (curve 2). The finiteness of e
has the effect that the distributions p�tr� are different from
exponential law (5), which is especially clearly illustrated by
curve 1 in Fig. 10a. One of the differences lies in the fact that
the plot of p�tr� contains two distinct time intervals �tr 4 160
and tr > 160� within which the decay rates for p�tr� (as
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discussed above) are essentially different. Another distinction
is the presence of a periodic modulation of the function p�tr�
in the region tr > 160 with the period T � 2p=O � 62:8. As
noted above, for finite values of e, the distribution p�tr�
carries information on the properties of the dynamics of
the system being explored. In our case, the appearance of
two time intervals with different slopes of p�tr� is a reflection
of intermittency in the system [35, 37]. The presence of a
periodic modulation is due to the nonautonomous character
of system (21). It can be assumed that in the limit e! 0, the
distribution law for p�tr� is exponential on average. To a
certain degree, this is corroborated by curve 2 in Fig. 10a,
computed for e � 10ÿ4. It is noteworthy that the periodic
modulation of the function p�tr� is also preserved in this case,
although the modulation amplitude decreases substantially.

We use the fact that the function p�tr� is modulated at a
frequency close to the frequency O of the external signal in
Eqn (21). Hence, the Fourier spectrum of p�tr�,

F�o� � 1

2p

�1
0

p�tr� exp �ÿiotr� dtr ; �22�

should exhibit a peak at the frequency o � O. Computations
have corroborated this fact. It is natural to suppose that the

peak amplitude attains a maximum in the SR regime, which
has also been confirmed by computations [31].

To compute the spectrum F�o� of p�tr� we selected
values 10ÿ4 4e4 10ÿ3. In this case, the distribution p�tr�
turns out to be defined on a rather long time interval,
0 < tr 4 80;000, which allows computing F�o� more reli-
ably. As an illustration, we present the data that correspond
to the SR regime in system (21) in the absence of noise
�a � 2:843, D � 0�. Figure 10b shows a magnified part of
Fig. 10a. The spectrum F�o� computed in this case is
presented in Fig. 11a. There is a well-expressed peak at the
frequency O in the spectrum F�o�, which corresponds to a
practically periodic modulation in p�tr�. If we depart from the
optimal regime by shifting the parameter a to a � 2:837, the
following picture is observed: the probability distribution
p�tr� is modulated in a more intricate way (see Fig. 10c) and,
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as a consequence, the peak at the frequencyO in the spectrum
F�o� decreases substantially in amplitude (Fig. 11b). Thus, if
we carry out the computations described above for system
(21), we can diagnose the effect of SR and compare the results
with those obtained previously.

The results of computations of the spectral amplitude
F�O� in the case of a noise-induced SR (curve 2 in Fig. 9a) and
when the parameter a is varied in the absence of noise (curve 2
in Fig. 9b) qualitatively agree with the results of computations
in Refs [32, 39, 41].

The result obtained here can easily be understood from
the experimental standpoint, as well as from the standpoint of
the SR effect theory and could possibly be predicted. The SR
effect can hopefully be proved by resorting, for example, to
the results in Ref. [42]. But the results described above do not
rely on the global analysis of the effect of switching in the SR
regime, which underlies the theory, but are obtained based on
the local approach; in this sense, they are interesting from the
standpoint of revealing peculiarities of PoincareÂ returns to a
finite domain.

Relatedly, the SR effect can be diagnosed in a numerical
experiment by computing the spectral function F�o� of the
probability density for the PoincareÂ recurrence times in a
finite e-vicinity of an arbitrary point lying on a stochastic
attractor, and determining the conditions under which F�o�
attains a maximum. As follows from the detailed computa-
tions in Ref. [31], the effect of increasing the amplitude of the
spectral peak of F�O� in the SR regime is reliably detected
both in the absence and in the presence of noise, and is
independent of the chosen magnitude of e in the range
10ÿ4 4e4 10ÿ1 and of the selected initial domain x� e=2
on the attractor.

We note that the above method of analyzing the spectrum
F�o� of the recurrence time probability density p�tr� allows

diagnosing the effect of SR on a qualitative level, but does not
provide its quantitative details (the signal-to-noise ratio and
the amplification coefficient), which should be computed
using the appropriate realizations xn in system (21).

6. Recurrence time characteristics
and the attractor dimension in the local approach

The link between the dimension of chaotic sets in the phase
space of a dynamical system and the probability that the
trajectory visits the e-vicinity of a given set point x0 � e=2 is
defined by relations (2) and (3). By virtue of the Kac theorem
in form (3), the dimension df is related to the mean PoincareÂ
recurrence time. We discuss this in more detail.

For homogeneous chaotic sets endowed with a contin-
uous and smoothly varying probability measure, finding the
dependence of mean recurrence times on e in accordance with
Eqns (1) and (2) is not difficult. An illustration can be
provided by the result presented in Fig. 3 for the one-
dimensional map (11), from which it follows that df �
N � 1, where N is the dimension of the phase space of one-
dimensional system (11). This result is a consequence of the
fact that the distribution p�x� is a sufficiently smooth function
on the attractor of system (11) (see Fig. 1).

Generally, attractors of chaotic systems have complex
fractal structures, and therefore the equality df � N does not
hold. We offer an explanation and confirm it with pertinent
computations.

We write the expression for the probability in Eqn (2) as

P�x0; e� �
� x 1

0
�e=2

x 1
0
ÿe=2

. . .

� xN
0
�e=2

xN
0
ÿe=2

p�x 1; . . . ; xN� dx 1 . . . dxN ;

�23�
where p�x 1; . . . ; xN� is theN-dimensional probability density
on the attractor and N is the dimension of the system phase
space. Without loss of generality, we limit ourselves to
systems with the dimension N � 2, which we explore in what
follows. In the case N � 2, we set x 1 � x and x 2 � y and
rewrite Eqn (23) as

P�x0; y0; e� �
� x0�e=2

x0ÿe=2

� y0�e=2

y0ÿe=2
p�x; y� dx dy ; �24�

where �x0; y0� is a selected point of the attractor, placed at the
center of a square of side e5 1.

If the density p�x; y� is a sufficiently smooth function of
coordinates defined in the entire e-vicinity of the selected
point �x0; y0�, by virtue of the mean value theorem (taking the
smallness of e into account), we have

P�x0; y0; e� ' p�x0; y0�
� x0�e=2

x0ÿe=2

� y0�e=2

y0ÿe=2
dxdy � p�x0; y0�e 2 :

�25�

From Eqns (1) and (25), it then follows that

t�e�� � 1

p0�x0; y0� e
ÿ2 � Keÿ2 ; �26�

or

ln


t�e�� � Cÿ 2 ln e ; �27�
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whereC � lnK � ÿ ln p�x0; y0�, after taking the logarithm of
Eqn (26). Dependence (27) is a straight line with the slope
k � 2 and intercept C.

If p�x; y� is a fractal function, relation (25) is no longer
valid, and expression (27) has to be taken in a more general
form (2):

P�x0; y0; e� � p�x0; y0� eÿdf ; df 4 2 ; �28�

where df is the fractal dimension of the set. We note that
expression (28) becomes more accurate as e decreases. With
Eqn (28), we obtain

ln


t�e�� � Cÿ df ln e ; df 4 2 : �29�

Computing ln ht�e�i for different values of e and approx-
imating the results by straight line (29), it is possible to find
the values of df and C.

We present the results of numerical computations
obtained with the help of Eqn (29) using the modified
Arnold's map [43] as an example:

xn�1 � xn � yn � d cos 2pyn �mod 1� ; �30�
yn�1 � xn � 2yn �mod 1� ;

where �mod 1� means taking the fractional part of the result.
Map (30), which is a bijection of a unit square on the �x; y�
plane into itself, belongs to the class of hyperbolic maps. For
d < 1=�2p�, map (30) is dissipative and has a chaotic
attractor with a positive largest Lyapunov exponent l1 > 0.

The distinct feature of map (30) is that despite the
contraction of phase volume, the phase trajectory visits any
element of the unit square, covering it everywhere dense as
n!1. As a result, the metric dimension of the attractor of
system (30) (its Kolmogorov capacity) equals an integer
number �DC � 2�; hence the name `chaotic �l1 > 0� non-
strange �DC � 2� attractor'. The everywhere dense covering
of the unit square by trajectories as t!1 ensures that the
probability measure m�x; y� on the attractor is defined for
any point of the square.

We consider the results of numerical experiment [44].
Figure 12 illustrates the attractor formation in system (30).
For a small number of iterations (Fig. 12a), generally
speaking, a nonuniform attractor forms. As the number of
iterations increases, the points of the attractor cover the unit
square everywhere dense (Fig. 12b). The probability density
(Fig. 12c) is defined on the whole set of points �x; y� belonging
to the unit square, but has a rather intricate structure, which
reflects the nonuniformity of the point distribution on the
attractor. This structure is most probably a fractal one, as is
evidenced by the inset in Fig. 12c, showing the conditional
distribution p�xjy0� for x in the e-vicinity 0:454 x4 0:55.
The distribution p�x� in the e-interval demonstrates a high
degree of inhomogeneity, as does the distribution p�x� on the
unit interval. It is due to the complex character of the
distribution p�x; y� on the attractor of system (30) that
although the Kolmogorov capacity of this attractor is
DC � 2, its information dimension DI is always less than DC

and depends on the parameter d.
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Because the density p�x; y� is a fractal function, we can
expect the dependence ln htr�e�i for system (30) to corre-
spond to expression (29) with a slope df < 2. On introducing
additive noise into the first equation in (30), the density
p�x; y� is smoothed out and the fractality disappears (see the
inset in Fig. 12d). In this case, relation (27) is valid and the
slope of straight line (29) should be close to 2. This is
confirmed by the results of numerical experiment [44]. We
used the following algorithm. An initial point with coordi-
nates xn � x0, yn � y0 was selected at the center of a square
with edge e. Map (30) was then iterated, and the sequence of
discrete time instants nk �k � 1; 2; . . . ; kmax�, which corre-
spond to visits to the e-vicinity, was recorded. Given nk, the
sequence of recurrence times tk � nk�1 ÿ nk was computed
together with mean value (3),



t�e�� � 1

kmax

Xkmax

k�1
�nk�1 ÿ nk� : �31�

Computations have been carried out for d � 0:05, 0:10,
x0 � 0:5, y0 � 0:5, and kmax � 107. In Fig. 13a, the squares
and triangles show the results of computations of ln ht�e�i for
d � 0:05 and 0:10, and the dashed lines give approximations
of the respective dependences. For the coefficients df, we
found the values 1.81 (for d � 0:05) and 1.92 (for d � 0:10),
which are certainly smaller than 2. To verify the results
obtained (Fig. 13a), we computed the dependence of the
slope coefficients df on the intensity of external noise,
presented in Fig. 13b. For the noise intensity D5 0:01, the

coefficient df attains the value df � 2 � N both for d � 0:05
and for d � 0:10. Adding noise to system (30) leads to a
smoothed density p�x; y�, while fractality disappears and the
description offered by Eqn (27) becomes applicable.

As follows from the results in Fig. 13a, the slope of the
approximating lines is df < 2. This implies that the fractal
dimension df of the attractor, given by Eqns (28) and (29),
should serve as a theoretical estimate for the slope coefficient.
The question is how to estimate this dimension. The capacity
DC � 2 cannot be used to estimate df for the attractor of
system (30). It was conjectured in [23] that df can be estimated
by the information dimension

DI � lim
e!0

I�e�
ln �1=e� ; I�e� � ÿ

XM�e�
i�1

Pi lnPi ; �32�

where I�e� is the entropy, Pi � P�ei� is the probability that the
trajectory visits the domain ei, and M�e� is the number of
squares with the side e covering the attractor.

The proposal in Ref. [23], however, has not been
supported by numerical computations and must be tested.
As follows from the data presented in Fig. 13a, df � 1:81 for
d � 0:05 and df � 1:92 for d � 0:10. Informational dimension
(32) for the attractors of system (30) isDI � 1:96 for d � 0:05
and DI � 1:84 for d � 0:10. The results of computations can
be interpreted to favor the estimate for df as the information
dimension DI, but this assertion requires detailed numerical
studies of other systems.

7. Dimension of the Afraimovich±Pesin
recurrence time sequence. Global analysis

As discussed in Section 2, the minimum recurrence time (6)
obtained by averaging over the entire set obeys theoretical
laws (7), (9), and (10). For sets with zero topological
entropy, ht � 0, Eqn (9) is valid, but if ht > 0, then
Eqn (10) must be used. It has been found that if the system
dynamics are characterized by at least one positive Lyapu-
nov exponent, then ht > 0. In the absence of positive
exponents in the spectrum of Lyapunov characteristic
exponents, ht � 0.

To compute the dependences htinf�e�i, we use the
algorithms and related software described in Refs [4, 28].
The software has been tested using the example of the
logistic map xn�1 � axn�1ÿ xn� at its critical point
acr � 3:57 and in the chaos domain �a > acr�. Computations
confirmed the correspondence between the numerical experi-
ment and theory: Eqn (9) holds for a � acr and Eqn (10)
holds for a > acr. We note that the algorithm for computing
htinfi was implemented in two ways [44]. The first is as
follows: the attractor is covered by a union of squares of side
e, whose number depends on the value of e. We select m
points in each e-cell. The map is then iterated from each
point until the first return to the initial cell. The minimum
recurrence time is determined from the data as the mean over
the ensemble of initial points. The second way also starts by
covering the attractor with a set of cells of size e. A single
point is selected inside each cell. The map is then repeatedly
integrated to obtain a sequence of return times for each cell,
and t iinf is defined from these sequences of return times for
each i-cell, and then the mean minimum recurrence time is
obtained by averaging over the set of cells. Because of the
ergodicity of chaotic systems, the first and the second
approach should lead to identical results.
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As an example of numerical computation of the AP
dimension, we consider results pertaining to two-dimen-
sional Arnold's map (30), which is a hyperbolic system.
Relations (7), (9), and (10) have been proved precisely for
such systems.

Computations indicate that in the domain 0 < d4 0:16,
the largest Lyapunov exponent of the attractor of system (30)
is positive and depends sufficiently smoothly (without
troughs reaching zero) on the parameter by virtue of
hyperbolicity [44]. This points to the positivity of topological

entropy and serves as a rationale to expect law (10) to be
observed.

The results of computations performed in both ways are
presented in Fig. 14. For a sufficiently large number of
initial points in a cell �m � 105� (Fig. 14a) and a sufficiently
large number of returns �m � 105� (Fig. 14b), the depen-
dences htinf�e�i in the interval ÿ54 ln e4 ÿ 2 are practi-
cally approximated by straight lines, lending support to
relation (10). The slopes of the lines �k � 2:36 and k � 2:28�
and the respective values of the AP dimensions, ac � 0:84 and
ac � 0:87, turn out to be close. If the number of initial points
in the cell is insufficiently large (Fig. 14a) or the number of
returns to the cell e is small (Fig. 14b), the dependences
htinf�e�i do not fit to a line, but represent exponentially
decreasing functions. Curiously, if these exponential depen-
dences are used and results are viewed in coordinates
�ln htinf�e�i; ln e�, we obtain straight lines that correspond to
Eqn (9). These results are erroneous, however, and are related
to the insufficient number of initial points or returns into a
cell.

Because of the fractality of the density distribution p�x; y�
on the attractor of system (30), computing the characteristics
of the PoincareÂ recurrence times requires particular care and
substantial computational time in both local and global
approaches. These difficulties can be greatly reduced if we
choose the two-dimensional map as the Lozi map [45]

xn�1 � 1ÿ ajxnj � yn ; 1:34a4 1:8 ; �33�
yn�1 � bxn ; b � 0:3 :

It is well known that the Lozi map is characterized by a
quasihyperbolic chaotic attractor [32] and suits the test
experiments in the best way, because it has ergodic properties
assumed in theoretical proofs of relations (9) and (10). The
results of computations performed for a chaotic attractor in
system (33) are presented in Fig. 14c. As can be seen from the
figure, the dependence htinf�e�i on ln e is well approximated by
a straight line with the slope k � 5:551, which perfectly agrees
with expression (10). For the AP dimension, we find
ac � d=k � 0:19, where d � 1:05 (the dimension of the Lozi
attractor).

8. Correspondence between the Afraimovich±
Pesin dimension, the Lyapunov exponents,
and the entropy of the system

The AP dimension characterizes the degree of complexity of
the PoincareÂ recurrence time sequence [37]. But the connec-
tion of the AP dimension with the dynamical and geometrical
characteristics of the attractor in the system [46] requires a
deeper analysis.

A fundamental result in this area is the proof of the
conjecture that for one-dimensional maps with chaotic
dynamics, the AP dimension coincides numerically with the
positive Lyapunov exponent [47]. We illustrate this result
numerically with the example of the logistic map

xn�1 � rxn�1ÿ xn� ; �34�

where x is the dynamical variable and r is the control
parameter. In logistic map (34), the transition to chaos is
realized via a sequence of period doubling bifurcations. The
transition to chaos is illustrated with the help of the
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dependence of the characteristic Lyapunov exponent on the
parameter r (Fig. 15a).

In what follows, we use the control parameter values
r 2 �3:57; 4:00� corresponding to the regime of deterministic
chaos in the system. As can be seen from Fig. 15b, the mean
minimumPoincareÂ recurrence time for logisticmap (34) in the
regime of deterministic chaos for the global approach,
Eqn (6), depends not only on the cell size e but also on the
value of the control parameter r. We note that the plots in
Fig. 15b are straight lines in a logarithmic scale. This
corresponds to theoretical results in Ref. [16], which are
based on the assumption that htinf�e�i obeys law (10) when
the dynamical system has a positive topological entropy (see
Section 7 and Fig. 14). The value of ac can be found from the
slope k of the lines in Fig. 15b if the dimension d of the
attractor in system (34) is known:

k � ÿ d

ac
: �35�

For r � 4, map (34) has a smooth probability density p�x�
that can be determined analytically [48, 49]. The results of

computations indicate that in the interval r 2 �3:57; 4:00�,
excluding the periodicity windows, the distribution p�x�
remains piecewise constant. It this case, as discussed in
Section 6, relation (23) holds, where we must set N � 1 (one-
dimensional map) and take the attractor dimension d � 1,
which coincides with the dimension of system (34). It then
follows from Eqn (35) that ac � ÿ1=k.

It is shown in [47, 50] for map (34) that ac coincides with
the value of the characteristic Lyapunov exponent and theKS
entropy, which is apparent from Fig. 15a.

The results in Refs [47, 50] and our computations
(Fig. 15b) confirm the rigorous mathematical conclusion in
Ref. [47], derived in application to one-dimensional maps. A
question arises: Can we assume that the correspondence
established between the Lyapunov exponent and the AP
dimension of the PoincareÂ recurrences extends to two-
dimensional systems [51]? The following argument may
serve as the rationale. It is well known that three-dimensional
differential systems with chaotic attractors are characterized
by two-dimensional PoincareÂ maps in their cross sections. If
the dissipation is sufficiently high, a two-dimensional map
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can be approximately replaced by a one-dimensional map
[52]. On this basis, it can be proposed that the theorem in
Ref. [47] can be applied to two-dimensional maps that have a
single positive exponent in the regime of chaos. We test this
statement. We consider Lozi map (33), which is one of the
simplest examples of two-dimensional chaotic systems. From
Fig. 15c, which shows the spectrum of characteristic Lyapu-
nov exponents for b � 0:3, we see that in the control
parameter range a 2 �1:32; 1:75�, system (33) demonstrates
chaotic dynamics on its quasihyperbolic attractor, with the
dimension d � 1:1.

We consider the PoincareÂ recurrence time for the chaotic
attractor of the Lozi map from the standpoint of the global
approach. The quantity htinf�e�i, displayed in Fig. 15d as a
function of the covering cell size e for various values of the
control parameter a, does not differ qualitatively from that
obtained for logistic map (34). From Fig. 15c, which presents
the KS entropy, the AP dimension, and the spectrum of
characteristic Lyapunov exponents as functions of the control
parameter, it can be readily deduced that l1, K2, and ac
practically coincide [51].

The fact that the value of ac practically coincides with the
largest Lyapunov exponent �ac � l1� for one- and two-
dimensional maps with chaotic attractors can be used to
estimate the fractal dimension of the map given by Eqn (35).
Determining the slope k when computing htinf�e�i from
relation (10), we can find the fractal dimension d � l1jkj.
We note that we obtain the fractal dimension of the attractor
as a whole, and not the local dimension, as in the situation
described in Section 6.

In the theoretical analysis in the framework of the
global approach (see, e.g., Ref. [4]), it is implied that the
Hausdorff dimension of a set or its estimate as the
Kolmogorov capacity is taken in (10). Accordingly, deter-
mining the slope k from the plots of htinf�e�i, it is possible
to determine the Hausdorff dimension df. Other estimates
of the dimension are also known (capacity, information
dimension, correlation, and Lyapunov dimension [43]).
Based on our experience of computing df and comparing
the results with the computed capacity and information
dimension with the use of classical definitions and algo-
rithms, we can speculate that all estimates of dimension are
close to df given by (10). However, there are currently no
grounds to argue that we have a clear answer to the
question of which dimension is closer to the Hausdorff
dimension df. For instance, for logistic map (34), df
practically coincides with the capacity dimension, but for
modified Arnold's map (39), the estimate of df is given by
the information dimension. It is worthwhile to continue
research in this area.

From the physical standpoint, an interesting perspective is
to explore the influence of white Gaussian noise on the
relations established among the AP dimension, characteristic
Lyapunov exponents, and the KS entropy. We mention that
for a system with noise, we use the relative metric entropy [53,
54] instead of the KS entropy.

We start from the case of a one-dimensional map. We
rewrite Feigenbaum map (34), by adding the source of white
Gaussian noise x of intensity D:

xn�1 � rxn�1ÿ xn� �
�������
2D
p

xn : �36�

Under the action of noise, the correspondence between the
relative metric entropy and characteristic Lyapunov expo-

nents is violated [53]. We fix the control parameter r � 3:7
and, increasing D, follow the change in the characteristic
Lyapunov exponent and relative metric entropy of the
system.

As can be seen from Fig. 16a, as the noise intensity D
increases, the AP dimension also increases, maintaining good
agreement with the relative metric entropy K̂2. This corre-
spondence is also preserved under variations of the control
parameter. At the same time, Fig. 16a shows that the
Lyapunov exponent is practically insensitive to the noise
intensity.

The results presented in Figs 16a and 17a, b invite the
assumption that for noisy one-dimensional chaotic maps, the
AP dimension ac is not related to the characteristic Lyapunov
exponent, but its value is close to that of the entropy K̂2. We
check in what follows whether this correspondence is valid for
a two-dimensional map.

We add a source of the Gaussian white noise x of intensity
D to Lozi map (33):

xn�1 � 1ÿ ajxnj � yn �
�������
2D
p

xn ; �37�
yn�1 � bxn :

The dependence of the largest characteristic Lyapunov
exponent, the relative metric entropy, and the AP dimension
on the value of the control parameter is presented in
Fig. 17c, d for several values of the noise intensity. The
connection between the relative metric entropy and largest
Lyapunov exponent disappears as the noise intensity
increases. Yet the correspondence between the AP dimension
and the largest characteristic Lyapunov exponent is pre-
served. Having fixed the control parameters a � 1:4 and
b � 0:3, we compute ac and K̂2 as functions of the noise
intensity. As can be seen from Fig. 16b, which displays the
results of these computations, the quantitative correspon-
dence between ac and K̂2 persists as the noise intensity is
varied.

We test the validity of our assumptions using two more
examples of chaotic two-dimensional maps in the presence of
noise. The first is the HeÂ non map, which falls into the class of
nonhyperbolic systems [55],

xn�1 � 1ÿ ax 2
n � yn �

�������
2D
p

xn ; �38�
yn�1 � bxn ;

where x and y are the phase variables, a and b are the
control parameters, and x is the source of white noise of
intensity D.

System (38) demonstrates the regime of chaotic quasi-
attractors in the absence of noise for a � 1:4 and b � 0:3. In
this case, the quasi-attractor has the dimension b � 1:25. We
fix the values of control parameters and compute the largest
characteristic Lyapunov exponent, the relative metric
entropy, and the AP dimension by varying the noise
intensity. From Fig. 16c, it can be inferred that the
correspondence between the AP dimension and relative
metric entropy, found for Lozi map (33), is also valid for the
HeÂ non map. This result is of interest because the Lozi map is
an example of a quasi-hyperbolic system, while the HeÂ non
map is a nonhyperbolic system.

Finally, we consider hyperbolic modified Arnold's map
(30) with an additive source of white Gaussian noise x of
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intensity D:

xn�1 � xn � yn � d cos �2pyn� �
�������
2D
p

xn �mod 1� ; �39�
yn�1 � xn � 2yn �mod 1� :

The dependences of l1, K̂2, and ac on the noise intensityD are
plotted in Fig. 16d. As in the two preceding cases, our
conclusion on the correspondence between the relative
metric entropy and the AP dimension remains valid [51].

The results presented above on the correspondence
between the AP dimension of systems affected by noise and
the relative metric entropy K̂2 are currently a purely
experimental fact. The cause of such a correspondence is
quite possibly that both the AP dimension and the entropy K̂2

are introduced based on the PoincareÂ recurrence concept.
These results will hopefully be given a rigorous mathematical
proof in the future.

9. Diagnostics of the effect of synchronization
for stochastic self-oscillations
with the help of the Afraimovich±Pesin dimension

The AP dimension is a global characteristic of a sequence of
recurrence times pertaining to the system attractor as a whole

and can be used as a criterion of synchronization of chaotic
self-oscillations. For example, we consider the effect of chaos
synchronization in two coupled Lorentz oscillators, described
in Ref. [28]. The equations for this system have the form

_x1 � s1�x2 ÿ x1� � c1�y1 ÿ x1� ;
_x2 � r1x1 ÿ x2 ÿ x1x3 � c2�y2 ÿ x2� ;
_x3 � ÿb1x3 � x1x2 � x3�y3 ÿ x3� ; �40�
_y1 � s2�y2 ÿ y1� � c1�x1 ÿ y1� ;
_y2 � r2y1 ÿ y2 ÿ y1y3 � c2�x2 ÿ y2� ;
_y3 � ÿb2y3 � y1y2 � y3�x3 ÿ y3� :

The phase variables xi and yi, i � 1; 2; 3 are respectively
related to the first and second Lorentz systems. Slightly
detuned oscillators are considered for the following values
of control parameters:

r1 � r2 � 45:92 ; s1 � 16:0; s2 � 16:02 ;

b1 � 4:0 ; b2 � 4:01 :

The effect of synchronization can be achieved by increasing
the coupling between the oscillators, which depends on the
coefficients c1, c2, and c3 in Eqns (40).

10ÿ6 10ÿ5 D
0

0.4

0.6

0.8

0.2

1.0
b

l1
K̂2

ac

10ÿ6 10ÿ5
D

10ÿ4
0

0.5

1.0

1.5

2.0

2.5
a

l
K̂2

ac

10ÿ6 10ÿ5 D

0.4

1.2

0.8

1.6
dl1

K̂2

ac

10ÿ6 10ÿ5 D
0

0.8

0.4

1.2
cl1

K̂2

ac

Figure 16.The largest characteristic Lyapunov exponent l1, the relativemetric entropy K̂2, and theAP dimension ac in the presence of noise for (a) logistic
map (36) for r � 3:7, (b) Lozi map (37) for a � 1:4 and b � 0:3, (c) HeÂ non map (38) for a � 1:4 and b � 0:3 and (d) modified Arnold's map (30) for

d � 0:1.

October 2013 PoincareÂ recurrence theory and its applications to nonlinear physics 969



In the absence of coupling �ci � 0�, the chaotic attractor
of system (40) is located in a six-dimensional phase space
because of the detuning in the parameters s and b. Figure 18a
shows the projection of the chaotic attractor on the plane of
phase variables �x1; y1�. Projections on the planes �x2; y2� and
�x3; y3� are qualitatively similar.

If the coupling is strengthened, the effect of topological
chaos synchronization is realized [28]. In this case, the
attractor of system (40) is located in the vicinity of the
invariant three-dimensional subspace x � y �x1 � y1,
x2 � y2, x3 � y3�. The projections of a phase trajectory on
the planes �xi; yi� should be confined to a close vicinity of the
diagonal xi � yi (i � 1; 2; 3). Computations confirm the
anticipated result, which is demonstrated in Fig. 18b.
Because of the small detuning of the Lorentz oscillators with
respect to the parameters, a regime of practically complete
synchronization is realized in system (40) experimentally
upon introducing the coupling, which is only possible if the
coupled systems are identical [56]. Strictly speaking, we are
dealing with topological synchronization in the example
considered, in which there are differences between the
variables xi and yi �i � 1; 2; 3�. Computations indicate that
the quantity jxi�t� ÿ yi�t�j, albeit small if averaged over time,

remains finite, of the order of 10ÿ4. It cannot be discerned in
Fig. 18b.

We discuss the results of computations of the AP
dimension for the attractors of subsystems (40) in the
absence of coupling and in the synchronization regime.

As follows from Fig. 18c, d, the computed dependences of
htinf�e�i obey theoretical law (10), because we are dealing with
chaotic regimes with a positive topological entropy. The
slopes of the curves in Fig. 18c, k � d=ac, are different
because of the detuning in the parameters and the absence of
coupling. In this case, the values of ac are naturally different:
for the first Lorentz system, ac1 � d=k1 � 0:122, and for the
second, ac2 � 0:110. To compute ac1 and ac2, we used the
values of the slopes of the lines in Fig. 18, k1 � 16:54 and
k2 � 18:43, taking the dimension of the Lorentz attractor to
be d � 2:03.

In the synchronization regime (Fig. 18d), the dependences
htinf�e�i for the first and second subsystems are in complete
agreement. Their slopes and, consequently, AP dimensions
are also equal: k1 � k2 � 18:43, ac1 � ac2 � 0:11. Thus, in the
regime of full synchronization of two coupled chaotic
systems, their AP dimensions equalize.
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This result is rather trivial from the standpoint of the
theory dealing with synchronization of stochastic oscillations
and can be readily obtained by classical methods (see, e.g.,
Ref. [32]) with a much smaller computational effort. Its value
is rather in the fact that as a statistical characteristic of a
sequence of PoincareÂ recurrences, the AP dimension can serve
as a criterion of synchronizationÐa fundamental phenom-
enon in the physics of oscillations.

10. Conclusions

The material presented in this review may serve as an
introduction to a current set of questions concerning the
fundamental problem of the PoincareÂ recurrence as applied
to nonlinear dissipative systems with chaotic attractors. The
review includes a discussion of the main theoretical results in
the frameworks of both local and global approaches. These
results are presented without resorting to rigorous mathe-
matical proofs. Attention is focused exclusively on the
results and their applicability conditions. An attempt is
made to analyze the relevance of rigorous results if some
deviations are allowed from the conditions assumed in the
relevant theorems. We explore the influence of noise, the
finiteness of the initial state neighborhood, and the lack of
hyperbolicity. It is found that the rigorous results can be
applied with an accuracy sufficient for physical applications
for a small but finite e-vicinity �e ' 10ÿ3ÿ10ÿ5�. At the same
time, the finiteness of e may lead to substantial differences

between theoretical and experimental results, which can be
used to diagnose the attributes of the regimes of system
functioning and their characteristics. It is shown that for
small e, for example, the effect of stochastic resonance can be
diagnosed.

An important result, in our opinion, is the experimental
substantiation of the applicability of the Kac theorem (local
approach) to the analysis of PoincareÂ recurrences in systems
with noise. In this case, it is necessary to account for the
change in the probability measure on the attractor caused by
the noise perturbation.

An interesting result is also the confirmation, in numerical
experiments, of the correspondence between the Afraimo-
vich±Pesin dimension and the largest Lyapunov exponent,
not only for one-dimensional (which is proved theoretically)
but also for two-dimensional systems. As a result, a new
method is emerging for numerically assessing the attractor
dimension via computations of the PoincareÂ recurrence
statistics in the global framework. Also important is the
result on the correspondence of the AP dimension with the
value of the Kolmogorov relative entropy for a system
affected by noise. In this case, the correspondence between
the AP dimension and the leading Lyapunov exponent is
broken. From a general physical perspective, the totality of
results presented in this review stems from the fact that the
process of PoincareÂ recurrence itself reflects the system
evolution with time. It is perfectly natural that the statistical
characteristics of the sequence of recurrence times reflect the
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characteristics of the system dynamics and are related to
them.

The results of solving a set of applied problems presented
in this review lend support to this fact. It is proved with
certainty that the statistical characteristics of the PoincareÂ
recurrence time respond adequately to physical effects such as
the stochastic resonance or synchronization, enabling one to
numerically compute fractal dimensions. All this is important
from the standpoint of understanding the physical aspects of
the PoincareÂ recurrence statistics following from mathema-
tical theory. The results discussed in the review by no means
exhaust all the multitude of information hidden in the
behavior of PoincareÂ recurrences. There is no doubt that
further research in this field will serve as proof of this
assertion.
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