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From the Editorial Board

This is the year when the Uspekhi Fizicheskikh Nauk (UFN)
[Physics — Uspekhi in English Edition] journal celebrates the 95th

anniversary of the publication of its first issue. The objectives of
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the journal have remained unchanged all these years: the
dissemination of information, first and foremost about the latest
achievements in physics and in those fields of science that are
closely related to physics. Our most important consideration has
always been to take good care of our readers. We adhere to the

opinion that the path that our journal should steer must not only

C
0
Y%

e

4

|

n

g

OWOOSHIKAO D

meet the demand of mature physicists who wish to learn of the

latest developments in their expert and related fields. We are

inphysics
o ' convinced that UFN should be accessible to young scientists —
senior year and PhD students— and all those who are just starting their careers in science or are new to
a field they wish to work in. This is why we request authors of even monographic reviews written for
specialists to begin their paper with a popularizing introduction which would enable any physicist to
understand what the review is about, and to end it with a conclusion giving a brief exposition of the
results and the prospects of the field. We ask the authors to explain all notations, even those widely
accepted in special literature. They are also requested not to assume that all readers are familiar with
the history of their specific issue and that they are also aware of the contribution by Russian authors. In
view of this, we consider a brief historical overview as very welcome. Of course, Vitalii Lazarevich
Ginzburg (a UFN author between 1938 and 2010, member of UFN Editorial Board from 1964 till 2009,
and UFN Editor-in-Chief from 1998 until 2009) used to repeat: ““Leave well alone!”” Accordingly, these
wishes are fairly fuzzy. We only ask our authors to reflect on what has been said and to correctly
understand the comments of reviewers and members of the editorial board and of the editorial staff, who
strive to do their jobs in the best possible way.

We also need to emphasize the cardinal difference between UFN-type journals and journals
publishing original research papers. UFN cannot and will not publish papers, even very good ones, if
they are too narrowly specialized or are devoted to technical issues or to problems that the journal has
already outlined in sufficient detail earlier. UFN is not a place for the publication of original results or
Sfundamental theories and ideas that have not passed the test of time and scrutiny: these should go to
specialized journals.

Neither do we welcome ‘self-reviews’ or papers in which the bibliographic list is dominated by
references to its authors’ publications.

Our authors should be aware that the selection of manuscripts for publication in UFN operates on a
competitive basis. The competition depends on the number of papers currently in the editorial
‘portfolio’. For this reason, reproaches like “the contents of the paper have not been fully studied or
fairly evaluated’ can not be taken as grounds for reviewing the decision of the editorial board.

UFN cannot offer its pages for materials relevant to long-lasting discussions among several authors.
Our “discussion’ format is as follows: a comment on the published paper plus the author’s response.
After this, the editorial staff closes the discussion on the pages of the journal. UFN also exercises great

caution in printing material on natural sciences contiguous to physics. Material of this sort, prepared by



well-known experts in a specific field, must be of exceptionally high interest to physicists. Such off-
profile papers pass through editing by both physicists and specialists in the field involved. Interesting
materials of this sort can also be uploaded to the UFN web site.

UFN publishes articles discussing the history of physics and philosophy, but only in exceptional
cases. Nevertheless, such materials of great interest to a large number of our readers can be published on
the UFN web site. The same is true for some other matters which, not constituting products of research
effort, are nevertheless of interest to our physics community. What we mean here are Personalia, book
reviews, reports on seminars and conferences, and brief information on references, news, etc. that would
be useful for the readers of UFN and visitors to our web site (www.ufn.ru).

We are grateful to all our readers for visiting our UFN web site more than 125 million times in total,
and for 20 million visits annually in 2011 and 2012. In the process, readers have copied more than two
million documents. Obviously, we are very thankful to all our authors whose papers attract so much
interest from our readers. These statistics lead us to believe that the editorial policy of selecting papers
for UFN (which has remained essentially unchanged all these 95 years) has proved fully justified and
useful to all physicists. The format of presenting the material on the pages of UFN has no doubt been
improving all the time— we try hard ‘to move with the times’. Suffice it to remind the readers that the
UFN journal was one of the first in the world to create its electronic document version, as early as 1994.
In 1995, UFN started to print ““Physics News on the Internet”. On V L Ginzburg’s initiative, in 2000 the
UFN web site incorporated a section, “UFN’s Tribune’’, where UFN authors and readers could discuss
issues significant for the physics community. In 1999, the journal started to post archived papers on its
web site, and by 2005 we completed uploading the entire archive of our journal in Russian (from 1918
onwards). In 2002, it became possible to include full-color illustrations in the electronic version of the
Journal, and in 2004, video appendices to papers also appeared. On the 90th anniversary of the UFN
Journal (in 2008), personal pages of UFN authors were created on the web site, to which authors (should
they so wish) can upload any information they consider interesting and useful to their readers.
Photographs of many authors and interviews with the authors of the most cited papers in UFN were thus
added. In 2007, UFN, was the first Russian journal to become a member of the Publishers International
Linking Association (PILA) doing business as CrossRef, and being assigned DOI (Digital Object
Index) to Russian-language versions of the papers in UFN. We now have the option to attach to each
paper published online in UFN a list of publications that cited the given paper. Obviously, only citations
from journals within the CrossRef system can be automatically taken into account. In 2012, we sent
UFN authors a recommendation to accompany their reviews with a video annotation (video
presentation) for the electronic version of UFN. We are especially grateful to those authors who
responded to our request and provided wonderful video presentations of their papers.

Clearly, these ‘technological’ innovations also aim at the execution of our primary objectives— to
take good care of our readers and to provide them with materials not only of high scientific quality but
also presented in the most convenient and convincing format. Of course, much remains to be improved,
and we ask the readers and authors to help the editorial board in our endeavor. Many thanks to all our

readers and authors for their critical comments and suggestions: we will try to take them into account.

Please, do write to us— every improvement in the UFN journal

is in the common interest of all physicists!
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Abstract. Colliding high-energy hadrons either produce new
particles or scatter elastically with their quantum numbers
conserved and no other particles produced. We consider the
latter case here. Although inelastic processes dominate at high
energies, elastic scattering contributes considerably (18-25%)
to the total cross section. Its share first decreases and then
increases at higher energies. Small-angle scattering prevails at
all energies. Some characteristic features can be seen that
provide information on the geometrical structure of the collid-
ing particles and the relevant dynamical mechanisms. The steep
Gaussian peak at small angles is followed by the exponential
(Orear) regime with some shoulders and dips, and then by a
power-law decrease. Results from various theoretical ap-
proaches are compared with experimental data. Phenomenolo-
gical models claiming to describe this process are reviewed. The
unitarity condition predicts an exponential fall for the differen-
tial cross section with an additional substructure to occur ex-
actly between the low momentum transfer diffraction cone and a
power-law, hard parton scattering regime under high momen-
tum transfer. Data on the interference of the Coulomb and
nuclear parts of amplitudes at extremely small angles provide
the value of the real part of the forward scattering amplitude.
The real part of the elastic scattering amplitude and the con-
tribution of inelastic processes to the imaginary part of this
amplitude (the so-called overlap function) are also discussed.
Problems related to the scaling behavior of the differential cross
section are considered. The power-law regime at highest mo-
mentum transfer is briefly described.

I M Dremin Lebedev Physical Institute, Russian Academy of Sciences,
Leninskii prosp. 53, 119991 Moscow, Russian Federation

Tel. +7(499) 783 37 19. Fax +7(499) 13578 80

E-mail: dremin@]lpi.ru

Received 18 June 2012

Uspekhi Fizicheskikh Nauk 183 (1) 3—32 (2013)

DOI: 10.3367/UFNr.0183.201301a.0003

Translated by the author; edited by A M Semikhatov

25
26

“If only you knew what trash gives rise
To verses that are not ashamed uprise...”
Anna Akhmatova

1. Introduction

Hadron interactions are strong and, in principle, should be
described by quantum chromodynamics (QCD). However,
experimental data show that their main features originate
from the nonperturbative sector of QCD. Only comparatively
rare processes with large transferred momenta can be treated
theoretically rather successfully by perturbative methods due
to the well-known property of the asymptotic freedom of
QCD. Hence, in the absence of methods for a rigorous
solution of QCD equations, our understanding of the
dynamics of the main bulk of strong interactions is severely
limited by model building or some rare rigorous relations. In
fact, our approach to high-energy hadronic processes at
present is at best still in its infancy.

As has been learned from experiment, strong interactions
of colliding high-energy particles give rise to inelastic and
elastic processes. Some new particles (mostly pions) are
produced in inelastic processes, which are the most probable
ones, comprising 75% to 80% of all processes at high
energies. Most created particles have comparatively small
transverse momenta.

At the same time, in 25% to 20% of events, the colliding
particles do not change their nature and scatter elastically,
declining at some angle from their initial trajectories. The
only information about this process available from experi-
ment is obtained by the measurement of the differential cross
section (proportional to the probability) of elastic scattering
at some angle at a given energy.

In a very tiny range of extremely small angles, the charged
particles scatter due to electromagnetic forces. But the
dominant process of elastic scattering due to strong interac-
tions proceeds at somewhat larger angles in the so-called
diffraction cone. The differential cross sections are heavily
weighted toward small transferred momenta exhibiting a
huge peak. The scattering angle is still rather small there and
becomes smaller and smaller as the energy increases. The
probability of scattering at a given angle in this region
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decreases steeply, similarly to a Gaussian exponential.
Noticeably less than one percent of particles are elastically
scattered to larger angles outside this diffraction cone. The
Gaussian behavior is replaced there by a simple exponential
one with some shoulders and (or) dips. At ever larger angles
(or transferred momenta), a power-like decrease has been
observed. At angles close to /2, some additional flattening is
seen.

The elastic cross section (the integral of the differential
distribution over angles or transverse momentum) depends
on the energy of the colliding partners. At high energies, it
shows a steady tendency to become larger with an increase in
energy. We note that the inelastic cross section also increases,
such that their sum (the total cross section) increases as well.

The process of elastic scattering of hadrons has been
studied experimentally in a wide energy range with different
initial particles. At high energies of colliding partners, the
most detailed results are available for the scattering of
protons (pp) and antiprotons (pp) on protons. We mainly
discuss these data, sometimes referring to other colliding
partners of protons such as pions and kaons.

Some surprises in the behavior of differential cross
sections appeared in the 1960s when the very first experi-
mental data on elastic pp and np scattering were obtained at
energies between 6.8 and 19.2 GeV in laboratory system [1—
11] (the total energy in the center-of-mass system (cms) is only
/s = 4—6 GeV!). The diffraction cone behavior changed at
larger transferred momenta |f| to a slower 7-dependence.
Somewhat later, the energy range was extended to 50 GeV
[12—-14]. With the advent of new accelerators, the data for pp
scattering at energies /s & 19, 20, 23, 28, 31, 45, 53, 62 GeV
were published [15-30], and the data for pp at 31, 53, 62, 546,
630, 1800, 1980 GeV [31-44] appeared. The early results are
reviewed in Refs [45, 46]. The compilation of the data can be
found in [47]. Only recently, the results of the TOTEM
collaboration at the LHC on elastic pp scattering processes
at /s = 7 TeV were published [48, 49].

Surely, these results called for their understanding and
theoretical interpretation. The most important task is to
acquire some knowledge about the internal structure of
colliding particles by deciphering the information supplied
by experimental data about the dependence on energy and
transferred momentum. The transferred momentum is
directly related to the size and the structure of those regions
inside the hadron that participate in the interaction.

Many phenomenological models have been proposed.
Most of them aspire to be a ‘phenomenology of everything’
related to elastic scattering of hadrons in a wide energy range.
Doing so in the absence of applicable laws and methods of the
fundamental theory, they have to use a large number of
adjustable parameters. The free parameters have been
determined by fitting the model results to the available
experimental data. Even then, model predictions often fail
when a new energy domain becomes accessible. And the
‘verse’ does not grow anymore! (If not recultivated.)
Independent of their success and failure, we are sure that “in
the long run, the physical picture may be expected to be much
more important than most of the detailed computations’ [50].
In what follows, we mention and discuss many of them.

The scattering of charged particles at extremely small
angles is completely dominated by the Coulomb amplitude.
The absolute value of the Born amplitude is well known. The
phase of the Coulomb amplitude varies depending on the
model chosen. However, this variation is rather mild in the

considered tiny region of extremely small angles. The
interference of the Coulomb amplitude with the strong-
interaction (nuclear) amplitude in the transition region
where they are almost equal has been used for the experi-
mental determination of the ratio of the real to imaginary
parts of the nuclear amplitude. This interference also depends
on the chosen form of the nuclear amplitude. Theoretically,
this ratio can be estimated with the help of dispersion
relations. We briefly discuss this problem and show how the
obtained results influence our analysis of scattering at
somewhat larger angles.

The most numerous group of models deals with phenom-
enological attempts to describe the main bulk of elastic
scattering at small angles in the diffraction cone. In general,
they are based on some geometric models of particle
substructure, with peripheral regions playing the decisive
role. The approach using Reggeon (Pomeron) exchanges is
the most popular among them. The approximately Gaussian
(in angles) shape of the experimentally measured differential
cross section in this region has been fitted just in this way. In
addition to it, the simplest classical expressions for diffractive
processes and results on the electromagnetic form factors are
also used. However, the bold extension of the obtained results
to larger angles is usually not very successful, even if some
new parameters are introduced.

Particles scattered at larger angles give insight into the
deeper internal regions of particle structure. The multiple
iteration (rescattering) of diffractive processes can explain the
region of angles that are somewhat larger than the diffractive
ones. Without any additional model building, it can be
described as a consequence of the unitarity condition. The
only necessary input is the experimentally known energy
behavior of the diffraction cone slope and the total cross
section. This allows predicting the observed exponential fall-
off with angles and damped oscillations imposed on it, which,
depending on their amplitudes, lead to shoulders or dips of
the differential cross sections.

At somewhat larger angles, the elastic processes can be
considered to be dominated by the innermost constituents of
the colliding particles. The perturbative QCD approach to
hard parton scattering convoluted with some results or the
parton structure of colliding particles is then used to describe
experimental data. This approach predicts a power-like
angular dependence of the differential cross sections. It has
been seen in experiment. The dimensional (or quark) counting
of the number of participating partons has been successful.
The convolution with the internal structure of particles
implies some coherence in the behavior of its constituents:
all of them should coherently turn at the same angle. A
particle should not be destroyed during the collision, and its
internal wave function must be left intact. Therefore, we can
call such processes coherent large-angle scattering.

At angles close to /2, the effects of symmetrization of the
corresponding amplitudes can become important and lead to
some flattening of the differential distribution.

There are no strict definitions of the lower and upper
bounds of these regions. The diffraction peak shrinks with
energy, such that the exponential fall-off with the squared
transferred momenta ¢ terminates at ever smaller values.
Correspondingly, the dip after it shifts to smaller values of
|¢], as does the /[7|-exponential. At low energies, this regime
approximately occupies the interval between 0.8 and 2 GeV?,
while in the LHC, it has moved to 0.4-1.5 GeV?. According to
the QCD prejudice, the scale for parton scattering should be
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set above 1 GeV?2. This is actually observed with a power-like
decrease starting somewhere around |¢| > 1.5—2 GeV? at the
LHC.

Hence, we can speak, at least, about five subregions of
elastic scattering. We mainly discuss three of them: the
diffraction cone, the Orear regime, and coherent hard parton
scattering. The diffraction cone is well known to us from
semiclassical effects. The regions beyond it became noticeable
only at energies of colliding particles above several GeV,
where processes of scattering at sufficiently large angles or
transferred momenta are observable. They persist up to the
present LHC energy of 7 TeV. Who ordered them and
whether they will survive at ever higher energies are also
questions to be discussed in this review.

The structure of this paper is as follows. The main
relations between different characteristics of elastic scatter-
ing are presented in Section 2. Then, in Section 3, their global
dependences on energy and transferred momenta are dis-
cussed, together with our attempts to understand their
implications within the simplest approaches. A more
detailed analysis of experimental data in the framework of
different theoretical ideas and approximations is the content
of Section 4. Finally, the general picture is briefly discussed
in Section 5.

We do not consider the scattering of polarized particles,
and the spin structure of the amplitude is ignored.

2. Main relations

As discussed above, the measurement of the differential cross
section is the only source of experimental information about a
process. Hence, the main characteristics of hadron interac-
tions directly related to the elastic scattering amplitude, such
as the total cross section, the elastic scattering cross section,
the ratio of the real to the imaginary part of the amplitude,
and the slope of the diffraction cone, are obtained. The first
two are functions of the total energy only, while the others
depend on two variables: the total energy and the transferred
momentum (or the scattering angle).

The dimensionless elastic scattering amplitude A defines
the differential cross section as

do(s) 1 » 1 (Im A(s, 1)) (1 + p*(s5,8)), (1)

— AP =
dt 16Tts2| | 16ms?

where the ratio of the real to imaginary parts of the amplitude
is defined:

Re A(s, 1)

Im A(s, 1) @)

p(S, l) =
In what follows, we consider very high energy processes.
Therefore, the masses of the colliding particles can be
neglected, and we use the expression s = 4E2 ~ 4p?, where
E and p are the energy and momentum in the center-of-mass
system. The four-momentum transfer squared is

—t=2p*(1 —cos0) ~p*0* ~p}, 0<1, (3)

with 0 denoting the scattering angle in the center-of-mass
system and p being the transverse momentum.
The elastic scattering cross section is given by the integral
of differential cross section (1) over all transferred momenta:
0 do(s
oel(s) = J dr d(t ) . (4)

min

The total cross section oy is related by the optical theorem to
the imaginary part of the forward scattering amplitude as

al(s):ImA(pﬁ:O)‘ 5)

N

Elastically scattered hadrons escape from the interaction
region declining mostly at quite small angles within the so-
called diffraction cone.! Therefore, the main focus has been
on this region. As is known from experiment, the diffraction
peak has a Gaussian shape in the scattering angles or
decreases exponentially as a function of the transferred
momentum squared:

dﬂ/dt 212
—————=-¢exp (Bt) = exp (—Bp“0-). (6)

(do/d1),_,
In view of relations (4)—(6), any successful theoretical
description of the differential distribution must also work in
fitting the energy dependences of the total and elastic cross
sections. The diffraction cone slope B is given by

d do(s, t
B(s,t) ~ T (ln ((1[ )) .

Actually, the slope B depends slightly on 7 at a given energy s,
e.g., at the LHC, its value changes by about 10% within the
cone for |A#] ~ 0.3 GeV2. We neglect this in the first
approximation. The normalization factor in Eqn (6) is

do\ _a2(s)(1+p3(s)
(E) =0 B lom : 7 (8)

(7)

where p,, is defined as the ratio of the real and imaginary
parts of the amplitude in the forward direction at
0 =t=0. Equation (8) follows from formula (1) and
optical theorem (5) at t = 0.

According to the dispersion relations, which connect the
real and imaginary parts of the amplitude, and optical
theorem (5), the value p, can be expressed as an integral of
the total cross section over the whole energy range. In
practice, p, is mainly sensitive to the local derivative of the
total cross section. In the first approximation, the result of the
dispersion relation can then be written in the form [51-54]

()Nit r d
PolS) = 203 qns ) |7

_i EL_FE E 3d_3+ (9)
o |2dlns 3\2) dlns3 S

It follows that at high energies, p,(s) is mainly determined by
the derivative of the logarithm of the total cross section with
respect to the logarithm of energy.

The bold extension of the first term in this series to
nonzero transferred momenta would look like
m (dlnlm A(s, 1) 1)

P50~ 3\ " Jiny (10)

! In practice, the tiny region of the interference of the Coulomb and
nuclear amplitudes at extremely small angles does not contribute to the
total cross section of elastic scattering. Its role in obtaining some estimates
of p(s,t) is described below.
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If we neglect the high-|7| tail of the differential cross section,
which is several orders of magnitude lower than the optical
point, and integrate in Eqn (4) using expression (6) with
constant B, we obtain the approximate relation between the
total cross section, the elastic cross section, and the slope:

2 1 2
O—t ( + pO ) ~ (1 1)
]67‘[30‘01
We can compare this formula with the upper bound obtained
in Ref. [55]:
ot

<
1871?30'31

(12)

The phase { of the hadronic amplitude is often defined as

A(s, 1) = i|A(s, )| exp [—il(s,1)] ; (13)
then
p(s, ) =tan{(s,1). (14)

These formulas are used for measuring the luminosity,
which relates the cross section a; of a given process i to the
corresponding number of events N; by

L=

(o]

(15)

A simultaneous measurement of the total number of events N,
and the number of elastic events N, is used to define the
luminosity as

1+ p02 Nt2
~lén dNg/df],_,

(16)

The measured total cross section is independent of luminos-
ity:

_16n dNg/dd],_,

= 17
TN (17)

Ot

The elastic scattering amplitude must satisfy the general
properties of analyticity, crossing symmetry, and unitarity.
The unitarity of the S-matrix, SS™ = 1, imposes certain
requirements on it. In the s-channel, we have

ImA(p,0) = L(p,0) + F(p,0)

1 . .
= m[Jd@] dgz Sin 91 S 92A(p, 01)A*(p, 02)

X {[cos 0 — cos (0, + 0)] [cos (6, — 0,) — cos ()]}71/2 + F(p,0).

(18)

The region of integration in (18) is defined by the conditions

01 —0:] <0, 0<0,+0,<2n—0. (19)
The integral term represents the two-particle intermediate
states of the incoming particles. The function F(p,0)
represents the shadowing contribution of the inelastic
processes to the elastic scattering amplitude. Following [56],
we call it the overlap function. It determines the shape of the
diffraction peak and is completely nonperturbative. Only
some phenomenological models can claim to describe it.

In the forward direction 0 = 0, this relation, in combina-
tion with optical theorem (5), reduces to the general statement
that the total cross section is the sum of cross sections of
elastic and inelastic processes:

Ot = O¢l + Oin -

(20)

Unitarity relation (18) has been successfully used [57—60]
for the model-independent description of the Orear region
between the diffraction cone and hard parton scattering,
which became the crucial test for phenomenological models.

Experimentally, all characteristics of elastic scattering are
measured as functions of the energy s and transferred
momentum ¢. However, it is desirable to have concrete
information on the geometric structure of scattered particles
and the role of different spatial regions in the scattering
process. We should use the Fourier—Bessel transform to
obtain the correspondence between the transferred momenta
and these space regions. The transverse distance between the
centers of colliding particles, called the impact parameter b,
determines the effective transferred momentum ¢ The
amplitudes in the corresponding representations are related
as

0
(s, b) :ﬁj dr A(s, 1) Jo(bv/=7). 1)

Imin=—5

More peripheral collisions with large b lead to smaller
transferred momenta |¢|.

The amplitude A(s,?) can be connected to the eikonal
phase (s, b) and to the opaqueness (or blackness) Q(s,b) at
the impact parameter b by the Fourier —Bessel transformation

2 . .
A(s,t = —¢*%) = T“vjdzb exp (igb) [exp (2i5(s, b)) — 1]
= 2ist2b exp (iqb) [I — exp (—Q(s,b))] . (22)
The integration is over the two-dimensional space of the

impact parameter b.
Assuming Q(s,b) to be real and using Eqn (5), we obtain

oy =4mn L:o [1—exp (—Q(s,b))]bdb. (23)
Also,
Gl = ZHJOO[I —exp (—Q(s,b))]*b db, (24)
0
B Joo[1 —exp (—Q(s,b)) | b db 25)

271 —exp (—Q(s, b)) |bdb

To apply the inverse transformation, we must know the
amplitude A(s, ¢) at all transferred momenta. Therefore, it is
necessary to continue it analytically to the nonphysical region
of ¢ [61, 62]. This can be done [63]. Correspondingly, the
mathematically consistent inverse formulas generally contain
the sum of contributions from the physical and nonphysical
parts of the amplitude A(s,7). Unitarity condition (18)
involves only the amplitude in the physical region; only this
part of its Fourier—Bessel transform is important in the
unitarity relation for the impact parameter representation. It
is written as

Im h(s, b) = |h(s, b)|” + F(s, ), (26)
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where A(s, b) and F(s, b) are obtained by the direct transfor-
mation of A(s, t) and F(s, ) integrated only over the physical
transferred momenta from fy;, to 0. They show the
dependence of the intensity of elastic and inelastic interac-
tions on the mutual impact parameter of the colliding
particles. Analogously to relation (20), the integrals over all
impact parameter values in this relation respectively represent
the total, elastic, and inelastic cross sections. It is especially
simple to calculate the overlap function from algebraic
equation (26) if the real part is small in some subregion, i.e.,
|h(s,b)] = Im A(s, b). Then

Imh(&b)%(l_m).

In the region where the transformed overlap function is
small, F(s,b) <1, the imaginary part is also small:
Im A(s, b) = F(s,b).

However, the accuracy of the unitarity condition in
b-representation (26) is still under discussion [61-65], because
some corrections due to the nonphysical region enter there,
even though their role may be negligible. Moreover, the
further use of the approximate formulas of the quasi-eikonal
unitarization often leads to failure in describing the differ-
ential cross section outside the diffraction cone.

The average values of the impact parameters for all—
elastic and inelastic— processes can be estimated from the
amplitude A(s, ¢) if we assume that dp/d¢ = 0 at t = 0 [64]:

(27)

Oin

(2(5)) 0, = 2L (b(s))y, +G—t<b2(s)>in =2B(s,0), (28)

(43
2,40 -1
G dt]A(s,t)f) :
Imin

(29)

where, e.g.,
0
<b2(s)>el = 4[

de | %A(s, 1)

Imin

Nevertheless, the problem of the relative contributions of the
central (small ») and peripheral (large b) regions under elastic
hadron collisions is still widely disputed. We must be
especially careful when considering unitarity condition (26)
with small impact parameters for certain models. Slight
variations of A(s,b) in this region may lead to strong
variations of the amplitude A(s, ) at large |¢|.

The elastic scattering at extremely small angles allows
estimating the forward ratio of the real part of the amplitude
to its imaginary part p, in experiment. For completeness, we
show an approximate expression for the amplitude A(s, 7) in
the region dominated by the Coulomb amplitude and its
interference with the nuclear amplitude:
8n

"= /i (1) 2(11) exp (i)

|1
. Bt
+ (i+ po(s))soiexp 5

ACN(Sa l) =+

(30)

where the upper (lower) sign corresponds to the scattering of
particles with the same (opposite) electric charges, the form
factors of two colliding particles f;(|¢|) added ‘by hand’ in
Eqn (30) take their internal composition into account, @ is the
Coulomb phase, and o = 1/137 is the fine structure constant.
The expressions for f;(|¢|) and @ depend on various prescrip-
tions for them obtained with different assumptions concern-
ing the internal structure of a hadron. The most popular
shapes of the form factors are either the Gaussian fall-off with

an increasing angle, like exp (2¢/4?), similar to that in (6), or
the dipole (power-like) approximation, like (1 —7/4%)7%,
with some more complicated subleading factors. The phase
@ usually contains a term with the typical logarithmic
dependence on the angle 6, which becomes large at very
small angles, and some subleading terms. In both cases, the
subleading terms have to contain additional free parameters
for a more accurate description of experimental data. As we
see, the ratio p(s, 7) in (2) is approximated by p(s,0) = p, in
the fit (30). This implies that both real and imaginary parts of
the nuclear amplitude exhibit the same purely exponential
t-dependence in the interference region (with the dominance
of the imaginary part for small p,). More details can be found
in [66-81].

3. Where do we stand now?

We first discuss the asymptotic properties of fundamental
characteristics such as the total cross section o, the elastic
cross section g, the ratio of the real part to the imaginary
part of the elastic amplitude p, and the width of the diffraction
peak B at infinite energies. Then we compare this with some
trends in present experimental data.

More than half a century ago, it was claimed in [82, 83]
that according to the general principles of field theory and
ideas about hadron interactions, the total cross section
cannot increase with energy faster than In’s. The upper
bound was recently improved [84], with the coefficient in
front of the logarithm shown to be half that in the earlier limit,

o < T lnzi, (31)

2m}? S0

where 1, is the pion mass. If estimated at present energies,
this bound is still much higher than the experimentally
measured values of the cross sections, with so =1 GeV?
chosen as a ‘natural’ scale. Therefore, this is only a functional
constraint; it forbids extremely fast growth of the total cross
section, asymptotically exceeding the above limits. Both the
coefficient in front of the logarithm in (31) and the constancy
of sy are often questioned. In particular, some possible
dependence of sy on the energy s has been pointed out (see,
e.g., [85]).

The Heisenberg uncertainty relation shows that such a
regime favors an exponentially bounded spatial profile of
the matter density distribution D(r) in colliding particles,
such as D(r) o< exp (—mr). Because the energy density is
ED(r) and there should be at least one created particle with
mass m in the overlap region, the condition ED(r) =m
leads to r < (1/m)ln(s/m?) and, consequently, to the
functional dependence in (31).

It was Heisenberg who first proposed such a behavior of
total cross sections [86]. He considered the pion production
processes in proton—proton collisions as a shock wave
problem governed by some nonlinear field theory equations.

To study the asymptotic regime, some theoretical argu-
ments based on the general principles of field theory and the
analogy of strong interactions to massive quantum electro-
dynamics [87] were promoted. The property that the limits as
s — oo and M — 0 (where M is the photon mass) commute
has been used [88], implying that the asymptotic domain of
strong interactions coincides with the massless limit of
quantum electrodynamics. These studies led to the general
geometric picture of two hadrons colliding with asymptoti-
cally high energies and interacting as Lorentz-contracted
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Table 1. The gray and Gaussian disks models (X = o¢/0(, Z = 4nB/ay).

Model 1 —exp(—Q) =1TI(s,b) gy X VA X/zZ Xz
Gray a0(R—b),0<a< 1 2noR? R%/4 /2 1/20 o2 1/4
Gaussian aexp (—bh2/R?),0<a < 1 2noR? R?/2 o/ 1/a a?/4 1/4

black disks (see also review paper [89]). In what follows, we
discuss some other possibilities as well. But as a starting point
for further reference, we describe the predictions of this
proposal.

The main conclusions are:

(1) For black (Q(s,b) — o0) and logarithmically expand-
ing disks with finite radii R (R = Rglns, Ry = const), it
follows from (23) that g, asymptotically approaches infinity
as

oi(s) =2nR* + O(Ins), R= Rylns, Ry =const. (32)

(2) The elastic and inelastic processes make equal con-
tributions to the total cross section:

(33)

This quantum mechanical result differs from ‘intuitive’
classical predictions.

(3) The width of the diffraction peak B~!(s) must shrink
because its slope increases as (see also [90])

2

B(s) = RT + O(Ins).

(4) The forward ratio of the real part to the imaginary part
of the amplitude p, must vanish asymptotically as

(34)

- -2
20 7lns+0(ln s).

(35)
This result follows directly from Eqn (9) for oy o< In?s.

(5) The differential cross section has a shape resembling
the classical diffraction of light on a disk:

do _ RR4<JI <qR>>2’

dt qR

(36)
where g% = —1.

(6) The product of ¢ with the value y of |7| at which the
first dip in the differential elastic cross section occurs is a
constant independent of the energy:

yoy = 2B + O(In~' ) = 35.92 mb GeV?, (37)
where 5, = 1.2197 is the first zero of J; (fin).

These are merely a few conclusions among many others,
albeit model-dependent ones.

None of these asymptotic predictions have been observed
yet in experiment.

Surely, there is another possibility—more realistic at
present energies — that the black disk model is too extreme
and the gray fringe always exists. It opens the way to much
speculation, with many new parameters concerning particle
shape and opacity (see, e.g., [78, 80, 81, 91-102]).

The black disk limit might be unrealistic. Therefore, in
Table 1 we show the predictions of the gray disk model with
the steep rigid edge described by the Heaviside step-function

and the Gaussian disk model. The total cross section, the
slope B, the ratio of the elastic to total cross section
X = gq /0y, the ratios Z = 4nB/oy and X/Z, and the product
XZ are displayed there; I'(s,b) is the diffraction profile
function.

The slope B is completely determined by the size of the
interaction region R. Other characteristics are sensitive to the
blackness of disks «. In particular, the ratio X is proportional
to a. The ratio Z plays an important role for fits at larger
angles, as explained in Section 4.2. It is inversely proportional
to a. The corresponding formulas are given by (23)—(25). The
black-disk limit follows from the gray-disk model at o = 1.
For a Gaussian distribution of matter, the disk becomes
nontransparent at its center in this limit. The parameter XZ
is constant in these models and does not depend on the
nucleon transparency. On the contrary, the parameter X/Z
is very sensitive to it, being proportional to 2. Therefore, it
would be extremely instructive to obtain knowledge about
them from experimental data.

In Table 2, we show how the above ratios evolve with
energy according to experimental data. Most of the entries,
except the last two, are taken from Refs [91, 103], with the
simple recalculation Z = 1/4Y. The data at Tevatron and
LHC energies are taken from Refs [48, 49, 104]. All results are
for pp scattering, except those at 546 and 1800 GeV for pp
processes, which should be close to pp at these energies. The
accuracy of the numbers listed in Table 2 can be very
approximately estimated to be better than +10% from
known error bars for the cross sections and the slopes.

Table 2. The energy behavior of various characteristics of elastic scatter-
ing.

Vs, | 270 | 4.11 | 474 | 6.27 | 7.62 | 13.8 | 62.5 | 546
B

1800 | 7000

X 0.4210.28 1027|024 ]0.220.18 | 0.17 | 0.21 | 0.23 | 0.25
zZ 0.64|1.02]1.09|1.26]|134]|1.45]|1.50]|1.20] 1.08 | 1.00
X/Z|0.66|0.27 025|021 {0.17 | 0.16 | 0.11 { 0.18 | 0.21 | 0.25
XZ 10.2710.2810.290.30]0.30 | 0.26 | 0.25] 0.26 | 0.25 | 0.25

The most interesting feature of the experimental results is
the minimum of the blackness parameter « at ISR energies. It
can be clearly seen in the minima of X and X/Z and in the
maximum of Z at /s = 62.5 GeV. The steady decrease in
ratios X proportional to o and X/Z proportional to «? up to
the ISR energies and their increase at SppS, Tevatron, and
LHC energies means that the nucleons become more
transparent up to the ISR energies and more black toward
7 TeV. The same conclusion follows from the behavior of Z,
which is inversely proportional to «. The value of Z rapidly
approaches its limit for the Gaussian distribution of matter in
the disk. For the Gaussian shape, the parameter X/Z cannot
exceed 0.25. This model is excluded only at low energies.
According to Eqn (12), XZ ~ 0.25(1 + p¢), which is indeed
close to 0.25 within the experimental errors, the estimate of
p¢ < 0.02, and slight variations of B inside the cone in the
framework of our crude model as predicted in Table 1. This
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shows that our models are not bad for qualitative estimates in
a first approximation.

Before discussing various fits, we briefly comment on
some important general trends in high-energy data observed
in experiment.

(1) Total cross sections increase with energy. At present
energies, the power-like approximation is the most preferable
one. The preasymptotic behavior of g, proposed in earlier
papers [87, 88] was

o oxsIn"?s, (38)
where the numerical value of a was estimated to be of the
order of unity in strong interactions. It was shown in [105] to
lie in the range between 0.08 and 0.2, which is close to values
obtained in recent phenomenological fits. The power-law
increase persists in a wide interval of energies (see Ref. [106]
for the recent analysis of experimental data). Consequently,
the density distribution in colliding particles is closer to a
power-like dependence than to an exponential one in that
energy range.

(2) The ratio X = o¢/0¢ decreases from low energies to
those of ISR, where it becomes approximately 0.17 and then
strongly increases to 0.25 at the LHC energies. However, it is
still quite far from the asymptotic value 0.5, corresponding to
the black-disk limit.

The only higher-energy data came from the Pierre Auger
collaboration, which recently reported [107] a measurement
of the inelastic p—air cross section g} *" at \/s = 57 + 6 TeV.
After some corrections and Glauber model calculations, it
results in the pp inelastic cross section ¢!’ ~ 90 mb. Some
models [108—110] extrapolate their predictions for the total
cross section to this energy and obtain a value of about
135 mb. Hence, the ratio of the inelastic to the total cross
section could become equal to 0.67, which is smaller than 0.75
at 7 TeV. However, it is premature to reach any definite
conclusions because of large errors in the cosmic ray data and
the underestimated value of the total cross section predicted
to be 7 TeV by the model [108-110]. The extrapolation to
infinite energies done in the same model leads to this ratio
estimated as 0.509, which is compatible with the black-disk
predictions. Still, asymptopia is but an elusive concept!

Sometimes, the modified black-disk limit is attributed to
the sum of elastic and diffractive processes [111]. It may then
be that

od +oarr 1
Oel T Odift

Rt (39)

where aggirr is the sum of cross sections of single and double

inelastic diffraction. The fits in Ref. [106] suggest that the

relations
gq 1 oarr 1
2el 2diff

- (40)

Ot 3 ’ Ot 6

can be valid separately.

(3) The diffraction peak shrinks about twice from energies
V5 =~ 6 GeV, where B ~ 10 GeV~2, to the LHC energy, where
B =~ 20 GeV~2. At the ISR energies, the slope B(s) increases
logarithmically. Accounting for LHC data requires a stronger
dependence than a simple logarithmic one. The terms
proportional to In® s are usually added in phenomenological
fits. Even then, predictions [112, 113] are not completely

satisfactory. At present energies, in connection with the
power-like preasymptotic behavior of ¢, we could also
expect a faster-than-logarithmic shrinkage of the diffraction
peak.

The tendency in the peak behavior at larger [¢| also
changes with an energy increase. In the energy region up to
ISR, it becomes less steep near its end (see Figs 4 and 5 in
Ref. [45]), but its slope increases at the LHC energies. Both
the minimum and maximum following the peak shift to
smaller [].

As regards the behavior of the differential cross section as
a function of the transverse momentum behind the maximum,
the r-exponential of the diffraction peak is replaced, accord-
ing to experimental data, by a (—\/m ~ —py)-exponential at
the intermediate angles:

% x exp (—2av/1]),

The slope 2a in this region also increases with the energy, and
the whole Orear region shifts to the ever lower transferred
momenta.

In this connection, we also note an intriguing property of
the ratio Z = 4nB/ g, which is closely related to the value of
the slope B. From Table 2, we see that it is about 1 at
Vs =4 GeV, increases to 1.5 at ISR energies, and then again
drops to around 1 at 7 TeV. This ratio, in combination with
values of p at different angles, determines the slope in the
|z| region beyond the diffraction peak at any s (see Ref. [58]
and the discussion in Section 4.2.2). According to Eqns (32)
and (34), Z should decrease and be asymptotically equal to
1/2 in the black-disk limit, such that the relation

o = 8B

a~+VB. (41)

(42)

be asymptotically fulfilled. At the LHC energy 7 TeV, the
coefficient in the right-hand side is still half as much.
However, if the preasymptotic power-like increase in the
total cross section accompanied by a slower increase in the
slope persists, the tendency to this limit looks quite promising.

The relation between oy and B is also discussed in
Refs [106, 114]. In particular, the fits in [106] correspond to
the value Z ~ 0.93 at Auger energies 57 £ 6 TeV, i.e., lower
than 1 at 7 TeV.

(4) As a function of energy, the ratio p, increases from
negative values at comparatively low energies, crosses zero in
the region of hundreds of GeV, and becomes positive at
higher energies. This is a general tendency for collisions of any
initial particles. For pp scattering, the prediction of (35) with
values of s scaled by 1 GeV is still somewhat higher (about
0.177) than the estimates from dispersion relations (= 0.14 in
Refs [110, 115]), even at 7 TeV, while strongly overshooting
them at ISR, where 1/ In s ~ 0.37. No logarithmic decrease is
seen in these predictions, which, however, depend on the
behavior of the total cross section at higher energies. More-
over, the value 0.14 can only be reached according to (35) at
the energy of 75 TeV. Probably, at energies higher than
75 TeV, the first signs of approach to the asymptotic regime
will become visible. No data about p, at the LHC energies
exist yet. The local value of p, estimated from Eqn (9) with a
power-like fit of the total cross section, proportional to 54, is
po ~ nAd/2. That agrees quite well with the soft Pomeron
intercept 4 ~ 0.08.

(5) To describe the shape of the differential cross section in
the diffraction cone, significant corrections to Eqn (36) must
be added at present energies. This is discussed in Section 4.1.
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(6) The product yo; changes from 39.5 mb GeV? at
/s = 6.2 GeV to 51.9 mb GeV? at /s = 7 TeV and strongly
deviates from the predicted asymptotic value (37). The total
cross section gy increases faster than y decreases.

From the geometrical standpoint, the general picture is
one of protons becoming blacker, edgier, and larger (BEL)
[116]. We conclude that even though the qualitative trends
may be considered rather satisfactory, we are still quite far
from the asymptotic regime, even at the LHC energies. This
feature may be connected [117, 118] with the strong evolution
of the parton content of strong interactions at present
energies, revealing itself in an increase in the number of
active parton pairs inside each proton with energy increase
(higher density) and a softening of the structure functions,
which leads to lower energy shares x for each parton pair
(larger radii).

4. Experimental data
and phenomenological models

As always, our knowledge about particular physical processes
is limited by the practical possibility of measuring their
characteristics. As mentioned above, numerous experimen-
tal data on elastic scattering of hadrons at various angles and
at different energies have been obtained. Unfortunately, in
some of them, the available region of angles is strongly limited
by the experimental setup. Therefore, a comparison with
theoretical proposals is possible only in the corresponding
range of angles and energies.

The data and their fits at various energies and in different
intervals of transferred momenta for different participating
particles are so numerous that it is impossible to show all of
them in a single review paper. Therefore, from the very
beginning, we use the latest results of the TOTEM collabora-
tion at the highest LHC energy, 7 TeV, as a reference point
[48, 49]. The discussion of theoretical models is also concen-
trated around these data.

The total and elastic cross sections at 7 TeV are
respectively estimated as 98.3 mb and 24.8 mb.? The figures
from published papers [48, 49] demonstrating the behavior of
the differential cross section as a function of the transferred
momentum are displayed below. They clearly confirm the
existence of the three regions discussed above.

The cross section shape in the region of the diffraction
cone [48] is shown in Fig. 1. The t-exponential behavior with
B =20.1 GeV~2 is clearly seen at |¢| < 0.3 GeV2. The peak
steepens at the end of the diffraction cone, and its slope
becomes approximately 23.6 GeV~2 in the || interval (0.36—
0.47) GeV?. The results at somewhat larger angles [49] in the
Orear region are presented in Fig. 2. The dip at |¢| ~0.53 GeV?
with a subsequent maximum at || ~ 0.7 GeV? and the /1]
exponential behavior are demonstrated. Some curves corre-
sponding to different model predictions are also drawn here.
The same data as in Fig. 2 are shown in Fig. 3, but with more
details, including the steepened slope, the dip position, and
the region of |¢| ®-behavior. The last one is ascribed to the
hard parton scattering processes.

We congratulate all members of the TOTEM collabora-
tion with this fantastic achievement! Their efforts are truly
appreciated when estimating the values of angles at which the
measurements had to be done. They were even smaller

2 Here, we do not reproduce the statistical and systematic errors. They are
shown in the original papers.
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Figure 1. The differential cross section of elastic proton—proton scattering
at /s = 7 TeV measured by the TOTEM collaboration (Fig. 4 in [49]). The
region of the diffraction cone with the |7|-exponential decrease is shown.
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Figure 2. The differential cross section of elastic proton—proton scattering
at /s = 7 TeV measured by the TOTEM collaboration (Fig. 4 in [48]). The
region beyond the diffraction peak is shown. Predictions of five models are
demonstrated.

than 107*! Detectors had to be installed at very long
distances from the collision point to obtain results at low
transferred momenta. These data revived interest in elastic
scattering.

Theoretical models usually describe the diffraction cone
and values of the total and elastic cross sections related to it
more or less precisely (therefore, their fits are almost
indistinguishable in that region and are not drawn in Fig. 1).
However, all of them fail to quantitatively predict the
behavior of the differential cross section outside the diffrac-
tion cone, as can be seen in Fig. 2. The predictions of five
models [79, 92, 110, 119, 120] are drawn here. They are very
widely spread around the experimental line. We can conclude
that just this region becomes the Occam razor for all models.
In what follows, we consider these models, as well as some
others, in more detail.

The three intervals of [¢| (the diffraction cone, the Orear
regime, and the region of hard parton scattering) are
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Figure 3. The differential cross section of elastic proton—proton scattering
at /s = 7 TeV measured by the TOTEM collaboration (Fig. 3 in [48]). The
same regions as in Fig. 2 are shown with the values of the steepened slope
near the diffraction peak, the position of the dip, and the power-like
behavior at the largest transferred momenta.

characterized by different dynamical content, as we under-
stand it now. They require separate approaches to their
descriptions. It seems reasonable that these regions are
governed by different but interrelated physical mechanisms.
In particular, different spatial regions of overlapping
colliding objects are responsible for corresponding effects.
Sections 4.1-4.3 are devoted to theoretical approaches to
their explanation.

4.1 Diffraction cone and geometric approach

The internal structure of colliding, strongly interacting
particles plays a crucial role in the outcome of their
collisions. In high-energy hadron-hadron scattering, each
hadron behaves as an extended object. They can be described
by their size and the density of their constituents. The simplest
models are demonstrated in Table 1.

Since long ago, it has been believed that hadrons
contain some denser core surrounded by a meson (pion)
cloud at their periphery. This idea was a cornerstone of the
one-pion exchange model, which was first proposed in
Ref. [121] to describe particle production in peripheral
interactions. It evolved into the well-known multiperiph-
eral and (multi)Reggeon exchange models (see, e.g., [122—
124] for early review papers). They are rather successful in
describing many features of multiparticle production pro-
cesses. The multiperipheral approach developed, for instance,
in the framework of the Bethe—Salpeter equation (see
Ref. [124]) can be considered an attempt to account for the
t-channel unitarity.

Nowadays, it is commonly believed that at very high
energies, the total cross section is dominated by peripheral
events. In modern parlance, this is related to the long-range
nature of the field of ‘perturbatively massless’ gluons. The
exchanged boson mass may mimic a nonperturbative mass
gap in QCD with an ‘effective’ gluon mass of the order of

1 GeV and a gluon—gluon correlation length of about 0.3 fm.
The pion mass scale is rather small, and more general ‘boson’
exchange is preferred. The weight factors of different mass
scales take the impact parameter distribution of the particle
opacity into account.

The role of inelastic channels in describing elastic
scattering can be revealed by understanding the origin of
and prescribing a definite shape to the overlap function
F(p,0) in the s-channel unitarity condition (18) or, equiva-
lently, to its Fourier transform in the impact parameter
picture. The scattering is mainly diffractive, i.e., it is due to
the absorption of incoming waves in many open inelastic
channels. Its quantitative field-theory treatment presents a
serious unsolved problem.

The overlap function contains the sum of products of a
matrix element of the inelastic process with a particular final
state and the complex conjugate matrix element with the same
final-particle content. However, their kinematical difference
must be taken into account because the two final protons are
scattered at an angle 6 relative to the initial ones. Correspond-
ingly, the overlap of the momentum distributions of the
intermediate inelastic n-particle states is nontrivial kinemati-
cally and, what is especially important, the phases of these
matrix elements become crucial. The phases are related to the
position in space where particles are produced. It has been
pointed out in many papers [125-128] that only the phase
cancelation effect, which is closely related to particle correla-
tions in inelastic processes, can lead to a realistic shape of the
diffraction cone. The problem of properly accounting for
them has not yet been solved.

At the same time, elastic scattering should be less
peripheral because of a larger number of exchanged objects
if regarded as an s-channel iteration of the overlap function.
The great difficulty in transferring large momenta reveals
itself already in the sharp shape of the forward diffraction
peak. There have been numerous attempts to understand it in
terms of the peripheral approach (see, e.g., [129-133]).
Unfortunately, no framework for commonly accounting for
both the s- and f-channel unitarity conditions has been
developed.

In general, there have been many ideas proposed for
describing elastic scattering processes, but no cogent theore-
tical arguments to justify the particular forms relying mainly
on ‘intuition’ have been offered. The fact that they are very
simple is usually the only advantage. Any strict interpretation
is an idealization and as such should not be expected to be
exactly true.

4.1.1 Geometry of the internal hadron structure. The key
elements of the geometric approach are the use (a) of the
impact parameter picture with Fourier —Bessel transforma-
tion (21), (22) from the transferred momenta amplitude to the
spatial description, (b) of eikonal approximation (22), and (c)
of unitarity condition (26). The S-matrix in the impact
parameter picture is chosen in the exponential form

S(s,b) = exp (—Q(s, b)) , (43)

and the convolution approximation for the real opacity Q for

elastic AB scattering is used:
Q(s,b) = KDy ® Dg.. (44)

Here, ® denotes the convolution of hadronic matter density
distributions D for A and B, and K is an energy-dependent
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factor. The assumptions about the validity of the eikonal
approximation, the nearly imaginary character of the scatter-
ing amplitudes at low transferred momenta, the proportion-
ality between the hadronic matter distribution and the electric
charge distribution, the exponentiation of the S-matrix in
b-space, and the validity of unitarity condition (26) are widely
used.

The droplet model [134, 135] for elastic collisions was the
first to fully exploit all the above elements. Particles were
pictured as very much similar to nuclei. Correspondingly, the
notion of the density distribution D inside a particle was
introduced such that

+00
D((b* +x)'?) dx.

—00

Q(s,b) = constJ (45)

In potential models, it corresponds to the WKB approxima-
tion. For the Gaussian shape of /(s, b), it is possible to solve
for D from (45), obtaining the function familiar in the theory
of Bose—Einstein condensation of free particles [135]. In the
droplet model, the disk properties are independent of the
energy at sufficiently high energies. Many diffractive minima
in the differential cross section have been predicted. The
dipole form factors in the t-representation led to Q(s, b) with
a shape of the modified Bessel functions, which allowed
fitting differential cross sections at ISR energies [136, 137].
The intuitive picture of high-energy hadron collisions as two
extended objects breaking into fragments (and thus defining
the overlap function!) has promoted the hypothesis of
limiting fragmentation [138] inspired by the droplet model.

Models based on consideration of tower diagrams [50, 87]
predict that the disk becomes larger and more absorptive as
the energy increases. Both the black core and gray fringe
expand with energy and become more absorptive.

The first estimates of the radii of protons, pions, and
kaons from their form factors [139-141] showed that protons
are larger than pions and kaons. This is not surprising, in view
of the smaller cross sections of mp and Kp interactions than
those of pp. The typical size is somewhat smaller than 1 fm.
The proton hadronic matter distribution was fitted by a
dipole form similar to the electric form factor but with the
energy-dependent radius.

Other early attempts to consider the elastic scattering of
hadrons also stemmed from the analogous simple geometric
treatment of their internal structure [136, 137, 142-144].
Later, more complicated models were used. The main focus
is, surely, on processes at small angles within the diffraction
cone. They define the bulk contribution to the elastic
scattering cross section due to the steep falloff of the
distribution with increasing angles. Different models happen
to fit the experimental data quite well in a wide energy range.
But they fail outside the diffraction peak, as mentioned
above. Large-angle scattering requires more central colli-
sions with a lower impact parameter to probe the internal
content of particles. Therefore, these regions of transferred
momenta are discussed separately below.

Some ideas stemmed from regularities in inelastic pro-
cesses. The multiplicity distributions of created particles are
closely related to the purely geometric notion of the centrality
of collisions. When the scaling of multiplicity distributions
[146] was supported by experimental data, the proposal of the
geometric scaling [145] for the elastic amplitude was pro-
moted. The difficulties in accelerating the various parts of a
nucleon without breaking it up had to be accounted for.

Figure 4. The nucleon structure according to the model in [63, 93, 94, 119].
The three regions of the internal structure are supposed to be directly
responsible for the three regimes in the behavior of the differential cross
section.

The basic idea of the geometric scaling is that at
sufficiently high energies, the amplitude A(s, t) depends on a
single variable, the scaling parameter 7:

(46)

This idea has led to several predictions at asymptotically high
energies, and is still actively being debated. Such scaling was
proved [147, 148] for cross sections increasing as In* (s/so)
and for an infinitesimally small ratio of the real to imaginary
part of the amplitude p — 0 as s — oco. The latest results on
p(s, 1) discussed in Section 4.2.5 do not support this assump-
tion.

The purely geometric standpoint is adopted in Refs [63,
93, 94, 119]. The three regions in the behavior of the
differential cross section are clearly reflected in the three
spatial scales of the internal hadronic structure considered in
[93, 94, 119,104]. The authors of this three-scale model claim
that the nucleon has an outer cloud of the quark—antiquark
condensate, an inner shell of the baryonic charge density, and
a still smaller internal core of massless color-singlet valence
‘quarks’ surrounded by low-x gluon clouds about 0.3 fm in
size. This picture is shown in Fig. 4.

The diffraction cone is described as a result of cloud—
cloud interaction, represented by a class of potentials contain-
ing the sum of modified Bessel functions. The least massive
exchanged quanta are the most important ones. At larger
momentum transfers, the baryonic charge at intermediate
distances is probed by the w-exchange. The internal region
filled in by the valence quarks starts playing its role in the
presence of even larger transferred momenta.

The diffraction profile function, which defines the range
of different densities and, correspondingly, different forces, is
taken to be

I(s,b) =1—Q(s,b)
1 . 1 »
I+exp[(b—r)/a] 1+exp[(—=b+r)/d]
(47)

=g(s)
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The parameters r and «a are energy dependent,
s in s in
r=ro+rn|{lnl—)—-=), a=a+a|{ln(—)—-—=],
S0 2 S0 2

and g(s) is a coupling strength; sy = 1 GeV?2.

These functions render the shape of the differential
cross section, similar to the Fraunhofer diffraction (see
Section 4.1.2), with the form factor proportional to
ndq/sinh (ndq) (¢*> = —t, d is an adjustable parameter)
proposed a long time ago [148—153]. This form factor also
extends somewhat to transferred momenta outside the
diffraction cone. Unfortunately, the contemporary phenom-
enological analysis of experimental data is not able to
determine the impact parameter profiles unambiguously.

The scattering due to w-exchange is parameterized by the
product of the w-propagator and two form factors F directly
in the (s, 7)-representation:

P (49)

Ao(s, 1) o sexp (ix(s,0)) ——
The amplitude due to quark—quark scattering has two
‘structure factors’ G of valence quarks (different from the
above form factors): the propagator with the black disc radius
rg of qq asymptotic scattering and s-dependent factors with
the hard Pomeron intercept equal to 1 + oy:

. : i\ G2(1)

Aqgq(s, 1) ocisexp (ix(s, 0)) {sexp <— 5)]

—— . (50
re 4 1] (50)

In total, there are seventeen adjustable parameters in the
model.

As mentioned in [49], the fits according to this model
predict too low a value of the slope B at |t| = 0.4 GeV? and
strongly disagree with experiment at 7 TeV outside the
diffraction peak (see Fig. 2). Formulas (49) and (50) are
aimed to improve the fit just in this region, but they do not
help.

In general, an internal region of the nucleon where the
gluons cluster around the original valence quarks resembles
the valon model [154, 155]. Similar pictures arise in the QCD-
inspired models discussed below.

Surely, some care should be taken for any such model to
be accepted and the geometric picture to be considered
seriously, especially in view of its success or failure to
describe experimental data in the whole range of transferred
momenta at various energies.

4.1.2 The modified Fraunhofer diffraction. For a long time
(see, e.g., Ref. [156]), the formulas of classical diffraction of
light on a (black or grey) disk with the traditional Bessel
functions have been used for hadronic reactions. Recently, an
analogous expression for the elastic amplitude was consid-
ered in Ref. [157]:

A(s, t| = qz) =C dq (i J1(Rq)

P
sinh (ndq) Rq +§ JO(Rq)) - (D
The free parameters in arbitrarily chosen analytic expression
(51)are C, R, d, and p. The first term resembles the expression
for the black disk, Eqn (36). The suppression at large
transferred momenta is assumed to be approximated by the
form factor in front of the Bessel functions. In the impact

parameter representation, this shape corresponds to the
ordinary Fermi profile used, e.g., in Refs [93, 94, 119, 158]
and shown in Eqn (47):
1
x .
1+exp[(b—R)/d]

h(b) (52)

The second term in brackets in (51) takes the contribution due
to the real part of the amplitude into account. It should
smooth the behavior of the differential cross section near
zeros of the first term. This seems to be the only difference
from the first component of the previously discussed model
[93,94, 119].

And, again, comparison with experimental data shows
that the results of fits are satisfactory in the diffraction cone,
but not outside it. The form factor in front of common Bessel
functions does not fit the large-|¢z| trends of experimental
distributions.

Throughout these developments, modifications of early
guesses have been found necessary, but the general spirit of
the geometric description remains immutable and viable.

4.1.3 Electromagnetic analogies. The strongly interacting
content of hadrons is often considered to be similar to their
electromagnetic substructure [136, 137]. Similarly to the
droplet model, the assumption of the proportionality
between the hadronic matter distribution and the electric
charge distribution is used in many models. However, in most
of them, the electromagnetic form factors are used in
combination with Reggeon exchanges because, considered
alone, they do not reproduce the energy dependence of the
main characteristics. But the assumption about the full
congruence of these distributions is not necessarily valid,
since gluons do not carry an electric charge even though
they play an important (if not decisive) role in high-energy
strong interactions. That is why the charge and matter
distributions in some models are parameterized separately
or some corrections are added.

Using the experience from calculations of tower diagrams
in electrodynamics and the impact-parameter representation,
it was proposed [92, 159-161] that the possibility of choosing
the opacity Q(s,b) in a factored form be considered:

Q(s,b) = R(s) F(b*) + (nonleading terms), (53)
where R(s) is chosen to be crossing symmetric under s < u
and to reproduce the energy dependence of the Pomeron,
considered as a fixed Regge cut,

s¢ u¢

RO = e T 4

while F(b?) is taken as the Bessel transform of

2a2+t
a’—t

F(r) = f]G(1)]

. (55)

Here, G(¢) stands for the proton ‘nuclear form factor’,
parameterized like the electromagnetic form factor with two
poles:

1
(L=t/mP)(1 —t/m3)

G(1) = (56)
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Other factors with the parameter a are introduced ‘by hand’.
They can be treated just as a correction due to the different
shapes of distributions of charge and matter. There are six
adjustable parameters in total used at high energies if the
Regge background is neglected. The noticeable t-dependence
of the slope B(t) in the diffraction cone is predicted. However,
its values at 7 TeV are lower than experimental ones (about
18 GeV~2 instead of 20.1 GeV~?) at 1072 < |¢| < 0.3 GeV?,
slightly exceed them in the tiny interval near 0.35 GeV?, and
do not reach the value 23.6 GeV~2 mentioned above.

This model is close to the TOTEM data [48, 49] for the dip
position and the exponential at very large |f|, but predicts
values of the differential cross section in the Orear range
about twice as large, |7| > 0.36 GeV? (see Fig. 2). In addition
to the dip, some ‘oscillations’ at the transferred momenta of
several GeV? are predicted (up to the energy of 6000 TeV) but
not yet observed. In general, such structures appear as a
byproduct of the eikonal approach and unitarization proce-
dure (see, e.g., Ref. [95]). Their energy dependence is strongly
determined by the parameters used in formula (54) to account
for the crossing symmetry property of the amplitude.

The same parameters are crucial for the behavior of the
real part of the amplitude. It is interesting that the model
predicts the dominance of the imaginary part of the amplitude
even at large transferred momenta. The real part becomes
important only at zeros of the imaginary part. The dip and
oscillations are noticeable precisely there. Near the cone, the
model predicts two zeros of the real part of the full
(Coulomb + nuclear) amplitude at |z| = 0.0064 GeV? and
the nuclear amplitude alone at |¢| > 0.18 GeV?2, as well as
one zero of the nuclear imaginary part at |¢| = 0.5 GeV>. In
the differential cross section, the last zero is partly compen-
sated by the real part.

We note the difference between the power-like expression
for F(r) and its exponential behavior in the traditional Regge
models. The exponentiation of this form of F(z) leads to
additional oscillations.

A similar but more complicated combination of the form
factors has been used in Refs [73, 74, 162-165]. The authors
consider r-dependent Mellin transforms of parton distribu-
tions and claim that the first moment G defines the form
factor of the standard Pomeron, while the second moment A
corresponds to interaction attributed to three nonperturba-
tive gluons. Thus, the behavior of the differential cross section
is determined by the electromagnetic form factors at small ¢
and by the matter distribution at large ¢. The Born term of the
elastic scattering amplitude is written as

A4 Born(s7 Z) — hle([)Fa(57 [) (1 +S}:)—15)

+ ha H()Fy (s, 1) (1 + §’0?5> , (57)
where
Fu(s,1) = 39 exp (B(s)1),  Fy(s.1) = 5 exp B(:)’, (58)
14 4m?2 —2.793¢ L4
G(t) = e . H()=—"2—, (59)
(L} —1)°  Amy —t (L3 - 1)

L2 = 0.71 GeV?, L3 =2GeV2, §=sexp(—in/2)/so, so =
1 GeV?, B(s) = a’In (s/sp), and a’ = 0.24 GeV—2. We note
that the slope of the second term is chosen as one fourth that

of the first term. The final form of the amplitude is obtained
after eikonalization of the Born contribution using the
opacity

1 M orn
Q(s,b) = ﬂJqu exp (igh) AB°™ (5,4 = —1). (60)

The total cross section at 7 TeV was predicted to be equal to
95 mb. Authors demonstrate good fits of pp and pp
differential cross sections, as well as of p,(s), in a wide energy
range, including the TOTEM data. Only five (three for high
energies and two for low energies) adjustable parameters are
claimed to be used if all the above values are regarded as fixed.
In fact, there are 10 such additional ‘hidden’ parameters in
total if the hard Pomeron is also considered. Surely, the
contribution from secondary Reggeons at LHC energies is
negligible, i.e., smaller than the experimental errors.

The real part of the hadron amplitude is completely
determined by the complex expression for §. Its --dependence
appears just as a byproduct of the eikonalization procedure.
As a function of ¢, it tends to zero at |¢| =~ 0.16 GeV? at the
energy of 7 TeV. The interesting predictions of the #-behavior
of p(s, ) at nonforward transferred momenta for different
energies are presented. They are discussed in more detail in
Section 4.2.4.

4.1.4 Reggeon exchanges. The Regge-pole model is beyond
dispute one of the most explored. It will have already been
noticed that the notion of Regge trajectories has been used in
the preceding subsections as well. The only reason to discuss
these models separately there was their stronger inclination to
the use of nonexponential electromagnetic form factors and
geometric pictures in the s-channel approach. At the same
time, Reggeon models appeal mostly to the r-channel
approach.

The amplidutes with Reggeon exchanges in the 7-channel
are natural candidates for explaining the exponential decrease
in differential cross section (6) with the squared transferred
momentum |¢| inside the diffraction cone. Just this shape is
typical for them because it follows from the linearity of Regge
trajectories. Moreover, they predict a logarithmic increase in
the hadronic radii as the energy increases, i.e., a logarithmic
increase in the cone slope B or the corresponding shrinkage of
the width of the diffraction cone. This prediction is also
supported by experiment. In the common Regge-pole mod-
els, the disk becomes larger and slightly more transparent as
energy increases.

The standard Regge-type models [73, 74, 97, 166, 167] use
the combination of contributions due to the exchange by the
(multicomponent) Pomeron, Odderon, and secondary
Reggeon trajectories corresponding to f and ® mesons with
or without the form factors chosen in a simple exponential
form or as power-like expressions resembling the electro-
magnetic structure of colliding partners discussed in the
preceding subsection. The price to be paid is the increased
number of adjustable parameters at each step of sophistica-
tion. To be more or less realistic, one has to use the knowledge
about some of them from other (independent?) experimental
results. But even under this condition, the ambiguity of their
choice and sensitivity to fitted parameters leave some freedom
in the conclusions.

The amplitudes of pp and pp scattering are approximated
by the sum of terms corresponding to the leading (Pomeron
and Odderon) and nonleading (f and ® meson) Regge
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trajectories:

A(s, )0 = Ap(s, 1) + Ar(s, 1) F (Ao + Ao(s,1)),  (61)
where the labels P, f, O, and o stand for the relevant
contributions. The sign in the pp and pp amplitudes differs
for C-even and C-odd terms.

The contributions of the nonleading Regge poles are
written as

AR(5,1) = ag exp (— i”“§<’)) exp (br) (;) " @

with O(R(l) = agr + brt.

While the secondary trajectories are usually chosen in a
standard linear way, the Pomeron and Odderon contribu-
tions can be regarded, for example, as dipoles with nonlinear
trajectories [166, 168—171]:

Ap(s,1) =i ;P—P;{rlz(s) exp [r{(s)(ap — 1)]

— cor3(s)exp [r3(5)(zp — )]}

where r2(s) = bp + L — in/2 and r}(s) = L —in/2 with L =
In (s/so). The unknown Odderon contribution is assumed to
be of the same form as that of the Pomeron. The parameters
of the trajectories and of the absorption ¢p have to be
adjusted. Their nonlinearity may be connected with the two-
pion threshold following from the #-channel unitarity [168,
170, 172]. However, there could be double counting of the
graphs with Pomerons attached on both sides to the pion
loop. This is well known from old peripheral models of
inelastic processes, where the self-consistent Bethe—Salpeter
equation had to be used for the proper account of the pion—
nucleon vertices. Different forms of nonlinear trajectories are
in use. For instance, the Pomeron trajectory is chosen in [173]
with four free parameters as

a(t) =g —yIn (1+pyig—1).

(63)

(64)

A more complicated nonlinearity was used in [172]. However,
the use of the pion mass as a scale there is questionable in view
of the above discussion.

The origin of the Pomeron and the parameterization of its
trajectory are still being debated. There is no strict rule for
choosing its shape. The dipole and even tripole forms of
unitarized Pomerons have been attempted. They mimic cut
contributions [174-177].

Moreover, there are arguments in favor of two Pomerons
with different intercepts. Even the fits with three Pomerons
are sometimes used [79, 97]. The soft Pomeron contributes a
term with the energy dependence s% (a5 = 0.08) to hadron—
hadron total cross sections, and the hard Pomeron makes a
small contribution (at present energies) with a stronger energy
dependence s (an =~ 0.4). These values of the intercepts stem
from the discussions of HERA data (see, e.g., [178]).
Although the hard-Pomeron exchange was unnecessary for
describing hadron—hadron total cross sections up to the
energies +/s below 1 TeV, it may reveal itself at LHC
energies, as argued in [179]. The model in [179] uses only two
terms in the expansion for opacity:

Q(s,b) = Qy(s,b) — % Q2 (s,b), (65)

where Qg stands for the contribution from single exchanges of
Reggeons (two Pomerons, f, and o) with the adjustable
parameter £, as well as for the triple-gluon exchange of the
form Cst ~* needed at larger values of |¢| and matched at some
t = to to exponential shapes of the diffraction peak and to the
dip region. Certainly, adding such a term allows fitting the
total cross section value at 7 TeV, but there is a suspicion that
the sharp increase in the hard-Pomeron contribution will
overpredict the cross sections at higher energies. The
unitarization will become mandatory once again. The
quality of the fit of the differential cross section beyond the
diffraction peak is no better than of the fits shown in Fig. 2.

Several variant forms of Born amplitudes and different
kinds of eikonalization have been attempted. There is no
consensus on their choice.

A form of the eikonal similar to (65) is chosen in [180] with
the exponential suppression

Oy(s,b) = Agexp [=m(s)(r§ +b%)""?] (66)
for central interactions. The peripheral part of the Pomeron
interaction with the meson cloud is parameterized [180] by a
small term increasing with the energy and resulting in a \/m
exponential fall-off of the differential cross section. The
geometric picture corresponds to a black disk with a gray
fringe, similarly to the above-described model [92].

In general, it is not easy to estimate the total number of
adjustable parameters in different models. There are para-
meters related to either ¢- (b-) or s-dependence. In some
papers, it is often assumed that part of them are known
from fits of other characteristics of hadron or electromagnetic
interactions at various energies and can therefore be con-
sidered known beforehand. For example, it is claimed that the
model in [166] contains about 15 parameters. In this case, it is
quite difficult to find the proper minima for the matrix of 3>
values. It is well known how unstable the final results can be:
one has to choose a step-by-step procedure for doing this and
use some special computer codes.

There are 25 adjustable parameters shown in Table 1 in
papers[79, 97]. However they include some values assumed to
be a priori fixed in [166]. At the same time, additional form
factors were inserted in the formulas, albeit with preliminarily
‘fixed” parameters. They were used to fit 982 pp and pp data
points in a wide energy range. Besides the elastic differential
cross sections, the total cross sections and the ratios p, were
considered. The fit in the interference region of Coulomb and
hadronic amplitudes with the same parameters helped in
choosing among the different Coulomb phases proposed
previously.

A similar situation is seen in the fits in Ref. [73, 74], where
it is claimed that the number of parameters is much less (only
5!). However, there are many other, hidden parameters (in
particular, those concerning the energy behavior and form
factors). They are held fixed from the very beginning, as was
discussed in Section 4.1.3.

As mentioned above, the simple exponential form of the
differential cross section in the diffraction cone is quite well
described. This becomes possible mainly due to the 7-shape of
the Pomeron trajectory in (63) and other Reggeons contribu-
tions in (62). The fits in this region at the different energies,
shown, e.g., in [73, 74, 97, 166], are quite impressive. The
evolution of the diffraction cone slope with energy is
reproduced [as described by L in (63)]. Unfortunately, the
variety of forms of Pomeron trajectories with different
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intercepts, slopes, and shapes of residues unitarized in
different ways and/or substituted by Regge cuts is so large
that it is impossible to show all of them in this review due to
the limited space.

The cuts with nonlinear trajectories mimic hard scattering
[98]. A common problem appears in predicting them at larger
angles. The fit according to the model in [79, 97] seems to be
most successful in predicting the position of the dip and the
shape at large |¢|, but exceeds the absolute value approxi-
mately twofold. The model in [166] strongly underestimates
it, with the wrong position of the dip and much slower
decrease at |¢| > 1.5 GeV?. This is well demonstrated in
Fig. 2 and is also discussed below.

We mention that all these papers follow the general
approach proposed much earlier [170, 181-183]. They just
deal with more detailed fits of newly available experimental
data.

4.1.5 QCD-inspired models. Each incident particle consists of
a superposition of Fock states with n partons [184], which are
scattered instantaneously and simultaneously by the other
particle. Some QCD-inspired models using this statement
have been developed. The role of partons is played by quarks
and gluons.

The two competing mechanisms of hadron interactions,
the increase in the density (« in Table 1) and in the radius R,
determine their specific features. In QCD, they can be
respectively ascribed to the leading-order solution of the
BFKL equation [185, 186] and to the long-range
(Weizsacker —Williams) nature of the field of massless
gluons. The density increase due to the BFKL evolution
leads to a power-law increase in the total cross section,
which is nonunitary and violates Froissart bound (31).
Therefore, at the critical density of the order 1/0s, the density
saturation must be taken into account [187]. The QCD
evolution in all orders in the gluon density but in the leading
logarithmic approximations is treated by the JIMWLK
equations [188]. With account of multiple scattering effects,
they can be simplified in the large-N, limit to a single
nonlinear BK equation for the gluon density [189, 190] when
the induced field density is small.

The density growth effects are preasymptotic. According
to [100], they are described by a hard Pomeron, while the
growth of the size of the black saturated regions (the radius) is
attributed to a soft Pomeron. The hard Pomeron manifests
itself in small systems or in small subregions inside hadrons.
The soft Pomeron appears in hadronic systems of a typical
size and is related to an increased size in the impact parameter
space. Only the increase due to the perturbative expansion in
the transverse plane remains effective.

There is no consensus about this scenario proposed in
Ref. [100]. The soft Pomeron is often used [80, 81, 191, 192] in
attempts to explain the preasymptotic power-law growth of
cross sections by an additional nonperturbative mechanism
superimposed on the BFKL scenario of a hard Pomeron. Itis
ascribed mainly to the density growth of gluon clouds around
quarks and not to the spatial scale of the interaction. Even
though the size of gluon clouds increases, it is still limited by a
short separation from their source. The proton looks like
three valence quarks surrounded by gluon clouds or spots
with mean sizes about 0.3 fm smaller than the proton radius,
of the order of 1 fm. Radiation from any additional gluon in
the cloud adds the factor In(s/sg) to the interaction cross
section, and hence their sum gives a power-like term of the

form

s\? 4o
O'tZG()-‘rGA(—) , A:3—5%0.17,

(67)
S0 T

with a large constant term ¢y and small o,4. Using the
standard dipole form factors of protons and quasi-eikonal
unitarization in the impact parameter space, the authors of
this two-scale model [80, 81, 192] fit many distributions with
10 parameters for the 7-dependence (subject to two additional
constraints) and some parameters for the s-dependence. Such
fits are, of course, aimed at high energies of colliding protons
where the effects of secondary Regge trajectories die out.
They are mainly successful in the diffraction cone and,
consequently, in describing the energy dependence of the
total and elastic cross sections.

Such a form of the total cross section with an energy-
independent term oy was proposed a long time ago [193-195]
and actively developed later [196-198] in the framework of the
parton model and semihard QCD, with the gluon—gluon
interaction playing the main role.

The main role of gluons is also incorporated in [99, 110].
The profile is chosen in a form containing the gg, qq, and
qg terms:

my
Q=0 W(b; lyg) + g <C+ Cr m) W(b; pqq)

K
+ 25 CogIn o w(b; (”qq“gg)l/2> J (68)
where the impact parameter distribution functions are
2 3
oy Mo (ub) K3 (ub)
Wb ) = I (69)
and the gluon—gluon interaction cross section is
0ge = Cag ngg@(fs ) Feg(t) dr, (70)

with Zee = 9n02 /m3, Feg= [ fo(x1) fo(x2)d(t — x1x2) dxy dx2,
and fy(x) = Ng(1 — x)° /x '+,

The Froissart bound for the total cross section is
reproduced with

2
oy = 2Tc(i) In? 5 .
.ugg 50

The parameter p,, describes the area occupied by gluons in
the colliding protons (the size effect), and e is defined via their
gluonic structure functions and therefore controls their soft
gluon content (the density effect).

Again, being successful in the diffraction peak with its
shape and normalization, the model in [99, 110] fails to
predict the correct behavior of the differential spectrum
outside it [48, 49]. Its prediction is more than three times
larger than the experimental value at the dip and the
subsequent maximum, while falling too steeply at ever higher
|7| above 1.5 GeV? (see Fig. 2).

Attempts to consider the semihard scattering of quarks
and gluons can be found in Refs [197-201].

The traditional partonic description of the process is
considered in a series of papers [172, 202-204]. The partonic
approach with a hard BFKL Pomeron can be merged into the
domain governed by the soft Pomeron. The transition from
hard to soft is induced by absorptive multi-Pomeron effects in
a limited energy range. The evolution produces parton

(71)
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cascades, not strongly ordered in transverse momenta, with
hot spots of a relatively small size in b-space. The saturation is
driven by the enhanced multi-Pomeron graphs, also regulat-
ing the high-mass dissociation. The calculations are done with
a 3-channel quasi-eikonal unitarization using the opacity
formalism. They reproduce the shapes of the differential
cross sections from ISR to LHC energies within the diffrac-
tion cone.

Another picture was considered in the framework of the
functional integral approach in Refs [205-208] using the
model of the stochastic vacuum and making the assumption
that the proton has the quark—diquark structure of a color
dipole, i.e., two quarks out of three are close together in
transverse directions. A matrix cumulant expansion is used
for vacuum expectation values of Wegner—Wilson loops [205]
related to hadronic amplitudes. The QCD vacuum para-
meters (the gluon condensate or the string tension, the
vacuum correlation length, and the parameter due to the
non-Abelian tensor structure), as well as the hadron size,
have been used. The imaginary part of the amplitude in the
b-representation was calculated. Its contribution to experi-
mentally measured quantities was shown to describe the
ISR and Tevatron data in the diffraction peak reasonably
well.

A more phenomenological approach to the quark—
diquark model was attempted in Refs [209, 210]. As above,
the correlated quark and diquark constituents are considered.
According to the detailed analysis performed in [211], from
ISR to LHC energies in the range 0.36 < |¢| < 2.5 GeV?, the
model is able to describe the data quite well, even outside the
diffraction peak, except the narrow strip around the dip. But
it shows a much stronger dip (by several orders of magnitude)
there than the experimentally observed one. Moreover,
similarly to the abovementioned calculations, the model
ignores the contributions to the real part of the elastic
scattering amplitude. As we saw previously, such contribu-
tions can smooth this dip. If so, their shape should drastically
differ from that of the imaginary part, at least in this strip, as
happened, for example, in the models with electromagnetic
form factors [92, 165].

4.2 Intermediate angles: the dip and the Orear regime
As long ago as the 1960s, experiments on elastic pp and np
scattering at comparatively low energies between 6.8 and
19.2 GeV in laboratory system [2, 9—11] showed that the steep
exponential fall-off of the differential cross section as a
function of the squared transferred momentum |¢| is replaced
by a slower dependence at larger |¢|. They showed that just
after the diffraction cone a shoulder was observed and, even
more surprising, a behavior exponentially decreasing with the
angle or with \/]7[, which was called the Orear regime after its
investigator [5, 6, 9]. A special session was devoted to these
findings at the 1968 Rochester conference in Vienna. The
shoulder evolved later into a minimum or dip at higher ISR
energies. It has also been observed at the LHC, as seen in
Figs 2 and 3.

It is interesting that at the FNAL-ISR energies /s = 6—
60 GeV, the exponential fall-off with an increase in \/m ~ Py
was observed up to quite large values || =~ 10 GeV? [20, 28,
45], with the exponent in the range from 6.2 to 7 GeV~! (see
Table 7 in Ref. [45]). It is even larger at the LHC (about 8—
9 GeV~!). The region becomes narrower and shifts to lower
values of |¢| from 0.5 to 1.5 GeV?. The power-like regime
already shows up at about || = 2—2.5 GeV? (see Fig. 3).

4.2.1 Gaussian fits. From the very beginning, it was noticed [5,
6] that it is possible to fit the differential cross sections at
intermediate values of the momentum transfer by an
exponential dependence on \m (or 6) except the relatively
small shoulder region. To take that into account as well, it was
primarily proposed [3] to use fits with Gaussian functions
with alternating signs of the coefficients directly in the
expression for the amplitude. In this way, both the diffrac-
tion peak and larger-|¢| behavior could be described. No
reference to any phenomenological model is given. From the
geometrical standpoint, one can imagine an internal structure
with envelopes of alternating density.

Such an empirical approach has been used [212-214] for
fits of experimental data at ISR energies. The following
parameterization of the amplitude is proposed in Ref. [214]:

m

A(s, 1) =5 Kpat - 4Tca,-) exp (b1t)

i=2

+ Z 4ra; exp (bit) + i(o*l - Z 4rccj) exp (di1)

i=2 j=2

+iYy_4mciexp (d,—t)} , (72)
j=2

where m < n. The fits at different energies give information
about the ratio of the real to imaginary part of the amplitude
p(t), besides the values of adjustable parameters a;, b;, ¢j, and
d;. Two different methods were used. In total, there are 14 to
16 free parameters. The results of nonlinear fits are rather
unstable, and the conclusions are somewhat controversial. In
particular, the numbers of zeros of Im A(s, #) and Re A(s, 7)
differ in these methods. The dominance of the real part of the
amplitude at intermediate values of the momentum transfer
in one of the methods is not confirmed when the other method
is used.

A similar fit was recently attempted and applied to the
TOTEM data in Refs [111, 215]. The earlier proposal in
Ref. [216] with phenomenologically chosen two #-exponen-
tials and the relative interference phase responsible for the dip
was applied to the TOTEM data. Using five parameters, it is
possible to describe these data in the whole range of
transferred momenta. We note that similarly to the model in
[165], the slope of the second exponential term is chosen
several times smaller than that of the main term. Moreover,
when the electromagnetic form factors were tried in place of
simple exponentials, the fit became worse.

Two exponentials without the interference term inside the
diffraction peak and a Tsallis-type distribution outside it were
used in [217]. It was possible, with the help of nine free
parameters, to fit the data at energies from 19.4 GeV to 7 TeV.

In some way, this fit business with no reference to any
theoretical model looks more like art than science, especially
if no conclusions about the hadron structure are obtained.
Such an approach will hardly be conclusive in the future.

4.2.2 Phenomenological models. Theoretical indications of the
possibility of a new regime with an increase in transferred
momentum were obtained even earlier [56, 122, 218]. It was
treated as a consequence of the simple iteration of processes
approximated by a Gaussian within the diffraction cone. The
term I, in unitarity condition (18) with Gaussians inserted
into the integrand gives rise to a Gaussian with a width that is
twice as big, i.e., to a shape twice as wide as the diffraction
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cone. Further iterations lead to further widening. Therefore,
multiple exchanges were considered. However, the results did
not fit new experimental findings. This failure was explained
as resulting from the improper treatment of the unitarity
requirements and incorrect choice of the overlap function.

The droplet-model relations between form factors and the
elastic amplitude for hadronic scattering at infinite energy
(see Eqns (1) and (2) in Ref. [219]) predict a series of kinks (or
zeros) in the differential cross section, which could be related
to dips. Dip position movement to lower |7| with a growth of
the total cross section was predicted in Ref. [220]. There is also
an indication of several dips (or shoulders) at larger |7] in the
models in [92, 165, 197, 198] using the electromagnetic form
factors with subsequent eikonalization (cf. Figs 2 and 11).

In accordance with the experimental data shown in Fig. 2,
only one dip is predicted by other models. For example, it was
described in Ref. [221] on the basis of a modified optical
model [220]. In the framework of the geometric scaling
approach [222], the numerical integration of the relation

%(57,)<%(s,0)>] =1 +1p02 {¢2(r)+»002(w>2} ;
(73)

where

Im A(s, 1) = sap(t), ¢(0)=1,

was performed with t defined by Eqn (46).

It was predicted that the dip should even disappear at
energies higher than /s ~ 300 GeV, but can reappear at ever
higher energies. As we know now, it is clearly seen at 7 TeV.
The imaginary part has been chosen in such a way that it hasa
zero at the dip. The absence of additional dips is explained as
a deviation of the eikonal from a simple Gaussian with some
flattening at small impact parameters (see Section 4.2.3). That
shows strong sensitivity to the choice of tiny details of the
phenomenological eikonal and also agrees with the properties
of the overlap function to be discussed in more detail below.
These results were confirmed and extended to pp collisions in
Ref. [223].

Processes described by diagrams with multiple exchanges
by Pomerons are claimed to be responsible for the Orear
regime at intermediate angles according to Refs [224, 225].
The differential cross section is predicted to have the form

lC % = exp {—2 2mo’(0)]2]€ cot % (pl(f)]
X {1 + J.cos <2 2ma’(0)]¢]€ tan %—&- q)o)} . (79)

where & =In(s/4m?), and C, ¢, ¢y, @,, 4, and «’(0) are
adjustable parameters. There are oscillations directly
imposed on the exponential fall-off with the same exponen-
tial. They should be well pronounced. So far, no such
oscillations have been observed.

A less strong statement about some saturation of the
diffraction cone due to multiple Pomeron exchanges is made
in Refs [226, 227].

(74)

4.2.3 Unitarity condition. A theoretical explanation based on
the consequences of the unitarity condition in the s-channel
has been proposed in Refs [57, 58]. The careful fit to
experimental data showed good quantitative agreement with

experiment [59]. Nowadays, the same approach helps explain
the TOTEM findings [60] (see Fig. 5 below).

We consider the left-hand side and the integral term 7, in
unitarity condition (18) at the angles 6 outside the diffraction
peak. Because of the sharp fall-off of the amplitude with the
angle, the leading contribution to the integral arises from a
narrow region around the line 0; + 0, = 0. Therefore, one of
the amplitudes should be inserted at small angles within the
cone as a Gaussian, while the other is kept at angles outside it.
Integrating over one of the angles yields the linear integral

equation
“+00 2(0 _ 2
_Po J do; exp {_7Bp (0=6) ]
4nv/2nB ) 2
x foImA(p,01) + F(p,0),

ImA(p,0) =

(76)

where f, =1+ p, p(01). It can be solved analytically (see [57,
58] for more details) under two assumptions: that the role of
the overlap function F(p, ) is negligible outside the diffrac-
tion cone and the function f, can be approximated by a
constant, i.e., p(0;) = p; = const. Both assumptions are
discussed in the next subsections.

It is easy to verify that the eigensolution of this equation is

Im A(p,0) = Cpexp (—1 [2BIn %pG)
Jp

+ Z Cpexp [—(Reb,) p0] cos ([Imb,| p0 — ,,), (77)
n=1

with
by =~ +/2nB|n| (1 + isignn),

This expression contains the term exponentially decreasing
with 6 (or \/ﬂ) (Orear regime) with oscillations strongly
damped by their own exponential factors. These oscillating
terms are responsible for the dip. Just this formula was used in
Refs [59, 60] for fits of experimental data in a wide energy
range. The ratio p was approximated by its average values in
and outside the diffraction cone, with f, = 1 4+ p, p|, where p,
is treated as the average value of p in the Orear region. The fits
at comparatively low energies [59] are consistent with f, ~ 1,
i.e., with small values of p; close to zero. The great surprise of
the fit of TOTEM data in [60], shown in Fig. 5, was the
necessity of using the negative value p, =~ —2.1 large in
modulus.

Being model-independent, this solution suffers from some
limitations that are inherent for the unitarity relation in
general and for unitarity equation (76) in particular. First, it
predicts the dependence on transferred momenta p0 =~ /||
but not the dependence on the collision energy. Second, it is
applicable in a restricted (and not rigorously defined) range of
angles in the Orear region.

The elastic scattering differential cross section outside the
diffraction cone (in the Orear regime region) is

1 do 4nB
— — = |exp | —4/2B|t|In —
o dl [ p( 7 onfp>
2

+ prexp (—+/2nB|t] ) cos (v/2nB|t| — (z))} (79)

n=+1,42, ... (78)
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Figure 5. The fit of the differential cross section of elastic proton—proton
scattering at /s =7 TeV in the region beyond the diffraction peak
according to the predictions of the unitarity condition [60]. Dots show
experimental data, the line is the theoretical approximation.
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Figure 6. The overlap function at \/s = 7 TeV obtained from the unitarity
condition with substitution of experimental data on the differential cross
section [60]. It is large in the diffraction cone and negligibly small outside
it. The line nearest to the abscissa axis takes the real part of the amplitude
into account, the farthest line is computed with p = 0.

It has been used in the fit in Fig. 5. Only the very first
oscillating term in (77) is taken into account in this
expression, because other terms are more strongly damped
with |¢7]. It is important that the experimentally measured
values of the diffraction cone slope B and the total cross
section o of the same experiment mostly determine the
shape of the elastic differential cross section in the Orear
region of transition from the diffraction peak to large-angle
parton scattering. The value Z = 4nB/a, is so close to 1 at
7 TeV that the fit is extremely sensitive to f, because
In(Z/f,) in the first term determines the slope in this
region. Therefore, it becomes possible for the first time to
estimate the ratio p; outside the diffraction cone directly
from fits of experimental data.

Moreover, it was mentioned in footnote 2 in Ref. [58] that
Eqn (76) is in fact an equation for 6 1/ZImA(p7 0). The factor
0'2 was omitted in this review and all previous papers
because it was assumed that “retaining it would exceed the
accuracy of the derivation” of the equation. However, it will
be worthwhile to take it into account in the future, multi-
plying the right-hand side of (79) by |¢|"/*. This would
slightly improve the fit in Fig. 5.

We note that this shape of differential cross section (79)
differs from formula (75), first of all, because of the
suppression of oscillations by the exponential factors in
front of them, which decrease much more strongly than the
leading exponential. In (75), the exponential is common for
the main and oscillating terms, while in (79), the oscillations
are strongly damped. They may give rise to the dip adjusted to
the diffraction cone if their amplitude is sufficiently large. The
small secondary damped oscillations at larger values of |¢|
have been seen at comparatively low energies (see Ref. [59])
but have not yet been noticed at the LHC. We stress that fit
(79) contains only three adjustable parameters: the overall
normalization p;, the amplitude of oscillations p,, which
determines the depth of the dip, and f,, which helps find the
ratio p; outside the diffraction peak from the slope of the
differential cross section there.

4.2.4 Overlap function and the eikonal. Both the overlap
function and the eikonal are subject to the unitarization
procedure, albeit in somewhat different approaches. There-
fore, it is instructive to compare their different forms.

We discuss what shapes of the overlap function can be
considered as suitable for further use. One of the assumptions
used in solving the unitarity equation was the smallness of
F(p, 0) in the Orear region. The results in [60, 228] give strong
support to the validity of this assumption. The overlap
function was calculated there directly from experimental
data, by subtracting the elastic contribution I, from the left-
hand side of the unitarity equation without appeal to any
model. It is described by the formula

do/dr\'?
Fip,0) = 16p> 222!
(p,0) = 16p <1+p2>
8p4f,, ! z do do\ '? “1)2
_TLdzzL a5 (5o 50) Kz, (50)

“1

2 2

where z; =cos0;, K(z,z1,22) =1 — 2% =z} — 2} + 222125,

and z* = zzo £ [(1 — 22)(1 — z3)]"/%. The result at 7 TeV is
shown in Fig. 6.

Certainly, the shadow of inelastic processes represented
by the overlap function dominates within the diffraction
peak. But it is extremely small outside. It is even smaller at
the LHC energies [50] than at lower ones [228], where a similar
behavior of the overlap function at large |7] was observed
previously. Hence, this assumption is well founded.

Moreover, it is quite understandable that F(s, ) is very
small at large |¢| in Fig. 6. This shows that its fit by the solution
of the unitarity relation has been done by the proper
eigenfunction (77) with the correct eigenvalues of the integral
equation.

It is tempting to solve nonlinear inhomogeneous unitarity
equation (18) by iterations. That has been attempted several
times [56, 58, 122, 218]. The main problem is the choice of the
overlap function. The simplest ansatz is the Gaussian form at
all transferred momenta. The argument in favor of it is just
that it plays the decisive role in the diffraction cone, where the
elastic amplitude has a Gaussian shape. But the results fail to
describe the Orear regime. This may be ascribed to the role of
phases of inelastic processes that determine the genuine shape
of the overlap function, and/or to the improper approxima-
tion of p by a constant outside the diffraction cone. Again,
similarly to the situation in the b-representation, the tiny
details of the shape prevent the proper outcome. No
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Figure 7. The shapes of the amplitude, overlap function, and eikonal
extracted from experimental data at /s = 52.8 GeV as functions of the
impact parameter squared (borrowed from [229]). In the notation of this
review, the amplitude is A(b) = M(b)/8n, the overlap function is
F(s,b) = O(b) /8, and the eikonal is Q(s, b)) = E(b)/8n. The correspond-
ing spatial scales are shown on the abscissa axis.

approximations for the overlap function demonstrated in
Fig. 6 have yet been proposed.

It is instructive to confront the shape of the overlap
function F(s, t) with results obtained in the impact parameter
interpretation of proton—proton scattering. They were pre-
sented in Refs [229, 230] for ISR data and are demonstrated in
Figs 7 and 8. The h-transformed amplitude /(s, b), the overlap
function F(s, b), and the eikonal Q(s, b) are shown in Fig. 7 at
the energy /s = 52.8 GeV [229]. The transformed amplitude
is almost Gaussian from the center to 2 fm with some
flattening near the center. There is a tail beyond 2 fm with a
much flatter slope. The flattening of the overlap function at
the center is much stronger, while the eikonal is steeper there.
Hence, we should not identify these three curves at small b,
even though they almost coincide beyond 2 fm.

Similar features are seen in Fig. 8, taken from [230], where
F(s,b) at the same energy is displayed. The solid line on the
logarithmic scale is a Gaussian adjusted to fit at » = 0 and
b=1.6 fm. A Gaussian adjusted between 0.6 and 1.6 fm
would be higher at » =0 and would require additional
flattening. This flattening at small b corresponds directly to
negative values of F(s, 1) at large |¢], as seen in Fig. 6. In the
same way, slight variations of the eikonal Q(s, b) at small »
may lead to drastic disagreement of model fits with experi-
mental data. Therefore, their success or failure at large |/|
depends on the accuracy of the chosen form of the eikonal at
low b. A long tail above the solid line for large impact
parameters is clearly seen in Fig. 8f. These figures demon-

the diffraction peak.

A small ‘edge’ correction to the Gaussian shape of the
eikonal has been claimed to be necessary for fits of experi-
mental data at ISR energies on increasing total cross sections
and structures of the differential cross sections in Refs [231—
233]. For example, the correction factor k with some specific
dependence on the impact parameter was introduced into the
overlap function F(s, b) in [233]. It changes the shape at small
b and makes it similar to that shown in Fig. 7:

2 252
F(s,b) = Pexp <— %) k(s,bexp <— 7)4—2>> .

It turns out that in the z-representation, the corresponding
overlap function F(s,t) has two zeros at |7] = 0.645 and
3.83 GeV? and becomes practically indistinguishable from
zero already at |¢| > 3.5 GeV?2. The last statement is in full
agreement with the conclusions in Refs [59, 60].

Although the overlap functions in Fig. 8 look quite similar
to each other, there is a slight difference, which was analyzed
in[230, 233]. This difference reveals itself in a small increase at
the level of 4% of the overlap function, with an energy
increase at the impact parameters (radii) of about 1 fm,
which implies the peripheral origin of this phenomenon.
That was also discussed earlier [234]. Moreover, in
Ref. [230], which deals with the direct analysis of experi-
mental data at ISR, a shoulder of the overlap function at
2.3 fm was noticed. Its origin is unknown.

The overlap function in the b-representation is used in
Ref. [235] to distinguish between the mechanisms of absorp-
tion and reflection with the help of the unitarity equation. In
the latter case, the differential cross section at large momen-
tum transfers is predicted to be 4 times larger.

The impact parameter picture used in almost all
phenomenological models is very helpful for a qualitative

(81)
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description of the process. But the forms of the eikonal in
the b-representation turned out to be very approximate. In
our opinion, their wide use in most papers dealing with
extension to larger angles suffers from this deficiency. There
are some arguments [88] that the eikonal approximation is
only valid for sums of leading terms of the tower diagrams,
but this is not correct in general. This is applicable to almost
collinear processes only and does not properly take the
separation due to transverse momenta into account. That is
why quasi-eikonal models were developed where the
intermediate states take inelastic diffraction processes into
account, in addition to elastic ones. As a result, formulas
like (39) and (40) were proposed. The eikonal does not
properly reproduce the s-channel cuts of the scattering
amplitude due to multiple scattering [236]. By itself, it does
not guarantee precise unitarization. Moreover, the proce-
dure of unitarity corrections is not well defined, because it
can be implemented differently. The accuracy of unitarity
relation (26) in the b-representation is not absolutely clear
either, as discussed above, while its use is mandatory for
interpretation of experimental data. That is why the model
predictions shown in Fig. 2 fail to explain the data.

There is a drastic difference between the use of the
Gaussian shape for the amplitude in the s-channel unitarity
condition and the same shape for the overlap function, as well
as its use directly in the b-representation. The exponential
decrease [see Eqn (6)] of the differential cross section in the
diffraction cone as a function of |¢| (or a Gaussian decrease
with the angle) is an experimental observation. It can be used
anywhere within its applicability range, as was done, for
example, in solving Eqn (18). Hence, this solution is quite
successful in fits of experimental data in the Orear region. The
same shape cannot be used for the z-dependence of the
overlap function, although it plays an important role in the
formation of cone behavior.

It is often argued that the Fourier transform of the
Gaussian is a Gaussian and therefore this shape can also be
used in the b-representation. While the first part of the
statement is correct, the second is wrong. The tails of
differential cross sections are very sensitive to small b. Slight
variations of this shape at small impact parameters lead to
crucial changes in the behavior of the amplitude at large
transferred momenta. Therefore, the predictions shown in
Fig. 2, which use the impact parameter profiles close to
Gaussian ones even in the vicinity of » = 0, are still successful
inside the diffraction cone but completely fail outside it,
where central collisions play an important role. It is very
difficult in a particular model to guess the proper decline from
the Gaussian shape at small impact parameters, which
drastically influences the differential cross section at large
transferred momenta.

Therefore, attempts to use non-Gaussian electromagnetic
form factors were of some help in improving the situation,
because they are closer in shape to the eikonal demonstrated
in Figs 7 and 8. Further progress in this direction is necessary
in order to understand the geometric content of the interac-
tion region in ordinary space and time.

Nevertheless, it is hardly justified to blame the phenom-
enological model builders for their failure to predict the
behavior of differential cross sections at large transferred
momenta, where the differential cross section is many orders
of magnitude lower than in the diffraction peak. The great
and important task of fits of the energy behavior of total and
elastic cross sections, the (s, #)-dependence of the differential

cross section, and the ratio p in a wide range of energies and
transferred momenta cannot be accomplished without free
parameters and the physical intuition of model builders. The
switch to higher energies allows eliminating corrections due to
secondary Reggeons and improving the fits. There is hope of
gaining clearer insight into the geometrical picture of hadron
interactions.

4.2.5 Real part of the elastic scattering amplitude at nonzero
transferred momenta. There are no reasonable arguments to
neglect the #-dependence of the ratio p(s,?) in (2) or of the
phase { in (13): it seems to be important, even inside the
diffraction cone. Using formula (10) and assuming that
Im A(s, ) mainly determines the shape of the differential
cross section in this region, we find that the real part must
vanish at

s dlna(s)/dIns
dB(s)/dIns

fo = (82)

With the In? s-dependence of o, in (32) and B(s) in (34) and
using relation (42), we have
2 _lon

|ZO‘:*_ )

B o (83)

and hence 7o — 0 as gy — oo. The estimates at LHC energies
are 0.1 < 7| < 0.3 GeV?. Notably, they agree with the results
obtained in the models in [165, 192].

There were several attempts to consider the behavior of
p(s, 1) at larger transferred momenta in Refs [165, 230, 237—
240]. The main efforts were spent on preventing differential
cross sections from vanishing at those values of ¢ where the
imaginary part of the amplitude is zero in a particular model.
The ratio p(¢) should be infinite, e.g., as in the models in
Refs [165, 230]. The number of zeros of the imaginary part is
sometimes greater than one. This is typical in the Fraunhofer
diffraction or in models with electromagnetic form factors.
Therefore, the singularities of p(7) appear at different 7 in
different models. The real part of the amplitude fills in these
kinks, leaving some traces like shoulders or dips in the
differential cross sections. For example, it is predicted in
Ref. [165] that for pp scattering at 8 TeV, such traces appear
at |¢| ~ 0.35 GeV? and at 1.5 GeV>.

In Refs [237, 238], the dispersion relation between the
phase and the modulus of the elastic amplitude considered in
Refs [241, 242] was used with some input for the modulus
fitted to the experimental data at laboratory energies above
100 GeV. The conclusion was that the real part exhibits a zero
in the z-distribution above 200 GeV, which moves away from
the forward direction as the energy increases.

In Ref. [239], the eikonal approximation was used
following the proposal in Ref. [243]. Information about the
interference region with a Coulomb amplitude similar to that
in Eqn (30) was inserted into the total amplitude, with the
result

8mo

—r sfi(l1]) ~2(|1]) exp (ix®)

7
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< (A e | B =it - o) )}

(84)

A(s, f) =
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The t-dependence of the phase was parameterized with the
help of five parameters as

) =0+ (é) exp (v[7]) + & <%) v, o = —1 GeV>.
(85)

The results showed that the phase [related to p by (14)]
increases from values close to zero at 1 = 0 to about 0.5 in
the interval 0.5 < || < 1 GeV2. This conclusion disagrees
with the results in Refs [73, 74, 165] as well as with the
arguments presented below.

A more general approach using the s-channel unitarity
condition was developed in Ref. [240]. As explained above,
the integral equation for the elastic amplitude is valid in the
Orear region. Its analytic solution (77) was first obtained in
the approximation where the values of p in f, were replaced
by their average values in the diffraction cone and in the Orear
region. No zeros of the imaginary part of the amplitude were
obtained. The dips at 7 TeV and lower energies were
explained as resulting from damped oscillations. The neces-
sity to introduce large negative values of p into the Orear
region is the main outcome and surprise of the fit in Ref. [60].
In principle, this could happen if there were zeros of the
imaginary part of the amplitude in this region, which would
require very large values of |p| near them. But there seem to be
no such zeros there. We discuss this problem in more detail.

We first recall asymptotic predictions. It was shown in
[244] that the ratio of real to imaginary parts of the amplitude
can be calculated asymptotically at nonzero transferred
momenta ¢ as

die] 56)

_ 7
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We consider the leading term of solution (77). With the
imaginary part of the amplitude in the Orear region
represented as

ImA(Sa t) = CO(S)f(T) ) (87)
it is possible to calculate p.

The very first approximation was to use the first term of
solution (77) with average values of p both in the diffraction
peak (py =~ py) and in the Orear region (p;) [240]. Then the
following behavior of p was obtained:

an/ |t
[)(S, Z) = Po(l 7%) ) (88)
where
Z
a=,/2BIn —— . 89
\ L+ popy ®9)

We note that p passes through zero and changes sign at
|f| = 4/a® ~ 0.1 GeV?. This agrees with the general theorem
on the change of sign of the real part of the high-energy
scattering amplitude, which was first proved in Ref. [84]. A
similar effect is discussed in Ref. [165]. But it is difficult to
obtain p; = —2.1 as an average of (88) over the Orear region.

Moreover, this behavior of an unbounded decrease in p
with |¢] does not look satisfactory. It can in fact be damped if
instead of replacing p by p, in the solution, we differentiate f

0.3 0.7 1.1 1.5 |1, GeV?

Figure 9. The ratio of the real to imaginary part of the amplitude obtained
from the solution of Eqn (90) that follows from the unitarity condition
[240].

according to (86), inserting there Eqn (87), i.e., the first term
in (77). The following differential equation is then obtained:

(90)

Here, x = \/2B|t| and v=./In(Z/f,). The dependence

p(t) = (Zexp (—v?) — 1)/p, is shown in Fig. 9. It has a
single zero at |¢| ~ 0.3 GeV? and, which is indeed impressive,
a large negative saturation value p(]7] — o0) = —1/p, for
high transferred momenta |¢|. We note that f, tends to zero
there. In the Orear region 0.3 < |7| < 1.4 GeV?, p(1) steeply
decreases. Nevertheless, taking the \/m-exponential decrease
in the distribution into account, the estimate of its average
value —2.1 in this interval is not very bad at all, especially if we
consider the result shown in Fig. 9 as another extreme
approximation compared to Eqn (88).

The bold use of this procedure for derivation of Eqn (90)
with p(¢) inserted directly into the solution is nevertheless not
satisfactory, either. The two possibilities above should be
regarded as two extremes for the shapes of p(7).

Strictly speaking, the behavior of p(7) should be taken
into account primarily in the integrand. Then, inserting
expression (86) in place of p; in Eqn (76) and integrating by
parts, we derive the linear integral equation

- dy exp [—(x — )]

—00

fm A () :ZLﬁJ

+ [14+0.505 + pg (v = X)y] Im A(y) , (91)

with F(p,0) =0 and new variables x = /B/2pf and y =
+/B/2 p0,. The kernel of this equation is not symmetric. Its
solution has not yet been obtained, even numerically.
However, some preliminary asymptotic estimates can be
obtained from it [240].

In the preasymptotic energy region, we obtained [58] the
Orear regime Im A o exp (—apl) = exp (—ap;) with the
exponential fall-off of the amplitude as a function of angles.
We therefore seek a solution of Eqn (91) in the form
Im A(x) = exp (—ax+/2/B)¢(x). The Gaussian exponential



January 2013

Elastic scattering of hadrons 23

shifts to x — y — a/v2B. Replacing it with the J-function of
this argument, we obtain the equation in finite differences:

. a2 , a2
o(x) =Z " exp <ﬁ) {1 +0.5p4 (1 +§ - apt>]

xqﬁ(x—\/%_B).

Again, we cannot solve it directly, but reach an important
conclusion about the zeros of the imaginary part of the
amplitude. The expression in the square brackets is equal to
zero at

2 [ 2 a? 2
po=—>1|14+0.5p (l+— ~N—.
! apg 0 B apd

With the present-day values of B, a, and p¢, this zero would
appear at an extremely large py ~ 20 GeV. However, zeros of
the imaginary part of the amplitude in the Orear region just
above the diffraction cone might appear as zeros of ¢(x)
itself. This result does not contradict the above statement
about the absence of zeros in the case of small oscillatory
terms in the solution of a homogeneous linear integral
equation.

Moreover, the equation tells us that ¢(x) and, conse-
quently, the imaginary part of the amplitude can have zeros at
Xy, =x0+a/ v/2B. On the Py axis, these zeros would be placed
at rather short distances from one another.

In the black-disk limit, Z tends to 0.5. If p loses in the
competition with In (Z/f,) and the argument of the logarithm
becomes extremely close to 1 or even less, that would mean a
drastic change of the regime in the Orear region [245]. What
the outcome of the competition between decreasing Z and the
negative values of p will be poses an interesting problem.
Experimental data at higher energies will be able to give the
answer.

As we see, the real part of the amplitude can dominate at
large transferred momenta according to the unitarity condi-
tion. Compared to the imaginary part, it can be large and
negative there. This conclusion contradicts, for example, the
results of the models in [92, 165] with electromagnetic form
factors, where the dominance of the imaginary part, on the
contrary, is claimed everywhere except the tiny regions near
its zeros placed in the Orear region, in particular. This
disagrees with the above results. We must remember,
however, that p is infinite at these zeros (see Fig. 10). A
similar behavior of p in the case of a single zero was predicted
in Ref. [230] at ISR energies, as shown in Fig. 10.

A similar shape of p is obtained in Ref. [165] at
|| ~ 1.5 GeV?, but for the energy /s = 8 TeV. The real part
decreases with |f|. Thus, the conclusions in different papers
about the behavior of the real and imaginary parts of the
elastic scattering amplitude are contradictory and require
further theoretical studies and new experimental data.

(92)

(93)

4.3 Scaling laws

We have written two formulas, (10) and (86), for the same
function p(s, ). Therefore, these two expressions must be
identical. Equating them, we obtain [246] the partial differ-
ential equation

p—f(X)g=1+f(x), (94)

where p=0u/0x, ¢=0u/Oy, u=InlmA(s, 1), f(x)=
2p(s,0)/m, x =1Ins, and y = In|¢|. As usual, the variables s

p

-0.2

—0.4 \/E = 52.8 GeV
—0.6
—0.8
~1.0 | | | | |
0 0.5 1.0 1.5 2.0 2.5 3.0

—1, GeV?

Figure 10. The dependence of the ratio of the real part to the imaginary
part of the amplitude on transferred momenta obtained in a certain
phenomenological fit [230] of experimental data at /s = 52.8 GeV. The
singularities indicate the position where the imaginary part vanishes.

and |f| should be regarded as scaled by the corresponding
constant factors s, ' and |zo| "
Equation (94) can be rewritten as
Ou  Ou dlns
dOlngy Oln¢ dlng,

In the asymptotic black-disk limit o, o< In®s and p(s,0) =
7/ In s, we obtain

xp—2g=x+2, (95)
and the solution is
_ Y
u—qol(xexpz)—&—x—y. (96)
This yields the scaling law for
t
i a0 = exp oy (VIS = 1), ©7)

which implies a universal scaling dependence on a single
variable z; = \/\_t—|1n S.

We temporarily neglect the contribution of the real part of
the amplitude to the differential cross section. Then the
asymptotic scaling law for the differential cross section times
1% should be
, do

dr = (blz(\/rﬂlns) :

We note that the additional #2-factor can be replaced by an
s-dependence if absorbed in the argument of the scaling
function ¢. Then this formula coincides with that obtained
in the geometric scaling approach [145, 247]. Thus, we have
proved that the solution of partial differential equation (94)
with the properly chosen f(x) leads to the results known
previously from geometric scaling.

At the same time, Eqn (94) is more general and can be used
for different assumptions about f(x). In particular, the

t (98)
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behavior of the total cross section at present energies is often
approximated by formula (67) as a sum of a large constant
term and another term that increases as some power of energy
(see [192] for a recent reference). In this case, p(s,0) = n4/2,
and the equation is

p—Ag=1+4. (99)
Its solution is
u=@(dx+y)+x—y. (100)

From here, we obtain another universal scaling dependence
of the differential cross section on a single variable z; = |¢|s*,

2d6

12— = ¢5(luls"),

o= (101)

which could be valid at preasymptotic energies.

It follows from the above expressions that the energy
dependence of the scaling variable is determined by the
behavior of the total cross section, |f|ay, if only the first term
in Eqn (9) is used. If this scaling were valid, one would be able
to predict the shape of the differential cross section at a higher
energy once the total cross section is known there. The
preliminary results of work with experimental data at
energies from ISR to LHC have shown that just this
dependence best reproduces the similarity of the shapes of
the corresponding lines, even though their normalization
differs somewhat. Further studies are necessary.

The above scaling laws must be satisfied for the imaginary
part of the amplitude times the factor || /s (see (97)). It follows
from Eqn (10) that the real part satisfies an analogous scaling
law, albeit with another factor, which differs in the two cases
considered above. This would lead to the scaling violating
terms when the contribution of the real part of the amplitude
to the differential cross section is taken into account. The
above scaling dependences of the differential cross section are
modified as
= ¢i(21) + 02501 (21),

1 (102)

1? = = $3(z2) + 0251 423 5% (z2) - (103)

, do

dt
s do

dt
The violation of scaling laws is different in these cases. The
first law acquires a term with the coefficient depending only
on the transferred momentum, while the second law acquires
a term with the coefficient that depends both on energy and
on the transferred momentum.

This violation of scaling laws must be negligible in the
diffraction cone because the squared ratio of the real part to
the imaginary part— which is crucial for the differential cross
section —is extremely small there. It would be interesting to
learn about the effect of these terms outside the cone,
especially in the Orear region of transferred momenta.

We note that at small values of their arguments z;, the
scaling functions ¢,(z;) must be respectively proportional to
z]2 and to zp, for the differential cross section to be equal to a
constant at = 0.

4.4 Hard scattering at large angles

4.4.1 Dimensional counting. The energy dependence of high-
energy scattering processes at a fixed center-of-mass angle is
of special interest. Dimensional scaling laws have been

developed as an approach to understanding it. The large-
angle scattering is determined by contributions due to central
interactions of internal domains inside the colliding particles.
The estimates according to perturbative QCD become
justified due to the asymptotic freedom property. They
depend on the number of constituent fields of the hadrons
[248-250]. At large s and 7 and a fixed ratio s/7, we have

_ t
x 8 n+2f <7> ,
AB—CD S

where n is the total number of fields in A, B, C, D that carry a
finite fraction of the momentum.

Assuming the existence of quark constituents, the s — oo,
fixed-¢/s prediction for pp scattering [249, 250] is
do/dt oc 5710, For the elastic amplitude, it is

o\ /22
A](S, t) X (5?0) f1 <;> .

This form can become more complicated for multiple
scatterings. For example, the lowest-order graphs for m
rescatterings [251] behave as

(n—m+1)/2-2
S N
Ap(s, 1) x <?0> Jom (;) )

and could become the leading ones. However, due to higher-
order corrections, the resulting behavior could change not so
drastically, and the result would be close to the initial estimate
(105), as is shown in Ref. [252]. Further progress beyond the
simple quark-counting rules was slowed down by complica-
tions in calculating the enormous number of Feynman
diagrams.

do

mn (104)

(105)

(106)

4.4.2 Coherent scattering. In parallel, there were attempts to
explain the |t|78 regime in pp scattering by dynamical
mechanisms with the help of simple Feynman graphs. For
protons (or their subregions) consisting of three valence
quarks, we can assume coherent exchange by gluons [253—
255] or by color-neutral pairs of gluons [256, 257] between
them. The propagators of three gluons and their couplings
produce an ocf\tré dependence, and two powers in the
denominator are added by kinematical factors. The general
problem of these approaches is the necessity to introduce
additional factors in order to preserve both protons in their
initial states in large-angle scattering. The corresponding
powers of the QCD coupling constant should be included, of
course, which leads to possible (strong?) modifications of the
simple power law. Also, the exchange by three Pomerons
instead of three pairs of gluons is possible. Because three
colliding quarks share the total energy of the proton equally,
their shares are smaller, and the whole process is farther
from the asymptotic regime if treated at the parton level.
None of these questions have been quantitatively resolved
yet.

We note that the large-|¢| behavior of Reggeons composed
of two Reggeized partons (quarks, gluons) can be calculated
from the BFKL equation [258, 259].

The multi-Pomeron exchange for hadrons in a state with a
minimum number of partons was considered in [260]. It was
concluded that the differential cross section factors as a
product of two [So(s)|*, representing the probability of
finding the initial and final particles in a ‘bare’ state, and
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dé (s, r)/dt, describing the hard exchange interaction:
do > dé (s, 1)

E" o(s)] i (107)

The first factor describes the contribution of large transverse
distances and the second represents the contribution of small
ones. The hard exchange is determined by the Pomeron
vertices, which are known semiclassically:

do(s,t (1))’
906s1) o g2(0) g2(r) oc 2L (108)
dt ||
with
v:n1+n2+|n1—n2|, (109)

N =0.5[3(nm +ny) +[m —nof —1],

where n; are the numbers of valence quarks in the colliding
hadrons. This leads to a |7 ~* behavior for pp and |¢| " for mp.
The quantitative comparison with experimental data is more
difficult because of much smaller values of the differential
cross sections in this region and, correspondingly, larger error
bars.

5. Discussion and conclusions

The new experimental data of the TOTEM collaboration at
the LHC about elastic scattering of protons at an energy of
7 TeV has revived interest in these processes. The picture of
very short-wavelength hadron collisions has become avail-
able, adding to our insight into the spatial structure of
colliding particles and providing new intrinsic information
pertaining to very short distance interactions. The total and
elastic cross sections show a stable increase with energy. The
share of elastic processes increases. The differential cross
section has very intriguing properties. The exponential |-
decrease persists at small transferred momenta, analogously
to lower-energy data. But the diffraction cone slope is larger
compared with low energies; it is stable up to transferred
momenta |t| =~ 0.3 GeV?, then this peak steepens and a dip
appears at |f| ~ 0.53 GeV?, with a subsequent maximum at
|| = 0.7 GeV?2. At somewhat larger angles, the exponential in
the \/m -regime prevails. It is replaced by the |t|78 behavior at
ever larger transferred momenta, || > 2 GeV2. At the same
time, we are waiting for measurements at extremely small
angles in the interference region of Coulomb and nuclear
amplitudes to gain some knowledge about the real part of the
forward scattering amplitude. It would be extremely interest-
ing to learn its energy behavior and check our predictions
from the dispersion relations.

The steeper slopes of the diffraction peak and of the Orear
region at higher energies, and, correspondingly, their smaller
extensions clearly demonstrate that it becomes more and
more difficult for a high-energy particle to preserve its
identity when scattering at larger transverse momenta.

This increase in the total cross section and, especially, in
the share of the elastic cross section, as well as the peculiar
change of regimes in the |¢|-behavior of the differential cross
section, require a theoretical interpretation. Short of a
complete theory of hadron dynamics, we have to turn our
attention to phenomenological models and some rare rigor-
ous theoretical relations. The region of large transferred
momenta became an Occam razor for them, as explained
above.

103
10 pp-scattering, 14 TeV — — Block etal.
10! — - — Bourrely et al.
10° — — — Desgrolard et al.
............... Petrov et al.
Islam et al.

da/dt, mb GeV—2
_ = =
S e e 35 55 5 o o
s =3 & &L L L Ll

2
by

0 1 2 3 4 5 6 7 8 9 10
1], GeV?

Figure 11. Model predictions for the behavior of the differential cross
section of proton—proton scattering at /s =14 TeV, presented in
Ref. [119].

The geometric picture of the internal structure of protons
and their collisions requires larger disk radii increasing with
energy. Their blackness increases as well. Some separate
subregions of different sizes and opacity are considered. The
impact parameter approach is decisive in deciphering this
structure. At ISR energies, the increase in the total cross
section was attributed to some peripheral regions of nucleons.
Itis important to juxtapose these findings with the LHC data.
The approach to the black-disk asymptotic limit has become
very interesting. The proposal of geometric scaling reducing
the number of independent variables is under investigation.
At the same time, the scaling law may happen to be different
from the geometric scaling.

There are many phenomenological models at our dis-
posal, but it is still difficult to choose any particular one
among them. Most of them are quite successful, albeit with
many adjustable parameters, in describing the energy
behavior of the cross sections and the main bulk of the elastic
processes in the diffraction cone, but fail in their predictions
outside it. The dynamical origin of many assumptions is still
missing. The small details of the suspected break at small ¢, of
the steepened slope, and of possible weak oscillations over a
smooth exponential behavior of the diffraction peak are
under investigation.

There are predictions of several dips and/or visible
oscillatory behavior imposed on the trend of a generally
decreasing dependence on the transferred momentum. As an
example, in Fig. 11 borrowed from [119], the results of some
model predictions for the differential cross section of proton—
proton scattering at /s = 14 TeV are shown up to quite high
values |t| = 10 GeV?. They differ significantly, and further
accurate experimental data expected to be obtained in 2015 —
2016 will surely be decisive in the choice of a model (if any!).
The experience with unsuccessful predictions at 7 TeV in the
region outside the diffraction cone is not very encouraging.

The problem of the behavior of the real part of the elastic
scattering amplitude at nonforward transferred momenta is
becoming very important. While the imaginary part of the



26 I M Dremin

Physics— Uspekhi 56 (1)

amplitude dominates at small angles in the diffraction cone,
there are indications that just the real part prevails at high
transferred momenta. The unitarity condition indicates some
ways to solve this problem. However, there are other
approaches with different conclusions.

Another important unsolved problem is the behavior of
the overlap function. It certainly dominates in the diffraction
cone, but seems to become negligibly small outside it. The
phases of matrix elements of inelastic processes must play an
important role in attempts to recover its shape. However, this
presents the extremely difficult theoretical task of modeling
them.

Unfortunately, there is little progress in understanding the
regime of power counting for very hard constituent parton
scattering, even though some recent attempts are quite
promising.

To conclude, the aforementioned list of problems is not at
all complete. Many other details should be clarified. Further
experimental data will definitely shed light on ways to resolve
them.
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1. Introduction

This review, based largely on the results obtained by the
authors in the last 5-7 years, deals with electron transport and
its relationship with the mechanical properties of quasi-one-
dimensional charge density wave (CDW) conductors.

A CDW is a periodic self-consistent distortion of the
crystal lattice and electron density observed at sufficiently low
temperatures in metallic compounds composed of weakly
bound conducting chains. There has been undiminishing
interest in quasi-one-dimensional CDW conductors during
the past 40 years. Although such conductors have not yet
found practical application, their diverse and unique proper-
ties continue to attract the attention of researchers in different
countries.

The history of CDWs dates back to Rudolf Peierls’s
prediction of instability of the crystal lattice in one-dimen-
sional metals with respect to periodic distortions defined by
double Fermi wave vector 2kg. Such distortion, known as the
Peierls transition, can be described as the superposition of
Fermi surfaces corresponding to kg and —kg. If the surfaces fit
together perfectly, they are said to have the property of
nesting. The prediction made by Peierls in the pre-war period
and published in 1955 [1] was used by Frohlich in 1954 [2] to
propose a new collective mechanism of electron charge
transport, and thereby to make an attempt to explain super-
conductivity. His explanation proved erroneous, but the
proposed charge transfer mechanism was shown to actually
operate 20 years later when conductors with a highly
anisotropic crystalline and electronic structures were synthe-
sized [3—7]. Reference [5] demonstrated an unusually high
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conductivity in the microwave frequency range, besides
nonlinear conduction, and thus gave direct evidence of the
collective character of electron charge transport. Hence,
although the basic ideas of the Peierls transition (confirmed
by a number of experimental evidences) were formulated
before 1975 [6], CDW sliding was first revealed in 1976. The
main properties of CDWs are described in reviews [7, 8] and
recent progress in this field is discussed in the proceedings of
several workshops [9-11].

Thus, a characteristic pattern is observed in quasi-one-
dimensional metals: the metal-insulator transition with
lattice distortion occurring after a drop in temperature to
the Peierls transition point. The period of distortion being
defined by the wave vector g = 2kp, a dielectric gap forms at
the Fermi level, and the metal turns into a semiconductor.
Then, a decrease in energy of the electron subsystem comes
into play and this accounts for the observed transition. The
lattice distortion is accompanied by modulation of electron
density, i.e., CDW formation.

One-dimensionality, indispensable for Fermi surface
nesting, is as important as interchain interaction; in other
words, the conductors must be quasi-one-dimensional. Such
interaction stabilizes phase transitions which are impossible
in one-dimensional systems [12]. However, the temperature of
the Peierls transition is much lower than predicted by the
mean-field theory due to one-dimensional fluctuations; there-
fore, transition to the CDW state should rather be called
three-dimensional ordering transition.

A change of CDW phase in time (sliding) results in the
transfer of the charge of electrons condensed under the Peierls
gap,i.e.,allelectrons that resided in the conduction band of the
metallic state. This is just what is called the Frohlich mode.
CDW sliding is associated with the generation of narrow- and
broad-band noises. The narrow-band noise frequency (also
termed fundamental or washboard frequency) equals the
reverse time of CDW movement by one period. It is directly
proportional to the CDW velocity and may be used, in
particular, to determine the charge density condensed in a
CDW (if the current density is known). The fundamental
frequency can also be found in experiments on CDW
synchronization by an external high-frequency (HF) field
(from the so-called Shapiro steps). Shapiro steps can be
observed when dc bias V' and alternating HF voltage are
simultaneously applied to the sample [7, 8, 13]. When, at a
certain value of ¥V, the alternating voltage frequency coincides
with the fundamental frequency of a sliding CDW (or one of its
harmonics or subharmonics), the I(¥') dependence exhibits a
voltage range characterized by constant CDW current, refer-
red to as a Shapiro step. Accordingly, the dependence of Ry =
dV/dIon Vshows a peak. This effect is qualitatively explained
asthe action of an external HF field makinga CDW creep with
a given velocity in a certain voltage range (in a sense, frequency
locking), due to which its differential resistance increases; it
tends to infinity in the case of complete synchronization.

The infinite CDW conductivity predicted in Ref. [2]
cannot be observed because of the interaction between
CDWs and impurities, which enhances by virtue of the
CDWs ability to deformation: the value of ¢ changes with
coordinate variation so that the CDW phase is adjusted to the
impurity potential. The effect of impurities on CDWs
(pinning) is characterized by coherence lengths at which
phase gain is 21 due to a random phase interruption.

Pinning makes CDW sliding possible only in such electric
fields, the strength of which is higher than the threshold value

E;. In strong electric fields, the CDW conductivity approx-
imates the value that could be expected for the normal
(metallic) state. Why conductivity of a CDW cannot exceed
the normal conductivity of electrons condensed in it remains
to be clarified. The limiting CDW creep velocity (‘critical
current’), whose overshoot must induce transition from the
CDW state to the normal state, is not exactly known either.
The experimental data suggesting that the critical current is
reached and their possible interpretation are presented in
Refs [14, 15], although they are not definitive. A separate
problem is the limiting frequency of CDW generation or
synchronization that may correspond to a current much
lower than the ‘critical’ one.

The character of high-velocity CDW sliding is a topical
issue discussed in this review because Section 2 includes the
results of studies using nano-sized NbS; samples (phase II)
with which record-breaking high CDW synchronization
frequencies were obtained.

The properties of small-sized quasi-one-dimensional
conductors constitute the subject matter of a special branch
of CDW physics. Such samples exhibit a number of finite-
size effects arising when certain dimensions of a sample
become comparable to or smaller than CDW characteristic
lengths. The properties of small samples were reviewed in
Refs [16, 17]. One of the most interesting finite-size effects is
responsible for the formation of discrete CDW states, i.e.,
sort of ‘quantization’. If the lateral sizes of a sample are
smaller than the respective coherence lengths and the sample
is short enough, the creation or annihilation of even a single
CDW period (~ 10 A) may lead to experimentally observa-
ble effects. Thus, Ref. [18] reports conductivity steps in TaS;
nanosamples related to a change in the number of CDW
periods by +1 in single acts of CDW phase slippage.
Stepwise variation of the ¢ vector was directly observed in
chromium crystals as well, where a two-dimensional spin
density wave was generated [19]. We have recently observed
such ‘quantization’ of the CDW vector in nanosamples of
Ko3Mo00Oj3 (blue bronze) and NbSe;, where CDWs proved to
have a high degree of coherence. This effect is studied in
Section 3.

CDW strain is closely associated with the existence of
metastable states, i.e., nonequilibrium states in which CDW
strain persists for a very long time. As known, metastable
states in many compounds with CDWs may be created by
thermal means using the temperature dependence of the wave
vector. For example, a series of discrete metastable CDW
states in TaS; or blue bronze nanosamples can be obtained at
the same temperature based on their different temperature
prehistories (see Section 3). Also, metastable states can be
created by an electric field. The nature of such structurally
nonuniform strain is fairly well known.

Apart from CDW strain, the elastic interaction between
CDW, i.e., an electron crystal inside the host lattice, and the
crystal itself is observed. Such interaction may be responsible
for a decrease in Young’s modulus if the CDW depins from
impurities in the above-threshold electric fields [20]. It was
later elucidated that CDW deformation results in the
deformation of a crystal itself [21, 22]. Both uniform long-
itudinal [21] and nonuniform longitudinal [22] deformations
were revealed. The accompanying effects are considered in
Section 4, with special reference to torsional strain of quasi-
one-dimensional CDW conductors in an electric field. The
same section treats the inverse effect, i.e., voltage modulation
induced by torsional strain.
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Much attention has recently been attracted to compounds
in which CDW generation is (possibly) unrelated to the
Peierls transition, i.e., nesting [23, 24]. Interestingly, the very
existence of CDWs in a such a well-known quasi-two-
dimensional compound as NbSe, was questioned. The
problem of a CDW nature may be just as well vital for NbS;
(phase II) compound, where the CDW arises at 7= 150 K
and low concentration of electrons that depends in addition
on the sample used (see Section 2). There are reports
suggesting the existence of collective states (possibly CDWs)
in the layered quasi-one-dimensional compound TiS3, where
electron concentration at room temperature is estimated to be
10'8 ¢cm—3. If it is assumed that the lattice distortion in TiS; is
described by usual nesting, the CDW period proves to be
improbably long. The results of TiS; studies are considered in
Section 5.

To recall, this review is not designed to comprehensively
cover all research topics pertaining to quasi-one-dimensional
CDW conductors, but focuses on the results recently obtained
by the authors. Nevertheless, it contains a wealth of CDW
physics data reported for the last 5-7 years. The study subjects
included in the review are well-known compounds, such as
TaS3;, NbSes, Ko3MoO;, (TaSes),l, rare NbS3 (phase 1I)
synthesized by the authors, and TiS; for which mechanisms of
conductivity remain to be elucidated. Some new physical
results were obtained in the course of this work, including
certain formerly inaccessible values of selected parameters.

2. Synthesis of NbS3 whiskers
and the dynamic properties of a charge density
wave in ultimately thin NbS; samples

To begin with, we shall consider the results of NbS; (phase IT)
research [7].

The quasi-one-dimensional NbS; compound is known
to exist in two phases. Phase I is characterized by high
resistance and some semiconducting properties; the crystal
lattice is dimerized along the Nb chains. Phase II is
remarkable for its CDWs incommensurate at room and
higher temperatures; in this compound, CDWs can slide in
an electric field. Apart from the high temperature of the
Peierls transition (330-370 K), distinctive features of this
compound include the strong anisotropy of its properties (as
apparent from very weak coupling between the chains) and
combination of high-frequency properties with high coher-
ence of CDWs [25-27]. This compound was synthesized
earlier by different authors [28], but they had problems with
finding phase II whiskers (filamentary crystals), because
they were outnumbered by phase I crystals in the material
grown. The conditions for reproducible synthesis of phase II
crystals have been described in the most recent publications
[25-27].

CDW coherence in NbS3 samples, combined with their
high-frequency properties, implies the possibility of high-
speed CDW sliding. We reached record-breaking synchroni-
zation frequencies with thin NbS; whiskers, i.e., extremely
high velocities of CDW motion. The maximum current
density in most compounds is limited by heating of the
samples, while the observation of the generation or synchro-
nization of HF oscillations is hampered by still lower
currents. Heating effects can be weakened by selecting the
thinnest samples and placing them on a substrate with high
heat conduction. However, sample thinning is restricted by
the size effect, due to which the threshold voltage V; initially

rises resulting in a decrease in CDW current at the same
voltage, and then the CDW state undergoes transition to
another dielectric state [16]. It was shown that phase 1T NbS;
is an ideal compound for studying synchronization at
ultimately high frequencies. Suffice it to say that a CDW
retains its characteristic properties at least in samples as thin
as 20 nm, due to its marked structural anisotropy. It needs to
be emphasized that we conducted most CDW synchroniza-
tion experiments at room temperature and did not use a
cryostat; this facilitated matching the samples and microwave
generators.

2.1 Synthesis

The determination of conditions for the reproducible growth
of phase IT NbS; whiskers made possible systematic studies of
the properties of this compound, many of which proved
unique. Therefore, we start by describing the conditions for
phase IT NbS; synthesis.

Three experiments on NbS; synthesis from a gaseous
phase at the optimal temperature and its gradient were
performed. The whiskers were grown in a three-zone Gero
furnace (Germany) with a Modcon temperature control
device. The temperature was set separately for each zone
and, for instance, the appropriate values were 750, 700, and
650 °C to obtain the distribution shown by the bottom curve
in Fig. 1.

An ampule was rinsed with an NaOH solution, then with
distilled water, dried in a furnace at 800-900 °C for 48 hours,
filled with reactants, and sealed under continuous pumping
by a dry pump. The dried ampule was exposed to air for less
than one hour. After the ampule was placed in the furnace, the
temperature was gradually raised from 200 °C to the desired
value at a rate of 20 °C/hr and remained constant thereafter
during the entire period of whisker growth (usually 10 days),
Variations of the growth period had no influence on the
phase I to phase II ratio in finished NbS;.

The mass of reacting Nb and S components remained
unaltered in all experiments. These reactants were utilized in
stoichiometric proportion with a small (10%) excess of sulfur
on the base of 0.08 g of the end product per cm? of the ampule.

T,°C .
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NbS;
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\
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720
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660
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Figure 1. Two variants of temperature distribution over the furnace length
(rough measurements in the absence of the ampule). Arrows indicate the
positions of the ampule ends. Regions in which each of the two NbS;
phases grows are shown along with the region where whiskers exhibiting
metallic properties grow.
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Figure 2. TEM images of NbS; whiskers. Inset: an electron diffraction
pattern of one of the samples.

Figure 3. Atomic-force microscopy (AFM) image of an NbS; whisker
(sample No. 11 from Table 1 in Section 2.4). The scan area is 13.56x
13.56 um?. Boundaries of two gold contacts made by the laser deposition
method are seen in the image.

The sealing/unsealing procedures, as well as putting the
ampule in the furnace, were the same in all experiments.

Two growth cycles were carried out with a temperature
gradient of 50 °C for the ampule length (20 cm) (the bottom
curve in Fig. 1). The temperature was below 720°C in one
cycle, and above 720 °C in the other. An additional cycle was
conducted with a temperature gradient of 25 °C (the top curve
in Fig. 1). A few repeated cycles confirmed the reproducibility
of the results obtained.

The growth completed, the ampule was opened to remove
the ‘cocoon’ (whisker wool). The transport properties of the
whiskers were studied utilizing at least 10 filaments taken at
selected points inside the cocoon, viz. at different distances
from the cold end of the ampule. It this way, data were
gathered on the physical properties of NbS; crystals,
depending on temperature and its gradient. Figure 1 shows
that the optimal temperature for phase II synthesis ranges
~ 720—750°C.

The images of whiskers in a transmission electron micro-
scope (TEM) are presented in Fig. 2; the inset shows the
electron diffraction pattern for one of the whiskers at room
temperature. Suprastructural reflexes resulting from the
creation of two CDWs [26-28] can be seen. Bridge structures
(Fig. 3) were made by laser-induced vacuum gold deposition
through a micromask.
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Figure 4. Temperature dependences of resistance for low-resistance (lower
curve) and high-resistance (upper curve) NbS; whiskers. 7p; and Tp, are
temperatures of Peierls transitions. The samples are 100 pm x 0.13 um?
and 90 pm x 0.2 pm? in area, respectively. The activation energy for both
whiskers is ~ 1200 K.

2.2 Properties of synthesized samples:

nonlinear conduction at room temperature

and temperature dependence of conductivity

Detailed measurements of phase Il samples permitted
distinguishing two groups of them. The samples synthesized
at 670-700°C have lower resistivity; their temperature
dependences of resistance, R(T'), clearly exhibit two transi-
tions: at T~ 360 K, and T ~ 150 K. At synthesis tempera-
tures 715-740 °C, the high-resistance (at room temperature)
samples were grown with resistivity by almost an order of
magnitude greater; their R(7") dependences had no peculia-
rities near 150 K, as shown in Fig. 4 presenting characteristic
R(T) curves for low- and high-resistance samples. The
tendency toward the disappearance of the peculiarity at
T = 150 K is apparent in thinner samples, too.

The high-resistance samples at room temperature are
characterized by a high (up to 80%) degree of CDW
synchronization under microwave irradiation (Fig. 5). This
suggests a high degree of CDW coherence in the crystal bulk
and, therefore, their high quality. Low-resistance samples
also exhibited Shapiro steps, but the relative decrease in their
differential conductivity (degree of synchronization) was
smaller.

At synthesis temperatures below 720 °C and a tempera-
ture gradient of 50 °C for 20 cm (bottom curve in Fig. 1), the
output of phase 1 (semiconducting) samples shows an out-
stripping growth rate. Whiskers synthesized at temperatures
T > 760 °C possess metallic properties (Fig. 6). Their resis-
tivity is at least one order of magnitude lower than that of
low-resistance phase II samples. Some dielectrization was
observed only at temperatures below 150 K (see Fig. 6), which
may be ascribed to ‘residues’ of the lower transition. Thereisa
well-apparent tendency toward a decrease in lateral sizes of
samples with increasing synthesis temperature.

Investigation on the crystals grown was undertaken by
transmission electron microscopy at room temperature and
confirmed that they fit into phase II samples, as also
evidenced by the observation of two Peierls transitions near
365 and 150 K. At the same time, the intersample variation of
properties gives evidence of a certain ‘hidden’ parameter that
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Figure 5. Dependences of differential conductivity of high-resistance NbS;
samples at room temperature: (a) irradiation at 50 and 600 MHz, and in the
absence of irradiation, sample area 7.5 pm x (8 x 1072) pm?; (b) irradia-
tion at 3874 and 400 MHz, sample area 6.5 pm x (7.6 x 107%) um?.
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Figure 6. Temperature dependence of resistance for two samples grown at
temperatures above 760 °C.

also varies depending on synthesis temperature. For example,
a rise in temperature resulted in a marked jump of resistance
at the upper transition and its fall at the low-temperature one.
In doing so, resistivity at room temperature could show an

Figure 7. High-resolution electron micrographs of NbS; whiskers
synthesized at (a) 670-700 °C, atomic layers spaced 9.9 A apart; (b) 715-
740°C, atomic layers spaced 19.8 A apart. Scale mark: 10 atomic layers
(image scales are identical). Insets: microdiffraction images along direc-
tion [001]. Two superstructures are seen: q; =(1/2a*, 0.297b*, 0), and
q, = (1/2a*, 0.353b*, 0).

order of magnitude rise simultaneously with a similar increase
in the current—voltage characteristic (CVC) nonlinearity, i.e.,
a decrease in resistance at high voltages.

The results of structural research suggest that the ‘hidden
parameter’ arises from period doubling along the crystal-
lographic direction « in crystals grown at higher tempera-
tures. Figure 7 presents high-resolution TEM images of
samples from different groups. Both images demonstrate the
structure of atomic layers extended along the b-axis. In a (low-
resistance) sample grown at 670700 °C (Fig. 7a), the period
of this structure along the a-axis equals roughly 10 A,
whereas it is twice that in a (high-resistance) sample grown
at 715-740°C (Fig. 7b). A similar picture emerges from the
electron diffraction patterns in the insets to Fig. 7: the period
of diffraction pointing along direction « in Fig. 7a is twice that
in Fig. 7b, which suggests the formation of a superlattice with
the doubling of the period along the @-axis in high-resistance
samples.

2.3 Nonlinear conduction at low temperatures

Nonlinear conduction of NbS3 whiskers was investigated in a
wide temperature range. Voltage dependences of differential
resistance confirmed the formation of two CDWs in low-
resistance samples: there are two temperature ranges in which
the dependences take a threshold form [25]. The minimum
threshold field E; isaround 2 V. cm~! for the upper CDW, and
somewhat smaller for the lower one. The highly anisotropic
structure of NbS; manifests itself in a short CDW coherence
length across the chains, as apparent from the weak
dependence of E; on transverse dimensions of samples.
Nevertheless, E; exceeds 100 V cm~! in the thinnest samples,
in accordance with the finite-size effect known for other
compounds with CDWs [16, 17].

One more peculiarity observed in some phase Il samples
is worthy of note. It is a sharp increase of resistance in
response to a temperature drop in the 7' < Tp, range. This
rise may be characterized by an activation energy roughly
equal to 2000 K (Fig. 8). Nonlinear conduction at tempera-
tures 7 < 150 K has a threshold form (Fig. 9a) for the
majority of the selected samples [25]. However, certain
R4 (V') dependences exhibit a sharp peak at V' = 0 (Fig. 9b).
In this case, near-maximum dependences can be roughly
described by a power law. Dielectrization upon a drop in
temperature and similar Rq(V) dependences were observed
earlier for very thin samples of the quasi-one-dimensional
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Figure 8. 1/7 dependence of resistance for NbS; samples grown at 670—
700°C. All points are obtained from current—voltage characteristics
(CVCs) shown in Fig. 9b. The activation energy at low temperatures is
2000 K (dashed line).

conductor NbSe; [29]: the peak at V=0 seems to be
superimposed on the usual threshold R4q(¥) dependence.
The authors of Ref. [29] emphasize that such a peculiarity is
characteristic of one-dimensional systems, but they failed to
unambiguously identify its origin. It should be noted that
similar dependences were also observed in NbSe; samples
with artificially introduced defects [30, 31]. Therefore, the
most plausible explanation for dielectrization of thin
samples reduces to their defective structure. It is also worth
mentioning a recent work [32] where power-law (pseudo-
power-law, to be precise) dependences R(V') and R(T') in
quasi-one-dimensional conductors, including NbSe;, are
explained by hopping conduction. This leads to the conclu-
sion that NbSe; samples with temperature dependences of

resistance similar to those presented in Figs 8 and 9b have
more structural defects.

We shall turn back to the nature of such CVCsin Section 5,
where the compound of a somewhat different type, TiS3, is
considered.

2.4 Limiting currents and synchronization frequencies
of a charge density wave
The motion of CDWs in NbS;3 is confirmed by the observa-
tion of Shapiro steps (Fig. 5) for both upper and lower CDWs
[25]. We prepared samples of the minimally possible small
lateral sizes in order to obtain limiting currents (therefore,
synchronization frequencies). Cross sections of about 10 such
samples were first measured with an atomic force microscope.
The study of Shapiro steps in upper CDWs of these samples
showed that the ratio of CDW current density — correspond-
ing to the main step—to the irradiation frequency was
roughly equal for all samples within the scatter of the
measurement (i.e., accuracy of cross section measurements)
(see Table 1). This means that the cross section area of the
samples can be found from the Shapiro steps, i.e., from the
ratio of CDW current Icpw to the irradiation frequency [29].
We used this approach in our further work.

The cross section area of the thinnest samples was about
5 x 10~* um?, while the contacts were spaced = 1 pm apart.
Shapiro steps were identified in such samples at frequencies
higher than 10 GHz. The limiting currents were constrained
by the Joule heating of the samples, and limiting frequencies
by the microwave power that was possible to feed into them.
Better correlation was achieved between short samples and
microwave radiation. Figure 10 shows typical Rq(/) depen-
dences at room temperature for the case of microwave
irradiation (irradiation frequencies are indicated in the
figure). The Shapiro steps, namely Rq maxima correspond-
ing to the most complete synchronization of CDWs, are very
apparent on the curves. The dependences of the CDW current
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Figure 9. Voltage dependences of differential resistance for two samples grown at T ~ 715°C: (a) low-resistance sample (50 pm x 0.08 pm?) with two
Peierls transitions, and (b) anomalous sample 60 um x0.07 um? in size (see Fig. 8).
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Table 1. Sample dimensions (width w x thickness 7 x length L) measured by AFM or an optical microscope; temperature 7"at which synchronization was
studied; quantity Icpw/(2¢fex ), i.€., the number of CDW chains in the sample; area sy per CDW chain, and number N of CDW chains per elementary

cell, i.c., over an area of 180 A% [7].

Sample wxtx L,nm? x pm T,K Icpw/ (2efex) o, per chain, A2 N, per elementary cell
1 140 x 50 x 3.3 295 2.1623 x 10° (< 1 GHz) 322 0.56
2 120 x 50 x 3.7 326 3.84 x 10° 156 1.15
3 150 x 20 x 3.2 295 1.95 x 10° 154 1.2
1.2806 x 10° (4 GHz) 234 0.78
4 750 x 23 x 3.5 295 104 171 1.06
5 160 x 40 x 5.5 295 1875 341 0.54
6 470 x 25 x 42 330 2250 522 0.35
101 1844 637 0.29
7 5000 x 1200 337 2 x 10° 300 0.61
8 1000 x 400 x 500 337 1.64 x 103 244 0.75
131 1.05 x 10* 3.8 x 10° 0.0478
9 90 x 28 x 3 295 1367 184 1
10 44 x 14 x 1 295 304 202 0.9
11 425 % 180 x 7.3 295 3.98 x 10* 191 0.94
12 430 x 26 x 8 295 6.585 x 103 169.8 1.06
1.4
T=300K 15
12 |/ =9.23 GHz
0~ 796
T 10 10 -
7 e
éi 0.8 - 6.00 é
= <
S 06} 3912 sL e
/
0.4 2.70 57
02 080 : : :
1 1
° : " jcH
0 1 1 1 1 1
-20 -15 —-10 -05 0 0.5 1.0 1.5 Figure 11. Dependences of CDW current, corresponding to the first
V,V Shapiro step, on the irradiation frequency for eight NbS; samples at

Figure 10. Current dependences of differential resistance for an NbS;
nanosample 4 um x (1.5 x 1073) um? in size at different irradiation
frequencies and room temperature.

Icpw, i.e., nonlinear current at the main step, on the
irradiation frequency fe are practically linear at frequencies
below fox = 16 GHz (Fig. 11).

It is possible to determine the number of chains carrying
CDW current (column 4 in Table 1) on the assumption that
charge density transferred by a CDW equals 2e per chain for
a single period, given the known Icpw/fex ratio. If the
sample’s cross section area s = wt is measured (column 2),
the area sy per CDW chain (column 5) is known, too.
According to Ref. [7], the areca of an elementary cell in
NbS; is 180 A2, with each cell encompassing eight non-
equivalent niobium chains. This means that only one of the

room temperature.

eight chains in any sample contributes to the upper CDW
conduction (i.e., to the Frohlich mode) (see column 6 in the
Table 1).

The ‘fundamental ratio’ Icpw /(s fex) for the upper CDW
is roughly 18 A MHz~! cm™2, or much lower than for the
known quasi-one-dimensional compounds. In particular, it is
25 A MHz ! cm~2 for both upper and lower CDWs in NbSe;,
and 38 A MHz ! cm~2 in NbS; [33]. The fundamental ratio
for the lower CDW in NbS3 is still smaller [25-27] and varies
from sample to sample (see the table). This means that either
only part of the elementary cells contribute to CDW
conductivity or the charge transferred by the lower CDW is
significantly smaller than 2e per period. Thus, the nature of
the Peierls state at temperatures below 150 K remains unclear
to a great extent (see also Ref. [27]).
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Figure 12. Current dependences of differential resistance for two NbS;
nanosamples in the case of limiting currents. Sample sizes: 1 pm x
(2 x 1073) um? (upper curve), and 1 pm x(8.3 x 1074) pm? (lower
curve). The sample undergoes degradation (its resistance grows) in the
current range (5—10) x10~> A and thereafter burns up.

As far as the upper CDW is concerned, it should be noted
that 16 GHz is the highest frequency on record at which CDW
synchronization has ever been observed. It corresponds to the
sliding CDW velocity on the order of 10 m s~! in the absence
of signs of approaching a limiting value associated with either
CDW breaking (achievement of critical current) or the loss of
its coherence. As mentioned in the Introduction, the indica-
tions of achieving the CDW critical current in TaSs3, NbSe;,
and blue bronze were reported in Refs [14, 15], but direct
evidence of CDW breaking at high sliding velocities is still
lacking. According to Refs [14, 15], the critical current
corresponds to the fundamental frequency fy ~ 10! Hz.
Thus far, we have not been able to match nanosamples to
microwave radiation in excess of 16 GHz, i.e., feed into them a
power sufficient for CDW synchronization. Nevertheless, we
have estimated critical currents that can be passed through
NbS; bridges. To this end, we have measured Ry(/)
dependences for a few samples, increasing the current till the
sample burnt up or its degradation began (resistance
increased).

Figure 12 presents such dependences for two samples.
Shapiro steps were observed in them at the limiting irradia-
tion frequencies of 12 and 15.3 GHz (see the corresponding
peaks of R4(7) in the figure). It is seen from these dependences
that the maximum current density is ~ 6 x 10° A cm2, the
corresponding CDW velocity =~ 200 m s~!, and the funda-
mental frequency ~ 200 GHz. The last value may be regarded
as an estimate of the maximum frequency that the samples
can receive or generate. These parameters can possibly be
enhanced by selecting still thinner samples, i.e., thinner than
10 nm. However, other experimental procedures are needed
for this purpose.

The question is, what peculiarities of NbS; made it
possible to obtain record-breaking CDW synchronization
frequencies? Highest current densities on record are due to
the aforementioned causes, such as strong structural aniso-
tropy, allowing samples to be thinned to at least 20 nm
without suppressing the CDW. Given that such samples fit

tightly to the substrate, they can tolerate a current density of
up to ~ 6 x 10° A cm~2 (Fig. 12). Another peculiarity of
NbS; is the low concentration of conducting chains (one of
the eight) responsible for low bulk density of heat release. For
a CDW to be synchronized by a microwave field, it must show
‘high-frequency properties’, besides high sliding velocity. A
rigid CDW model and a strongly damped oscillator approx-
imation [34, 35] permit associating such CDW properties of
NbS; with high threshold fields (= 100 V cm™! for nanosam-
ples) and weak CDW friction (1 /7). In this model, the pinning
frequency, i.e., the maximum frequency of CDW response to
an alternating voltage, is estimated at Eiet/(Am*) [34, 35].

2.5 Unique properties of charge density waves in NbS3

A unique property of NbS; phase I1 is the high temperature of
transitions. As a matter of fact, the NbS; samples grown
exhibit three Peierls transitions. TEM studies at room
temperature demonstrated the existence of two superlattices
(CDWs) with components along the b* direction:
q1 = 0.297b*, and ¢, = 0.352h* [28] (the data reported in
Ref. [26] agree with those in paper [28]). Satellite reflexes
corresponding to ¢; weaken appreciably for 7> Tpy, i.e.,
starting from temperature 360 K [28]. As the temperature
approaches Tp, the threshold nonlinear conduction observed
at near-room temperature disappears, too [25], thus meaning
that this conduction is due to CDW sliding with ¢;. On the
other hand, one more CDW remains for 7> Tp;. The study
of its properties encounters difficulties because NbS; proper-
ties begin to degrade rapidly for 7> 400 K. Nevertheless,
fast measurements in the argon atmosphere allowed the
temperature of the highest transition, Tpg, to be estimated at
approximately 620 K. Threshold nonlinear conduction was
also observed at temperatures close to 475 K.

The appearance of the third CDW with Tp, = 150 K is
beyond doubt, but the lack of low-temperature diffraction
research does not allow us to determine the magnitude of
its ¢ vector. Such studies are pending. They are of special
interest because charge density carried by the lower CDW
appears to be abnormally small and varies from sample to
sample.

3. ‘Quantization’ of charge density wave states
in thin samples of blue bronze and NbSe3

Samples of quasi-one-dimensional conductors of submicron
and nanometer sizes also possess unique properties in below-
threshold fields, i.e., when the CDW is at rest. As mentioned
in the Introduction, such samples exhibit conduction steps
associated with single phase-slip (PS) events, i.e., a change in
the number of CDW periods N by +1. If contacts create here
stringent boundary conditions for the CDW phase, N must be
an integer and quantity ¢ = 2N/ L must take discrete values.
Such ‘quantization’ of ¢ occurs at the intersection of quantum
and classical physics: a CDW comprises a quantum con-
densate, and its period equals half the de Broglie wavelength
of an electron at the Fermi level, A = n/kp. At the same time,
discrete states of CDWs are similar to the states of a classical
wave in a resonator.

In many quasi-one-dimensional conductors, g depends on
temperature. Therefore, the CDW period can be altered by
changing 7. Because the phase slip of CDW requires that a
certain energy barrier arising from the necessity of a local
CDW break be overcome, ¢(7) dependences display a
hysteretic character (although only indirect evidence of ¢
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hysteresis has so far been available, based on R(T) depen-
dences). This means that states with different ¢ values can be
obtained at the same temperature and, vice versa, states with
¢ = const can be studied in a certain temperature range.

To date, discrete CDW states have not been observable
directly, i.e., using electron diffraction methods. (The sole
exception is Ref. [19] reporting an X-ray study of thin single-
crystal chromium films that yielded discrete ¢ values of spin
density waves, depending on the film thickness.) However,
the ‘quantization’ of ¢ is possible to observe, studying
T-dependences of ¢ in micro- and nanosamples. In fields lower
than E;, conductivity is determined by quasiparticles excited
over the Peierls gap. Each phase slip changes the charge of
CDW and, therefore, the charge of the quasiparticles; more-
over, it causes the chemical potential to shift [18]. Thus,
jumplike changes of ¢ must be accompanied by ¢ jumps.

Just such jumps were observed in a study of submicron
TaS; whiskers [18]. Numerical calculations showed that the
magnitude 6o of jumps corresponds, on the average, to the
creation and annihilation of a CDW period per chain.
Repeated measurements of o(7) confirmed the possibility
of observing reproducible discrete states in some cases.
However, regular temperature switchovers between the
states were never observed. Moreover, the jumps varied in
magnitude. There were occasionally much smaller (as if
fractional) steps among the majority of roughly equally high
ones. Evidently, these deviations from the regular structure of
the states are due to incomplete coherence of CDWs both
along and across the sample, and to the absence of stringent
boundary conditions at the contacts [36].

We conducted a similar study of thin K¢3MoO3 and
NbSe; samples, in which conductivity jumps between dis-
crete states corresponding to ‘quantized’ values of the wave
vector were observed. An important difference from Ref. [18]
was the method of contact manufacture, besides the selection
and preparation of samples with a perfect structure. The
contacts were made by the laser gold deposition technique,
ensuring penetration of high-energy gold ions into the
material to a depth of several angstroms and induction of
radiation defects even farther from the surface. Evidently,
such defects sharply enhance the value of E; and, thereby,
prevent the spread of PS-induced CDW strain outside the
contact region. This means that the contacts create stringent
boundary conditions for CDWs. We also note the low
resistivity of such contacts (some 10~ Q cm~2) and the
‘metallic’ behavior of their resistivity, suggesting the absence
of a contact energy barrier [37].

We selected a few tenths of a micrometer-thick transpar-
ent lamellae of blue bronze extended along the b-axis, i.e.,
along the metal chains. The samples were a few dozen
micrometers in length, and several-fold smaller in width [36].
The NbSe; whiskers were a few tenths of a micrometer in
thickness and several dozen micrometers in length. Blue
bronze and NbSe; samples with such dimensions retain the
CDW properties characteristic of a bulk material. Detailed
results of blue bronze studies are reported in papers [36, 38],
and those of NbSe; in papers [37, 38].

Figure 13 depicts segments of temperature dependences of
conductivity o(7") for three samples of blue bronze. The most
clear picture of the states and changeover between them was
obtained utilizing a 21 x 5 x 0.3-um? sample; it is depicted in
the center of the figure showing the hysteresis loop typical of
blue bronze. Both branches of the loop exhibit regular
temperature jumps of conductivity roughly equal in height.
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Figure 13. Segments of temperature dependences for three samples of blue
bronze. The sample sizes are 21 x5x 0.3 um?, 50 x 7 x 0.3 um? (conduc-
tivity is magnified 1.5 times), and 10 pum x 2 um (the thickness was not
measured, conductivity is divided by 1.5). Arrows indicate temperature
scan direction. Dashed lines show omitted reversible segments of the
dependence.

The magnitude of the jumps and its changes under the effect
of varying temperature are quantitatively described by a
semiconductor model. The segments of ¢(7) connecting the
upper and lower branches were obtained by altering the scan
direction of 7. The ¢(7") dependences in these curves are
reversible, and there are no ‘allowed’ states between them.

Because each jump corresponds to a +2n/L change in ¢,
counting the number of jumps in a certain T range, it is
possible to find how the ¢ vector changes within this interval.
Specifically, the change in ¢ for 7' < 130 K was observed by
this method in Ref. [36]. This observation is consistent with
the result of X-ray studies [39], but the responsiveness of ¢ to
changes in our case proved much higher (8¢/q ~ 107%). It was
finally found that ¢ continues to change even at temperatures
below 70 K. Moreover, a hysteresis of 6¢(7') dependence was
revealed.

Because the concentration of electrons or holes (depend-
ing on which carriers play the key role) in each chain changes
by +2/L in each jump, knowing the 8¢ value: the mobility u of
the main carriers can be deduced

daL2sy
n=

2es '

where sy is the area per CDW chain, and s is the sample cross
section. The value of u for blue bronze (in the present case,
electron mobility) estimated in this way proved to be
10 cm? V~! 57!, This value practically coincides with Hall
electron mobility of 13 cm? V—!s~1 [40].

If the mobility is easy to determine in the case of blue
bronze by measuring the Hall effect, it is much more difficult
to do for semiconductors possessing a more complicated
band structure, where different types of carriers make
comparable contributions to conductivity. The Peierls’
conductors (semimetals) with a complex structure are
exemplified by NbSe;. This compound has three types of Nb



38 V Ya Pokrovskii, S G Zybtsev, M V Nikitin, I G Gorlova, V F Nasretdinova, S V Zaitsev-Zotov

Physics— Uspekhi 56 (1)

60 -

40

o — P(T), MQ™!

-20

—40

30 35

40 45 50 T,K

Figure 14. The ¢(7) dependence obtained after subtraction of polynomial approximation for an NbSe; sample of length L = 33 pm (R399 = 3.2 kQ).
Dashed lines roughly show omitted reversible fragments of the curves. Inset: a similar dependence for another sample (L = 35 pm, R3p0 = 5.1 kQ)ina

narrow temperature range.

chains in its structure, each associated with a specific
quasiparticle carrier. Investigation of conductivity jumps
due to CDW phase slips gives a unique possibility of
determining the mobility of exactly those carriers that are
associated with a given CDW.

The NbSe; compound gives evidence of two Peierls
transitions: at 7p; = 144 K, and Tp, = 59 K. Incomplete
dielectrization of the electron spectrum is responsible for a
sharp rise in NbSe; conductivity with decreasing 7. There-
fore, we approximated the measured ¢(7') curves for each
sample with a polynomial in order to distinguish small
changes in conductivity due to single CDW phase-slip
events. (The degree of the polynomial varied from 6 to 15.)
Then, we subtracted this approximation from the o(7T')
dependences. The results of this procedure are presented in
Fig. 14. The o(T) dependences for T < Tp, for two sub-
micron NbSe; samples were measured during repeated
thermocycling. It can be seen from the figure that the curves
obtained are actually sets of lines spreading out like a fan with
lowering temperature. Each line corresponds to one of the
discrete CDW states. The dashed lines help to identify the
states that the sample did not occupy during measurements.
The observed jumps between the states correspond to
single — and sometimes double or triple — phase-slip events.

The most important information to be extracted from the
figure is a rise in the magnitude of conductivity jumps dg with
lowering temperature, which suggests an enhanced mobility
of the carriers. The 3o value was used to determine the
temperature dependence of mobility [37]. The results for five
samples are presented in Fig. 15. A drop in temperature 7 to
20 K increased the mobility — it approaches 10° cm®> V-!s~ !,
It is worth noting that this value was obtained without using
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Figure 15. Temperature dependences of mobility obtained by the treat-
ment of ¢(7") curves for five NbSe; samples 2962 pm in length. Unlike
symbols correspond to different samples. Full and open dots denote
results of model calculation [41] for electron and hole quasiparticles,
respectively. Inset: a segment of ¢(7") dependence for one of the samples
(see inset to Fig. 14) obtained on the assumption that each conduction
jump corresponds to g = +2m/L.
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any adjustable parameters. Because formation of the lower
CDW is believed to be related to the appearance of a gap in
the electron spectrum on type 1 chains, it is clear that we
found mobilities of quasiparticles connected precisely with
these chains.

Such a high mobility appears to be due to the presence of
‘pockets’, i.e., portions of the Fermi surface containing free
holes. This unusual property of quasiparticles makes NbSe;
especially interesting for researchers. Earlier authors calcu-
lated mobilities of carriers from measurements of the Hall
effect, transverse magnetoresistance, and conduction aniso-
tropy with the use of the so-called Ong two-band model. The
results of calculation [41] for electrons and holes (principal
carriers) are also shown in the inset to Fig. 15. Because six
adjustable parameters and certain simplifications were
employed in the calculation, its results appear unreliable.
Later data suggesting small effective mass of the holes at low
temperatures are purely qualitative [42]. Therefore, the rough
coincidence between the result thus obtained (Fig. 15) and the
results of calculation in Ref. [41] is of importance as the
outcome of both the first direct measurement of mobility and
the confirmation of the model [41]. Notice that the hole
mobility increases even faster than it is expected from the
Ong model (open circles in Fig. 15).

Conduction steps also observed in the temperature range
Tp, < T < Tp are associated with ‘quantization’ of the states
of the upper CDW with Tp = 140 K [37]. The mobility of
carriers on type 3 chains proved to equal 400-600 cm?> V~!s~!
at T'= 85—135 K [37], a rather high mobility for quasiparti-
cle excitations of CDW. The steps in this temperature range
can be related to the temperature dependence of the ¢ vector
of the upper CDW. ¢,(T'), observed in an earlier study [43].
The ¢>(T') dependence has never been reported before for an
obvious reason: the change in ¢, over the entire range 20 K
< T < Tp, is no more than ~ 10~* [37]. Such a change is
rather difficult to observe by X-ray techniques.

To conclude, the observation of ‘quantization’ is not only
interesting in itself, but it also allows determining with a high
degree of accuracy the mobility of current-carrying quasipar-
ticles. In the case of NbSes, it also revealed changes in the
g-vector value and its hysteresis. The use of ‘quantization’ of
the wave vector values makes it possible to study intricate
effects arising from the reorganization of superstructure in
different materials and to determine the mobility of carriers in
Peierls semiconductors with a complicated structure of
conducting bands.

4. Effects associated with deformation
of quasi-one-dimensional charge density
wave conductors

4.1. Nature of the deformation
of quasi-one-dimensional conductors in an electric field
As noted in the Introduction, a CDW can be regarded as an
electron crystal formed inside the host lattice and interacting
with it. CDW depinning was shown to decrease Young’s
modulus Y in TaS; by 4% [20, 44-47], while the share
modulus by the magnitude reaching 30% [20, 48, 49]. These
findings were qualitatively explained on the assumption that
the deformation of a crystal disturbs CDW equilibrium as
well, i.e., results in producing CDW strain [44].

One can also envision the following situation: suppose
that a CDW undergoes deformation under the effect of an

external force. The interaction of two ‘springs’, the CDW
and the lattice, causes the sizes of the crystal to change in
such a way that the CDW approaches equilibrium, and thus
the total elastic energy of the CDW and the lattice becomes
minimal [22]. Variations of the length of quasi-one-dimen-
sional conductors associated with CDW deformation were
observed for the first time under the action of an electric field
in Ref. [21]. It was shown that the length of TaS; samples may
be different, even in a zero field, depending on the previously
applied voltage, in connection with residual (metastable)
CDW strain. The authors of Ref. [22] reported a change in
the length one and a half orders of magnitude greater than in
Ref. [21] (~ 5 x 1077), with the metastable CDW states in the
TaS; sample being thermally created. These states are
characterized by relatively uniform stretching or compres-
sion of the CDW over the sample length.

The semiempirical model proposed in Ref. [52] explains
the thermally induced uniform deformation of the samples.
Generally speaking, a change in the sample length as a result
of CDW deformation can be expected only when the
equilibrium CDW period / nontrivially depends on the
lattice parameters. For example, if a change in the lattice
period a under the action of an external force alters 1/a, the
sample length can be expected to change as a result of CDW
deformation. Thus, the TaS; strain observed in Ref. [22] is
associated with a decrease in the value of a CDW ¢ vector
during stretching of the sample, which was revealed in
Refs [50, 51]. Model [52] predicts a markedly inhomogeneous
longitudinal strain of the sample in an electric field. It is shown
that such strain may be L.// times the strain of piezoelectric
ion crystals. The ratio of a CDW coherence length to a wave
period, L./4, may reach 10°. However, nonuniform long-
itudinal strain of quasi-one-dimensional crystals has not yet
been observed, presumably due to technical difficulties. An
experimental approach with the use of AFM to study such
deformation was proposed in Ref. [53].

At the same time, crystal strain need not be longitudinal.
Bearing in mind the dependence of 4, not only on longitudinal
but also on other components of sample’s strain, other forms
of inhomogeneous crystal strain in an electric field can be
anticipated. Some of them are dealt with in Sections 4.2-4.7.

Torsional strain has been most thoroughly investigated
due in part to the availability of relatively simple methods for
the measurement of the torsion angle [54-63]. These methods
are briefly discussed in Section 4.2.

4.2 Methods of torsion studies

To begin with, a crystal must be fixed so as to enable torsion.
With this aim in view one end of the sample 1-5 mm in length
and 10-30 pm in width was attached to the substrate by an
indium pressure contact so that the sample was elevated
above the substrate. The current was fed into the other end
through a thin wire — a gold-plated whisker of high-tempera-
ture superconductor (HTSC) Bi;Sr,CaCu,0,, which did not
really hinder sample twist. Different sample mounting
schemes without resort to wires were also used, which is
especially important for experiments with the thinnest
samples. One scheme took advantage of the relationship
between torsion and the presence of a polar axis in the
sample that determined twist direction [54]. The sample was
cut into halves transversely to conducting chains. One half
was turned 180° and the former free end was glued to the cut
surface of the other half, giving a structure of two pieces of
one sample connected end to end with oppositely directed
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polar axes. When the current was passed through this
structure, the soldered ends of each piece turned to the same
side [62].

Another configuration is much simpler as regards
manufacturing technology [58, 62]. Both ends of a whisker
were fixed on the substrate by two indium pressure contacts
so that its middle part was elevated above the substrate
(Fig. 19b in Section 4.5). In this case, half of the suspended
part coated with a shunting gold layer served as a passive
analog of the tension member, i.e. the wire in the preceding
variant. The elasticity of the tension member made,
obviously, the torsion angles roughly by half, which was
taken into account in the treatment of the results.

In most experiments, torsion was studied by optical
methods, in which a laser beam was focused on micromirrors
glued to the samples (BiySr,CaCu, O, whiskers coated with a
thin gold layer were also used). An American team studied
torsion by a capacitance method based on the measurement
of the spiral resonator frequency varying with the movement
of the wire glued to the sample [59-61, 63].

4.3 Main results of torsion studies

Here are the main results of torsion research. It was revealed
that the free end of the sample in the Peierls state turned as the
current was passed through metal chains, with the direction of
the turn determined by current direction [54]. Such an effect
was observed in a number of CDW conductors: TaSs,
(TaSes4),1, Kg3Mo0Os, and NbS; (phase 1I) [54, 56]. Depen-
dences of the torsion angle on the electric field, ¢(E),
measured at different E variation rates give evidence of two
contributions [56]: (1) slow—threshold, hysteretic (see
Section 4.4, Fig. 17b, dark curve), and (2) fast— practically
linear in terms of voltage. Both contributions are related to
CDW strain, probably due to surface pinning. In the first
case, the strain was caused by the formation of metastable
states; in the second case — by small reversible CDW
deformations near an equilibrium or near a metastable state.
In the case of ‘slow’ torsion, shear strain normalized to
electric field amounts to 107® m V~! (at least three orders of
magnitude higher than the maximum values of piezomoduli

in piezoelectrics). For TaSs, the time of switchover between
metastable strain states after the application of an electric
field higher than the threshold one lies in the range
1072—10"! s at liquid-nitrogen temperature and varies
approximately as exp [900/(T[K])] between 70 and 100K
[56]. Notice that the activation energy equal to 900 K is close
to the half-width of the Peierls gap. A somewhat higher
activation energy was obtained in Ref. [63], where it is
shown that relaxation time decreases with increasing voltage
and is invariably higher compared with the known CDW
relaxation times found from the dynamics of the electro-
modulation of TaS; reflection index.

The second (fast) contribution [56] is studied less
thoroughly. It is smaller than the first one by roughly 1-
2 orders of magnitude and prevails in fields below threshold.
In this case, CDW strain is small and metastable states do not
form; nor does ‘slow’ strain develop. Moreover, the fast
contribution predominates at relatively high frequencies,
above 0.1-1 kHz for TaS; at T~ 80 K, which distinguishes
it from the slow contribution [56]. The upper frequency
boundary for such response remains to be found. The TaS;
torsion amplitude within the limits of experimental accuracy
is independent of the alternating current frequency, at least
till the first torsional resonance (1-10 kHz) occurs.

The general view of the dependence of torsional response
on the amplitude and frequency is given in Fig. 16a [56], where
the TaS; torsion amplitude is presented as a function of the
alternating voltage amplitude in the form of symmetric
meander at different alternating voltage frequencies. An
analogous set of curves for blue bronze is displayed in
Fig. 16b. These dependences suggest that the torsional
response at low voltage modulation frequencies shows the
threshold dependence on the amplitude. The threshold
component of the response decreases with increasing fre-
quency, whereas the linear one barely changes (in TaS3), or
decreases far less significantly (in blue bronze).

The resonant torsional vibrations under the action of
an alternating electric field at frequencies up to 200 kHz and
Q-factor above 10* are associated with ‘fast’ torsion [57]. In
this case, the limiting frequency at which torsion occurs is
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Figure 16. The amplitude of 3¢ depending on amplitude A4 of symmetric rectangular alternating voltage: (a) for TaS; at frequencies (from top to bottom)
f=1,2,4,40, 110, 220, 440, 880, 2 x 10%,9 x 10,15 x 10,30 x 10?, 60 x 10> Hz, and (b) for blue bronze at frequencies (from top to bottom) f = 3, 30,
300, 5 x 103, 10%, 3 x 10* Hz. Dashed curves show smoothed results; the temperature 7 ~ 82 K.
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restricted by measuring technique capabilities. The relation-
ship between this contribution and the existence of CDW is
well apparent from the behavior of temperature dependence,
i.e., a sharp decrease in the amplitude in the Peierls transition
region [56].

4.4 Torsional effects associated with the sliding

of a charge density wave

The manifestation of CDW strain in the mechanical proper-
ties of the samples raised the question about the possible
observation of torsional effects associated with CDW sliding,
such as synchronization of CDW sliding in an electric field
(Shapiro steps) and spatio-temporal nonuniformity of CDW
motion apparent as broad- and narrow-band voltage fluctua-
tions at a direct current exceeding the threshold one.

We begin with the Shapiro steps, the finding of which on
CVCs suggests increasing temporal coherence of CDW
motion: a CDW synphasically overcomes the periodic pin-
ning potential at different points of the sample. At the same
time, nothing is known about spatial coherence of CDW
under synchronization conditions, i.e., about the effect of
irradiation on the spatially inhomogeneous CDW strain. It is
well known that a CDW can slide in a sample continuously
without the formation of phase-slip centers in the bulk, as
evidenced by the presence of near-contact CDW strain regions
extending a few millimeters from the contacts [65]. This
extended strain, like inhomogeneous CDW strain developed
due to impurities, does not exclude, in principle, the possibility
of synchronously overcoming pinning barriers at different
points of a sample: the continuity of motion of a CDW means
that its phase velocity (hence, fundamental frequency) is
identical at all these points. For this reason, even full
synchronization of CDW motion during microwave irradia-
tion does not necessarily imply enhanced spatial coherence.
Because torsion is associated with spatially inhomogeneous
CDW strain, the manifestation of Shapiro steps may provide
here information about spatial CDW coherence under
synchronization.

Reference [58] reports the results of investigations into the
‘slow’ torsion of TaS; samples during microwave irradiation.
Torsional strain was measured simultaneously with R4(7)
dependences that exhibited Shapiro steps, i.e., Rq(/) peaks.
The ¢(I) dependences also showed peculiarities at the same
current values at which Shapiro steps were apparent. Direct
measurements of ¢(7) dependences (Fig. 17b, light curve)
failed to reveal details of these peculiarities due to low-
frequency noises produced by the photodiode and the
amplifier. Therefore, we measured d¢/d[ derivatives depend-
ing on /I, in analogy with CVC measurement by the
synchronous detection method. In so doing, the current
modulation frequency proved to be much lower than the
frequency of the first torsional resonance (1-10 kHz). The
I-dependence of d¢/dI exhibited narrow peaks that crossed
the de/dI=0 level (Fig. 17a). This means that under
conditions of the fullest CDW synchronization, the sample
begins to turn in the opposite direction, as also viewed in
Fig. 17b presenting results of direct (/) measurement (thin
curve) together with the results of de/dI integration. Evi-
dently, the ¢(I) dependences measured by the two methods
roughly coincide, except the hysteretic (slow) contribution,
which is practically absent when measured by the differentia-
tion method [58]. The dashed line in Fig. 17b fits approximate
results of the ¢ (/) extrapolation in the Shapiro step region in
the absence of synchronization. It may be seen that, for the
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Figure 17. (a) Differential signal from a photodiode (rms value) measured
by a synchronous detector during microwave irradiation at 500 kHz.
Modulation frequency is 333 Hz (20 times lower than the frequency of first
torsional resonance), amplitude 8/ = 0.6 pA, and 7= 121 K. (b) ¢(I)
dependences with (light curve with dots) and without (dark curve)
irradiation at 500 kHz. The thin curve is the result of de/d[ integration,
and the dashed curve fits approximate results of extrapolation of ¢ (/) in
the Shapiro step region in the absence of synchronization [58].

sample being studied, a change in the rotation angle, 10-2°, is
achieved due to CDW synchronization. The degree of
synchronization is estimated at 10% from the Rq(/) depen-
dence [58], which is a good value for TaS;. Thus, under full
synchronization conditions, the torsion angle can be expected
to deviate by 0.1° (in fact, zero deviation unless the hysteretic
contribution is counted). The decrease in the sample’s torsion
angle implies that inhomogeneous CDW strain decreases, too,
meaning that inhomogeneous CDW strain, at least its torsion-
related part (most probably shear strain [54, 56]), must
disappear under full synchronization. This finding suggests
an enhancement of CDW spatial coherence in the presence of
Shapiro steps. This conclusion is also consistent with the
results of Ref. [66], where Young’s modulus maxima and
internal friction minima were observed in TaS; and NbSe;
samples under synchronization conditions.

As also noted in Ref. [58], torsion measurements can be
regarded as a highly sensitive method for studying CDW
synchronization. This inference is illustrated by a comparison
of peculiarities in the /-dependences of d¢/dl and Ry for one
of the TaS; samples singled out by more chaotic CDW
motion. In this sample, the peaks corresponding to Shapiro
steps are less pronounced, but peaks corresponding to
fundamental frequency harmonics and subharmonics
appear. It turned out that the fine structure of harmonics
and subharmonics is more apparent in the /-dependence of
d¢/dI than in the I-dependence of Ry.

4.5 Sample vibrations during the flow of a direct charge
density wave current

Shapiro steps research can be regarded as a tool for the study
of CDW creep in the periodic pinning potential. This
potential is directly manifested as the generation of narrow-
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band electric noise during CDW creep. The generation of
broad-band low-frequency noise is also associated with
pinning and narrow-band noise [67-69]. It can be expected
that the motion in the pinning potential must cause
inhomogeneous dynamic, i.e., time-dependent, CDW strain.

We present below the results of a study on the dynamic
strain of a sample through which direct CDW current is
passed. The idea behind this experiment is as follows. If CDW
strain results in sample’s torsional strain, the dynamic
inhomogeneous strain of a sliding CDW is likely to manifest
itself as noise (torsional) vibrations (both stochastic and
periodic) of the sample.

The first experiments were carried out on samples of
(TaSe4),1. CDW creep in this compound is distinguished by
very low coherence, as apparent from the very indistinct peak
of narrow-band noise (8f/f>1/10) [70, 71] and relatively
strong broad-band noise. Due to this, the amplitude of
stochastic angular oscillations during CDW creep in this
compound was higher than in TaS;. However, difficulties
encountered in the preparation of (TaSe4),I-based torsional
structures, which are related to the fragility of the resulting
samples, precluded completion of these experiments. Improve-
ment of the measuring scheme permitted reducing the level of
sample vibrations and the amplifier noise; it made possible the
study of torsional noises in the TaS; samples, as well.

When measuring noise, we ran a direct current / through
a sample and recorded, as a rule, the oscillograms of the
angle ¢(¢) oscillations with a discretization frequency of
400 Hz for 40 s (16,000 points). Alternating (noise) voltage at
the sample was simultaneously recorded in the oscillograph
second channel. Discrete Fourier transform was used to find
frequency dependences of spectral noise density for angle,
Sy(f), and voltage, Sy(f), in a range of 0.025-200 Hz.
Measurements repeated at different currents yielded the
dependences of spectral noise densities of ¢ and ¥ on the
frequency and current passed through the sample.

A set of S,(f) dependences for one of the (TaSes),I
samples is presented in Fig. 18. Analogous data for TaS; at
currents below and above the threshold are shown in Fig. 19b.
Figure 19a depicts simultaneously measured dependences for
voltage fluctuations Sy ( f). The following qualitative conclu-
sions are relevant to both quasi-one-dimensional compounds:
(1) current passage is accompanied by torsion angle fluctua-
tions in excess of background vibrations (in a zero field);
(2) these fluctuations are noticeable only at a voltage close to
or above the threshold, and (3) the noise ‘turns white’, on the
average, as V' grows: if the difference S, (f, V) — S,(f,0) is
approximated by the 1/f* dependence, the exponent o
decreases from 2 to 1 for (TaSey),1, and from 1.5 to 0.5 for
TaS; with increasing V. These observations indicate that
vibrations qualitatively reproduce the main features of low-
frequency noise associated with CDW sliding [72]. Noise
‘whitening’ with growing CDW current means that an
increase in low-frequency noise precedes that of its high-
frequency component. If the noise is regarded in a simplified
representation as a result of superposition of two-level
fluctuating systems (‘fluctuators’), spectral changes related
to growing currents suggest a rise in the mean frequency of
their switchovers [73, 74].

A detailed comparison of spectral fluctuations of torsion
angle and voltage for TaS; samples (see Fig. 19) also reveals
some differences in their current-dependent evolution. For
example, Sy starts to grow gradually even at below-threshold
currents, whereas S, increases jumplike at a somewhat higher
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Figure 18. Spectral density of torsion angle fluctuations for a (TaSes4),I
whisker during passage of the above-threshold direct current; 7= 147 K,
and discretization frequency is 200 Hz. Fluctuations surpass the noise level
(V' = 0) as the current increases. Threshold voltage is 0.5 V, sample length
and width are 1.5 mm and 15 pum, respectively.
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Figure 19. Spectral density of voltage fluctuations (a) and torsion angle

fluctuations (b) in a TaS; whisker at constant current values 0 (x), 1.20 pA

(0), 2.24 pA (v), 2.68 pA (+), 2.93 pA (o), 3.17 pA (x), and 3.41 pA

(). Threshold current is Iy = 2.8 pA, length of the gold-free part is
3.5 mm, width 17 um, and thickness 7 pm; the temperature 7' = 83 K.

current. In both cases, a further increase in spectral density
becomes saturated at currents exceeding roughly two times
the threshold value.

Peculiarities in S,(f, V') curves for (TaSes),I samples
(Fig. 18) need to be studied more thoroughly.

Detailed results of sample’s vibration research, including
those related to narrow-band noise, are presented in Ref. [75],
where it is also shown that the cause of vibrations cannot be
reduced to the action of noise voltage associated with CDW
creep on the sample: the observed fluctuations of the torsion
angle are 2-3 orders of magnitude greater than the angles due
to electric noise effects.
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Thus, it can be concluded that CDW sliding leads to two
independent phenomena: generation of noise voltage, and
onset of noise torsional vibrations. In other words, mechan-
ical vibrations are due to the ‘direct’” mechanical effect of
sliding CDWs.

We note that the relationship between torsion angle and
voltage fluctuations is not trivial: angle fluctuations depend
on inhomogeneous CDW strain, whereas voltage fluctuations
may occur without CDW strains, e.g., in a rigid CDW model
[13]. We did not find a significant correlation between
simultaneously measured V(7) and ¢(¢) oscillograms.

4.6 Nature of torsion

All the main characteristics of torsion allow for the conclu-
sion that it is associated with CDW strain. However, the kind
of this strain remains unclear. It was shown in Ref. [54] that
torsion cannot be induced by longitudinal CDW strain
homogeneous throughout the volume. The relatively small
magnitude of the torsion angle temperature hysteresis
betokens such a conclusion [54]. The best studied variety of
inhomogeneous CDW strain in an electric field, i.e., contrac-
tion at one contact and extension at the other, cannot also
explain the observed torsion: the torsion angle increases
monotonically and almost linearly [54] upon moving off the
motionless contact. Therefore, we concluded that the sought-
after CDW strain is roughly homogeneous over the sample
length but inhomogeneous over its cross section.

Itis argued in Refs [54, 56] that such strain may be due to
CDW surface pinning and manifests itself in a CDW shear
near a surface. As a crystal twists, the largest shear strain
develops on the surface. It linearly decreases to zero far from
the surface and vanishes at the axis of torsion. Therefore, it
can logically be supposed that torsion relates precisely to the
CDW strain near the surface. From the symmetry standpoint,
torsion may occur in a crystal containing a polar axis. In the
case of TaS; (rhombic syngony, point group 222 [7]), the
polar axis determining torsional direction is absent. In
principle, symmetry may be reduced in the Peierls transition,
e.g., as a result of transformation of the rectangular cross
section of the sample (or elementary cell) into a parallelo-
gram. Such distortion would mean nonequivalence of the
adjacent edges of a single-crystal parallel to the conducting
chains, and nonequivalence of two directions along the
chains. In this situation, ‘torsional’ surface pinning may
occur if the pinning force near the adjacent edges is different.

Torsion may also result from structural defects of a
sample. It was shown experimentally in Ref. [54] for three
samples cut into halves across the conducting chains that the
torsional directions for different pieces coincide if the
direction of the chains is preserved. Thus, if torsion is
associated with structural defects, such a structure extends
over the total sample length. The linkage between structural
defects and torsion was confirmed in Ref. [63], showing that
the application of an external torque affects the torsion angle
and can even cause inversion of the hysteresis loop (Fig. 17a),
i.e. a change in the torsional direction at the same voltage
sign.

It should be emphasized that the observation of torsion
does not mean that a sample is free from developing other
comparable strains. One of them, bending, was observed in
TEM [56], although the overall strain pattern after the
application of an electric field to the sample remains
unclear. Specifically, inhomogeneous longitudinal strain
expected from the data of Refs [22, 52] needs to be examined

(see Section 4.1). Therefore, it cannot be concluded for the
moment that shear strain manifested in torsion substantially
predominates over other kinds of deformation.

4.7 Voltage modulation induced by torsional strain
Deformation of a sample in an electric field, i.e., an analog of
the inverse piezoeffect, raises the question about the possibi-
lity of obtaining a signal analogous to the direct piezoeffect,
i.e., the electromotive force (emf) resulting from the develop-
ment of strains. The sample must be a dielectric if emf'is to be
observed. Resistivity of quasi-one-dimensional conductors at
the liquid-nitrogen temperature (torsion is practically unex-
plored at lower temperatures) as a rule does not exceed
p =1Q cm, which suggests very short charge relaxation
time, i.e. Maxwell relaxation time t = ggyp, ranging below
10~ sate = 1, which excludes observation of the emf caused
by developing sample’s strain. However, it is worth searching
for an analog of the direct piezoeffect at the liquid-helium
temperature. The resistivity of TaS; samples in these condi-
tions may be on the order of 10'° Q cm and higher.

At the same time, torsion (or other deformation) during
current passage may produce a feedback signal related to
torsion-induced modulation of resistance. Preliminary stu-
dies showed that such a signal does exist at above-threshold
currents. Reference [57] reports detection of torsional
resonances without using optical and capacitance methods.
The TaS; whisker itself served as the receiver. Alternating
current was fed into one part of the sample (actuator) and the
signal was detected at another part (receiver) (Fig. 20a). When
the alternating current frequency coincided with the reso-
nance frequency, the frequency dependence of the signal had
a maximum, suggesting an increase in the torsional vibration
amplitude. A similar ‘self-sensitive’ actuator was designed to
have no suspended contact joints (Fig. 20b) [76]. In this case,
we modulated the resistance of the motionless part of the
sample, contributing to the spread of CDW strain beyond the
contact region.
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Figure 20. Variants of sample location in detecting resonant torsion
without an optical scheme. (a) TaS; sample is elevated on two indium
contacts [57]. (b) Sample without suspended contact joints: /-3 — sputter
deposited gold contacts [76]. In both cases, alternating voltage Vac
exciting vibrations is applied to contacts /, 2 and direct current (DC)
flows through contacts 3, 2. At resonance, a synchronous detector (SD)
registers torsional modulation of voltage between contacts 3 and 2. RS
labels reference signal.
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The feedback signal was observed only if a direct current
substantially higher (roughly an order of magnitude) than the
threshold one was passed through the ‘receiver’. By a rough
estimate, the relative change in voltage in the sample at
resonance compares with the surface shear strain of TaS;:
(8V/V)/G ~ 1. This result means that TaS; is not an
unusually sensitive strain gauge, at least at liquid-nitrogen
temperature.

The tensoelectric response of TaS; was more thoroughly
investigated in Refs [59, 60], also at liquid-nitrogen tempera-
ture. Advantages of the device designed by the authors of
Refs [59, 60] included the possibility of exciting torsional
vibrations by an alternating magnetic field, although,
unfortunately, the capacitance method proved unsuitable
for exact calibration of the torsion angle in absolute units
(this drawback was corrected in work [63]). It turned out that
torsion-induced alternating voltage appeared only when the
current was stronger than a certain threshold value in excess
of the CDW depinning current. The feedback voltage sharply
increased with voltage after this threshold was surpassed.
Based on the results of papers [59, 60], the maximum surface
shear of the samples was roughly estimated as G ~ 2 x 1074,
Hence, §V/V ~ 1073 and the estimate gives (8V/V)/G ~ 5,
close to the above value.

We studied the tensoresistive response of TaS; samples at
different temperatures. The results are presented below. The
idea behind the experiment is that one of the contacts is placed
on a motionless substrate, and the other on the bonding pad
rotating about the axis roughly coincident with the sample
axis, the pad which can be set in motion by a lever extending
outward from the cryostat through the rubber gasket sealing
and rigidly connected with it. The lever is jointed to the
measuring mechanism of an X-Y recorder operating as a
torsional actuator. In so doing, the torsion angle of the
sample is equivalent to the displacement of the measuring
mechanism divided by the lever length (as a rule, of order
1/10 rad). Above-threshold current was passed through the
sample, and a 2-20 Hz frequency voltage was applied to the
self-recorder. The alternating signal from the sample mea-
sured by the lock-in detection method constituted the sought-
after tensoresistant or ‘torsion-resistant’ response.

Figure 21a exemplifies the current dependence of the
sample’s response. It can be seen that the response emerges
at a current above the threshold value of I;. The shape of this
dependence is similar to that obtained in Refs [59, 60], but the
signal saturates at currents above ~ 2/;. Moreover, depinning
thresholds for CDW (Fig. 21b) and for the appearance of
torsional response are not significantly different, unlike those
in Refs [59, 60]. At a modulation frequency of 3 Hz, the phase
of response is practically unrelated to the current, i.e., the
response does not fall behind torsion. It becomes delayed as
the frequency increases, i.e., a quadrature signal appears, near
the threshold field E;, and this delay decreases with increasing
current. The same conclusion is drawn from Fig. 3 of Refs [59,
60], showing that the quadrature signal at a frequency of
10 Hz first grows with a rise in ¥ and becomes saturated
thereafter.

The data presented in Fig. 21a allow the (8V/V)/G ratio
to be estimated. The value of /¥ amounts to 5 x 107#, and
G =38pw/2L ~ 0.07 rad x 5 pum/3 mm ~ 1074, which gives
the approximated ratio (3V/V)/G = 5, 1.e., the same value as
in Refs [59, 60]. Similar to the last experiments, the magnitude
of the response and its current dependence varied appreciably
from sample to sample. Sometimes, the (/) maximum was
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Figure 21. (a) Current-dependent alternating voltage across a TaS; sample
recorded under torsion angle modulation; f'= 3 Hz, modulation ampli-
tude is 4°, and sample length 3 mm. (b) Current dependence of differential
resistance in the same conditions.
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Figure 22. Current-dependent alternating voltage across a TaS; sample
recorded under torsion angle modulation at 7= 89 K (dark curve) and
T =78 K (light curve); f=7 Hz, modulation amplitude is 3.5°, and
sample length 3 mm.

observed instead of saturation (Fig. 22). The character of the
dependence changed if a constant torsion angle of ~ 1 rad
(G ~ 1073) was added to the variable S¢.

The dependence was not always symmetric with respect to
current reversal. As a rule, a drop in temperature to liquid-
nitrogen temperature and below results in a symmetry
breaking, as illustrated in Fig. 22 showing 8V(/) depen-
dences at two temperatures (obtained for the same sample as
in Fig. 21 on the next day).

Summarized results of tensoresistance measurements
indicate that the (8V/V)/G ratio for TaS; undergoing
torsional strain may reach 5-10. It is a large enough value,
bearing in mind that torsion causes only shear strain in which
the volume of an elementary cell does not change in the first
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approximation. References [77-80] make it possible to
estimate (taking into account Young’s modulus of 350 GPa
[20]) the ratio of 8V/V to small longitudinal strain (tensor-
esistive coefficient) for TaS; as equaling at least 100 in the
linear conduction regime (or somewhat below this value in the
nonlinear regime). This parameter is comparable with that for
p-silicon [81], traditionally employed as a tensoresistive
Sensor.

Studies into resistive feedback are also of interest from the
scientific standpoint, as providing information about the
effect of sample’s strain on CDW dynamics. At temperatures
above liquid-nitrogen temperature, one and the same strain
roughly similarly changes the CDW current flowing in
different directions. The model proposed in papers [59, 60]
describes the modulation of CDW current by varying the
threshold field during torsion. The CDW elastic modulus
increases at lower temperatures (together with coherence
length [82-84]) and the CDW dynamics is described by the
motion of large domains. In this case, pinning of individual
domains may lead to some asymmetry of the CVC. Accord-
ingly, curves 8V(7) lose symmetry, too: one and the same
torsional strain may have markedly different effects on CDW
domains at I and —I, because their sizes are comparable to
sample dimensions. It remains unclear how the torsional
direction is related to the sign of dV. In principle, the
relationship between them is feasible in the presence of the
helical axis of symmetry that may be inherent in rhombic
TaS; samples belonging to the point group 222 [7].

5. Nonlinear conduction
in the quasi-one-dimensional conductor TiS3

Sections 2—4 were concerned with group V transition metal
trichalcogenides TaS3, NbSe;, NbS;3, which are typical quasi-
one-dimensional conductors with CDWs. In the present
section, we report the results of studies of a different sort of
quasi-one-dimensional compound, exemplified by TiS;3; we
recall that Ti is a group IV transition metal. Most trichalco-
genides of such metals (M X'!) belong among diamagnetic
semiconductors. Layered quasi-one-dimensional compounds
MW XY crystallize in the monoclinic phase. Metal chains
parallel to the b-axis make up layers in the ab plane separated
by double layers of chalcogen atoms. Up to now, the Peierls
transition has been documented in the sole representative of
this group, ZrTe;. Surprisingly, CDWs originate in a and ¢
directions perpendicular to the conducting chains [85], rather
than along them as usual.

The electron concentration in TiS; samples at room
temperature measured from the Hall effect [86] reaches
~ 2 x 10" cm™3, or 3-4 orders of magnitude lower than in
known Peierls conductors. This suggests that TiS; may be a
semiconductor or semimetal. At the same time, titanium
trisulfide, like ZrTes;, shows metallic properties at high
temperatures: its resistance in the direction along the
conducting chains decreases with decreasing temperature.
At T =~ 250 K, the temperature dependence of resistance
R(T) has a minimum. For T < 250 K, resistance behaves in
a dielectric manner [87, 88] and becomes frequency-depen-
dent [87]. This might be attributed to CDW formation, but no
structural phase transition in TiS; has thus far been observed
[88], and the above result was explained as incidental to
disordering. At the same time, nonlinear conduction has
recently been reported to occur in TiS; at a temperature
below 60 K and to increase as temperature continues to

drop. Resistance Ry decreased by more than one order of
magnitude at 7~ 4.2 K in an electric field of ~ 30 V cm™!
[80, 90].

Based on CVC measurements along the chains, the
authors of Refs [89, 90] argue in favor of a collective
mechanism of nonlinear conduction in TiS; samples. The
dependences R(T') have peculiarities at 120, 59, and 17 K in
the form of the maxima of |dIn R/dT| derivatives in a and b
directions, suggesting phase transitions to the condensed
state, probably with the induction of a CDW. Temperature
dependences of nonlinear conduction (at fixed voltage values)
also exhibit peculiarities at the same temperatures as in the
case of linear conduction. The growth in TiS; conduction
anisotropy by two orders of magnitude with decreasing
temperature down to 7 = 50 K is also a peculiar character-
istic of Peierls quasi-one-dimensional conductors [91, 92].

Threshold nonlinearity typical of CDW depinning was
also reported in papers [89, 90]. More detailed studies
demonstrated the nonlinear behavior of R4(/) dependence
at low currents as well. Conductivity began to increase
practically at zero voltage, i.e., the threshold was absent
(Fig. 23). As I — 0, an increasingly sharper peak appeared
on the Ry(/) dependence as temperature decreased. CVCs
had a power-law form at low temperatures (Fig. 24).

As mentioned in Section 2.3, peaks of Ry(I) were
observed in certain (seemingly most defective) NbS; samples
(Fig. 9b), as well as in thin NbSe; samples with resistance
above 1 kQ pm~! per unit length, i.e., with a cross section area
of less than 3 x 10~ um?, and in thick NbSe; samples with
introduced defects [30, 31]. Threshold-free CVCs were also
observed in TaS; at low temperatures [92].

The heightened interest in such dependences is due to the
search for one-dimensional electron states of the Luttinger
liquid type [29]. In this case, resistance must show the power-
law dependence on temperature and applied voltage. Quasi-
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Figure 23. Voltage dependences of longitudinal differential resistance for a
TiS; whisker at different temperatures. Distance between potential
contacts measures 40 um, and sample cross section area 60 x 2 pm?.
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Figure 24. CVC of a TiS; whisker measured in the longitudinal direction at
T=6.4 K (corresponds to the upper curve in Fig. 23). For J > 100 mV,
the dependence has the power-law form: 7 oc ¥#+!. The slope of the dashed
straight line corresponds to exponent f + 1 = 2.

one-dimensional systems with some degree of disorder may
also have an R4(/) maximum at zero current. Theoretical
studies showed [32] that jumplike variations of conductivity
in disordered quasi-one-dimensional compounds may be a
cause of the power-law dependences of resistance: R oc T77%,
and R < V~F. For a Luttinger liquid, one has o = f ~ 2. In
our TiS; whiskers, f§ ~ 1 near the liquid-helium temperature
(Fig. 24). The exponent o found from the slope of R(T) curves
in a temperature range 10 < 7 < 40 K for different samples
proved close to the value of §, namely o ~ 1.0—1.5[93]. In all
likelihood, the observed dependences are related to the quasi-
one-dimensional character of conduction in combination with
electron localization, rather than to the transition to one-
dimensional conduction [32]. This reasoning seems espe-
cially rational for TiS3, which shows neither high anisotropy
of conduction nor a one-dimensional crystalline structure
(crystal lattice parameters are as follows: a = 0.50 nm,
b = 0.34 nm, and ¢ = 0.88 nm) [90].

The form of a threshold-free nonlinear CVC in the above
cases is determined by the spatially nonuniform potential for
carrier motion. The current can be carried here by both one-
electron excitations [29-32] and nonuniformly moving CDWs
(CDW creep emerges or solitons execute motion) [91, 92, 94].
Nonlinear conduction in TiS; occurs for 7"< 60 K and is
most likely associated with the phase transition at 7'~ 59 K,
apparent from R(7T) dependences [89, 90]. Therefore, it can
be supposed that we observe in TiS; the nonuniform motion
of electrons condensed in a collective state — that is, possibly,
a CDW.

Recent studies have shown that the nonlinear conduction
in TiS3 samples also occurs in the transverse direction (along
the g-axis) at temperatures below 120 K [93]. This non-
linearity appears to be related to CDW formation across the
conducting chains in the manner it takes place in ZrTe; [85].

6. Conclusions

To sum up, the main results discussed in this review were
possible to obtain owing to new approaches to the arrange-

ment of experiments, synthesis of compounds (involving new
ones) with a perfect structure and coherent CDWs, and
application of original methods for preparing micro- and
nanostructures based on these materials.

Elucidation of conditions for the synthesis of perfect
phase II NbS; samples allowed CDW coherent motion to be
observed. Synchronization of CDW motion (Shapiro steps)
in NbS3 was observed both at room temperature and 7 below
150 K. In the former case, a record-breaking ‘washboard’
frequency of CDWs was obtained with nanometer-thick
samples and a CDW synchronization frequency up to
16 GHz. The limiting current density reached in such samples
corresponds to the fundamental frequency of 100-200 GHz.
Analysis of Shapiro steps gave reason to conclude that at
room temperature the CDW current is carried by one of the
eight chains contained in an elementary cell. The low density
of such chains appears to be a cause behind the possibility of
achieving CDW velocities on record in NbS; without sample
overheating.

Conductivity measurement combined with electron
microscopy of NbS; samples showed that phase IT comprises
two groups of samples with different properties determined
by growth temperature: whiskers grown at higher tempera-
tures are characterized by enhanced resistance at room
temperature and period doubling along the crystallographic
a direction.

The nature of a lower CDW in NbS; (7' < 150 K) remains
to be investigated. The current density carried by this CDW is
much lower and strongly depends on sample characteristics.
This means that either only part of the elementary cells
contribute to CDW conductivity or that the charge carried
by a lower CDW is considerably smaller than 2e per period.
Structural studies of NbS; for 7 < 150 K are needed to
clarify this issue; they may help to determine the period of
CDWs and thereby lay the basis for further work.

In-depth conductivity studies of nanoscale samples of
quasi-one-dimensional conductors with CDWs, such as blue
bronze and NbSejs, revealed a jumplike variation of resistance
(observed earlier in TaSs [18]), suggesting specific ‘quantiza-
tion’ of the CDW wave vector value. The high coherence of
CDWs in these compounds made possible for the first time
obtaining a set of discrete states equidistant in terms of
conduction. Transition between the neighboring states
means a change in the number of CDW periods between the
contacts by a unity. Transitions between the states occur as
regular temperature-dependent jumps of conductivity. Their
temperature distributions were used to derive the temperature
dependence of a CDW wave vector ¢(7'); sensitivity to ¢
variations in our case proved substantially higher than that
reached by X-ray methods. The mobility of quasiparticles was
deduced from the jump magnitudes; it is of special importance
for NbSe; having an intricate band structure. For the first
time, we provided direct evidence of anomalously high
mobility of residual carriers at low temperatures, suggesting
the unique nature of this compound. Thus, ¢ ‘quantization’
permits us to elucidate some microscopic characteristics of
compounds with internal superstructure. In certain cases, this
approach has no alternative.

One of the recently emerged lines of investigation into
quasi-one-dimensional conductors runs through the research
of abnormally large sample strain determined by CDW
properties. Of special interest among other kinds of deforma-
tion is the huge torsional strain induced by an electric field.
Torsion can be regarded as CDW strain transfer to the crystal
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lattice, even if neither the form of this strain nor the
mechanism of its transfer is known.

It has been shown that torsion contains two contribu-
tions: threshold hysteretic and linear. The largest contribu-
tion comes from static hysteretic of CDW strain, i.e., strain
persisting for the most part after cessation of the application
of electric voltage to a sample. At the same time, the
dependences ¢ (/) and ¢(¢) exhibit peculiarities that reflect
the properties of a sliding CDW. First, HF voltage applied
gives rise to peculiarities analogous to Shapiro steps in the
¢@(I) dependences. Their analysis demonstrated enhanced
spatial coherence of CDWs under synchronization condi-
tions. Second, the flow of a direct CDW current induces
torsional vibrations of the samples, reflecting the presence of
dynamic CDW strain.

A series of studies was designed to evaluate the influence of
TaS; twist by an external actuator on the voltage being
measured at such samples. No analog of the piezoelectric
effect was observed, nor could it be observed owing to the very
low resistance of known quasi-one-dimensional conductors
with CDWs at temperatures above the liquid-nitrogen
temperature. There is every reason to search for an analog of
the direct piezoeffect at liquid-helium temperature, when the
resistivity of such compounds as TaS;, (TaSes),I and
K3MoOsj; is high enough. Torsional strain at temperatures
above the liquid-nitrogen temperature results in voltage
modulation in TaS; samples through which the above-thresh-
old direct current was passed. The maximum relative magni-
tude of 8V/V modulation factor normalized to the surface
shear ranges 1-10. It is a large enough magnitude, bearing in
mind that the volume of an elementary cell during torsion
(shear strain) does not change in the linear approximation.
This effect is attributed to the action of sample strain on CDW
dissipation. For 7<90 K, the 8V/(I) dependence becomes
asymmetric, probably due to the rise in CDW coherence
volume to a value comparable to the sample volume.

Detailed studies of the transport properties of TiS3, a still
poorly known compound, have been undertaken. It proved to
show peculiarities on the temperature dependence of resis-
tance and nonlinear conduction. These findings are explained
by phase transitions to the collective electron state. Elucida-
tion of the nature of these transitions (like the transition in
NbS; at T~ 150 K) is of special interest as occurring in a
quasi-one-dimensional compound with a relatively low
concentration of electrons. Structure research at low tem-
peratures could elucidate this issue.
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nonequilibrium kinetics of an electron—phonon system of a
crystal in a strong electric field (electroplastic effect).

1. Introduction

Interest in the nonequilibrium states of various physical
systems is steadily growing at present, motivated by the
development and extensive use of powerful particle and
energy sources.

A universal (independent of the structure of a source and a
sink) nonequilibrium stationary energy distribution over
wavenumbers g, was first proposed by A N Kolmogoroff [1]
in the theory of turbulence in an incompressible fluid for the
interval of scales 2n/k intermediate between the scales of
forced and efficiently damped motions. The well-known
Kolmogorov spectrum of hydrodynamical turbulence has
the form

g = AP (1.1)
where A is a constant, P is the spectral energy flux, and & is
the wavenumber.

The derivation of formula (1.1) relies on the locality
hypothesis in the turbulent motion, i.e., only comparable
motion scales significantly interact with each other. This
hypothesis remains unproven for the turbulence in an
incompressible fluid (strong turbulence, etc.).
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In physical systems allowing a description of the interac-
tion between waves or particles in terms of the kinetic
equations for waves, quasiparticles, or particles, the deriva-
tion of nonequilibrium stationary distributions reduces to
solving kinetic equations. In this case, the locality of none-
quilibrium stationary distribution corresponds to the con-
vergence of the collision integral. Universal wave spectra that
are solutions of the wave collision integral were first found by
V E Zakharov [2] in the framework of the theory of weak
turbulence of waves.

2. Theoretical studies of nonequilibrium
stationary particle distribution functions
with flux over spectrum

The Fermi—Dirac or Maxwell distribution function, repre-
senting the exact solutions of the respective quantum or
classical Boltzmann collision integral, are the thermodyna-
mically equilibrium distribution functions for electrons in
degenerate or classical plasmas in the isotropic and spatially
homogeneous case [3—7]. For a classical (nondegenerate) gas,
the kinetic Boltzmann equation is written down as

y
) [ ap, . .00 )

< [f(02)/(03) =/ (B) S (P))]

XO(E+E —E—E)o(p+p —p—p3), (2.1)

where W(p,p;|p,,p;) is the transition probability due to
collisions, f(p) is the electron distribution function, p, and
E; are the momentum and energy of an /th electron, and J(x)
is the Dirac delta function.

A distribution function which satisfies the condition

f(p2)f(p3) —f(p)f(P1) =0 (2.2)

is a stationary solution to equation (2.1).

It can readily be seen that functional equation (2.2), with
account for energy and momentum conservation laws in
particle collisions, leads to the thermodynamically equili-
brium Maxwell distribution function.

The question concerning a nonequilibrium distribution
function for a small portion of electrons that are relaxing on
the equilibrium ‘background’ (the collision integral allows
linearization in this case) in the presence of a uniform energy
flux I; in momentum space, driven by ionization and
recombination processes, has been addressed earlier (see, for
example, monograph [8]). Closely related questions on the
distribution function for neutrons in crystals were considered
by A T Akhiezer and I Ya Pomeranchuk [9]. In these cases, the
distribution function may noticeably deviate from the
thermodynamically equilibrium solution, while its form
turns out to be dependent on the structure of a source and a
sink.

Universal nonequilibrium stationary power-law particle
distributions (/= 4p>*), which are exact solutions of the
Boltzmann collision integral, were first obtained by A V Kats,
V M Kontorovich, V E Novikov, and S S Moiseev [10, 11] by
the group symmetry method. For such distributions to form,
the source and sink of particles or energy must exist in
momentum space, thus maintaining a constant spectral flux.

In order to determine the power-law exponent s for the
transition probability, which is a homogeneous function of

momenta of degree n, it is natural to use p,/p variables in the
integrand. In this case, equation (2.1) reduces to an integral
that does not depend on p and the factor p®*"4. Let us
determine the particle (/y) and energy (/;) fluxes in momen-
tum space. The fluxes are linked to the collision integral in the
following way:

o) --s(),

where I; = 4np?j;, and E is the particle energy. Solving
equation (2.3) yields

(2.3)

R(s,n)
4s+n+9+2(i—1)

L=4 20( 1—i p4s+n+9+2(i—l) (24)
where « = const, and 7 is the homogeneity index of transition
probability.

From Eqn (2.4) it follows that for s; satisfying the
condition

yy=4s;+n+9+2(i—1)=0, i=0,1, (2.5)
the flux 7; is either constant in momentum space or zero if
R(s,n) has a zero of the first order at s =s; (the collision
integral is then equal to zero). The distribution function Ap?*
corresponds to a nonequilibrium stationary case with a
constant energy or particle flux. In this case, the flux
direction is set by the sign of the derivative dR/dy, at y, = 0,
and A4 is defined by the expression

-1

A2 = Lo lim (2.6)

Let us demonstrate through direct computations [12, 13]
that for the Boltzmann and Landau collision integrals the
function R(s,n) satisfies the conditions formulated above in
the case of nonequilibrium power-law distributions.

2.1 Exact solutions for the Landau collision integral

It is well known that in plasmas the collision integral
describing the interaction between charged particles can be
written in the Landau form (see, for example, book [3]):

af(p) s e . 4 M25ik — UjUj
(T « = _dlv.]()v Joi = Te AJ dp/ T

< [f<p> AR M} ,

2.7
ap]i 6]7/( ( )

where u = (p — p’)/m, A is the Coulomb logarithm, and m
and e are the electron mass and charge, respectively. Inserting
the isotropic power-law distribution function Ap? into
Eqn (2.7) and performing fairly simple calculations, one
arrives at the following expression

of (p) _ 16n2me4/1A2p4“'
or )

(4s+3)(4s+5)
(s+1)(2s+3)(25+5)

+161t2me4/1A2p45 : 252 ;2P
3 o 2s+3 \p

+(2s+l)s 2 2”2_2s+3 2 =
2542 ¥4 2 p

2s—2)s [\
25+ 5 p '

(2.8)
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According to expression (2.8), the first term of the
collision integral, i.e., the function R(s,n), does indeed
contain multipliers 4s + 5 and 4s + 3, and to the first power.
This ensures, on the one hand, the constancy of energy flux,
and, on the other hand, the disappearance of the collision
integral for the power-law exponent s; = —5/4. As concerns
the exponent sy = —3/4, it corresponds to a nonlocal
distribution function, in which case the collision integral
diverges (the second term under the limit sign becomes
unbounded).

2.2 Exact solutions for the Boltzmann collision integral
Using expression (2.1) for the Boltzmann collision integral
and substituting a power-law particle distribution function in
the form Ap?, with the help of the -function expressing the
momentum conservation law, we integrate expression (2.1)
with respect to p,. Introducing new variables p; and q instead
of p; and p;, we then write down the collision integral in the
form

% (p)
o

x [Ip+aIpy —a” = [p*Ip1]*] (alpy —p—q)) .

where q = p; — p;. The argument of the J-function may
become zero at p —p—q=0 or q(p, —p—q) =0. The
first case presents no interest, as it simply corresponds to
permutation of particles upon their collisions, which sets the
expression in square brackets to zero [i.e., it corresponds to
condition (2.2)] and, consequently, the condition
(©f/d1)y = 0.

Let us introduce the angles 6 and 6; between the vector q
and vectors p and p;, respectively. Changing to spherical
coordinates in Eqn (2.9) for p; and q, integrating over p; with
the help of the o-function, and introducing a dimensionless
variable § (¢ = q/p), we obtain

— —mAzj dp, dqW (p,p,|p+4q.p; — q)

(2.9)

a/(p) _ 2 4s+r+4 8~ ~ ¥
T mA~p ququOJdOchosel
cosl + ¢ 2
- 7 1 20 ~2|
x( cos 0, ) {[\ +2Gcos O+ g |
cosf+q\° .. LY eosO+g*
x < cos 0, > —2q(cos0+q) +47| — cos 0, ’

(2.10)

where r is the dimensionality of the transition probability I,
and dO; = sin 0;d0; do;.

Let us determine the particle (Ip) and energy (7)) fluxes in
momentum space, taking into account that in the case under
consideration the fluxes can be expressed through the
collision integral according to formula (2.3). For the prob-
ability W, being a homogeneous function of momenta to
power n, W= C,q", where C| is a constant, and # is any real
number (in this case, n = r), the collision integral (2.10) can
easily be integrated over 0, ¢, and ¢, and written down as

o
(@).

1
" :J ' tho dg g i +2gx + g |22,

~ 2n?mC A2

4s+n+4 [J(l)
s+ 1

_J(Z)]’

1 00
J@ :J dx[ dgq"x+q*"?, x=cos0.
1 0

The integral J
functions B(x, y) as

can be expressed in terms of beta

J¥ = (25+3)7 [B(2s+4,n+2)

—B(-2s—n—52s+4)+B(n+2,-2s—n—15)].

To compute JU), it is convenient first to carry out
integration over ¢ (see, for example, handbook [14]), which
gives

1-2
JW = p=Gs+1)/2 r(TS) B(n+2,—n—25-2)

—x) + piie (x)} ,

1
5 21)/4 [ pst1/2
xL dx x? *2(1—x2)( st/ [Pw/ ( nts43/2

n+s+3/2

where P['(x) is the spherical function. Making use of the
property of spherical functions, namely
sin (1tv)
Pl (—x) = —— p"
(o) = = S )
sin (n(v+p) T(v+pu+1)
sin(mu) T'(v—pu+1)

—
P (x),
and computing integrals over x, we arrive at

_B(n+2,—n—2s—2) sin (n(s +n+3/2))
7= 25+3 K sin (n(s + 1/2)) )

n+2 n—+2s+2 172s 2s+5
X3F2 2 y D) , 13 71
I'2s+n+3)r1/2-ys) (5+5/2)

(s+2)
22 0(n+2) T ((4s+n+7)/2) T((2s —n+3)/2)
sin (n(2s +n + 2))}
sin (n(s +1/2)) |

where ,Fy(ar,...,0;By,...,B,;2) is the hypergeometric
function. Thus, the expression for the function R(s,n)
entering into a particular solution for the flux I; [see
formula (2.4)], with account for the expressions obtained
earlier for J(U and J@, takes the form

—41‘[3C1
(s+1)(2s+3)
—B(-2s—n—5,2s+4)+B(n+2, -2s—n-15)

R(s,n) = {B(2s +4,n+2)

. {B(n+2, —n—2s—2)<1 _sin'(rt(s+n+3/2))>
sin (m(s +1/2))
><3F2(n+2 n+2s42 125 2S+5'l)
2 ) 2 ) ) 2 ) 2 )
(4s+n+7)(4s+n+9)n2(2s + 1)(2s +3)

225T(—29) T ((4s+n+ 11)/2) T((25 — n + 3)/2)

eyl

In Section 2.1 we considered a quadratic law for particle
dispersion. The generalization to an arbitrary dispersion law
E = p' /oy (Where o) and ¢ are some constants) does not lead
to any principal complications, although the expression for
R(s,n,¢) may prove to be more cumbersome. As for the
power-law exponent s; in the particle distribution function, it
is defined for a general dispersion relation by the following
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expression

n+9+q(i—1)
s§i=—————2~ 2.11
5 = 1)
It has been found that local nonequilibrium particle
distribution functions (the collision integral converges for
them) are associated with the power-law exponent s satisfying
the conditions

5
<s < —-.

—§<s < -1
2 0 ’ 4

—= 2.12
. (2.12)
Subscripts 0 (1) stand for Iy (1;) = const.

According to condition (2.5), the following homogeneity
indices for the transition probability correspond to the
exponents from the ranges (2.12):

—3<n< -1, Iy=const,
(2.13)

—4<n< -3, I =const.

2.3 Formation conditions for nonequilibrium stationary

particle distribution functions in finite energy intervals

As follows from inequalities (2.13) formulated above, the
collision integral diverges (the known singularity of W for
small transferred momenta) in the case of the Coulomb
interaction (n = —4). References [10, 11, 15] propose and
Refs [12, 13] show that this divergence is alleviated by Debye
screening. Consider the collision integral (2.10); for the
transition probability, which corresponds to the screened
Coulomb potential W = 2e*/(¢2 4 a2)* (with ¢ being the
transferred momentum, and a; the Debye momentum), we get

@%ﬁ}_mAﬁﬁqgédéJdOJdalaf%%ff
o () (e 2emo it
~ (25
~ C‘:;Zi;'lq }7 (2.14)

where § = ¢/p, and a = a; /p.

We integrate over the angles 0,, ¢, ¢, and 0, making use
of standard integrals [14], and transform Eqn (2.14) to the
sum of two integrals:

442 'l pope
6](;(lp) _ 8n me*A P4S{J _ dg g i [(1 + g2y
(S+1)(2S+3) 0 (q2+a2)

2q
X(ZF](_S’2S+3;2S+4;_T52)
+oF | — 8,254+ 3,25 + 4 24
217 1+~2

1 —25=2
(1 + q)2\+3 (1 _ q)Z‘v+3:| + J dqq -
0(q?a*+1)

N . 24
3 2ys _ . A
x{q (1+q)<2F|< 5,25+ 3; 25 + 4 1+(22>
2q
Fi| —5,2 25 +4;
+2 1( 8,25+ 3;25 + 1+q2>)

—U+W“+u—®“ﬂ} (2.15)

To find the existence domains for power-law distribution
functions which correspond to two different asymptotics of
the transition probability W, the collision integral in two
limiting cases: @ € 1 and a > 1 is worth consideration. First,
for small values of a (a < 1), we find the dependence of
collision integral (2.15) on a. It can readily be seen that the
main contribution in this case comes from the first integral in
expression (2.15). Expanding the integrand in powers of g and
integrating the resulting series term by term, we obtain the
expression for the collision integral:

af(p)i 8n2met 42 o[ (4s+3)(4s+95)
ot _(s+l)(2s+3)p4{ 25+ 5 {ln“z

(25 4+ 1)(2s 4+ 3)(2s + 5) nT(s + 2) }
225450 (—2s) T((25+7)/2) T((4s+7)/2) sin®(n(2s+1)/2)

+K1(s)a21na2+..l}.

Computing the energy flux according to formula (2.4), we
find that the energy flux is negative and is determined by the
logarithmic term only for a? < 0.005. Within the interval
0.005 < a? < 0.1, the energy flux is directed oppositely (it is
positive) to its direction for large momenta.

Thus, it is shown [12, 13] that in the region of momentum
space p > a; the Debye screening, first, removes the Coulomb
divergence and, second, does not change the exponent of the
nonequilibrium stationary particle distribution function for
constant energy flux in momentum space. The power-law
exponent in this function corresponds to the asymptotics of
W with the exponent n = —4. Additionally, it is established
that within a certain domain in momentum space the
direction of energy flux is opposite (positive) to its direction
for large momenta. Then there is a local power-law distribu-
tion, the particle density in which is determined by the flux
intensity. The conservative character of flux is ensured by the
source and sink, the positions of which must agree with the
flux direction found.

Numerous concrete physical tasks face the question of the
formation, under the action of sources and sinks in momentum
space, of power-law particle distributions in bounded energy
intervals surrounded by domains where the particle distribu-
tions are in thermodynamic equilibrium. The electron—
electron collision integral in a solid state plasma is computed
in the approximation of the quadratic dispersion law. The
divergence caused by the Coulomb interaction between
particles is removed by the introduction, as above, of a matrix
element describing the screened Coulomb interaction. The
Boltzmann collision integral in the case of quantum statistics
(see, for example, book [3]) can be represented in the form

on(p) 2

o (2mn)°

J dp, dp, dp; W (p, p;| . p3)

x [n(py) n(p3) (1 —n(p)) (1 — n(py))
X (1 -n pz )(1 _’7(1’2))}
xS6(E+E —E—E3)0(p+p; —P2—P3)

where W = (2117’1)32«94(|p1 —-nsl+ 5112)72 is the matrix ele-
ment describing the screened Coulomb interaction, and n(p;)
are the occupation numbers.

Let the electron distribution function be power-law in the
inertial range (between the source and sink), and thermo-

—n(p)n(py)

(2.16)
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dynamically equilibrium (Fermi) outside it, namely

(2nh)

3
ni=ny(p;), if p' < |p;| <p” <m:T alll\l/zp,-25>7

n; =ne(p,), it p" > 1pl,Ip;l > p"
p-pE]"!
=11 d
(me=[rrew ) ).

where o is the proportionality factor, 7; is the energy flux, pg is
the Fermi momentum, kg is the Boltzmann constant, and T'is
the equilibrium temperature of electron gas. The collision
integral is computed with the goal to determine the extent of
the inertial range for the power-law distributions #; there-
fore, the momentum p over which there is no integration in
Eqn (2.16) should lie in this interval: § = n(p). It has been
shown above that the nonequilibrium distribution function
may have the form u, = 4;p> for metals in the region of
momentum space where a; < p, i.e., the source and sink must
be arranged so that the conditions p’, p” > pg are satisfied.
When computing the integral in Eqn (2.16), we will neglect
thermal smearing of the Fermi distribution function, because
it will only lead to corrections which are insignificant by
virtue of the condition 7' < Ef (Ef is the Fermi energy). Thus,
a step function of unity amplitude can be taken for ng:

Mg = e(p}% _piz)’

and the unit function is defined hereinafter as
)0, x<0,
0w ={¥ 150

Suppose that 5, < 1 in the entire inertial range. We will
evaluate expression (2.16) with an accuracy up to terms
logarithmic in @), similarly as for the Landau collision
integral. This implies that we will account for interactions
with a small momentum transfer in collisions. It has been
shown above that for power-law distribution functions the
nonlogarithmic terms in the Boltzmann collision integral,
related to large momentum transfer in collisions, turn out to
be important if momenta lie in a certain range characteristic
of a solid state plasma in conductors. Computation of
nonlogarithmic terms in this case faces considerable difficul-
ties, so the conditions to be derived below take into account
only weak momentum exchange and will be valid for the
plasma in semiconductors, whereas in the plasma of con-
ductors they are more stringent than necessary. Bearing in
mind the remarks and clarifications made above, the collision
integral can be represented as

on(p) 2

ot (2nh)° J0 <Inl<p

dp, dp, dp;s W

< [mams0(pf — pE) — ngn (1 = n,) (1 = n3)]
XE+E —Ey —E;)o(p+p —p—p3)

; J
+— dp, dp, dp; W
(2“h)6 p'<Ipm|<p”
X [namy = ngng (1 =) (1 = n3)]

XE+E —Ey—E3;)d(p+p —p—p;)- (2.17)

We begin with the second integral on the right-hand side
of Eqn (2.17), and perform the same manipulations as in the
derivation of Eqn (2.10). Integrating over ¢ and ¢; and
substituting W, which corresponds to the screened Coulomb
interaction, we obtain

p//
(an(p)) - ‘f_d‘fzj dx [ dyF(rx,q)
ot > 0< (x+g)y<p” (> +a?)

d
_J <4 2dedeF(yax7q)7 (218)
0< (v+g)y<p (q* +a?)

where

R = BT kg

X {(1 +2gx + ¢ [P (x + 9)* —2gx + ¢ = y[Plx + f1|2s}7
LI:W7 x=cosl, y=(cos0)", 0059:%,
cosb; = ||I§)|1H(:l|| , A= (27;h)3 cx|]1|1/2.

In order to write down the integration limits in
Eqn (2.18), one needs to find the domains of existence for
the inequalities 0 < (x+¢)y <p” and 0 < (x+¢q)y <p/,
taking into account that p” >1, p’<1, |x|<1, and
1 < |yl < co.

Since the function F(y, x, ¢) is even with respect to y, after
carrying out the change of variable z = y2(x + q)z, formula
(2.18) can be reduced to the form

23

p// [7”*1 1 P
(-1 s
—1 -

P’ 0 (x+q)
pu+1 p”*l] pHZ
+ qu de dz Fi(z,x,q)
Pl -1 (v+9)’
1-p’ p'—q p”
- qu de dz Fi(z,x,q)
0 -P'—q (x+g)*
1+p’ p,*([ pIZ
- qu de dz Fi(z,x,q), (2.19)
1-p’ -1 (x+q)2
where
ST 2€4mA 2p 4s q
Fl (Za X, ([) = 3 > 12
(2nh) (g% +a?)

x {(1+2gx+ q¢>)’(z —2qx +¢*)" — ).

We will not resolve the behavior of the power-law
distribution function near the energy source and sink, i.e., at
p' ~ 1and p” = 1. Relatedly, to maintain accuracy up to the
terms logarithmic in a, it suffices to compute contributions
from the first and third terms on the right-hand side of
Eqn (2.19). Having performed integration over z and x, we
need to expand the integrand in series in ¢ and, since the main
contribution comes from ¢g < «a, retain only the terms up to
those proportional to ¢>.

Integration of the first and third terms in Eqn (2.19)
results in the following expression
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Let us evaluate the first integral in Eqn (2.17) carrying out
the same manipulations as above, with subsequent integra-
tion by the formula

/3 n n
J 76 [ 0(00) dx = FB) T] 0(ox(8))
o k=1

k=1

) [0 @) = 30> Flal)
k=1 £

<T[0(0n(a) [0(—a!) 0! — 0)—0(a! — ) 0(a—al)] .

kil

oi(a))
o/ (a])]

The expression for the first integral in Eqn (2.17) will take the
form
(an(p))P’ 732n284m14p2xp3 5J*p’ q3dq

ot J, (2nh)? "3 )0 (g2 +a2)?

The final expression for the energy flux in momentum
space, which is defined through the collision integral accord-
ing to relationship (2.3), becomes

;o 327:364A2p4‘“+5{ 4s + 3
e LGN+
y Jmi“(1~1’”1) g dq _ s /25+1J ﬂ}
0 (¢2+a?? 3(5+2) 0 (q%+a?)’
I3 425t 3 »' 3
_ 32nde 1; s pé[ q°dq - (2.20)
(2mh) 32s+5)"" )o (g% +a?)

From the last relationship, one can derive a condition to
be imposed on the electron density in the vicinity of a sink (the
density which governs the source intensity) to keep the flux 7
constant and, consequently, the distribution 7, close to the
universal one in the inertial range (the interval between the
source and sink). This condition will be satisfied if the first
term in Eqn (2.20) is much larger that the other two:

q*dq
0o (g% +a?)’

ny(p) > pi

sQ2s+3)(s+ 1)
3(4s+3) ‘ J

1 3 -1

(Larer)

Thus, an explicit expression was found for the quantum
Boltzmann collision integral as a function of the momentum

p, exponent s, momentum p’ corresponding to the energy
sink, and momentum p” corresponding to the energy source.
It may be concluded that in the absence of particles outside
the energy range which is located between the source and sink,
the exponent s differs from the universal one by no more than
10% in the limits of the inertial range:

p" = p'| =~ (5-6)per, p' = pen=2ai, (2.21a)

References [16, 17] consider a case more often encoun-
tered in solid state plasmas, where the electron distribution
function has a power-law form in the interval between the
energy source and sink in momentum space and follows the
thermodynamically equilibrium Fermi-Dirac distribution
outside it. It is shown that a nonequilibrium stationary
distribution of electrons is close to the universal one
(s = —5/4 for an unbounded inertial range) if the location of
source and sink, as well as their intensities, satisfies the
conditions specified below. So, the power-law exponent s in
the distribution 7, (5, are the occupation numbers) will differ
from —5/4 by less than 10% if the following conditions are
met:

Ip"—p'| = (5—6) pen, ny(p) > 1077, p’'m~pn=(2-3)a.
(2.21b)

Thus, the nonequilibrium universal electron distribution
is possible even if occupation numbers are significantly less
(by one or two orders of magnitude) than the equilibrium
ones.

3. Theoretical studies of nonequilibrium
nonstationary particle distribution functions
with flux over spectrum

3.1 Numerical modeling of the formation

of particle distribution functions

for Landau—Fokker—Planck type equations

3.1.1 Fully conservative difference schemes for Landau—
Fokker—Planck type equations. The nonlinear kinetic Boltz-
mann equation [3-8] describes a system of many particles
interacting by the laws of classical mechanics, and serves as
the basic equation in models of rarefied gas dynamics. In its
general form, the equation for the particle distribution
function f,, depending on spatial coordinates r, velocities v,
and time ¢, can be written down as

ofy ofy F, 0fy of
L RO () g
m, OV ot )

or Vo
where m, is the mass of « particles, F, is the force acting on an
o particle, S, are the sources (sinks) of particles and energy
(open systems), and (9f,/01), is the collision integral. It
stands as the fundamental equation in applications requiring
a mathematical description of the dynamics of rarefied gases
and plasmas. Models of kinetic processes governed by
Coulomb collisions occupy a prominent place in applications
related to laboratory and magnetospheric plasmas, plasma-
chemistry, and solid state plasma.

In plasmas, the Coulomb collisions involving small-angle
scattering (with small transferred momentum) are more
important than collisions with a substantial change in

(3.1)
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velocity (momentum). The collision integral for charged
particles was first derived by L D Landau (see, for example,
book [3]) from the Boltzmann collision integral, with account
for the smallness of momentum transferred in Coulomb
collisions and the effect of particle charge screening by other
particles outside a sphere with Debye radius. A Landau type
equation is also obtained by accounting for small-angle
scattering, but for arbitrary potentials of interaction between
particles [18-28]. The most pertinent object for modeling with
the help of the Landau type collision integral are gases with
power-law potentials and an infinite radius of interaction
between particles.

The most widely used method of numerical modeling is
(regular) finite difference method (Monte Carlo type methods
suffer from certain drawbacks for long-range forces). How-
ever, a combined approach should be employed, ensuring
approximation of equations describing actual dynamics and
adequate representation of physical laws underlying the
physical model. This approach, based on conservative and
fully conservative finite-difference schemes, is related to the
work done by A N Tikhonov, A A Samarskii, Yu P Popov,
A V Bobylev, I F Potapenko, V A Chuyanov, and others
[18-28].

Such an approach, together with high accuracy, gave the
capability of obtaining asymptotic solutions in certain cases
and testing analytical approaches and other modeling
methods.

In a spatially homogeneous case, the Boltzmann collision
integral for the distribution function f (v, r) was written in the
form (2.1), where the transition probability W due to
collisions is defined by the differential scattering cross
section o(u, ), which is a function of the relative velocity
u > 0 and the parameter u = cos 0 (0 < 0 < mis the scattering
angle). Finding the scattering cross section o (u, i) for a given
interaction potential U(r) is a well-known task in classical
mechanics (see, for example, Refs [22-28]).

The collision integral in the Landau form for particles of
the same kind carrying the charge e in a spatially-homo-
geneous case was given in Section 2.1 [see Eqn (2.7)] and may
be represented in the form

e s

M25,*j — Ui Uj

U= , (3.2)

w3
where I' =2me*A/m?, and the symmetric kernel Uj; is a
function of particle relative velocity u=v —w. A rough
condition for the applicability of equation (3.2) is furnished
by the inequality e?n'/3 < T, implying that the mean energy
of Coulomb interaction is small compared to the mean kinetic
energy (n is the particle number density, and 7 is the
temperature expressed in energy units).

3.1.2 Numerical modeling of relaxation of the particle distribu-
tion function for the Landau—Fokker—Planck collision integral.
Let us consider the relaxation of the initial distribution for
gases of particles with power-law interaction potentials in the
case of isotropic distribution function f (v, ¢) = f(|v|, ¢), which
obeys the Landau—Fokker—Planck equation in the symmetric
form

y_12 {l [ awowm [w“(w) T ) %]}
(3.3)

where Q(v, w) is the symmetric kernel, namely

1
O(v,w) = % v3w3J du(1 — p?) uo(u),
-1

u? =024+ w? = 2uwpu.

It can be verified that in the absence of sources and sinks
the conservation laws for the particle density and energy
follow from equation (3.3):

n= 4TEJ dvv?f (v, 1) = const,
0

kT = ——

4 00
;tm J dvv*f(v,t) = const, t>0.
n

0

The only equilibrium stationary solution to the kinetic
Boltzmann equation is furnished by the Maxwell distribu-
tion. Exploring the formation of the particle distribution
function at energies essentially exceeding the mean energy
(the tails of the particle distribution function), apart from its
academic interest, can be helpful in tasks related to wave—
particle interactions, electron acceleration by a field and tail
formation by runaway electrons, and for the problem of
thermonuclear fusion (electron cyclotron heating, lower-
hybrid resonance, nuclear reactions at the tails of the ion
distribution function, and so on). For the Coulomb potential,
such research has been conducted in Refs [21-28].
The equilibrium solution takes on the form

4 3\ 3
fM:m<i) exp(f§v2), v =1,

where vy, is the thermal velocity. We obtain the conservation
laws from equation (3.3) by integrating both its sides over the
velocity with an appropriate weight:

OC dE

dn J
=0, <=

T ()], —ZJ Jdv=0.

0

0

By applying the integro-differential method to equation (3.3),
we obtain the following (implicit) difference scheme:

fl-t [Jiﬁlﬁ R
T U,'zhi+1/2 Vit1/2

], i=2,....,.M.
Vi-1/2

(3.4)

The scheme is set forth as the local conservation law for
the particle number, whereas the approximation of function
J; must ensure the implementation of energy conservation
law. We replace the upper integration limit in Eqn (3.3) by the
value of velocity at the last point. Approximating the integrals
with the trapezoidal rule, and derivatives with centered
differences, yield

M
TEn = Ot pomet /2 hmit

m=1

k k 1k k k k rk k
% ( i+1_fi mvm—'_ferlvm‘*'l _Im+l " Im ft Ui+-fi+lvi+1>
b

hi+l 2 /’1m+l 2

where Qi 1/2 m+1/2 = Qm+1/2,i+1/2- The particle number den-
sity is written out as
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since it is assumed that fj,.; = 0 and that v; = 0. Accord-
ingly, the first point does not enter into the difference
equation. Let us compute the change in particle number
over a time step with the aid of difference equation (3.4) by
summing both its parts with an appropriate weight:

“ I3
An =" ho(fE—fE1) = r{ - 7/} .
=2

Um+172 V32
Assume that Jyy 1 =0, since fyy =0 at the tail, and
formally set J3/, = 0 (we will learn below about its implica-
tions), then An = 0. The change in energy is given by

k
JM+I/2

M—1
AE=> " ho! (£ =)
=2
”1%4 1 =
= + ——J -2 hiJ;
TL)W ap = =2 /]

If we take into account that the particle number is conserved,
and that the relationship

M-1

Z hi+1Ji+1/2 =0

i=1

is valid, then AE =~ 0. Difference equation (3.4) is written out
at point i = 2 in the following way:

k k—1 k
VA S S Y
=— ,
T vihiv1y2 Vig12

=2. (3.4a)

We need to know the boundary condition for the distribution
function at the point i = 1, and we derive it from the condition
J3p =0.

For a numerical solution, the finite-difference scheme is
rearranged into a system of nonlinear difference equations
solved at each time step and, accordingly, at each iteration by
the sweep method.

Let us rewrite the scheme in a form convenient for
numerical computations. To do so, the following notation is
introduced:

—1
1+1 Z hm+lQ1+1/2 m+1/2(vm fm + Um+1 fm+1)

m=1
M—1

1+1 Z Ql+l/2 m+1/2(fm+l fm) )

1 1

=—— (Zi —vhi®;), Bi= Zi+vihi0;),
Vi-1/2 h,‘ ( ) Ui—l/Zhl' ( )
T
OCiZQ—hAi+17 ﬁ,: (A + Bi1),
Uiy
T f—1
Vi == Bi, W=/ i=2....M~1
vih,

1 1

The set of difference equations is then written out as

Oifirr =L+ B)fi+yifict =W, i=2,...,M—1, (3.5)
with the first difference equation involving
T T
=—— A =——B3, y,=0.
2 ’1_)221’1,' 3 ﬁZ 'Uzzhi 3, V2

From the equality J3,, = 0, it follows that the functions at
the initial points are linked to each other at any moment of
time by the following relationship

h=p(1-8 5 ).

If the boundary condition of the second kind (equaling zero of
the derivative) is approximated based on the formulation of
an exact problem with the first- or second-order approxima-
tion, the conservation law is not necessarily warranted. What
does the approximation imply if it is derived formally from
the requirement that a difference analog of the conservation
law be implemented? The boundary condition arising for-
mally proves to be quite reasonable. Consider, for definite-
ness, charged particles and the kernel Q(v, w) corresponding
to their Coulomb interactions. Suppose the distribution
function is quasi-Maxwellian: fM = Cexp (—v?/v3). Then,
estimating expression (3.4a) and neglecting terms on the order
of O(h3), we find

e —fM<1—|— 2)
Vth

We only note that, initially conceived as just a formality, the
requirement of full conservatism leads to a more natural
approximation of exact conditions in a subsequent analysis of
exact initial data. We revisit this question when constructing a
scheme for the Landau-Fokker—Planck equation.

Since the difference schemes are chosen implicit, the time
step 7 is determined by the required solution accuracy and the
distribution character. The scheme is nonmonotonic; it can be
made monotonic but then we have to sacrifice the second-
order spatial approximation.

Since the distribution function should be nonnegative for
stability and by its physical sense, the coefficients of
difference equation (3.5) should satisfy the conditions a,
y >0, 1+ >0, which requires h; = v; — v;_1, h; < E;/nw;.
The Landau—Fokker—Planck equation is a parabolic one, and
as v — oo it degenerates into an almost hyperbolic equation;
therefore, to account for the exponentially decreasing func-
tions, the step should even be reduced in order to ensure
accuracy. A rough discretization step estimate based on
velocity, which can be over or under for particular tasks,
takes the form i < v} /nL.

For power-law interaction potentials U = a/r#, where
1 < f < 4, the symmetric kernel Q(v, w) is represented in the
form [24, 25]

(3.6)

N a(v7 W)(U + W)m+4 + b(v, W)|U _ w|nl+4
O(v,w) = (i +2)0m +4)(m +6) , (3.7
a(v,w) = (m +4)vw — (v +w?),
b(v,w) = (n; +4)vw + (0> +w?), n = % _



January 2013

Nonequilibrium Kolmogorov-type particle distributions and their applications 57

The negative values of n; correspond to soft potentials
(1 < B < 4). For charged particles, one has f =1 (n; = —3).
To illustrate the performance of the difference scheme, the
initial distribution is chosen as a oJ-function which is
approximated in the following manner:
2

)
Vit — Vi-1
0, vi# 1.

Such an approximation models the difference delta function;
relatedly, both the number density and energy of particles
become equal to unity. We limit ourselves to only presenting
results of simulation for this type of initial distribution.

A relaxation of initial distribution to the equilibrium state
belongs to classical problems of plasma physics and is among
the test problems for any model of collisional plasma.

Moving along, we note that the particle number density is
preserved with a machine accuracy (random error), while the
energy depends on the accuracy of ¢ iterations because of the
nonlinearity of the equation. For § = 1073, the relative error
makes Ae = 1072%, and for § = 1077, itis Ae = 1077%, i.e.,
the energy error does not exceed 10~7. Such a level of accuracy
is needed, for example, in exploring asymptotic problems.

Finite initial conditions are considered at r = 0, with the
initial function fy(v) = f (v, 0) being confined to the thermal
range v & vy,.

At long times, when the relaxation in the thermal domain
is completed, the equation can be considered as a linear one in
the hot domain for v > wvy,:

of nl o, Tof
a—m&{”“’)(a&”fﬂ-

Here, we took into account that in the hot domain the kernel
O(v,w) — mw3v*a(v)/6 as v — oo, and used the scattering
cross section a(u, 1) = gg(p) u=*# [22-25] for the power-law
interaction potential. Substituting the expression for Q(v, w)
into Eqn (3.3), for v > vy, we arrive at the final form of the last

equation:

’U,*:l,

f(viv 0) =

afingﬁ 1 3 3-4/B T of
a8 v2ov |’ mov T )| (38)
where the following notation was introduced:
1
=2 | duglui- ). (3.9)

For example, formula (3.9) for the Coulomb potential (f = 1)
gives g = 32me*L/m. In this case, Eqn (3.8) reduces to the
well-known linear Landau—Fokker—Planck equation for
plasmas.

Further, let us consider equation (3.8) for arbitrary
potentials U = a/r”, 1 < B < 4. The finite-difference scheme
has already been presented above. For the chosen variables,
the conservation laws for the particle number density and
energy look like

n:J viduf(v,f) =1, E:[ vtduf(v,1), t=0.
0 Jo
(3.10)

The thermal velocity vy, = 1, and the equilibrium solution is
written down as

4 3\ 3
fM(U)=m<§> eXp<—§vz).

At the initial moment of time, the function is the delta
function f(v,0) = &(v—1)/v?> confined in the thermal
domain. When choosing the boundary L for the velocity
interval, hot particles are estimated from the Maxwell
distribution, which yield L~ (7—8)vy. The difference
scheme expressed by formula (3.5) is used. The initial
function is approximated as mentioned above. For this
approximation, the number of particles equals one, and the
kinetic energy v? = 1.

We present below the results of modeling. The function
smears over the thermal domain (0 < v < 2) rather rapidly
and then becomes monotonic, attaining its maximum at zero
at a certain moment 7y which corresponds to the so-called
collisional time. This characteristic time #, is only weakly
dependent on the exponent f in the expression for the particle
interaction potential U = o/r. In this domain, the distribu-
tion functions for different exponents stay rather close to each
other during the entire relaxation process for various
potentials. The distinction is more prominent in the hotter
domain with v > 2 and at distribution tails. To make the
presentation of results more explicit, the function normalized
on the Maxwell distribution, g(v, ) = (v, t)/fm(v), is intro-
duced. Figures 1-3 plot the graphs of function f (v, ¢) in the
velocity interval 2 < v/vy, < 5 for different time moments
and values of the parameter . All curves demonstrate the
wave character of propagation of g(v, 7) toward the domain
of high velocities. For the Coulomb interaction (f =1,
ny = =3, U= a/r), the function g(v, ) is shown in Fig. 1.
The solution has the character of a wave propagating with a
stable (stiff) front. For the particle interaction potentials with
1 < 8 < 2, the tail relaxation proceeds more slowly than the
relaxation of the distribution core. Beginning with 2 < ff < 3,
the tail evolution gradually loses the wave character. Figure 2
demonstrates that the wave front slowly rises with time
(B=2,n; = —1, U= a/r?). For stiff potentials (§ > 4), the
characteristic relaxation times for the distribution core and

v/vm

Figure 1. Plots of the distribution function normalized to the Maxwell
distribution, g(v,7) =f(v,1)/fm(v), for velocities in the range
2 < v/vy < 5 for several moments of time ¢ (in arbitrary units). The time
is normalized on the time of electron—electron collisions (3.11). Plots
correspond to the case of Coulomb interactions: n; = =3, =1, U = a/r.
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v/vm

Figure 2. Plots of the distribution function normalized to the Maxwell
distribution, g(v,7) =f(v,1)/fm(v), for velocities in the range
2 < v/vy < 5 for several moments of time ¢ (in arbitrary units). The time
is normalized on the time of electron—electron collisions (3.11). Plots
correspond to the case of dipole interactions: nj = —1, f =2, U = a/r>.
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g(v,1)
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v/

Figure 3. Plots of the distribution function normalized to the Maxwell
distribution, g(v,t) =f(v,1)/fm(v), for velocities in the range
2 < w/uy < 5 for several moments of time 7 (in arbitrary units). The time
is normalized on the time of electron—electron collisions (3.11). Plots
correspond to the case of interactions of Maxwell molecules: n; =0,
B=4,U=0afrt.

tail are practically indistinguishable (times of 1-2). As a
consequence, the velocities of propagation and smearing are
hardly distinguishable (Fig. 3), and the relaxation in thermal
and hotter domains occurs simultaneously.

As can be concluded, the front width Ag(¢) is essentially
dependent on the power-law exponent f in the interaction
potential. Indeed, 4¢(7) takes a constant value for 1 < f < 2,
i.e., the propagation of g(v, ¢) in this case has the character of
a wave with a stable profile, which does not smear with time
for ¢ > 0. This fact was discovered numerically at f =1 in
Refs [22-25], and the respective analytical solution was
developed. Beginning from the exponent ff =2, the front
starts to slightly smear out, following a weak logarithmic
dependence on time: A¢(r) o< vInz. The solution should
preserve its wave character. The propagation speed vg(f) of a
front is higher than the rate of its smearing.

To facilitate the analysis, equation (3.8) is recast in a
convenient form by introducing dimensionless variables for
the velocity, time, and distribution function:

4+4p)/2 4-p)/2
o {i}( +8)/ BX(4+5)/25 pgs 4— B { X}( B)/28
Uth ’

)

(3.11)
f(vv t) :fM(U) u(x’ ‘C) )

where X =28(4 — f)/(4 + B)*, and fu(v) is the Maxwell
distribution function. Substituting representation (3.11) into
Eqn (3.8), we obtain the equation for the distribution function
u(x, 1) in dimensionless variables:

o 10w 4
ot p Ox 20x2’ Py

=

(3.12)

~
=

The type of the last equation gives an idea about the wave
character of its solution. Indeed, it is worth mentioning that
we are interested in the hot domain x > 1 and the times at
which u(x,7) &~ 1 and slow establishment of the equilibrium
solution um(x) =1 occurs at tails, while u(x,7) — 0 as
x — oo. The condition x > 1 will be taken into account with
the aid of new variables X = x/xg and T = t/x{, where xo > 1
is some characteristic scale. In this case, equation (3.12)
acquires a small parameter x 2 <1 of the higher deriva-
tive. Hence, it follows that the Landau equation changes its
type in x — oo tails and becomes a transport operator.
Taking this into account, we introduce a formal parameter ¢
of the second derivative. We obtain, as a result, that

% xl’”auif
ot p Ox 20x?°

(3.13)

At ¢~ 0, the last equation reduces to a first-order
equation, and the equilibrium solution wuy(x) is simply
carried along its characteristics. The typical solution of
equation (3.13) has the form of a step function:

s Ip _ - ﬂ

u(x,7) ~ 0(z x), p=2 rwk (3.14)
Approximate solution (3.14) properly reflects the asymptotic
law followed by the wave front, x¢(7) o 71/7 but does not
describe the front structure. In order to analyze it, equation
(3.13) is transformed with due regard for the information on
the wave front behavior obtained earlier. Introducing new
variables

x—tl/r

z= \/5 ) u(xvf) = (/)(Za ‘L')7

we rewrite equation (3.13) for the new function ¢(z,7) as
2 1/p _ I-p
06 1@ 2517\ o2\ 180
0t 210z2 p e Ti/p 0z
(3.15)

Suppose ¢ is small but retain z finite. In this conditional
limit, formula (3.15) reduces to

0p 1 [®¢p z0¢ 1—p
=slaz— - ) v=2—".
0z2 T 0z p

2 =3 (3.16)
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The boundary conditions for the function ¢(z,1) are as
follows: ¢ — 1 when z — —oco (behind the front), and ¢ — 0
when z— 0 (ahead the front). The function ¢(z,1) is
constructed as a solution to the initial value problem for
time t > 1 with the respective initial condition ¢(z, 1) =0(—z)
[cf. function (3.14)]. By an appropriate variable change,
equation (3.16) reduces to the heat conduction equation [24,
25]. As a result, a self-similar solution to equation (3.16) is
obtained:

11—y
— 1
- 2(T—ﬂ)}’ b

1 o
0 == | drexn(=2?).
Returning to the variable x and recalling that ¢ = 1, we find
the quasistationary solution to equation (3.17):

—tlr 1=
u(x,r)%@x ! 1/ y , >, y=2—-.
V2 Vo=t p

(3.18)

In order to learn where solution (3.18) is valid, let us
formulate all the assumptions made en route. The kinetic
equation is considered for x > 1 and a large time (larger than
the Coulomb collision time) 7 > 1 close to the wave front
xe(t) oc TP, x — /P < /P The last inequality justifies the
passage from Eqn (3.15) to Eqn (3.16), subject to the
condition ¢ = 1, and leads to the following constrains. The
derived solution (3.18) is inapplicable, first, in the interval
0 < x < x1, and, second, for particles outside the region
x > 2xy. Neither case is interesting from a practical view-
point because, with a good accuracy, it can be assumed that
u(x,7) =~ 1 in the first region x < x¢(¢), and u(x, ) ~ 0 in the
second region x > 2xp. Formula (3.18) can be simplified with
account for the condition 7 > 1. Since the final result depends
on 7, three cases may be considered for the expression under
the radical sign in formula (3.18). The expression
(1—9)(x—17)"" for y <1 tends to (1 —y)z~", and for
y > lit tends to (y — 1)t 7. The case of y = 1 is a boundary
one and is different from the other cases. Notice that y = 1
corresponds to ff =2, i.e., the dipole interaction between
particles. In this limiting case, the expression is rewritten as

0 . ‘Ei 1
a-ne- = a-p(e 3 =)

1
=1 r

P(z,71) =@

(3.17)

The last expression contains only the first term at y =1,
because the coefficients of the sum disappear for all i > 2.

Thus, simplified expressions for the asymptotic solution
u(x, ), which is a function of the exponent y, are arrived at
under the condition 7 > 1:

_r 1=
u(x,r)—@{%\/%}, y <1
x—tlr 1
u(x,r)—@{ \/z tinz(’ y=1;

—r [y
u(xﬂ):@{x\/% /r}’ y>1.

Finally, we reformulate the results obtained above in
terms of original variables v, ¢, and for the distribution

(3.19)

function fp(v, ?):

m \*? mv?
Sp(v, 1) = n(m) exp (_7)

- v\/@ t@ m (4-p)/2p
T 8 T ’

The constant factor gg is defined by formula (3.9). The
function u(v, ) has the form of a propagating wave, the
front of which travels according to the law

_ B/(4=P)
C

(3.20)

The function u(v, t) is described by three expressions depend-
ing on the value of the exponent f3:

u(v, t) = @{2 lj‘(%;ﬁ) va(4+m/2B} , 1<p<2;

u(v, ) = @{% (In Uf)-l/%fw/z} . p=2; (3.21)
2B —2) [28(4 — (4-B)/28
u(w)_@{ (f_ﬁ){ﬂiwﬂ)}

x vf(4+/3)//fV(4+[3)/2ﬁ}’ 2<f<4,

where V = (v — (1)) /ve(2).
The usability conditions for solution (3.21) have the form
of strong inequalities:

v>1, vw()>1, "U—’Uf(l)| < (1) .

Notice that u(ve(r), t) = 1/2. As usual, we define the front
width in the following form

u(v, 1) -

Ou(v, t)/0v

Ou(v, 1)

Af(l‘) =2 o0

v=vf v=vf

Consequently, for the cases considered above we obtain

al) =[5 1<p<2

Af(l) = \/Tl',hlvf(l‘), p=2; (322)
28(4 — _

A1) = Zn_ﬁﬁ % ()PP 2<p<a.

It can be seen that the front width A¢(¢) essentially depends on
the exponent f§ in the interaction potential. Thus, 4¢(¢) takes a
constant value for 1 < f# < 2. The propagation of u(v, ), in
this case, has the character of a wave with a stable profile
which is left unsmeared with time for # > 0. For § > 2, the
front gradually smears out, showing a weak logarithmic
dependence A; o vInr. The solution behavior should still
preserve its wave character. The front propagation speed
exceeds the rate at which it is smeared out:

0Arfor  da
avf/al - dor ’
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3.2 Numerical modeling of the formation

of nonequilibrium particle distribution functions

for stationary self-consistent sources and sinks

In this section, we analyze the formation of nonequilibrium
quasistationary distribution functions in a spatially homo-
geneous isotropic plasma composed of one kind of particles,
in the presence of localized sources (sinks) of particles
(energy) in velocity space. The existence of nonequilibrium
distribution functions assumes the presence of sources and
sinks in momentum space. An energy (particle) source and
sink can be maintained by ion beams, powerful laser
radiation, emission current, beams of charged particles
emitted in fusion or fission reactions, etc. The analysis is
based on the Landau—Fokker-Planck equation, which is a
model of the Boltzmann equation for arbitrary interaction
potentials of particles [21-26].

We concentrate now on a numerical study of the evolution
of nonequilibrium distribution functions and their depen-
dence on various input parameters — the intensity of sources,
the degree of their localization in velocity space, and so forth.
Section 4 compares results simulated numerically with those
obtained in a particular experiment dealing with the irradia-
tion of a semiconductor by fast ions [29—32]. Fully conserva-
tive difference schemes [22-28] are applied for numerical
modeling.

Numerical implementation of the problem solved here
faces a fundamental difficulty rooted in the nonlinearity of
the collision integral. As has already been mentioned, two
conservation laws should be obeyed in the absence of external
sources; otherwise, the dissipative properties of the difference
scheme may distort the result through the influence of implicit
sinks or sources. For this reason, numerical schemes capable
of appropriately handling the nonlinearity of the modelled
equation are employed [26].

Nonlinear operator (3.3) with the symmetric kernel
QO(v,w) for power-law interaction potentials (3.7) is utilized
in numerical modeling. For charged particles f = 1 (n; = —3),
so then Q(v,w)=(2/3) w? for w < v, and Q(v, w)=(2/3) v3
for w > v.

Following a common procedure of making equations
dimensionless, we change to the variables

v 1 327’[1)3 4(—1
v = C o= tp= th Uth(ﬁ )/ﬁ;
Vth g ngp
4ol 4ol 158 (3.23)
! th i th*sS
= — N S =,
fl=h .

To implement the difference scheme, the infinite interval in
velocity space is replaced by a finite interval [0, vnax] selected
so as to account for high-energy particles, and the boundary
condition for the distribution function is taken as
f (Umax, t) = 0. The sources S; and sinks S_ in most cases
are chosen as d-functions:

T2 0(v—vs)

Sy 3

(3.24)

v

If the intensities of a source and sink satisfy the relation-
ship I, = I_v2 /v, the energy acquired by the system from
outside equals zero, but the particle density in the system
decreases (if the source is associated with larger velocities
than the sink), i.e., in this situation an analog of constant
energy flux in momentum space is realized with non-
conservation of particle density in the system. Since we are
dealing with charged particles, as the electron density drops in

a certain region, thermal electrons from its surroundings tend
to replenish it, driven by the arising electric field. In the
framework of the spatially homogeneous model considered
here, this can be taken into account by introducing yet
another source with an intensity /i, so as to compensate for
the decrease in particle number and, respectively, the
generation of the electric field. In this manner, we can
formulate a consistent model with two sources of intensities
I, and I, and one sink of intensity /_, in the framework of
which neither the energy nor the particle density will change.
This will be achieved if the intensities of sources and sinks
satisfy the two relationships

Iy —I-+1, =0, Ioog—Tv2+TvI=0. (325
They can be rewritten as the expressions for the intensities of
sources in terms of the sink intensity 7_:

2 2 2 2
vZ — 0 vy —vZ
L= 5—2% Iy=I +—. (3.26)
vy — vy — 0
+ th + th

Additionally, in numerical computations we will some-
times consider sources (sinks) which are distributed exponen-
tially over velocities:

Sy oc Loexp [~ b(v—vs)’]. (3.27)
Such an expression for the source or sink proves to be
convenient for exploring the dependence of nonequilibrium
distribution functions on the source shape. We remark that,
strictly speaking, the introduction of sinks which are
independent of the distribution function may face severe
problems. In this arrangement, one may specify such initial
conditions that solutions will become negative in the vicinity
of the sink as time progresses. For this reason, the sources
(sinks) are frequently modelled by terms that are proportional
to the distribution function sought after, namely

o(v—wvy)

Sy =1, 3 f(U, l) . (328)

v
It will be recalled that in the discrete case the function
o(v —wvy) differs from zero only at v =wv;. The initial
distribution is chosen as Maxwellian or J-functional. It
should be noted that results are practically insensitive to the
shape of the initial distribution function, except for the very
initial stage. Iterations are carried out on each time step, the
particle number is preserved up to the machine precision, and
the energy is conserved up to 7-8 significant figures.

Later, we discuss the main results of numerical simula-
tions in the presence of particle or energy fluxes in momentum
space [29-31]. There are the source S, and sink S_ on the
right-hand side of kinetic equations (3.3) to maintain the flux
in momentum space. We begin with the case when the source
and sink conform in momentum space with the direction of
flux transferred as a result of collisions. Notice that analytical
consideration of equations for a localized source and sink
gives the correct flux direction — from high to low velocities.
It can be seen from Fig. 4 that, as time progresses, a
nonequilibrium stationary (Kolmogorov type) particle dis-
tribution is established in the interval between the source and
sink, in agreement with the presence of energy flux in
momentum space, while outside this interval the distribution
function remains a thermodynamically equilibrium one. To
convince ourselves once again that the location of source and
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Figure 4. Dependence of the logarithm of the nonequilibrium stationary
distribution function normalized to its value at v = 0 on the dimensionless
velocity squared. The computations use the initial Maxwell distribution
function and the source function with 7 = 107'%, v_ = 5, v, = 6, and are
carried out for the Landau-Fokker—Planck equation at the instants of
time ¢, = 100 (solid line) and #; = 25 (dashed line).
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Figure 5. Dependence of stationary (equilibrium) distribution function for
nonconforming location of the source and sink, v, = 5, v_ = 7, obtained
from computations based on the Fokker—Planck and also the Landau
equations for f =1, 2, 3.

sink need to conform with the flux direction in momentum
space, we carried out computations with opposite locations of
the source and sink in energy space. Figure 5 displays the
logarithm of distribution function versus (dimensionless)
velocity squared for the incorrect arrangement of the source
and sink. Apparently, the particle distribution function stays
in thermodynamic equilibrium as the flux intensity is varied
over several orders of magnitude—this reinforces the
importance of conforming the placement of a source and sink.

For the variant presented in Fig. 6, the functional
dependence of the source and sink on velocity is exponen-
tial. The source S occupies a ‘narrow’ domain in the vicinity
of energies that corresponds to seven thermal velocities, while
the sink S_ is also sufficiently local in the region of four
thermal velocities. The localization regions of the source and
sink are controlled by the value of coefficient o; in the
exponential function. In the case considered, the coefficient
oy is fairly large (it equals 100), which ensures their strong
localization. We explore the dependence of the electron
distribution function on the degree of source and sink
localization in energy space. With this aim, the magnitude of
coefficient o; was reduced in the next simulations by one
order to «; = 10. From the comparison of results presented in
Figs 6 and 7, it can be concluded that the character of the
nonequilibrium stationary distribution in the main domain
between the source and sink does not depend on the degree of
source (sink) localization, which witnesses in favor of the
locality of the distribution function.

Figure 8 plots the dependence of distribution functions on
the square of the dimensionless velocity for various flux
intensities. It is found that for small intensities of source 7,
(sink 7_), the universal nonequilibrium distribution is formed
in the vicinity of velocities v < v, which is caused, first, by a
reduction in the Coulomb scattering cross section as velocity
isincreased (~ v ) and, second, by the always existing flux of
energy and particles (because of the Coulomb diffusion) into
the region of the basic, ‘background’ equilibrium distribution
function. For this reason, as the intensity is increased, the
universal nonequilibrium particle distribution forms, tending
to occupy an ever larger region between the source and sink,
which is related to the reduction in the relative role of the flux
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Figure 6. Distribution function computed from the Fokker—Planck

equation for the source (sink) Sy ~ I exp{—o;(v— ’Ui)z}, o = 100,

v_ =4, and v, =7. The dashed and solid lines correspond to time

moments ¢ = 25 and ¢ = 100, respectively.
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Figure 7. Distribution function computed from the Fokker—Planck
equation for the source (sink) Sy ~ I exp {—o (vf'ui)z}, oy =10,v_ = 3,
and v, = 5. The dashed and solid lines correspond to time moments ¢ = 25
and 7 = 100, respectively.
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Figure 8. Stationary distribution function obtained from the Landau
equation at # = 2 for a source (sink) in the form of J-function (3.24) for
various flux intensities / = 0.01 (/), 0.001 (2) and v_ =4, v, = 6.

leaving for (transferred to) the ‘background’ plasma. It is
worth noting that the magnitude of the nonequilibrium
distribution function grows together with the intensity, since
it is proportional to the magnitude of flux (2.6). Some
numerical values of the nonequilibrium stationary distribu-
tion function obtained by solving the Landau equation are
listed in Tables 1 and 2. The results present a detailed study of
the dependence of the solution on the flux intensity, which
varies in wide limits in momentum space. Function (3.24) was
chosen to describe the source (sink) of particles: the sink was
located at the point v_ = 4, and the source at v, = 8, and
AE =0. The last equality implies that the energy flux
remained constant in momentum space; however, since
additional sources in the thermal domain were not involved,
the particle density did not stay constant.

From Table 1 it can be seen that the amplitude of the
distribution function increases with the intensity 7 of the flux
produced by the source and sink. At low intensities (up to
0.1), the values of the distribution function grow proportion-
ally to I, because a large contribution comes from the
interaction of nonequilibrium particles (i.e., particles from
the interval between the source and sink) with ‘background’
particles which are described by the thermodynamically
equilibrium distribution function. For intermediate intensi-
ties (from 0.1 to 20), the distribution function is the universal
one throughout the interval between the source and sink and
is proportional to the square root of flux intensity, in
agreement with expression (2.6). At large intensities, the
distribution function ceases to exhibit this proportionality,
because the sink intensity itself depends on the distribution
function, in agreement with the chosen model of sink (3.28).

Consider the formation of the nonequilibrium particle
distribution function, which corresponds to a constant energy
(AE=0, I+:va/vi) or particle (AN=0, I, = I_) flux. To
facilitate the comparison of results, it is convenient to plot the
distribution function normalized on its value at zero (Fig. 9).
It can be seen that for fluxes of both particles and energy,
gradually decaying distributions are formed, characterized by
close exponents s.

It is interesting to learn about the form of the distribution
function for various laws of interaction between particles.

Table 1.
I £(3.95) £(7.95) f(8)
10 0.393 x107° 0.417 x10710 0.417 10710
1 0.475x107° 0.144 x10~10 0.144 x 10710
0.1 0.508 x10~? 0.189 x 10~ 0.189 x10~ 1
0.01 0.517 x107° 0.197 x 1012 0.197 x10712
0.001 0.518 x107? 0.198 x 1013 0.198 x10~13
0.0001 0.519 x10~° 0.196 x10~14 0.196 x10~14
Table 2.
B 1 1.5 2 3 4
£(8)10.197x10712{0.123x107"3{0.266x10~4{0.771 x10~5 0.384 %103
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Figure 9. Stationary distribution function derived from the Landau
equation at f =1 for the source (sink) in the form of the J-function
(3.24); |Iz| = 0.01, v- =4, and v, = 8. Curves / and 2 correspond to
constant energy (AE = 0) and particle (AN = 0) fluxes, respectively.

The values of the power-law exponents from the interval
1 < ff < 4 are considered. It should be kept in mind that § = 1
corresponds to the Coulomb interaction potential, =2
corresponds to the dipole interaction, and f§ =4 describes
the interaction of the so-called Maxwell molecules.

Table 2 presents the dependence of the distribution
function f(v,) on the exponent f of interparticle interaction
potential for 7 = 0.01. It is evident that for equal intensities of
the source and sink, the values of the distribution function at
the same value of velocity decrease, as the parameter f§ is
increased, by almost three orders of magnitude. Figure 10
displays nonequilibrium distribution functions for the con-
stant energy flux of intensity 7 = 0.001 (the sink and source
are of the form (3.28), and are located at v_ =4 and v, =8
points, respectively), and the exponents =1, 2, 3. It is
apparent that nonequilibrium distribution functions with
close values of power-law exponents s are formed for all
these values of f, which agrees with the conclusions of
Ref. [30]. The absolute value of the distribution function in
the nonequilibrium region drops as the exponent f is
increased. These results are in qualitative agreement with the
analytical results presented above.

Next, consider the evolution of the distribution function
in the framework of the above-described self-consistent,
spatially homogeneous model with two sources of intensities
I_ and Iy, and one sink with intensity /_, in which the energy
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Figure 10. Dependence of nonequilibrium stationary distribution func-
tions on velocity squared for a constant energy flux with the intensity
I = —0.01, for the source (sink) in the form (3.28) and v_ = 4, v, = 8. The
curves are computed from the Landau equation for the exponent = 1 (1),
2(2), and 4 (3).

E

Figure 12. Energy dependence of the logarithm of the nonequilibrium
distribution function obtained from the Landau equation at § = 1 for the
source and sink in the form of the J-function (3.24), I_ = —0.002, v_ = 2,
v+ = 1,v,, = 7at various time moments = 0.001 (/), 10 (2), 20 (3), and
200 (4).
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Figure 11. Time evolution of nonequilibrium distribution function
computed from the Landau equation at § = 1 for the source and sink in
the form of the d-function (3.24); I_ = —0.001, v_ =2, v;. = L, vpy = 7.

and particle density do not vary with time. The intensities of
sources expressed in terms of the sink intensity 7_ satisfy
relationships (3.26):

v o2 02 — 2
L=L 55, ln=1"5—3%
vy — vy — 0
+ th + th

Figure 11 presents the time evolution of the nonequili-
brium distribution function obtained in the framework of the
self-consistent model from the Landau equation at f = 1 and
the source and sink in the form of d-function (3.24) for a sink
of intensity /- = —0.0001 located at the point v_ =2, and
two sources located at points vy, =1 and v, =7, respectively,
with the intensities given above. It can be seen that the
distribution function stays in thermodynamic equilibrium
outside the inertial range, with the temperature coinciding
with the initial one.

In the inertial range (corresponding to a constant energy
flux between the source and sink), a distribution function that
barely varies with velocity (a plateau) is set. The distribution
function attains its stationary limit most rapidly in the vicinity
of a source, while its formation in the vicinity of a sink takes
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Figure 13. Evolution of the distribution function under the action of
nonstationary sources and a stationary distributed sink at several time
moments ¢ = 5 (1), 20 (2), 30 (3), 35 (4), 50 (5), and 100 (6). Time moment
t = 30 corresponds to switching the sources off. The sources with equal
intensities I;, = 0.01 are localized at velocities v1y = 3.5 and v, = 7.0;
the sink is proportional to the distribution function and operates in the
range v_ = 2.

several hundred dimensionless time units (Figs 12, 13). The
increase in flux intensity (see Fig. 13) leads to the increase in
the magnitude of the distribution function but leaves the
temperature of the thermodynamically equilibrium distribu-
tion function without any changes.

3.3 Numerical modeling of the formation

of nonequilibrium particle distribution functions

for nonstationary, nonconforming sources and sinks

In the numerical simulations discussed in Section 3.2, we dealt
with either sources and sinks of limited intensity or with the
self-consistent model in which the sources and sinks are, first,
localized in momentum space and, second, agree in intensities
so as to provide a pure situation with constant energy
(particle) flux in momentum space. In this case, nonequili-
brium stationary distribution functions formed in the inertial
range as time elapsed.
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As shown in Section 4, in actual experimental practice (for
example, when a solid state plasma is irradiated by a beam of
high-energy ions), one is dealing not only with intensity-
unmatched but also with nonstationary sources and sinks,
i.e., with sources acting during a finite time interval which is
much shorter than the time the sinks are active. Moreover, the
sinks and sometimes the sources can be distributed over
almost the entire region of momentum space. As we shall see
in the subsequent exposition [29-31], the distribution func-
tions in this case will be quasistationary or nonstationary.

Let us analyze the evolution of the distribution function
for B ,3=1,2,4 under the action of only sources with low
intensity. The formation of nonequilibrium distribution can
be subdivided into three stages. During the first, short stage,
the system still ‘remembers’ its initial conditions. The
duration of this stage does not vary too much for different
exponents § and makes approximately 7 ~ 1. The formation
of the main part of the distribution happens during the second
stage. Its duration essentially depends on the source position
v, but not on its intensity, provided it is low. The distribution
function acquires the shape of a plateau or gently decays
between the source and the cold region, depending on the
source intensity. The establishment of quasistationary dis-
tribution ends by the tail formation. Its duration depends
essentially on the exponent . The evolution of the main
distribution part ends in dimensionless units for ¢~ 50 at
p=1,fort~2atf=2,andfort~1atf =4.

3.4 Formation mechanism of electron distribution function
for solid state plasma interacting with beams

of electromagnetic radiation or fast charged particles

In this section, we intend to draw attention to specific features
of conductive and emissive properties that emerge when high-
energy particle beams or laser radiation act on a semiconduc-
tor plasma.

(1) Let us compare electron energy relaxation times due to
electron—electron and electron—phonon collisions. Because of
ionization caused by beams of intense electromagnetic
radiation, electrons with energies E > fiw, where w is the
radiation frequency, are produced. In the case of irradiation
by particle beams, the energy spectrum of released electrons
embrace the interval from tens to tens of thousands of
electron-volts. According to Ref. [33], the frequency of
electron—electron collisions for electrons of sufficiently high
energy E (E > kgT') at high temperatures 7 > Tp (Tp is the
Debye temperature) is given by the expression

E \2
1 il

* ( ks T)
where y§¢(T) is the classical high-temperature frequency for
collisions between electrons, which is proportional to T2. The

frequency of electron—phonon collisions under the same
conditions is expressed as [34]

pel f(Tp) T

7 T) = 75°(T) ; (3.29)

=T (3.30)
where f(Tp) is the classical high-temperature frequency of
collisions between electrons and phonons at T = Tp. For the
processes discussed here, the conditions needed for formulas
(3.29) and (3.30) to be valid are satisfied, since £ > 10 eV,
T =300 K, and Tp =200—300 K. Notice that quantities
reciprocal to collision frequencies as given by Eqns (3.29)

and (3.30) do not coincide in the general case with electron
energy relaxation time, since one has to take into account the
number of collisions it takes a particle to lose its energy E, i.e.,
the factor ¢ = E/E) (E| is the energy lost by an electron per
collision). According to data from Ref. [34], in the case
considered one has

ef . ., ee

PR, 7> (3.31)
whereas the factor & for electron—electron collisions can be on
the order of unity, while for electron—phonon collisions
E/kgTp >3 x 102, Thus, the relaxation time due to elec-
tron—¢lectron collisions is substantially shorter in this case
than the relaxation time owing to electron—phonon processes.

The comparison of characteristic ionization time with the
relaxation times indicates that the electron distribution
function will be quasistationary in our case, and will be
largely determined by the electron—electron collisions. Relat-
edly, it can be found from the condition that the Boltzmann
(Landau—Fokker—Planck) collision integral becomes zero.

From the analysis presented above, it follows that for a
semiconductor plasma in the energy interval E — Er > Ef a
power-law distribution may exist, which corresponds to a
constant flux of energy or particles in momentum space. In
this case, the particle distribution will be formed by collisions
with electrons having energies satisfying the condition
E — Er > Ey, as well as with (equilibrium) electrons in the
basic background.

It was shown that the nonequilibrium electron distribu-
tion function is close to a universal distribution if the intensity
of flux created by sources and sinks in momentum space is
sufficiently large.

(2) Let us consider, as an example, the irradiation of solid
state plasma by a beam of fast ions (with velocities exceeding
the velocities of electrons in atoms). We concentrate on a
typical situation along a track of an ion. Let the energy of a
helium ion ¢ =~ 5 MeV, the excitation potential @~ 100 eV,
and the ion range in matter R, ~ 10~> cm. Then the helium
ion creates 10* — 103 particles on its path owing to ionization,
the radius of the ionization track is commensurable with the
mean free path of released electrons (R, ~ 107% cm), the
electron number density created by a single helium ion in its
track e, ~ 10210 cm~3, while the equilibrium density
ne ~ 1022 cm~3. For this ratio of electron densities, the
intensity of the source (sink), as can be concluded from the
preceding consideration, is sufficient for the nonequilibrium
distribution function to form.

We dwell on the energy loss channels for a fast ion in a
solid state plasma in more detail. Notice that even for
parameters characteristic of inertial thermonuclear fusion
on ion beams, the interaction of ion beams with solid state
plasma lacks the ‘beam density effect’ (cf. Ref. [35]), i.e., the
dependence of ion energy loss on particle density in the beam.
Bearing this circumstance in mind, we estimate the energy loss
by a single ion by the Bethe—Bloch formula. According to
monographs [36, 37], the energy lost by a fast nonrelativistic
particle is transferred to matter in two ways. A part of the
energy is spent to excite collective oscillations of the wake
charge density, while the other part is transferred to
individual electrons, leading to their ionization. The first
part corresponds to macroscopic energy losses in distant
collisions and weak momentum transfer. The second part
corresponds to collisions with large transferred momenta. A
relatively large part of the energy lost by the particle is spent
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to excite collective oscillations. The energy Aey pertaining to
the oscillations of wake charge density can be presented in the
form [36, 37]

AgyIn (v/10v) 7 (332)
Ae  2In(v/vg)

where Ag is the total particle energy loss, and vy is the electron
velocity in the ground state of a hydrogen atom. Expression
(3.32) indicates that the energy Agx of wake charge density
oscillations is comparable to an order of magnitude with the
total particle energy transferred to the matter.

A fast particle traversing matter may create slow electrons
by two equally probable mechanisms — the avalanche ioniza-
tion, and the ionization through plasma oscillations. The
main features intrinsic to the ionization electron formation
through plasma oscillations are linked to the fairly long
lifetime of wake charge oscillations, as well as to their
substantial extension in space. Because of the long lifetime
of the wake charge, the secondary ionization inside the beam
persists long after the particle’s passage. A substantial
number of slow electrons in the cascade ionization are
produced at the beginning of the cascade, being triggered by
the secondary electron with large energy. Since the range of
such an electron in matter is large, the dominant number of
slow electrons are produced in cascade ionization at distances
on the order of the electron range. For this reason, the
ionization by the wake potential shows up as the main
process that determines the distribution of ionization elec-
trons near the axis of the particle track, while the cascade
ionization governs the distribution of ionization electrons at
distances on the order of the electron range from the track
axis. The ionization by the field of the charged beam particle
proper occurs only at the moments when the particle is flying
past, while the wake oscillations of charge density play the
role of the linear source of secondary electrons, which is
preserved long after the passage of the charged particle and
therefore markedly determine the behavior of the ionization
pattern with time.

As mentioned above, despite the ion travel time along its
track being small, the characteristic time of avalanche
ionization by the wake charge density is rather large, reach-
ing approximately 10~13 s.

If the irradiation frequency satisfies the condition
hw > kgT, the interaction of intense electromagnetic radia-
tion with solid state plasma results in the liberation of a large
number of high-energy electrons which form, in agreement
with the consideration above, the nonequilibrium stationary
electron distribution function. Thus, in both cases of
irradiation — by beams of intense electromagnetic radiation
and by beams of fast particles—we are dealing with a
nonequilibrium electron distribution function, which is
formed in the inertial range as a result of electron—electron
collisions described by the Boltzmann or Landau—Fokker—
Planck collision integrals, and which essentially differs from
the equilibrium distribution function through a large number
of high-energy electrons.

4. Experimental studies of nonequilibrium
particle distribution functions
Section 3.4 showed that local nonequilibrium isotropic

stationary particle distributions may exist in collisional
plasmas. The existence of such distribution functions hinges

on the presence of sources or sinks of particles or energy in
momentum space. This takes place when beams of charged
particles, laser radiation, or microwave radiation interact
with dense plasmas, when nuclear or thermonuclear reac-
tions are maintained in plasma, etc. Earlier [12, 13, 15, 38],
attention was drawn to a set of important consequences
which, for one thing, stem from so radical a change in the
energy distribution of particles and, for another, have an
essential bearing on applications (influence on the Landau
damping, the Lawson criterion in tasks of controlled fusion,
application in astrophysics, and others). However, gas
plasma constitutes a highly unstable medium in which
collective processes may play a particularly important role
and ‘conceal’ the collision phenomena between particles.
From this viewpoint, solid state plasma, allowing one to
control the departure from equilibrium in a stable regime,
seems to be more attractive. Here, the source or sink of energy
(particles) can be furnished by ion beams, powerful laser
radiation, an emission current, beams of charged particles
produced in fusion or fission reactions, and so forth.

In this section, our goal is to draw attention to specific
features of conductive and emissive properties of metals and
semiconductors subject to the action of intense beams of
particles or laser radiation. In this connection, Sections 4 and
5 consider anomalies in the emissive properties of metals,
enabling one to create new sources of current or converters of
the radiation energy into electric energy, promising substan-
tial advantages over thermionic ones (see, for example,
Ref. [39]) with respect to their efficiency and emission current
[16].

4.1 Experimental studies of nonequilibrium electron
distribution functions in emission induced

by laser radiation

Paper [12] called attention to the possibility of an anomalous
increase in the photoconductivity of a semiconductor exposed
to light of frequency w insufficient to trigger the transition
between its bands, 7w < V,, where V, is the band gap width,
by creating a nonequilibrium distribution of electrons and
holes. Based on experimental research, the authors of Ref. [40]
pointed to the significant modification of the conductive
properties of semiconductors irradiated by a-particles.

Itis known [41, 42] that two peaks in the emission current
are observed on illuminating metal foils by a nanosecond
pulse of a powerful laser, Q=10'"* erg (cm?s)~'. The first
peak, almost synchronous with the laser pulse, contains a
large number of ‘fast electrons’ (the maximum energy for
tungsten is 14.5 eV). The second peak, lagging © ~ 1077
10~% s behind the first one, contains electrons with energies
that do not exceed 2 eV. A satisfactory explanation for the
appearance of fast electrons as being due to the Maxwell
distribution function is impossible [43], because the experi-
mental results of Refs [41, 42] would correspond to the
temperature T, = 30,000 K, which is an order of magnitude
higher than the tungsten melting temperature. As concerns
the emission current, two mechanisms of its production are
well known: the multiquantum photoeffect and thermionic
emission, both giving emission currents which are smaller by
many orders of magnitude.

Turning to the mechanism based on a nonequilibrium
electron distribution function forming under these conditions
[13, 38], one gets plausible estimates for the magnitude of
emission current and its dependence (fast peak) on the
retarding potential. As for the slow peak, in all probability,
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over its initial part the emission current is contributed not
only by the equilibrium distribution (thermionic emission)
but also by a nonequilibrium nonstationary component
linked to the ‘breakup’ of power-law distribution.

If the intensity of laser beams is very large, a plasma layer
builds up near the solid body surface, and the appearance of
high-energy electrons may be explained by a soliton forma-
tion under resonance pumping [44]. This mechanism,
however, has only a limited validity domain and is unsui-
table for explaining the experimental results obtained by
Knecht [41, 42].

Thus, it is shown that a series of experimental data on the
magnitude of emission current from metals, induced by laser
irradiation, and the dependence of current on the retarding
potential [41, 42] cannot be explained in the framework of
equilibrium distribution function [43], but gains a satisfactory
explanation with the help of mechanism [13, 38] that hinges
on the presence of a nonequilibrium situation.

4.2 Experimental studies of nonequilibrium electron
distribution functions in emission induced

by beams of fast ions

To describe kinetic electron emission induced by ions, one
resorts to theories proposed in Ref. [45] for low ion energies,
and in Ref. [46] for the range of high energies. According to
the mechanism of secondary emission proposed by Stern-
glass [46], secondary electrons are formed because of
ionization by fast ions, as described by the Bohr—Bethe
theory, then diffuse to the surface and exit into a vacuum.
The secondary emission coefficient 4. for this mechanism is
proportional to the specific ionization losses and does not
depend on the work function ¢, conductivity, or other basic
properties of the substance. Notice that, for the thermal
mechanism of emission, the coefficient A, is proportional to
the square of specific ionization losses and essentially
(exponentially) depends on the electron work function.

In reviews and experimental studies [47-75] and in the
literature cited therein, it is proven that the secondary
emission coefficient 4. is proportional to the energy loss by
fast particles, i.e., available data confirm the mechanism
described in Ref. [46]. It is noteworthy that the proportion-
ality coefficient x in this dependence is practically indepen-
dent of the incident ion energy, but depends on the target
material and may change severalfold if one material is
replaced by another. Prior to research involving none-
quilibrium particle distributions, both theoretical and
empirical expressions linking the proportionality coefficient
x with the target parameters and incident ion energy were
absent.

Theoretical consideration of secondary electron emission
from aluminum, induced by protons and o particles and
carried out in Refs [65, 75, 76], is not able to predict the
values of coefficient k observed experimentally or explain the
broad energy spectrum (especially for forward emission) of
secondary electrons. Note that most experimental research is
concerned with backward emission. However, as shown in
Ref. [54], the energy spectrum of secondary (backward)
electrons is not universal if the energy of the impinging
particle is varied. In this case, even such a rough character-
istic of the process as the ratio of the forward secondary
emission coefficient to the backward one may vary (see
Refs [54, 70]).

In our opinion, the expression for the secondary electron
emission coefficient 4. that is most physically transparent is

offered by the formulas

de PL.
b K = b
dx e

(4.1)

Ae = K

proposed in accordance with Refs [46] and [59] and used in
Ref. [55], where de/dx is the energy loss by an impinging
particle, P is the probability of the event that the surface
barrier will be surmounted by an internal secondary electron,
L. is the depth of the layer from which the emission electrons
emerge, and & is the energy spent for every internal secondary
electron formation. Reference [59] suggests taking &, equal to
that of the respective substance, but in a gaseous phase under
normal conditions.

We suppose that the secondary emission coefficient 4.
should be proportional to the energy loss per atom, i.e., be
dependent on the number density of atoms N, as N;l 3, and
be inversely proportional to the excitation potential @ taking
into account the collective character of the interaction of a
charged particle with the electron subsystem of the target
material. In accordance with Refs [77-79], the Sternglass
formula is modified as follows:

A — CZIZeff . de
CoNA N\ dx))
a p

where (—de/dx) , is the energy loss by a proton moving with
the velocity of the impinging ion, Ze is the effective ion
charge in the target, and { is some constant. In this case, it is
reasonable to use an expression for (—de/dx), proposed in
Ref. [80] and valid in the beam energy range from several keV
to 50 MeV:

(4.2)

) 2
(— % ) — (4.3)
X/, 0.01y + ¢
where y is the velocity (x10% cm s7!), and a, b, ¢; are
coefficients characterizing the material of the target and
having a rather pronounced periodic dependence on the
atomic number Z, of the target element. Thus, the coefficient
a varies with a period close to Z, = 18. The values of
coefficients a, b, and ¢; for aluminum, beryllium, graphite,
and nickel [80], which are used in Section 4.3, are collected
in Table 3.

The energy dependence of secondary emission coefficient
A, 1s explored rather thoroughly, yet the description of the
distribution of emitted electron over energies emerges as a
rather tough problem. Results of experimental research on
the energy spectrum of secondary electrons emitted when
protons or o particles traverse thin foils are reported in
Refs [47-79, 81-84]. However, in Refs [81-83] the spectrum
was explored in a narrow energy range (010 eV), and it is
only mentioned that the spectrum is of a nonthermal nature,
and in Refs [54, 55, 79], although their measurements cover a

Table 3. Coefficients characterizing the target material.

Material a b 1
Al 2.4 0.018 0.36
Be 2.42 0.001 0.37
Ci 2.92 0.018 0.4
Ni 6.8 0.01 0.77
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wide secondary-electron energy range (0-100 eV), the dis-
tribution function can be judged only by its integral
characteristic because of imperfections in the experimental
technique utilizing a nonspherical analyzer, which is not fully
satisfactory. Reference [54] proved that for a broad range of
proton energies (20250 keV) the energy spectrum of
secondary electrons in the forward direction is defined by a
universal power-law function, whereas for the backward
emission such a universal dependence is absent. Addition-
ally, it was shown that the forward secondary emission
coefficient is almost twice as large as the backward one. It
can readily be seen that, by studying the energy spectrum of
secondary electron emission (SEE) with a spherical analyzer
for a point source of SEE, it is possible to retrieve the electron
distribution function in a metal. The emission current is
determined as

Emax

I = B J Ef(E) dEv (44)

P+Ep+q. U

where U is the retarding potential, and B; is a constant;
therefore, the derivative of current over the retarding
potential is proportional to the electron distribution function:
dlem
dUu

=By(¢p+ Er+q.U)f(¢+ Er+4.U). (4.5)

When the electron distribution function has a power-law
form, plotting the dependence of d/en/dU on ¢ + Er + g.U
in logarithmic coordinates enables one to easily find the
power-law exponent from the slope of the curve.

To verify the theoretical ideas pertaining to the mechanism
of electron distribution function formation in interactions of
ion beams with a solid state plasma, formulated in Sections 2
and 3, an analysis was carried out of the experimental
secondary electron energy spectrum and the dependence of
the secondary emission coefficient 4. in the forward direction,
not only on energy losses of o particles and protons in matter,
but also on the excitation potential @.

The comparison of current-voltage characteristics for
different targets with due account of thermal electrons invites
the conclusion that the mechanism of secondary emission is
not thermal and that secondary electrons knocked out the
target by o particles are distributed according to a law
different from the exponential one.

4.2.1 Study of kinetic electron emission from metals. We turn
now to presenting experimental results on the exploration of
the secondary electron energy spectrum with the aid of a
spherical three-grid analyzer. Such measurements allow one
to retrieve the power-law exponent s of the electron energy
distribution function with the help of a single differentiation
of the current—voltage characteristic because, in this case, in
the domain where the distribution function follows the power
law, we have

dlem

du = BS(‘P + Ef + qu)XH s

(4.6)

where B3 is a constant.

Accordingly, dependence (4.6) is a straight line on the
logarithmic scale with the tangent of the slope angle equal to
s+ 1.

The experimental points for the dependences of
g (Alem /AU) on lg(¢ + Er +¢.U) for aluminum and
beryllium targets are well fit by three straight lines, which

corresponds to different power-law exponents in the energy
intervals 0-10 eV, 10-40 eV, and 40-100 eV. The exponents s
for aluminum and beryllium are only different in the range of
small energies.

Departing from expression (4.3) for the particle energy
loss, and taking into account the values of coefficients a, b,
and ¢, it is possible to explain the dependence of secondary
emission coefficient 4. for aluminum and nickel on the energy
¢ of impinging particle in the form 4. ~ & %7 in a wide
energy range, which was mentioned in Refs [64, 65]. Since
@ [eV] = 13.5Z, [85, 86], in the energy interval from 1 to
10 MeV the range of an o particle in matter is determined from
the empirical formula [86, 87]

Ry =0.174 x 107343 p 13/ (4.7)
where A4, and p,, are the atomic weight and the density of
matter, respectively. For estimates, it can approximately be
assumed that

2 ,01%1/3

Ae ~ Zleff 72

Vl;' , (4.8)
where V4 is the velocity of impinging particle. Formulas (4.7)
and (4.8) provide the correct relationship between the
secondary emission coefficient 4. for aluminum, beryllium,
and graphite. High absolute values of 4. obtained in Refs [77,
79] are explained by a substantial contribution to the electron
emission from o particles flying at an angle to the normal to
the film and experiencing higher energy losses than the
particles moving in the direction of the normal.

In order to alleviate the drawback of Ref. [79] caused by
averaging the secondary electron spectrum over energies of
impinging particles and the take-off angle of the secondary
electrons, the experimental research dealing with the energy
spectra of secondary electron emission induced by a proton
beam traversing a target was carried out for different electron
take-off angles for Al, Cu, and Be [78, 88]. The dependence of
secondary emission coefficient in the forward direction was
studied not only with respect to the energy loss of protons
with an energy of 1 MeV in matter, but also to other
macroscopic characteristics of the target. The energies of
secondary electrons knocked out of the target were analyzed
by the retarding potential method with the aid of a narrow-
aperture (4 x 10~ steradian), three-grid analyzer mounted
at different angles (30°, 45°, and 75°) to the beam direction.
The secondary emission coefficient was determined by the
ratio of the total secondary electron current /. to the current
of protons I,. The experiments utilized targets with a
thickness of 5.6 um for aluminum, 9.7 pm for beryllium,
and 1.2 pm for copper. The measured dependences of /1,
on U allow one to determine the power-law exponent s by
once differentiating these dependences because, in this case, in
the range where the distribution function follows the power
law, we have

d I

—~— *_B E . s+1 4.
T 4(@ + Er +q.U)™ | (4.9)

where By is a constant.

Consequently, function (4.9) represents a straight line on
the logarithmic axes, the tangent of its slope being s + 1. It
was shown that the experimental points gather around three
straight lines that correspond to different power-law expo-
nents on the intervals 0-10 eV, 1040 eV, and 40-100 eV.
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These exponents coincide rather accurately (~ 10 %) with
those found with the aid of a spherical analyzer in the
experiments on bombarding the same targets by o particles
(see above and Ref. [77]). The power-law exponents were
found to differ for different targets only in the range of small
energies 0—10 eV. Together with the energy spectrum, the
values of the integral characteristic — the secondary emission
coefficient 4, for aluminum, copper, and beryllium targets —
were determined to be equal to 2.5, 1.6, and 4.6, respectively.
As we have already mentioned, the coefficient 4, is propor-
tional to the energy loss of a fast particle:

d
Ae:K_g7

o (4.10)

where « is the proportionality coefficient, which may vary
several times between various materials.

The experimental results for the three targets considered
here agree with the data for aluminum and beryllium
discussed earlier and the data of Ref. [70] for graphite. The
coefficients 4, for different targets relate as the reciprocal of
the excitation potential @ multiplied by N, /3. We note that
the data for copper [88] are somewhat worse, but, possibly,
this stems from the imperfect character of the surface layer for
the copper foil used.

Thus, the experimental studies of the energy spectrum of
secondary electrons demonstrated that the electron energy
distribution function is essentially nonequilibrium and decays
by a power law as energy is increased, with the same
exponents for energies in excess 10 eV for different target
materials. They confirmed the proposed theoretical depen-
dence of the secondary emission coefficient on the excitation
potential @ and the number density of atoms N,.

Electron distributions over energies have been studied in
the case of ion—electron emission induced by beams of HT
ions with energies from 0.75 to 3.0 MeV, and H2+ ions with
energies from 1 to 2.5 MeV. The ion beam current comprised
0.1-0.4 pA, while the beam diameter on target was 3 mm in all
experiments. Thin foils made of silver, copper, nickel, or
titanium were used as targets, and their thickness was less
than the range of H and HJ ions with the given energy in the
target material. The residual gas pressure in the vacuum
camera reached 107® Torr. The energy distributions of
secondary electrons were measured in a spherical analyzer
with a retarding field. The latter was created between the
target and two hemispheres. To eliminate the electron
emission under the action of a stream of striking particles,
the Faraday cylinder was under the antidynatron potential
(~ 20 V) created by a DC power source. The current of the
Faraday cylinder was amplified by an electrometric amplifier.
The signal from the amplifier was passed to a D3-28
computer. The current of electrons overcoming the retarding
field of the analyzer was collected by a forward hemisphere
and, after amplification, passed to the computer, too. The
emission current [, of secondary electrons was measured on
two intervals of electron energy U: 5-50 eV with astep of 1 eV,
and 35-200 eV with a step of 5 eV. The operations of
preliminary processing were performed automatically with
the assistance of specially developed software. Expression
(4.6) was rewritten in the form

y=06+1)x+a, (4.11)

where y =1g (dl./dU), x =1g(U+ Er + ¢), and a = lg Bs,
and then the exponent s and parameter a were determined.

Table 4. Absolute values of power-law exponent s as a function of proton
energy.

E,, MeV Titanium Nickel Copper Silver
0.75 5.4 5.6 7.74 6.54
2.28 1.88 1.81 2.7

1.0 5.15 4.66 6.36 6.52
2.0 1.45 1.64 2.54

1.5 5.95 5.38 5.8 6.42
2.64 2.32 0.86 1.98

2.0 7.16 5.53 5.77 4.38
2.93 2.78 2.85 2.08

2.5 6.06 4.58 5.01 5.25
2.12 1.64 2.11 1.96

3.0 5.66 4.32 5.73 6.34
1.88 1.66 2.67 2.7

Table 5. Absolute values of power-law exponents s as a function of the H}
ion energy.

Ey:, MeV Titanium Nickel Copper Silver

1.0 6.04 5.34 2.81
1.98 1.87 2.43

1.5 4.66 3.40 5.36 6.73
1.82 1.18 2.36 2.0

2.0 4.56 4.09 3.66 6.11
1.49 1.57 2.16 2.54

2.5 4.31 8.73 5.73 5.48
1.28 2.62 2.67 2.7

The fit skill was characterized by the parameter
RS ( Yexp >2
gfit = — I —— . (4.12)
l ]vl ; Jtheor

Here, N, is the number of y values used in determining the
exponent s:

1 dr 1 df, eor
yeXP:lg (EE)? ytheorzlg <l_] C{;] ), (413)

where the function d/ipeo;/dU is computed by formula (4.6)
using the values of s and B; found.

Typical plots of the secondary electron spectrum were
approximated by two straight lines on the intervals from 5 to
30 eV, and from 30 to 250 eV, with different values for the
power-law exponent.

Table 4 lists the values of power-law exponent s for the
two regions (the upper and lower values) as a function of the
energy of the impinging beam of H™ ions for different target
materials. Table 5 displays the same quantities, but for a beam
of Hi ions.

As can be seen from Tables 4 and 5, in most experiments
the power-law exponent in the first region (upper values)
increases together with the ion energy loss in the matter. In the
second region (lower values), an apparent dependence
escapes detection.

4.2 2 Studies of kinetic electron emission from semiconductors.
The information available in the literature on emissive
properties of materials irradiated by beams of fast ions
largely pertains to metals. The apparent lack of data for
effective electron emitters widely used in photoemission and
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electronic devices cannot escape attention. The effective
secondary electron emitters based on antimony and cesium
compounds are disseminated most widely. Owing to their
high secondary photoemission and electron emission coeffi-
cients, which are commonly attributed to low heights of the
potential barrier at the interface between the sample surface
and a vacuum, materials of that type are actively used as
photocathodes and dynodes in photoelectron multipliers and
other devices [89, 90]. Indeed, the value of the secondary
electron emission coefficient for antimony—cesium cathodes
ranges A, = 3—4 for a low energy of primary electrons
E.=100 ¢V, and the maximum value amounting to
Aemax = 8—10 for the SEE coefficient is achieved at energies
E.=500-600 eV [89, 90]. The rather high secondary emis-
sion coefficient is the consequence of not only the low work
function for this material but, arguably, also the formation of
nonequilibrium distribution functions of the power-law form.

The study of the distribution functions of electrons
formed in the solid state plasma of an antimony—cesium
cathode hit by beams of fast light ions was carried out on a
setup described in detail in Ref. [32]. An electrostatic Van de
Graalff ion accelerator, used as a source of primary particles,
made it possible to produce beams of hydrogen (H") and
helium (He') ions. Measurements of the energy spectra of
electrons of secondary ion—electron emission (SIEE) were
carried out for beams of H" ions with energies from 1.00 to
2.25MeV, and He' with energies from 1.75 to 2.25 MeV with
astep of 0.25 MeV. The explored cathode, utilized as a target,
consisted of an antimony-cesium layer with a thickness
exceeding the range of impinging ions in the material, fitted
to a massive nickel substrate. The target 10 mm in diameter
was fixed in a copper casing attached to a moving holder. The
ion beam collimated with the aid of a system of diaphragms
hit the target causing SIEE from its surface in the backward
direction. The plane of the target was installed perpendicu-
larly to the beam axis. The beam diameter on the target
measured 3 mm. The ion current density at the target did not
exceed 30 pA cm~2. The chamber was pumped out with an
NMD-0,4-1 magnetic-discharge pump and NVPR-16D for-
evacuum pump with a nitrogen trap. In all experiments
conducted, the residual vacuum in the chamber was at least
107® Torr. Electrons emitted from the target surface were
collected at a spherical collector made of two hemispheres of
radius 100 mm. The target on the holder was placed inside the
collector. The gap between the hemispheres equaled 15 mm.
The entrance window of each hemisphere was 10 mm in
diameter. Simultaneously with the collector current I, the
target current It was measured, too. The target current
represents the sum of the ion beam current /g and the current
of secondary electrons that reached the collector: It =
|Ic| + Is. The measured currents of collector /- and target
It, amplified by electrometric amplifiers, were passed to a
personal computer via an analog-to-digital converter. To
calibrate the measuring system, the Faraday cylinder was
located behind the rear hemisphere, enabling direct registra-
tion of the ion beam current Irc when the beam was not
traversing the target. The Faraday cylinder was 20 mm in
diameter and had the length /= 130 mm. The Faraday
cylinder current /rc was measured with the help of an F303
current instrument. The SIEE coefficient was determined
from the formula
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Studying the energy spectrum of electrons produced by
SIEE with the aid of a spherical analyzer for a pointwise
emission source, one can reconstruct the explicit shape of the
electron distribution function inside the solid substance [16,
32, 78]. When the distribution function exhibits a power-law
shape, the derivative of the emission current over electron
energy, d//dU, can be written out as

A Bt o+ ev)”,
where B is a constant. Consequently, on the logarithmic axes,
dependence (4.15) represents a straight line inclined at an
angle with tangent equal to s + 1.

The energy distributions of secondary electrons in back-
ward emission were measured with the help of a spherical
collector in the energy analyzer mode with a retarding field on
the interval from 0 to 100 V with a step of 1 V. The retarding
electric field was created between the target and the two
hemispheres. Since the radius of the energy analyzer was
substantially larger than the target size, the field configura-
tion was close to a spherically symmetric one. A ceramic tube
covered from the outside with a resistive layer and measuring
5mm in diameter was used as the target holder. The resistivity
of the layer R; was varied nonlinearly along the tube so that
the holder potential did not disturb the field inside the
analyzer. The target had a galvanic contact with one end of
the resistive layer, while its other end was grounded. The
retarding potential was fed to the target inside the ceramic
tube from a source of saw-tooth voltage controlled through a
PC. Accordingly, the current flowing along the resistive layer
created the required potential distribution along the length of
the holder. In the experiment, secondary electrons reached the
collector while moving radially. When the retarding potential
was applied to the target, only electrons with energies
sufficient to overcome the retarding field reached the
collector. The software controling the experiment enabled
collecting statistics of 100 measurements of the electron
emission current during 7 s for every magnitude of retarding
potential. It then carried averaging over these 100 experi-
mental points, writing the result to computer memory.
Differentiating the measured dependences of the collector
current on the retarding potential (the retardation curves),
one may retrieve the energy spectrum of SIEE electrons and
then reconstruct their distribution function.

The experimental research of the energy spectrum of SIEE
electrons carried out in this manner indicates that, for all
explored energies of ions, the electron distribution function
formed under nonequilibrium conditions in the plasma of
antimony—cesium cathode has a power-law shape.

Figure 14 displays a typical distribution function for
nonequilibrium electrons for the explored sample hit by He™
ions with an energy of 1.75 MeV.

The experimental points are well fit by two straight lines
corresponding to different power-law exponents in the energy
ranges 5-30 eV and 30-100 eV. By processing the experi-
mental data, the respective exponents were recovered. Table 6
lists the values of exponents —sg; and —sg, for the two
portions of the distribution function, which correspond to
the energy intervals specified above, as a function of the
energy of impinging H™ and He™ ions.

In our opinion, the power-law exponent of the secondary
electron distribution function may preserve generally the
dependence on the energy (specific ionization losses) of fast
ions, since the intensity of the source of additional particles in

(4.15)



70 V E Zakharov, V I Karas’

Physics— Uspekhi 56 (1)

g (EF+ ¢ + eU), rel. units
1.0 1.5 2.0

dl./dU, rel. units

0.1

Er+ ¢ +eU, eV

Figure 14. Typical dependence of Ig (d/./dU ) onlg (Er + ¢ + eU ) for an
antimony-cesium cathode bombarded by He' ions with the energy of
1.75MeV. Section 7 of the distribution function (the energy range 5-30eV)
is described by the power-law with exponent sz = —2.9, and section 2
(30-100 eV) with s = —2.5.

Table 6.
Ton Energy, MeV —SEl —SE2
HY 1.25 2.9 2.5
1.5 3.0 2.5
1.75 29 2.5
2.0 3.0 2.4
2.26 3.0 2.6
He™ 1.75 29 2.5
2.0 2.8 2.2
2.26 2.8 2.3

momentum space is defined precisely by the ion’s specific
ionization losses. As was pointed out in Refs [13, 16, 17], the
power-law exponent is independent of the structure of sources
and sinks only under certain special conditions. In such cases,
one speaks about the universal electron distribution function
with the exponent —5/4 [16]. In experiments conducted
earlier with the He™ ion beam and thin metallic films, the
exponents s were measured, and it was shown that the
absolute value of power-law exponent sg; of the distribution
function on the first energy interval, corresponding to the
range of slow electrons (E < 35 ¢eV), decreases with the
growth of the ion’s specific ionization losses in metals [91].
The authors of Ref. [57] point out that a fraction of the fast
electrons increases together with the energy of impinging ions.
As is seen from Table 6, the exponents sg; differ but slightly
for different energies of impinging ions and, consequently, for
different specific ionization losses of ions in an antimony—
cesium sample, although the absolute value of the power-law
exponent grows (decays) for protons with an increase in
energy (specific ionization losses). Such behavior is not
observed for helium ions. Noteworthy is the fact that the
variation of the power-law exponent is within 10%, so that
additional research is needed to reliably establish its depen-
dence on energy losses.

Figure 15 plots the dependence of electron emission yield
A. on the energy of incident H" and He™ ions for the
antimony—cesium cathode. As can be concluded from the
plot, the values of electron emission yield 4. for the explored

35 -
3.0 -

25

—e— HTt \/‘

—a— Het

Ae, rel. units

0 | | | | | | | |
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Ei, MeV

Figure 15. Dependence of electron emission yield 4. on the energy of
impinging H" and He™ ions for an antimony—cesium cathode.

antimony—cesium compound exceed those for many metallic
samples [59]. This may have the following cause. As has
already been mentioned, a part of the nonequilibrium
electrons, formed in a solid state plasma bombarded by
beams of fast charged particles, diffuses to the surface and
are ejected into the vacuum. The electron emission occurs
from a subsurface layer substantially thinner than the ion
penetration depth and is governed by laws defining the
motion of these electrons to the surface.

The results of experimental studies presented in Ref. [32]
also point to the dependence of the electron emission yield 4,
induced by He™ ions from a germanium sample on specific
ionization losses dE/dx of He™ ions, which is approximated
well by a straight line, thus confirming the proportionality
between these quantities. It should be mentioned that ion
beam currents considered in Ref. [32] do not exceed 10 pA. In
this case, the emission current varies noticeably with time,
reflecting the nonstationary behavior of sources and sinks in
energy space. For every ion track, the electron distribution
function has sufficient time to pass all stages of its evolution,
so that the dependence of emission current on the retarding
potential observed in the experiments stemmed from the
superposition of currents produced during all time intervals
when the nonequilibrium electron distribution function
existed. Figure 16 presents the dependence of emission
current on retarding potential [29-32]. The main result of
comparing theoretical and experimental data is the conclu-
sion that the account for source nonstationarity is an essential
factor in explaining the dependence of current on retarding
potential, when the experimental technique of collecting the
charge escaping the entire film surface over a sufficiently long
time interval (several seconds) is utilized. Figure 17 compares
electron number densities N(E) ~ f (v, ) v for nonstationary
electron distribution functions simulated numerically at
various time instants [30, 31] with those observed in the
experiment [84] for secondary emission electrons induced by
1-keV electrons from polycrystalline aluminum (Al). The
energy of the volume plasmon amounts to 15.5eV, and the A1
work function equals 5.25 eV [31, 84].

4.3 Direct transformation of particle kinetic energy

into electric energy based on nonequilibrium particle
distributions

Based on the research findings discussed in Sections 4.1 and
4.2, a secondary-emission radioisotope current source has
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Figure 16. Dependence of ion—electron emission current on the retarding
potential for gallium arsenide (GaAs) bombarded by H* ions with an
energy of 1.25 MeV. The curves correspond to the current averaged over
time ¢ = 10 (dotted line), 20 (dashed line), and 100 (solid line); the stars
display the experimental results [32].
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Figure 17. Dependence of the number density of electrons with energy E,
N(E) = f(v) v, on the energy of emission electrons produced by 1-keV
electrons bombarding polycrystalline aluminum. The solid, dashed, and
dotted curves correspond to the results of numerical modeling, and the
stars plot the experimental data [84].

been developed [92—-100], containing a radioisotope layer in a
hermetic enclosure under conditions of sufficiently high
vacuum. This layer was sandwiched between metal emitters
whose thickness does not exceed the range of charged
particles emitted by the radioisotope in the respective metal.
Each of the emitters is fabricated as a sequence of alternating
layers of two distinct metals with different secondary electron
emission coefficients, insulated electrically by vacuum gaps.
The efficiency of a radioisotope source of this type is
determined by the fact that secondary electrons are produced
along the entire path of a charged particle in metals, i.e., the
energy of charged particle is directly converted into the energy
of electrons, the number and mean energy of which are
incommensurately higher than in the thermionic emission. It
was established that making use of heavy particles in sources
of electric current leads to a high secondary electron emission
coefficient owing to a negligibly small scattering of these
particles, since their motion is approximately rectilinear. The
secondary electron distribution function is nonequilibrium,
with the mean energy of emitted electrons exceeding 10 eV.

The source efficiency coefficient increases as a result of
augmented secondary emission under the action of J-elec-
trons (see Refs [95-97]). This source, therefore, has high
energy indices which are directly proportional to the number
of emitter layers. Since the full thickness of the emitter does
not exceed the range of a charged particle emitted by the
radioisotope, the increase in layer number, and hence emitter
efficiency, is only possible by making layers thinner. How-
ever, with a reduction in thickness the layers lose their
constructive rigidity, and as a result their electric isolation
may be destroyed, for example, because of sagging when the
vacuum gap between the layers gets thinner. Subsequently, a
secondary emission source of current possessing sufficient
constructive rigidity for layers of reduced thickness was
offered [98-100]. Its emitter consists of alternating, electri-
cally isolated layers of two unlike materials with different
secondary electron emission coefficients. The emitter layers
are separated by dielectric grids which electrically insulate the
layers and increase the stiffness of the emitter’s construction.
In so doing, the dielectric grids are thicker than the working
layers of the emitter. To achieve the best results when
implementing this invention, the grid from a dielectric
material (ceramic or plastic) should be superimposed directly
on one of the emitter layers. To boost the energy efficiency of
the proposed current source, it is desirable to make one of the
alternating layers in the emitter from a metal, and the other
one from a semiconductor material with a higher secondary
electron emission coefficient than for the metal of the first
layer.

5. Kinetics of an electron—phonon system
of a crystal in a strong electric field

In the 1960s, the phenomenon of a sharp reduction in the
plastic resistance of metals was discovered, whereby the
conduction electron subsystem of metals is excited either by
irradiating them by fast charged particles or by passing high-
density electric current j = 108—10° A m~2. It could not be
reduced to a trivial thermal action (in a macroscopic
manifestation) of current, so an assumption has been put
forward on the existence of electron—dislocation interaction
influencing the mechanical properties of crystals [101, 102].

It was proposed to call the phenomenon the electroplastic
effect (EPE). The mechanism of the EPE was associated with
an increase in mobility of dislocations in the domain with
sources and, hence, with the intensification of source
operation. In its purest form, the EPE was explored in
metallic single crystals of Zn, Cd, Sn, and Pb [101]. If samples
of these materials in a process of deformation are subject to
current pulses 10> —10° A mm~2 in magnitude and 10~* s in
duration or are irradiated with accelerated electrons in the
slip direction, a reduction in strength is observed, manifested
in a jumplike drop in deforming stress. Oscillations of stress
are linked to jumps in the plastic strain of objects. It was
discovered that, synchronously with the passage of current
pulses and the reduction in the deforming force, groups of slip
bands are formed, and also that the jumps in deforming force
are much smaller in the range of quasielastic deformations
than after the yield point. These oscillations are anomalously
high in the vicinity of the material yield point. Jumps in
deforming force in diagrams decrease in tests carried out in
the stress relaxation mode. A characteristic feature of the EPE
in single crystals is the absence of temperature dependence in
a broad interval from 77 to 300 K.
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It was shown that as the electron energy is increased past
the knock-out threshold for atoms (£ ~0.7 MeV for zinc),
the augmented plasticity of a metal on irradiation is overlain
by the effect of its hardening on irradiation, caused by the
appearance of additional stoppers for dislocations in the form
of point defects and their ensembles. If the electron density in
a pulse is increased, the plasticity on irradiation first increases
and then weakens. Weakening of the effect is explained by the
influence of possible partial degeneration of electron gas in a
metal on motion and interaction of dislocations [102].

It is shown that the activation volume does not change
considerably on irradiation of a metal by electrons and that
an increase in creep rate is explained by the decrease in the
time scale (increase in the frequency) of the process of
thermally activated passage of barriers by dislocations [102].

5.1 Kinetic description of the electroplastic deformation
effect

The plastic deformation of crystals under applying an
external load occurs in most cases through dislocation slip
[103]. The pertinent basic equation (the Orowan relationship)
governing the kinetics of plastic deformation in a slip plain
has the form

Ea=bpaVa(a™,T), (5.1)
where &4 is the plastic deformation rate, pq 1s the density of
mobile dislocations, b is the magnitude of their Burgers
vector, and V4(c*, T) is the mean velocity of long-range
dislocation displacement, which depends on the effective
deforming shear stress ¢* = ¢ — ¢; and the temperature 7,
where o; are the internal shear stresses in the slip plane (the
analog of dry friction). In the region of sufficiently weak ¢ *, a
moving dislocation colliding with local stoppers (impurity
atoms or other defects of a crystalline lattice) may linger there
over a long time. It is believed that the mechanism by which a
dislocation segment surmounts barriers involves thermal
fluctuations, provided temperatures are not too low. Then,
one has

H(o*

Va(a*,T)=W(c",T) = Ivgexp (— k(BT)> ,
where /is the mean distance between stoppers, and v(c*, T') is
the frequency they are passed through. The explicit form of
function H(c*) depends on the model of the potential barrier
(its amplitude and shape) retarding the dislocation slipping,
and also on the barrier distribution along the dislocation line.
In experimental data processing, it is routinely assumed that

wer-nfo-(2))

If the role of stoppers is played by impurity atoms, then Hj is
the energy parameter of dislocation—impurity interaction, o,
is the critical stress for dislocation motion through a grid of
impurity barriers in the slip plane without activation, and
Do, qo are some power-law increments determined from the
analysis of experimental curves.

(5.2)

(5.3)

5.2 Mathematical model

To quantitatively describe the dynamics of an electron—
phonon system in a metallic film, Ref. [104] resorted to an
important simplifying assumption that the isotropic part of
the electron distribution function is a Fermi type with a time-

dependent electron temperature. The authors of Ref. [104]
note that, although the introduction of electron temperature
is equivalent to a frequently used assumption on instanta-
neous thermalization of an electron subsystem, it cannot
always be strictly justified. So, in the region of very low
temperatures T, < T* (the temperature T* ~ T3/EF), where
electron—electron collisions dominate electron—phonon colli-
sions, the electron distribution function is thermalized on the
time scale of electron—electron interaction, 7e. In ordinary,
relatively pure metals, 7% ~ 1 K, while in specially contami-
nated films, where the electron—electron interaction is
intensified through the occurrence of weak localization
effects, T* can reach the value of order 10 K. For
temperatures 7. > T* (but T. < Tp), the electron relaxation
in relatively thick films does not involve direct electron—
electron interaction, but occurs indirectly, through the
exchange by phonons. It was shown earlier by one of the
authors of Ref. [104] that the electron distribution function,
resembling a Fermi one in shape, is also formed in relatively
thin films (from which nonequilibrium phonons may escape
to the substrate without being re-absorbed by electrons)
solely as a result of phonons being emitted by ‘hot’
electrons. The consideration relied on a rather strong
assumption that all the energy acquired from the electric
field is converted to the electron temperature, which is
unjustified and, as will be seen from the further analysis,
does not correspond to the actual solution to the problem if
the electric field strength is not very small. In both cases, the
characteristic thermalization time for electrons is that of
electron—phonon collisions, 7.,. We also note that in
optically thick films the uniformity of electron temperature
over the film thickness is furnished by the fast withdrawal of
electrons from the skin-layer and high electron heat con-
ductivity compared to the phonon heat conductivity [103].
Because of an additional diffusive reduction in the density of
hot electrons, the electron subsystem is thermalized substan-
tially faster, so that for optically thick films the approxima-
tion of instantaneous thermalization leads to good agreement
between theoretical and experimental results. Reference [104]
dealt with the case of weak ‘heating’, but we, while consider-
ing the EPE, are dealing with very strong heating and need,
therefore, to carry out a consistent kinetic consideration of
both electron and phonon subsystems, which comprises the
main content of Refs [30, 105, 106].

In the kinetic description, the behavior of electrons obeys
the Boltzmann equation for the electron distribution function

f(r,p, 1) with related collision integrals:

of , of dpof
a""va"‘raa— ee+Iep+led7
dp _

& e[E(r, 1) +v x B(r,1)],
where I, Iep, and Iq are the respective collision integrals of
electrons with electrons, electrons with phonons, and elec-
trons with impurities and lattice defects, v is the velocity, r is
the radius vector, p is the electron momentum, ¢ is the time, £
is the electric field strength, and B is the magnetic field
induction. In what follows, we assume that the magnetic
field is absent.

The phonon distribution function also obeys the kinetic
equation with collision integrals, namely

ONp(q,) ON,(qp)
o Yoy = het It ha,

(5.4)
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where I, Iy, and Iq are the respective collision integrals of
phonons with electrons, phonons with phonons, and phonons
with impurities and lattice defects, vq = /10Q/dq, is the
phonon speed, g, is its momentum, and N,(q,,) is the phonon
distribution function. Recognizing that collisions of electrons
with impurities, phonons, and defects lead to the isotropiza-
tion of the electron distribution function, we seek it in the
form

fo,0) =1 (E@) + i (E(p) (5.3)

P
p
Taking into account that energy transfer in collisions of
electrons with phonons is very small, we simplify the
electron—photon collision integrals, namely, we expand the
isotropic part of the electron distribution function in series in
small energy transfer, retaining the quadratic terms, viz.

f(p£4q,) =f(Ep) +1Q(q,)

2 2
—r(Ep) =L (éfg)) ho fa(gp)) e

and substitute this expansion into the collision integrals. Let
us take into account the specific form of transition prob-
ability w(g,) and also the frequency of phonon—phonon
collisions vpp(gp):

22,2
4nmef,

B 202nh)’p
T3 ¢

2 gr-s

v = Vppodp 5, Vpp0 = s >

oo (dp) pp09p pp g T M,

w(gp) = woqp, Wo

where 1Q(qp) = ¢sqp, €14 is the constant of the deformation
potential, T, is the lattice temperature, M. is the net mass of
two atoms, ¢, is the speed of sound, and ay is the lattice
parameter.

The distribution functions for electrons f'(¢), as well as for
phonons N, (g, ), are dimensionless and satisfy the following
normalization conditions

3/2 oo
! (Z—m) J E'f(E)dE =n,

— 5.6
27_[2 hz 0 ( )

where 7 is the number density of electrons in the valence band
(in metals it is also the conduction band, since it is only
partially filled), and

(5.7

~—

1 1 qD 3
e\l . qup((Ip)d%<007

where ¢gp is the Debye phonon momentum defined by the
identity kg7Tp = ¢sgp. Hereinafter, all quantities are listed
for nickel (in which case computational and observational
results can be compared [108]): ¢, =5 x10° cm s~!,
Tp = 375 K; hence, the maximum phonon momentum is
103 x 1071 g cm s~!, the electron number density in the
valence band n=2.5x 1022 cm™>, the nickel density
p = 8.9 gcm3, and the lattice constant (the distance between
neighboring atoms) a = 3.5 x 10~% cm.

In a thermodynamically equilibrium state, the electron
distribution function f(E) is given by the Fermi-Dirac
distribution

o= (55 ]

(5.8)

where Er = 5 x 10712 erg, and T, is the temperature of the
electron component [in experiments, it reached 20 K and 80 K,
coinciding with the lattice (phonon) temperature initially
(before the electric field £ = 0.31 CGSE units = 94 V cm™!
was switched on)]. Based on the residual nickel resistivity,
Pegr = 3 % 1070 Q cm, we determine the frequency of electron
collisions with impurities and lattice defects: veg =
3 x 1013 s~!. The frequency of electron-phonon collisions
depends on the phonon momentum as vep, = vepo ¢/¢p, and
vepo = 2 x 10'® s~1. Since numerical integration of the elec-
tron—electron collision integral presents considerable difficul-
ties due to its nonlinearity, and since its role consists in
redistributing the energy supplied by the outer electric field
between electrons (quasithermalization), integrating the
coupled system for isotropic electron and phonon distribu-
tion functions, we limit ourselves to retaining only the
electron—phonon and phonon-electron collision integrals,
but on the time interval f,. during which the contribution
from electron—electron collisions can be omitted. The time f..
is estimated by its lower bound from the condition that the
energy released in the conductor upon the passage of electric
current heats (it is assumed that electrons have relaxed over
this time to a thermodynamically equilibrium state) the
electron subsystem to a temperature comparable to the

initial one, i.e., one has
2

tee = ¢p pTe, (5.9)

pcur
where ¢, = 25 Jkg~! K™ is the specific heat for nickel. From
Eqn (5.9) we find the expression for the time interval #..:

pcur
e’
For the electric field strength £ =0.31 CGSE units
=94 Vcm™!, the time #,. = 457¢50. We will measure time in
units inverse to the electron—phonon collision frequency in
both equations for electron and phonon distribution func-
tions. The energies of electrons E and phonons ¢,q, are put
into a dimensionless form by dividing their by kg 7.. In this
case, the system of equations is written out as

%@_MLE{I;ZM] :i

tee = cp pTe (5.10)

P op p?
O (1Y) 7 - af o]
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ON, (g (1 R ) i
2@ J dp,,{_ SB) (=S (B)+[No(@)+1-/(7)]
/2 o
L o), . 0 o)
= v : 5.12
: [\/&q" 5% 3505 pop |J° (5.12)
where
g ~ 6‘282 ~ p
[=1tvep, AE= 6mvepovedknTe = it
Go=—T>
P\ 2mks T,
2
mc
-8 <g. < 5.
* 2kpTe’ 0<dp <423
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Integration of systems (5.11) and (5.12) was carried out with
the help of fully conservative difference schemes. The
conservative character of the scheme is a necessary require-
ment, since only it ensures that errors do not accumulate in
computations over long time intervals (see, for example,
Ref. [107]). The essential point consists in satisfying several
conservation laws; in the case considered, they are the laws of
conservation of energy and particles.

5.3 Results of numerical modeling and their discussion

As a result of numerical simulations, nonstationary distribu-
tion functions for electrons f(p) and phonons Ny(g,) over
momenta have been found. Figure 18 plots the dependence of
the electron distribution function on dimensionless momen-
tum at different instants of time. The leftmost curve
corresponds to the thermodynamically equilibrium function,
which is also the initial one for the solution of systems of
equations (5.11) and (5.12). As can be seen from Fig. 18
(curves shift to the right with time), the electron distribution
function deviates more and more from the equilibrium
function as time progresses.

It is thus established that the energy received by the
electron subsystem from the external electric field is partially
transferred to the phonon subsystem as a result of electron—
phonon collisions (a small portion is involved because of the
quasielastic character of electron—phonon collisions); its
largest part does not contribute to the formations of the
thermodynamically equilibrium electron distribution func-
tion (contrary to what is frequently assumed; see, for
example, Ref. [104]), but is channelled in the formation of
intense high-energy tails. Such a drastic modification of the
electron distribution function causes the formation of a
phonon distribution function enriched very strongly by
phonons with an energy close to the Debye one. Our results
deviate significantly from the results of Ref. [107], where the
phonon distribution function practically coincides with the
Bose—Einstein distribution in this range of momenta, but
possesses a temperature corresponding to that of the electron
subsystem. As follows from our numerical simulations, the
‘temperature’ (more precisely, the mean energy of electrons,
since the electron distribution function strongly departs from
the thermodynamically equilibrium form) of the electron
distribution function varies insignificantly, i.e., the thermali-

zation of the energy obtained from the electric field does not
happen, but high-energy tails are formed, which are respon-
sible for this cardinal change in the phonon distribution
function. High-energy tails with ever growing intensity
develop with time in the phonon distribution function,
because the momentum transfer in electron—photon colli-
sions implies a rather small energy transfer; many phonons
are born at the Debye energy, i.e., their distribution function
is enriched with the Debye phonons. Further, we analyze the
behavior of the product of the phonon distribution function
and the cubed dimensionless momentum for the thermody-
namically equilibrium case (Bose—Einstein distribution) and
the phonon distribution function at various moments of time
after the electric field starts to act (Fig. 19).

Thus, with the help of numerical modeling of the electron—
phonon system in a strong pulsed electric field, which relies on
fully conservative schemes, nonequilibrium distribution
functions of electrons and phonons have been found, and it
has been shown that:

— the isotropization of the electron distribution function
occurs because of collisions with lattice defects;

— the electron distribution function does not become a
thermodynamically equilibrium one because the electron—
electron collisions contribute essentially less in this situation
than the electron—phonon collisions, and collisions with the
‘alien’ subsystem do not result in thermalization;

— the distribution functions for electrons and phonons
contain high-energy tails because the momentum transfer in
electron—phonon collisions implies a rather small energy
transfer;

— many phonons are born in the vicinity of the Debye
energy, i.e., the phonon distribution function is enriched with
the Debye phonons.

By way of illustration, Fig. 20a presents the dependences
of the phonon distribution function multiplied by the cubed
dimensionless momentum for the thermodynamically equili-
brium Bose—Einstein function corresponding to the tempera-
ture of the substrate (dashed curve), the stationary phonon
distribution function taken from Ref. [107] (solid curve), and
the nonequilibrium phonon distribution function from
Ref. [105] (the dotted curve corresponding to the time
moment fe. = 507cp0, Which is a characteristic energy relaxa-
tion time due to collisions between electrons) on the
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Figure 18. Dependence of the electron distribution function on the
dimensionless momentum at different time moments (¢ = 0, 10, 20, 30,
40, and 50); the curves shift to the right with increasing time 7.
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Figure 19. Dependence of the phonon distribution function multiplied by
the cubed momentum (at time moments 7 = 0, 10, 20, 30, 40, and 50) on the
dimensionless momentum; the curves go up with increasing time 7.
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Figure 20. (a) Dependences of the phonon distribution function multiplied by the cubed dimensionless momentum for the thermodynamically equilibrium
Bose-Einstein function corresponding to the temperature of the substrate (lower dashed line), the stationary phonon distribution function from Ref. [107]
(solid line), and the nonequilibrium phonon distribution function from Ref. [105] (dotted curve) on the dimensionless momentum g, under the action of
electric field £ = 96 V. em~!. (b) The drop in load at constant deformation rate as a function of current density. The solid line corresponds to Joule
heating; triangles correspond to theoretical nonequilibrium consideration; dots plot the data of Refs [27, 28] at Ty, = 78 K, and squares plot the
experimental data obtained by V P Lebedev at Ty« = 293 K for a constant deformation rate of é’d =2.7x 107* s7! and the following parameters

pa=10% cm™2, /=103, b =3.52 x 10~% cm, x, = 2b, Uy=8 x 10" P erg, L

=10"* cm, and = 1.2 x 10'2 dyne cm 2.

dimensionless momentum. The dependences are given for the
following parameters: the acting electric field £ = 96 Vem™!,
the substrate temperature 7}, = 4.2 K, the thickness of nickel
film d=10"% cm, and the electron temperature 7, =41.68 K,
which is established according to results of Ref. [107].

From Fig. 20, it is seen that under the action of electric
field £ = 96 V cm™! the curve for the product of the phonon
distribution function and the cubed dimensionless momen-
tum for the thermodynamically equilibrium Bose—Einstein
function, corresponding to the temperature of the substrate,
practically coincides with the result for the stationary (in
partly nonequilibrium approximation) phonon distribution
function from Ref. [107] for phonons with small momenta,
and differs rather significantly (by almost two orders of
magnitude) from the curve for phonons with large
momenta. But, as indicated by Fig. 20, this does not lead to
a substantial growth in the effective temperature serving
actually as a quantity controling the effects of electroplastic
deformation. The nonequilibrium phonon distribution func-
tion from work [105] provides the product of the distribution
function and the cubed dimensionless momentum, which is
more than two orders of magnitude larger than the relevant
product for the partly nonequilibrium situation over the
entire range of phonon momenta. The reduction in the load
stress computed for the nonequilibrium case is in satisfactory
agreement with experimental data.

Let us compare the reduction in the load stress as a
function of the density of electric current passing through a
thin metallic sample under the condition of stationary strain
rate (the experimental dependence was obtained by
V P Lebedev) with the theoretical prediction obtained in
Section 5.3. By considering the Landau—Gofman model [108]
and formulas (5.1)—(5.3), the following expression for the
plastic strain rate was derived:

; bL?c}? 7\’
i) e |~ (05) |
S 4

Since the strain rate was stationary in the experiments, we
obtain the relationship between jumps in the load and the

effective temperature, the expression for which is given in
Ref. [105]:

s0=0(j=0)=0(}) =100, [\/a(}) Ter(}) ~ /a(0) Tea 0},

2 U
Teff(o) = Teff(Tslart) y Oc= ﬁ x_O 5
¢

a(O) = a(Tstart) 5

) =i (%7) 3t

where 7(j) is expressed in terms of Joule heating in an
equilibrium case or through the respective effective tempera-
ture, which is defined by the nonequilibrium phonon
distribution function. Substituting the parameters corre-
sponding to the experiment into this relationship yields the
theoretical dependence plotted together with the experimen-
tal data in Fig. 20b. From the analysis carried out and Fig. 20,
it can be seen that the dependence of load stress reduction on
the current density under a constant strain rate, which would
satisfactorily describe the experimental dependence, cannot
be obtained (the difference is 2-3 orders of magnitude) either
from the thermodynamically equilibrium approach or from
the partly nonequilibrium approach proposed in Ref. [107].
Relatedly, a more promising framework for explaining
anomalous electroplastic properties of metals and semicon-
ductors observed experimentally involves computing a none-
quilibrium phonon distribution function which is the solution
to the above-considered two-component electron—phonon
system of equations [105, 106].

E(T) = bpaln(T),

6. Conclusions

This review discusses the current state of research pertaining
to stationary and nonstationary nonequilibrium electron
distributions with flux along the spectrum in solid state
plasmas and their application to a new radioisotope current
source design.

By analyzing the Boltzmann collision integral, it is shown
thatin a homogeneous and isotropic medium for a source and
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sink localized in momentum space there is a local stationary
nonequilibrium distribution for nonrelativistic charged par-
ticles interacting by the Coulomb law with account for static
screening. This distribution corresponds to a constant energy
flux Iz fO(p) = Ailip>, s;=—(3D—4/B+2(i—1))/4,
where D is the space dimension, f§ is the power-law exponent
in the particle interaction law (f =1 for the Coulomb
interaction), and s;,—; = —5/4. This stationary nonequili-
brium distribution is also an exact solution of the collision
integral in the Landau form. For electrons in a solid state
plasma, the interaction between which is described by the
screened Coulomb potential, a local nonequilibrium distribu-
tion function may form which corresponds to a constant
energy flux in momentum space. Analytical consideration
was performed for a stationary source and sink localized in
momentum space. Numerical modeling in the framework of
the Landau—Fokker—Planck collision integral with the help of
fully conservative difference schemes allows one to find
nonequilibrium particle distribution functions for sources
and sinks which are nonlocal, nonstationary, and noncon-
forming in momentum space (as is the case, for example, in
ionization by direct collisions and wake waves). The existence
conditions and the intensity of energy flux in momentum
space are found, which allow the formation of the none-
quilibrium distribution function for electrons with energy
exceeding the Fermi energy. It is shown how the results
obtained can be used to predict the behavior of semiconduc-
tors with their intrinsic and impurity conductivities upon
irradiating them by beams of fast ions or laser radiation. The
existing and presented results of experimental research on
energy and angular distributions of secondary emission
electrons, induced by ions, including molecular ions, witness
in favor of the importance of ionization by wake fields excited
by ions. The experimental results are in good agreement with
theoretical predictions. Based on theoretical research into
nonequilibrium electron distributions induced by ion beams
in a solid state plasma, a new method is proposed for
transforming fission energy into electric energy. A detailed
comparison of the current source based on this principle with
existing ones is carried out. The advantages and disadvan-
tages of each existing type of radioisotope current sources are
considered. The advantages of the proposed source are
described and how to implement it is outlined.

The mechanism of the EPE in the framework of the model
of a dislocation string passing stoppers as a result of its
excitation by phonons is studied and substantiated. With the
aid of numerical modeling of an electron—phonon system
placed in a strong pulsed electric field, relying on fully
conservative schemes, nonequilibrium distribution functions
are found for electrons and phonons, and it is shown that the
electron and phonon distribution functions exhibit high-
energy tails, i.e., many phonons are born in the vicinity of
the Debye energy and the distribution function is enriched
with Debye phonons.

Based on the random impact model (in the framework of
the Langevin approach), which is due to phonons in our
problem, it is demonstrated that

— the thermodynamic approach cannot describe the
electroplastic deformation effect;

— based on the actual phonon distribution function
found as the solution of the two-component electron—
phonon system of equations for the case involving the
action of a strong impulse electric field on a metal, it is
possible to explain anomalous electroplastic properties of

metals and semiconductors observed experimentally, i.e.,
the EPE.

The authors regret that, because of limitations on the
review size, they had to omit certain interesting and important
results. To partly compensate for this gap, the list of
references includes several reviews [109—114].
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Abstract. A colloidal suspension is a heterogeneous fluid con-
taining solid microscopic particles. Colloids play an important
role in our everyday life, from food and pharmaceutical indus-
tries to medicine and nanotechnology. It is useful to distinguish
two major classes of colloidal suspensions: equilibrium and
active, i.e., maintained out of thermodynamic equilibrium by
external electric or magnetic fields, light, chemical reactions, or
hydrodynamic shear flow. While the properties of equilibrium
colloidal suspensions are fairly well understood, active colloids
pose a formidable challenge, and the research is in its early
exploratory stage. One of the most remarkable properties of
active colloids is the possibility of dynamic self-assembly, a
natural tendency of simple building blocks to organize into
complex functional architectures. Examples range from tun-
able, self-healing colloidal crystals and membranes to self-
assembled microswimmers and robots. Active colloidal suspen-
sions may exhibit material properties not present in their equili-
brium counterparts, e.g., reduced viscosity and enhanced self-
diffusivity, etc. This study surveys the most recent developments
in the physics of active colloids, both in synthetic and living
systems, with the aim of elucidation of the fundamental physi-
cal mechanisms governing self-assembly and collective beha-
vior.
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1. Introduction

Colloids are substances consisting of macroscopic particles
larger than atoms or molecules, typically from 10 nm to
100 um, dispersed in another continuum phase, such as liquid
or gas [1]. Colloids play an important role in our everyday life
(e.g., milk, pigmented ink, blood) and are critical to many
industries, from food, pharmaceutical, and medicine to
nanotechnology [2] and electronics (colloidal pigment parti-
cles are used in low power consumption electrophoretic
displays for e-readers [3]). The cross-disciplinary field of
colloidal suspensions is an active area of research. Colloidal
physics is an important part of ‘soft matter’, a rapidly
expanding field of contemporary science dealing with
physical states easily deformable by thermal stresses, fluctua-
tions, or external forces. The scope of soft matter includes
colloids, polymers, foams, gels, granular materials, and some
biological materials, like suspensions of motile microorgan-
isms (for recent reviews, see [4-9]).

A multitude of forces governs interactions between
colloidal particles, like steric repulsion, electrostatic and
magnetic forces (for magnetic colloids), van der Waals forces
due to electric dipole moments of colloidal particles, gravity,
entropic forces, and hydrodynamic and other forces due to
the gradients of the surfactant, etc. [9]. Under various
experimental conditions, interacting colloidal particles may
form a variety of steady states, from colloidal glasses [10] and
gels [11] to highly ordered colloidal crystals [12]. Ordered
colloidal suspensions find application as optical materials
with a photonic band gap [13, 14] (see Fig. 1 in Section 2).

It is important to emphasize the connections between
colloids and the related concept of metamaterials. The 20th
century saw remarkable progress based on our understanding
of hard materials at the atomic level. Only recently did the
concept of metamaterials emerge: human-made materials
with artificial building units. Metamaterials were conceived,
for example, to control the propagation of waves [15] or vary
opto-mechanical properties [16]. New functionalities of
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metamaterials, such as a negative index of refraction or
optical band gap, result from preprogrammed features of
artificial meta-atoms. Functionalized colloidal particles,
playing the role of meta-atoms, offer a promising platform
for the design of metamaterials via controlled and flexible
bottom-up assembly.

There is a significant body of work dedicated to various
aspects of mostly equilibrium colloidal structures obtained as
a result of static self-assembly [17-30]. Some examples of
ordered structures, like photonic band gap crystals and ionic
colloidal crystals, obtained by equilibrium self-assembly, are
shown in Fig. la—d in Section 2.

The purpose of this study is to survey recent progress in
active (or driven) colloidal systems, both living and synthetic,
where formation of dynamic structures occurs under out-of-
equilibrium conditions. In particular, actively self-assembled
colloidal structures offer new functionalities not available
under equilibrium conditions: an ability of self-propulsion
[31-33], self-repair [34, 35], manipulation of cargo particles
[36], and other functions usually associated with living
systems [37]. While active colloids is a rapidly expanding
field, there are only a few reviews on this subject [38—40],
especially from the point of view of physics.

It is natural to classify collective motion in active colloidal
systems according to the way how the energy is injected. One
large class is represented by systems driven by external fields,
such as electric and magnetic fields, or by hydrodynamic
flows. In this situation, the external field exerts forces or
torques on the colloidal particles, either in the bulk or at the
liquid/solid or liquid/liquid interface. In the second case, the
particles are driven internally, for example, by chemical
reactions, ultraviolet light, etc. (see, e.g., [41]). Conse-
quently, no net external force is applied to the particle, and
the particle is propelled due to the generation of local force
dipoles [42]. A large group of self-propelled particles, such as
bimetallic chemical microswimmers, asymmetric Janus parti-
cles (named after the two-faced Roman god), and even a
majority of swimming microorganisms, belongs to this class
[43]. It was recently shown by the example of motile bacteria
that a suspension of active swimmers may exhibit material
properties different from their equilibrium counterpart: a
sevenfold reduction of viscosity [44], a dramatic increase in
diffusivity [45, 46], etc. It remains a major challenge, however,
to obtain similar effects with suspensions of synthetic
swimmers.

2. Collective behavior
of externally-driven colloidal systems

In this section, we consider large-scale collective states
emerging when the colloidal systems are driven by external
fields: electric or magnetic. Figures 1-5 illustrate representa-
tive self-assembled states observed in this broad class of
systems, from nonequilibrium steady-state patterns, like
separated bands, lanes, and self-healing membranes [35, 47]
to dynamic structures: rotating binary vortices, pulsating
rings [48], and self-assembled microswimmers [33].

2.1 Electrostatically-driven colloidal systems

It appears rather challenging to classify patterns and
collective behavior emerging in externally driven colloidal
systems. For example, in a colloidal system energized by an
electric field, the outcome of self-assembly is very sensitive to
the amplitude, frequency of the electric field, properties of the

—
10 pm

Figure 1. (Color online.) Illustrations of self-assembled colloidal struc-
tures. (a) Highly ordered regions with hexagonal symmetry extending over
10 pm assembled from functionalized (patchy) colloidal silica particles.
The colloidal structure exhibits a photonic band gap in the visible light
range. (b) Regions showing co-existing hexagonal and square symmetry,
from [13]. (c, d) Confocal microscope images illustrating highly-ordered
self-assembled structures in ‘ionic’ colloidal crystals of oppositely charged
particles assembled from positive (red, 1.08 pm) and negative (green,
0.99 um) polymethylmethacrylate spheres. (e, f) Electric field £ induced
structures in the same system: stationary bands perpendicular to the field
directions (e) and lanes of oppositely moving particles parallel to the field
direction, emerging for larger amplitudes of the applied electric field (f).
(Reproduced with the kind permission of the authors of [20, 47] and the
Nature Publishing Group).

suspending fluid (e.g., viscosity, conductivity), and the size,
composition, and material properties of the colloidal parti-
cles. A system of oppositely-charged colloidal particles in an
aqueous solution subject to a low frequency ac electric field
segregates into bands perpendicular to the applied field
direction [47] (Fig. le). The bands disintegrate due to the
particles’ Brownian diffusion once the field is switched off.
The authors of [47] argue that the band formation is caused by
collisions between particles moving in opposite directions.

In a similar system of oppositely charged colloids, but
under slightly different conditions (a dc electric field of higher
magnitude), instead of the static bands formed perpendicular
to the field, a phenomenon of the formation of lanes is
observed (Fig. 1f). Lanes are stripes formed by particles of
opposite polarity and moving in opposite directions, like cars
on a two-way highway. In contrast to the static bands, lanes
are aligned parallel to the applied field [18]. The authors [18]
suggest that the dynamic mechanism responsible for the
formation of the lanes is an enhanced lateral mobility of
particles induced by collisions with particles driven in the
opposite direction. Once the lanes are formed, a particle’s
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Figure 2. (Color and animation online.) Dynamically self-assembled
structures formed by conducting microparticles (100-um bronze spheres)
in a weakly-conducting nonpolar liquid (toluene/alcohol mixture) in a dc
electric field. Snapshots (a—c) show rotating binary star-like vortices. Each
vortex excites toroidal electroosmotic flow in the suspending liquid (movie
2.1). Upon direction reversal of the electric field, the rotating ‘binary stars’
transform into pulsating rings (d-i) (movie 2.2). (From [48].)

mobility is sharply decreased. The authors argue that the
particles in a lane can be regarded as being in a dynamically
‘locked-in’ state. For a review of various instabilities in
oppositely charged colloidal systems, see [49].

Fascinating dynamically self-assembled structures emerge
when conducting microspheres (100-pum bronze particles) are
suspended in a thin layer of weakly conducting liquid
(toluene/alcohol mixture) and energized by a strong dc
electric field (up to 2-3 kV mm~!) [48].! Some of these states
are shown in Fig. 2. Depending on the amplitude of the dc
electric field, its direction with respect to gravity, and alcohol
to toluene ratio, a large variety of self-assembled structures is
observed. For relatively low applied field values and low
alcohol concentration, the patterns are mostly static: clusters,
colloidal crystals, or honeycomb lattices. For higher applied
field values and higher alcohol concentrations, the static
patterns give way to dynamic states, like self-assembled
rotating binary star-like vortices (Fig. 2a—c). Upon polarity
reversal of the applied electric field, the rotating vortices
transform into chaotically pulsating rings (Fig. 2d—i). The
primary mechanisms responsible for the interactions between
the particles are electrophoresis, i.e., the transport of charged
particles by the electric field in the liquid, and electroosmosis,
the transport of liquid by the electric field. While toluene is a
nonpolar nonconducting fluid, the presence of alcohol makes
the mixture a weak ionic conductor due to the small
dissociation of the alcohol molecules. For typical experi-

! A conducting particle in a contact with conducting plane acquires electric
charge by direct electrification. It detaches from the plane and moves
upwards if the electric force F, = ka?E? exceeds the force of gravity,
F, = 4/3npga’, here a is the radius of the particle, E is applied dc vertical
electric field, g is acceleration of gravity, p is the mass density of the
particles, and x is a constant dependent on the particle shape. For a
conducting spherical particle one derives k = {(3) + 1/3 = 1.36, where ( is
Riemann {-function [50].

mental conditions (a few percent of alcohol in toluene), the
corresponding Debye length is above 1-10 pm, i.e., many
orders of magnitude higher than that in water. As a result, the
static electric field in the mixture is practically unscreened,
making it very different from the colloidal experiments in
aqueous solutions [18, 49], where the Debye length is very
short—on the order of 10 nm. The electric field causes
motion of ions in the bulk of the liquid. Due to the presence
of macroscopic conducting particles in the liquid, the flow of
the ions is perturbed, resulting in the creation of toroidal
electroosmotic flows in the proximity of the particles [48, 51].
The electrophoretic flows, together with the electrostatic
interactions between the particles and gravity, are responsi-
ble for the creation of dynamic states in the experiment. A
phenomenological theory of pattern formation in this system
was developed in [52]. Experiments conducted with much
smaller particles (2-3-um gold spheres) revealed, in addition
to vortices, dynamically self-assembled wires formed along
the field direction and assembling/reassembling tree-like
structures [53].

2.2 Colloidal systems energized
by alternating magnetic fields
If colloidal particles possess a magnetic moment, either
permanent (ferromagnetic) or induced (superparamagnetic),
the self-assembly can be tuned and directed by an external
magnetic field. A static field induces either chain-like clusters
or bulk colloidal crystals [54]. In contrast, a variety of
complex self-assembled structures can form in an alternating
magnetic field, from quasi-static sheets and membranes [35]
to dynamic self-assembled swimmers [33]. The applied
magnetic field can be uniaxial [33], biaxial, or triaxial [35, 55].
Spectacular self-assembled structures emerge when a
dispersion of ferromagnetic microparticles (100-pm nickel
spheres) is suspended at the water—air interface and energized
by an external ac magnetic field H = Hj sin (2nft), applied
perpendicular to the interface (Fig. 3). Depending on the
frequency f and amplitude H, of the external magnetic field,
the particles self-assemble into linear snake-like objects

Figure 3. (Color and animation online.) Self-assembled surface swimmer
(magnetic snake) formed by ferromagnetic microparticles (80-100-pm
nickel spheres) at the water—air interface (a). Schematics of the experiment:
a homogeneous ac magnetic field (60-80 Hz), applied perpendicular to the
air/water interface, energizes suspended ferromagnetic particles. Images
(b,c) illustrate the self-assembled swimmer (magnetic snake) formed
spontaneously from a random dispersion of ferromagnetic particles
(movie 3.1). (d) A large-scale streaming vortex flow generated by the tail
of a magnetic snake; arrows show streamlines, and colors indicate the
magnitude of the surface velocity (movie 3.2). (e, f) A swimmer formed by
a snake attached to a I-mm nonmagnetic glass bead (movie 3.3) [33].
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(magnetic snakes) (Fig. 3b,c). The snakes are composed of
several parallel ferromagnetically-aligned chains (segments).
The segments, however, have an anti-ferromagnetic align-
ment. The distance between the neighboring segments 4 is
controlled by the frequency of the applied field, while the
snake’s width W is determined by the field’s amplitude. A
good approximation for the distance A1 as a function of
frequency of applied magnetic field f is given by the
dispersion relation for gravity-capillary waves on the surface
of a deep liquid:

2 8§ ,2no
f ~ 27'[2 p/lS ) (1)
where g is the acceleration of gravity, o is the surface tension,
and p is the density of the liquid. Thus, the primary
mechanism of snake formation is an interplay between
particles’ magnetic dipolar interaction promoting chain
formation and hydrodynamic surface flows excited by the
oscillating chains at the air—water interface.

The snakes are immobile for low frequencies f of the field
and become self-propelled objects for higher frequencies [33].
Due to the inertia of the fluid, the tails of a snake excite large-
scale rectified streaming vortex flows [56], each tail serving as
a powerful self-assembled pump (Fig. 3d) (compare to the
Rayleigh or acoustic streaming phenomenon [57]). The
magnitude of the rectified flow is proportional to H} and
increases roughly linearly with the frequency f. While for
relatively low frequencies of the applied field (below 60 Hz)
the snake’s large-scale flow is symmetric and the snake is
immobile, for higher frequencies the symmetry of the flow
becomes spontaneously broken, resulting in self-propulsion
of the snake (Fig. 3b, ¢). Apparently, this mechanism of self-
propulsion does not have a direct analog in nature. In
addition, the symmetry of the snake’s large-scale flows can
be broken artificially, by placing a large nonmagnetic bead in
the proximity of one of the snake’s tails. The bead weakens
the flow generated by the tail, resulting in an asymmetry of the
streaming flow. In this case, the snake attaches to the bead
and is propelled by a remaining free tail (Fig. 3e,f). Many
aspects of dynamic self-assembly in this system are captured
in the framework of a first-principle model based on the
particle dynamics coupled to surface deformations in a thin
liquid layer [58].

A rich variety of dynamic self-assembled patterns is
observed when ferromagnetic microparticles are placed at
the interface between two nonmiscible liquids, e.g., silicone oil
and water. In this situation, the distance 4 is determined by
the density difference between two liquids [compare to

Eqn (1],

fz ~ glpr — p2)
21 (py + p2)

21t0'12
(pr+p) 2

(2)

where p; , are the densities of the bottom (1) and top (2)
liquids, and ¢, is the interfacial tension.? Thus, by reducing
the density contrast between the liquids p; — p, or the
interfacial tension oj,, one can decrease the size of self-
assembled snakes 4.

2 To avoid the Rayleigh-Taylor instability of an interface between two
liquids of different densities, the bottom liquid should be heavier than the
top one [59].

e

E: 9.60 s

Figure 4. (Color and animation online.) Self-assembled colloidal struc-
tures at the interface between two nonmiscible liquids (silicone oil/water).
(a) Isolated star-like object (aster). (b,c) Illustrations of aster and anti-
aster magnetic orders. (d) Schematics of the toroidal vortex flows
generated by aster in the top and bottom liquids [36]. (e~h) Action of a
self-assembled aster-robot. The aster, remotely controlled by an external
dc magnetic field applied parallel to the interface, performs simple robotic
functions: capture, transport, and release of a large nonmagnetic particle
(1-mm glass bead), (movie 4.1). (i-1) A cluster of four asters captures all
nonmagnetic beads scattered at the oil/water interface; the particles are
trapped in the interstitial space between the asters (movie 4.2); arrows
show the direction of the surface flow created by the cluster [36].

For the rather large viscosity of the top liquid (the
viscosity of silicone oil is about 20 times higher than the
viscosity of water), in addition to magnetic snakes, a new type
of dynamically self-assembled patterns is observed: axi-
symmetric asters and clusters of asters. The asters are
composed of chains with the magnetic moments pointing
towards the center (asters) or out of the center (anti-asters)
(Fig. 4a—). While asters are immobile, they create a rectified
toroidal vortex flow pointing down in the bottom liquid and
up in the top liquid layer (Fig. 4d). Obviously, the magnetic
order of asters is highly unfavorable under equilibrium
conditions: asters rapidly disintegrate when the applied ac
magnetic field is switched off. Application of a small dc
magnetic field Hy. parallel to the interface between liquids
results in controlled self-propulsion of the asters: they open
up and swim in the direction of the field, with the asters and
anti-asters swimming in opposite directions. It is important to
emphasize that a homogeneous dc magnetic field exerts no net
force on the aster: the propulsion is an outcome of a distortion
of the aster’s magnetic structure and consequent deflection of
the rectified streaming flow from the vertical direction.

The in-plane component of the rectified flow propels the
aster along the field direction. The swimming velocity V
initially increases with the increase in in-plane field Hgc,
reaches a maximum at some value, and finally vanishes for a
relatively strong field (about 20 Oe for reported experimental
conditions). A simple theoretical prediction based on approx-
imation of an aster by a pair of magnetic spheres gives the
following dependence of the aster’s speed V" on in-plane field
HdCI

Vi~ Hoe(H; = H,) (3)

Thus, the shape of the asters and their swimming direction
can be remotely controlled by a small in-plane magnetic field.
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This functionality enables asters and clusters of asters to
perform simple robotic functions: capture, transport, and
positioning of target particles [36] (Fig. 4e—h). A cluster of
four asters, shown in Fig. 4i—1, exhibits an additional
functionality not present in a single aster: the possibility of
capturing nonmagnetic particles in the interstitial space
between the asters.

In addition to the colloidal assembly at the interface, the
patterns can be formed in the bulk. It was shown in [35, 55, 60,
61] that in an alternating field, either electric or magnetic, the
dipolar colloidal particles may assemble into planar sheets: a
rotating planar field generates 1/r3 dipolar pair interaction
with in-plane attraction (r being the distance between
particles) and repulsion along the rotation axis. This aniso-
tropic interaction forces the particles to assemble into flat
sheets parallel to the field plane [60]. In the case of a triaxial
field, the interactions are more complicated, and, as was
shown in [55, 61], can become, under certain conditions,
isotropic. The special case of a precessing triaxial magnetic
field was studied in [35]: the field has a cone opening angle 0,
which is controlled by the ratio of the static component
(z-component) to the rotating component (x, y components).
The field-induced interaction between superparamagnetic
particles decays as o/r? with the interparticle distance r. The
constant o depends on the opening angle 6,,,: for small 6, the
colloid behaves like a dipolar liquid. For the opening angle
Om ~ 90°, the colloidal particles experience effective in-plane
attraction [60, 62]. For the so-called ‘magic angle’,

1 e}

0 = arctan 7 54.7°, (4)
the time-averages interaction term vanishes irrespectively of
the relative position of the particles. In this case, the
interaction becomes isotropic and attractive, and decays as
1/r®, somewhat similar to the van der Waals interaction
between molecules.

When a triaxial magnetic field with the opening angle
close to the magic angle was applied to a suspension of
micron-size superparamagnetic particles, a formation of
ordered planar membranes consisting of closed-packed
particles was observed [35]. The gradual formation of these
membranes from a semi-dilute suspension of particles is
illustrated in Fig. Sa—e. The particles initially assemble
into dimers; the dimers form chains and Y-junctions. The
Y-junctions eventually interconnect and coarsen, giving rise
to patches of membranes of all orientations. The membranes
show a remarkable self-healing capability: a membrane
reconstitutes its structure after an artificial perforation is
created. In addition to dense membranes, a rich variety of
complex patterns was observed in a rotating (vortex)
magnetic field: periodic lattices, honeycomb-like ‘particle
foams’ (Fig. 5f~h) [61], sheets of spinning chains [63], various
dynamically-assembled clusters, etc. [64]. When both electric
and magnetic fields were applied, the reversible assembly/
disassembly of magnetic Janus particles into novel staggered
chain structures was observed [65].

3. Self-propelled colloidal systems

In this section, we consider colloidal suspensions of self-
propelled particles. The interest in such systems is driven by
a growing demand for nanotechnological applications based
on autonomously moving devices capable of performing
useful functions on a microscale. These applications include

Figure 5. (Color online) (a—e) Formation of a self-healing membrane from
a dilute suspension of superparamagnetic particles (0.15 particles per pm?)
after a rotating magnetic field field has been switched on. The appearance
of short chains (0.5 s) is followed by their growth, branching, and the
formation of a loose network (4.5 s). Most remaining unconnected clusters
are rapidly captured, and the network is subsequently coarsened such that
the membrane patches grow at the expense of the chainlike sections (10.8 s
and 23.8 s). (Reproduced with the kind permission of the authors of [35]
and the American Physical Society.) (f~h) Select structures made in triaxial
magnetic fields. In a triaxial field, a disordered pattern is formed (particle
gel) (f). In a two-dimensional heterodyning (with two different frequen-
cies) field, a honeycomb structure forms (g). Three-dimensional hetero-
dyning of the magnetic field leads to a particle foam (h). 50-um Ni particles
are used, images are 1 cm across. (Reproduced with the kind permission of
the authors of [55] and the American Physical Society.)

delivery of drug-laden nanoparticles to specific cellular
targets (targeted drug delivery) or massive parallel assembly
of microscopic machines by autonomously moving agents. A
number of original design concepts of such microscopic
swimmers have been developed in recent years, including
chemically-propelled swimmers energized by a catalytic
chemical reaction, and swimmers harvesting the energy of
an electric or magnetic field or ultra-violet light radiation; for
a recent review, see [41].

3.1 Practical realizations of self-propelled particles

Figure 6 illustrates several practical realizations of micro-
scopic swimmers. A gold-platinum rod, designed by the Sen
and Mallouk group [66, 70], swimming in a solution of
hydrogen peroxide is shown in Fig. 6a. A typical swimming
speed for the 2—3-um rod is on the order of 6-10 pm s~!. The
current consensus is that the rod is propelled by the self-
induced electrophoretic flow powered by the catalytic
decomposition of H,O;, at the gold/platinum contact.
According to Ref. [70], the swimming speed ¥ can be
estimated by equating the propulsion force (due to electro-
chemical reaction) to the drag force:

o SR?y
nDL '’

(5)

where L and R are the length and radius of the rod, 7 is the
dynamic viscosity of water, D is the diffusivity of oxygen, y is
the solution/solid interfacial tension, and S is the oxygen
generation rate normalized by the surface area. A detailed
theoretical consideration of the electrochemical locomotion
of bi-metallic rods can be found in [71].

A polystyrene bead half coated by platinum (Janus
particle), propelled by the gradient of osmotic pressure due
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Figure 6. (Color online.) Several practical realizations of microscopic
swimmers. (a) A gold-platinum rod propelled by self-electrophoresis in an
aqueous solution of H,O, (from [66]). The potential difference created at
the Au/Pt contact in the course of catalytic decomposition of H,O; causes
electrophoretic flows propelling the rod. Blue arrow depicts swimming
direction. (b) Two-sided (Janus) particle propelled by self-diffusiophoresis
in an H,O; solution, from [67]. Particles are 1.62-um polystyrene spheres
with one side coated with platinum. (c) High-speed bilayer polyaniline/
platinum microtubes (rockets) grown in the conically shaped pores of a
polycarbonate template membrane and propelled by O, microbubbles in
an H,O; solution [68]. (d) Artificial magnetic microswimmer. Super-
paramagnetic particles are coated with streptavidin (red cross symbols).
Under an applied magnetic field B,, the particles form chains along the
field direction. Double-stranded DNA with biotin at each end binds the
particles together (biotin and streptavidin are complementary proteins
forming strong links). The chain is then attached to a red blood cell and
energized by an ac magnetic field perpendicular to B, (from [31]).
(Reproduced with the kind permission of the Nature Publishing Group.)
(e) Scanning electron microscopy image of an individual glass screw
(nano-propeller) with nano-structured helicity. A 30-nm layer of a
ferromagnetic material (cobalt) is deposited on one half of the helix. The
propeller is then energized by a rotating triaxial magnetic field [69].
(Reproduced with the kind permission of the American Chemical
Society.) (f) A metal-dielectric particle (a 4-pm polystyrene bead partly
covered with gold) is propelled by ac electric field. The electric double layer
on the gold side (black hemisphere) is more strongly polarized and thus
drives a stronger induced charge electroosmosis slip (arrows) than the
polystyrene side, resulting in induced charge electrophoresis motion in the
direction of the dielectric side [43].

to self-diffusiophoresis, is shown in Fig. 6b. Platinum
catalyzes the reduction of hydrogen peroxide (fuel) to oxygen
and water, producing more molecules of reaction product
than consumed fuel. The characteristic swimming speed is
about 2-3 um s~! [67]. The propulsion velocity ¥ can be
estimated by using the lateral gradient of the excess solute
concentration in the vicinity of the particle, resulting in

kg TI?k
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where k is the reaction rate, kp is the Boltzmann constant, 7'is
the temperature, and / is the range of of the interaction zone
between the particles and the solute. While the details of the
propulsion kinetics for bi-metallic rods and Janus particles

are different (electrophoresis vs diffusionphoresis), the
expressions for swimming speeds, Eqns (5) and (6), are
similar.

A high speed microtube conical rocket developed by
J Wang’s group, UCSD, is shown in Fig. 6¢c. The rocket is
propelled by O, bubbles in a hydrogen peroxide solution and
swims up to 350 body lengths per second; typical rocket size is
5—10 pm [68]. Similar bubble-propelled particles (nanosub-
marines) have also been designed by O Schmidt’s group [72].
In contrast to Janus particles and gold-platinum rods, the
decomposition of the hydrogen peroxide occurs on the inner
Pt surface of the conical rocket, and thus does not have the
ionic-strength limitation of catalytic bi-metallic rods.

In addition to chemical reactions, self-propelled colloi-
dal particles can be energized by ac electric or magnetic
fields. Some of these design concepts are inspired by Nature.
Figure 6d shows artificial microswimmers (magnetic sperm)
[31]. The swimmer is assembled from a dilute suspension of
superparamagnetic nanoparticles linked by DNA molecules
and attached to a red blood cell (cargo). The direction of
swimming is prescribed by an applied dc magnetic field B,,
which orients the magnetic chain (flagellum). The swimmer is
then energized by an ac magnetic field B,. applied perpendi-
cular to B,. The typical size of the swimmer is about 5 um,
and the speed is about 20 um s~!, similar to that of motile
bacteria. For this kind of artificial swimmer, the relevant
dimensionless parameter characterizing the propulsion abil-
ity is the so-called sperm number S,:

Sy = L(f_w> " ™)

K

where L is the length of the filament, x is its bending rigidity,
w = 2nf, f is the frequency of the ac magnetic field B,., and
&, is the perpendicular viscous friction coefficient.> The
sperm number represents the relevance of viscous to elastic
stresses on the filament. The experiments revealed that
maximum dimensionless propulsion speed V/Lw occurs for
Sp ~ 3[31].

Another design of a microswimmer, inspired by a
bacterium propelled by the rotation of helical flagella, is
presented in Fig. 6e. A half of a nanoscale glass propeller is
covered by ferromagnetic material (cobalt) and brought into
motion by a rotating magnetic field [69]. These cork-screw
particles can swim up to 40 ps~'. A magnetic swimmer based
on a rotation of a magnetic doublet coupled to a boundary
interaction was studied in Ref. [32]. In the broader context of
magnetic swimmers, the self-assembled snake [33], discussed
in the previous section, is different from all of these designs,
since it utilizes self-propulsion due to a spontaneous symme-
try breaking.

Metal-dielectric microparticles can be brought into
motion by an ac electric field [43, 74]. In this case, the
particles move perpendicular to the field direction by
induced-charge electrophoresis, arising due to ‘induced-
charge electroosmosis’, i.e., the action of an applied electric
field on its own induced diffuse charge near a polarizable
surface. For typical experimental conditions, the speed of
particles perpendicular to the applied field was on the order of
30 um s~! (Fig. 6f). This phenomenon may find applications
in various microfluidic devices.

3 The hydrodynamic slender body theory gives for long thin filaments
5H/g =~ 2, where i” is the tangential friction coefficient [73].
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3.2 Individual and collective motion

of colloidal microswimmers

Figure 7 shows trajectories of individual self-propelled gold/
platinum rods and platinum-silica Janus particles. The
trajectories are not straight lines; the orientation of the
particles changes randomly, likely due to thermal diffusion
and interaction with gas microbubbles created earlier by
other particles. Additional factors contributing to the
diffusive-like behavior are imperfections of the rods, like
roughness of the surface, curvature etc. The overall behavior
is similar to the so-called run-and-tumble motion of motile
bacteria [75]. In this context, one can discuss mean-square
displacement (msd) of the colloidal particle, Ar?. According
to the Stokes—Einstein relation for a Brownian particle of
radius R, the msd is linear in time, Ar2 ~ 6Dt in three
dimensions and Ar? ~ 4Dt in two dimensions, where
D = kpT/(6myR) is the particle’s diffusion coefficient.* The
particle will also perform rotational diffusion with the
characteristic time scale t,. For a self-propelled particle
moving with the velocity V, the direction of motion itself
will be subject to rotational diffusion, leading to coupling
between the translational and rotational motions. In this case,
the self-propulsion results in a significant increase in the
effective diffusion coefficient. According to [67], the two-
dimensional projection of the msd is of the form?

V212 [2At 2At
Ar? = 4DAr + ;r {T—-{-exp <— . ) — 1} , (8)

where At is the observation time. For short times, Ar < 1., the
motion of the particles is roughly ballistic, Ar? ~
4DAt + V?At?. For long times, At > 1, we obtain from
Eqn (8)

Ar? = 4DAt + V21, At = 4D At . 9)

Thus, due to the coupling between translation and rotation,
the particle performs random walk with the effective diffusion
coefficient Dy = D + V21, /4. Self-propulsion can, therefore,
result in a significant increase in a particle’s self-diffusion.

One of the fundamental issues in the context of artificial
microswimmers is the possibility of collective motion for
higher concentrations, similar to that exhibited by swimming
bacteria, where large-scale patterns of collective locomotion,
arising purely from collisions and hydrodynamic interactions,
have been observed [76, 77] (see Fig. 10a in Section 4.2).
Collective motion of microswimmers has many advantages
compared to individual swimming, for example, from the
perspective of collective cargo delivery or harvesting the
mechanical energy of chaotic motion [78]. To date, no
collective behavior similar to that of bacterial systems has
been observed in the concentrated suspensions of artificial
swimmers. The main reason is possibly due to a too high
rotational diffusion of individual particles, which destroys the
collective swimming state. In addition, gold/platinum parti-
cles show a tendency to form aggregates after a collision.
Experiments [79] and simulations [80] with dense suspensions
of self-propelled Janus colloids showed the merging and
breaking of transient aggregates of particles; the average size
of the aggregates grows linearly with the self-propelling
velocity.

4 Here we used the expression for viscous drag force Fy acting on a
spherical particle: Fg = 6nnRV [59].

S5 Systematic particle tracking for the majority of colloidal systems is
possible only in two dimensions.
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Figure 7. Trajectories of self-propelled particles. (a) Representative
trajectories of several individual gold/platinum rods in H,O, solutions,
from [70]. (Reproduced with the kind permission of the American
Chemical Society.) Intervals of ballistic motion are interrupted by sharp
turns, similar to the run-and-tumble behavior of motile bacteria.
(b) Projection of 120 frames of a I-um half-coated Pt-silica particle
traveling in a 10% w/w H»O, solution [81]. (Reproduced with the kind
permission of the American Chemical Society.)

A variety of collective chemical responses of artificial
swimmers to ultraviolet (UV) light irradiation was reported in
Refs [82-84]. Upon ultraviolet light illumination, it was
observed that 1 pm silver on silica Janus particles migrate
away from the irradiated regions [83]. This behavior is
reminiscent of a phototactic response (a tendency to navigate
towards light) of biological systems, shown, for example, by
some green algae. An interesting ‘schooling’ behavior was
exhibited by micron-size silver chloride (AgCl) particles upon
UV irradiation [82]. AgCl particles move autonomously in
deionized water by self-diffusiophoresis due to asymmetric
AgCl decomposition under the UV light. A moving AgCl
particle releases ions, to which the other particles respond by
drifting or ‘schooling’ into regions with higher particle
concentrations. When photo-inactive silica particles are
mixed with the AgCl, they respond to the ion release by
swimming towards and surrounding individual AgCl parti-
cles (Fig. 8). Collective chemical oscillations were also
observed in a suspension of AgCl particles in the presence of

Figure 8. ‘Predator—prey’ behavior shown by 1-um AgCl particles (darker
objects) and 2.34-um silica spheres mixed in deionized water. When
irradiated with ultraviolet (UV) light (a—c), the silica spheres actively seek
out the AgCl particles and surround them. A 2—-3-pum exclusion zone is seen
around the AgCl particles while the UV light is on; it disappears when the
UV light is turned off (d) [82]. (Reproduced with the kind permission of
John Wiley and Sons.)
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UV light in a dilute hydrogen peroxide solution [84]. Both
single-particle and collective, multi-particle responses were
observed due to an oscillatory, reversible conversion of AgCl
to silver metal on the particle surface. The collective motions
of these light-powered microswimmers self-organize into
clumped (clustered) chemical oscillators with significant
spatiotemporal correlations between the particles.

4. Biocolloids: suspensions
of swimming microorganisms

While there are obvious differences between the suspensions
of living bacteria and inanimate colloidal systems, there are
also many similarities, especially with the systems of artificial
swimmers considered in Section 3. For example, the size of the
common aerobic rod-shaped bacterium Bacillus subtilis is
about 5 um, and typical swimming speed is on the order of
20 um s~!, similar to that of many artificial swimmers. As a
result, in addition to ‘pure biological mechanisms’, like
chemotaxis, cell division etc., the bacteria experience the
same spectrum of forces as colloidal self-propelled particles
of a similar size: hydrodynamic entrainment, steric repulsion,
buoyancy, and thermal fluctuations. Since the Reynolds
number for an individual bacterium is exceedingly small, the
effects of fluid inertia can be neglected.® In addition, some
bacteria may possess a permanent magnetic moment (so-
called magnetotactic bacteria like Magnetospirillium magne-
totacticum), and, therefore, they can be manipulated and
assembled by an external magnetic field [85, 86].

4.1 Collective behavior

Motile (swimming) microorganisms, like many bacteria,
propel themselves in viscous fluid by a rotation of flagella
and often develop large-scale patterns of collective locomo-
tion with a characteristic length scale significantly exceeding
the size of a single microorganism (see Section 4.2, Fig. 10a).
The collective behavior of motile aerobic bacteria, especially
at high concentrations, is governed by a subtle interplay
among buoyancy, hydrodynamic interactions, oxygen con-
sumption, and collisions. The recent consensus is that the
collective motion and self-organization in the suspensions of
swimming bacteria often arise due to pure ‘physical mechan-
isms’: hydrodynamic interactions between the organisms and
short-range collisions (Fig. 9), whereas specific biological
mechanisms, such as chemotaxis [75], play a relatively minor
role. Large-scale self-organization is driven by the input of

Figure 9. (Color online.) A sequence of images illustrating a collision event
between two swimming bacteria Bacillus subtilis in a thin free-standing
liquid film [77]. Black arrows indicate the swimming direction. The
collision results in an alignment of bacteria.

¢ For a bacterium of length L =5um swimming with the speed
V=20pum s~' in water, and kinematic viscosity of water v=
0.01 cm? 57, the corresponding Reynolds number is Re = LV/v ~ 1074,

Figure 10. (Color and animation online.) (a) Collective motion in a
concentrated suspension of motile bacteria Bacillus subtilis; bacteria are
seen as short dark stripes, arrows indicate the direction of bacterial flow
[77]. The collective swimming is manifested by a formation of swirls and
jets with the characteristic scale exceeding the length of a bacterium by an
order of magnitude (movie 10.1 courtesy of Andrey Sokolov). (b, c) Motile
bacteria Bacillus subtilis power microscopic (0.5 mm) gears; each gear is
about one million times heavier than an individual bacterium (movies 10.2
and 10.3) [78]. (d) Fluorescence micrograph of individual motile bacteria
Escherichia coli (labeled green) inside a microchannel with funnel-shaped
barriers. The chambers, where the rectification bias is reversed, have a
higher concentration of bacteria [88].

mechanical energy from the rotating bacterial flagella. Thus,
in contrast to high Reynolds number hydrodynamic turbu-
lence, the energy injection in bacterial suspensions occurs on a
microscopic scale.

Experimental studies of suspensions of Bacillus subtilis
revealed that at a concentration above some critical one, a
gradual transition from random swimming to collective
locomotion occurs [76, 77]. The collective motion is char-
acterized by a sixfold to eightfold increase in the velocity
correlation length and up to a sixfold increase in the
swimming speed of bacteria. Such a dramatic increase in the
swimming speed in the collective motion mode is likely an
outcome of two effects: hydrodynamic drag reduction in
more dense bacterial ‘packs’ and more efficient energy
injection due to synchronization of bacterial flagella by
hydrodynamic coupling [87].

4.2 Rectification of random motion

Suspensions of swimming bacteria exhibit material properties
very different from suspensions of passive particles. It was
found recently that in concentrated suspensions of motile
bacteria, such as Bacillus subtilis, Escherichia coli, the activity
(i.e., swimming) results in a reduction of viscosity [44] and a
dramatic increase in diffusivity [45, 46, 89]. Moreover, it was
demonstrated that it is possible to harvest the mechanical
energy of random bacterial motion [78]. While the laws of
thermodynamics prohibit extraction of useful work from the
Brownian motion of particles in equilibrium, these motions
can be ‘rectified’ under nonequilibrium conditions, for
example, in the presence of asymmetric geometrical obsta-
cles. This is demonstrated by Fig. 10b,c, where aerobic
bacteria Bacillus subtilis moving randomly in a suspended
fluid film power submillimeter gears decorated with asym-
metric teeth and an assembly of gears. The gears’ angular
velocities can be controlled by the amount of oxygen available
to the bacteria. In contrast to passive particles, the bacteria
slide along the slanted edges of the gear’s teeth and become
trapped in the corners at the tooth junctions for extended
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periods of time before finally escaping these ‘traps’. Since
bacteria are self-propelled objects, they push against the gear
wall during the trapping events and effectively transfer
momentum to the gear.

Let us consider here how much power W, a gear can
extract from the chaotic motion of bacteria. This power can
be estimated as W, ~ erQ, where f; is the rotational drag
coefficient, and Q is the gear’s rotation rate. Approximating a
gear by a thin disk of radius R, one obtains f; =~ 32nR3/3[73].
For typical experimental conditions, R~ 200 um, and
Q~1/10 rad s7! (1 rotation per minute), giving W, ~
1071©—10-5 W, i.e., on the order of a few femtowatts. A
single bacterium delivers power on the order of Wy ~ fi, V2 ~
10718 —-10~17 W, where f;, is the translational viscous drag
coefficient for a single bacterium. Thus, only a few hundred
bacteria are needed to rotate one microgear.” The ability to
harness and control the power of collective motions appears
to be an important requirement for further development of
mechanical systems driven by microorganisms or synthetic
swimmers.

Figure 10d illustrates rectification of bacteria concentra-
tion in microfluidic chambers with ratchet funnel walls [88].
In equilibrium, the averaged concentration of bacteria should
be identical in all chambers. However, since the bacterial
suspension is a nonequilibrium system, it is possible to trap
most of the bacteria in one chamber due to a rectification bias
imposed by the ratchet walls. The mechanism of rectification
is similar to that described above.

4.3 Reduction of viscosity

The way in which swimming microorganisms alter the
effective properties of the suspension depends on the type of
propulsion. For example, most swimming bacteria are
propelled from behind, by the rotation of helical flagella. In
contrast, unicellular algae like Chlamydomonas reinhardtii
swim by beating two cilia protruding forward from the
body. As a result, the flow patterns created in the course of
swimming by these microorganisms are very different. Since
no net force is applied to a self-propelled particle, the
microorganism imposes a force dipole on a suspending
fluid — the propulsion force is compensated by viscous drag.
Far from the microorganism, the hydrodynamic flow velocity
v is therefore described by a point hydrodynamic dipole:

3(rd)’ 1
v:—u0r< 53

where d is the unit vector of dipole orientation, r is the radius
vector relative to the center of the dipole, and uy = aVyL? is
the hydrodynamic dipole strength [73] (V) is the magnitude of
swimming speed, L is the length of a bacterium, and
o~ 0.1-0.3 is a factor determined by the shape of a
bacterium). The sign of the dipole «y, however, depends on
the details of propulsion, and is negative for bacteria-like
swimmers (pushers) and positive for algae-like swimmers
(pullers). The asymptotic flow field of a bacterium is shown
in Fig. 11a. The corresponding flow fields of swimming
bacteria [90] and unicellular algae [91] were measured directly.

To understand the effect of bacteria on suspension’s
rheological properties, consider the following simple argu-

(10)

7 Here we used for the bacterial swimming speed V' ~ 20 um s~!, effective
bacterium size @ = 2—5 um, and translational viscous drag coefficient
Jo = 6mna.
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Figure 11. (Color online.) (a) Fluid velocity field created by a swimming
bacterium; the swimming dipole creates a flow velocity field with a
quadrupolar symmetry [73]. (b) Pure shear (elongational) flow orients a
bacterium along the stable direction. The bacterium creates a force dipole
with the magnitude F (indicated by red arrows) and accelerates the flow,
resulting in a reduction of the effective viscosity.

ments [92]. Since the bacterium has a rod-like cell body
(aspect ratio is about 5), it will be oriented by a shear flow.
For example, in a pure shear flow, the bacterium will align
along the stable axis of the flow (Fig. 11b). Since the
bacterium is a force dipole, it does not create an extra force
on any external wall, and, therefore, does not change the
measured shear stress. However, it will accelerate the liquid
along the swimming direction, thus increasing the shear strain
rate of the flow. As a result, the effective viscosity, being a
ratio of shear stress to strain rate, will decrease in the presence
of bacteria. In contrast, the algae-type swimmers (pullers) will
increase the viscosity of the suspension.

Experimental studies on the suspensions of various
microorganisms have indeed revealed a significant decrease
in viscosity for the suspensions of bacteria [44] and an increase
in viscosity for the suspensions of algae [93]. The dependence
of viscosity on the concentration of bacteria n is shown in
Fig. 12. A sevenfold decrease is observed for relatively high
concentrations, in the collective motion mode. With a further

Nickel
particle

Liquid with
bacteria

=/

Magnetic
coils

Concentration, 10'° cm—3

Figure 12. Illustration of viscosity reduction in suspensions of motile
bacteria Bacillus subtilis [44]. With an increase in bacterial concentration,
the effective viscosity of suspension # decreases up to sevenfold compared
to the viscosity of suspending liquid #,. Inset shows the schematics of the
experimental setup. A magnetic (nickel) particle is immersed in a free
standing liquid film containing bacteria Bacillus subtilis. The particle is
spun by a rotating magnetic field created by a set of coils; the viscosity is
extracted from the measurement of magnetic torque exerted on the
particle.
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increase in the concentration of bacteria, the viscosity
increases again; the upturn is likely due to a jamming of the
cells, slowdown of metabolism, an accumulation of waste
products, etc.

While the experimental results qualitatively comply with
the trend predicted by simple arguments [92], in reality the
situation is far more complex. In particular, the experiments
are performed in the geometry close to a planar shear flow
(flow between two parallel moving walls) rather than pure
shear (elongational) flow. In this case, the individual bacter-
ium will be rotated by the flow, instead of aligning along the
stable axis [73]. It was shown in theoretical studies that, in
addition to the energy injection by swimming bacteria, in the
case of planar shear flow one needs to take into account
hydrodynamic interactions between the swimmers and their
random reorientations (tumbling) in order to explain the
reduction of viscosity [94, 95].

5. Theoretical approaches

Since active colloids are out of thermal equilibrium, the
powerful machinery of thermodynamics and statistical
physics developed for equilibrium systems, e.g., various
techniques based on minimization of energy or maximization
of entropy, can not be applied in the majority of cases. Thus,
direct numerical modeling of colloidal suspensions and
simplified phenomenological models have become the most
popular research tools. Here, we present a very short (and far
from complete) overview of some theoretical and computa-
tional approaches.

Different theoretical approaches are often applied to the
same experimental system. Continuum coarse-grained mod-
els, derived for macroscopic degrees of freedom (concentra-
tions, velocities, polarization, etc.), are more computationally
effective than direct particle simulations, and, in general,
provide better insights: they depend on a significantly
smaller number of parameters, and allow studying bigger
systems on longer times scales. On the flip side, systematic
derivation of the coarse-grained equations in the out-of-
equilibrium situation is a formidable challenge.

5.1 Discrete particle simulations

Figure 13 illustrates the comparison between the results of
computer modeling and experiments in suspensions energized
by electric [96] or magnetic fields [55] (see Figs 1 and 5). In
most cases, there is good qualitative—and sometimes even
quantitative — agreement between experiment and computer
simulations. While the systems under study are rather
different (charged particles in [18, 47] and magnetic particles
in [55]), the simulation approaches, different in the details of
implementation, have some similarities. In both cases the time
evolution of the individual colloidal particle is governed by an
overdamped Langevin equation with thermal noise (Brow-
nian dynamics). Colloidal particles are typically treated as
hard spheres or discs, with either a fixed dipole moment [55]
or electric charge [96], while the hydrodynamic interactions
between particles are neglected. Since the implementation of
collisions between hard disks or spheres is associated with
significant computationally challenges (see, e.g., [97]),
‘softened’ hard core potential is often used instead: the
Lennard-Jones potential or the stiffer repulsive potential
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Figure 13. (Color online.) (a, b) Brownian dynamics simulations of a
mixture of two oppositely charged colloids; direction of the driving ac
electric field is indicated by the broken white arrow, the solid bar size is
proportional to the driving force, i.e., field amplitude. In agreement with
the experiment [18, 47] (see Fig. le,f), static bands are formed
perpendicular to the field direction for small driving forces, and lanes
are formed parallel to the field’s direction for higher driving forces [96].
(c, d) Computer modeling of structures produced in a suspension of
magnetic colloids by the ac tri-axial magnetic field. Image (c), produced by
the three-dimensional heterodyning fields, is indistinguishable from the
image (d), generated by simulated annealing (due to thermal fluctuations,
no field; compare to Fig. 5h) [55]. (Reproduced with the kind permission of
the American Physical Society.)

where r;; = |r; — 1| > a is the distance between particles, « is
the particle radius, and 7 and Z are the potential strength and
decay length.

The Brownian dynamics can be illustrated for the system
of two oppositely charged colloids energized by an electric
field [96]. Particles of sorts A and B are subject to oscillatory
force £(1) = —fB(1) = fy sin (wt)e,, where f; and w are the
magnitude and frequency of the driving field, respectively.
Equations of motion have the form

dV(r;
rmhn g 5o S ). ()

i ’
where {*'B are the particles’ mobilities, r,-A‘ B are the positions,
and & is a random force (thermal noise). Despite these drastic
simplifications, the simulations often reproduce key experi-
mental observations: the formation of lanes [96] and
‘colloidal foams’ [55]. It was shown in [98] that the hydro-
dynamic interactions between the particles, while critical in
some cases, appear to be unimportant for strongly driven
oppositely charged colloids, i.e., for lanes.

5.2 Continuum models

The theoretical description becomes significantly more
challenging when the flows generated by colloidal particles
are crucial, i.e., in the case of pulsating rings and rotating
vortices studied in [48] and self-assembled magnetic swim-
mers [33]. The phenomenological continuum model based
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on coupled equations for the evolution of particle concen-
tration and self-induced electro-osmotic flows was proposed
in Ref. [52]. The model operates in terms of two-dimen-
sional concentrations (averaged over the vertical coordinate
z) of two types of particles: the concentration of gas, i.e.,
rapidly moving particles p,, and the concentration of
immobile particles, or precipitate p,. While the separation
into gas and precipitate is somewhat artificial, it allows us to
reduce the computational complexity of the problem. Since
the total number of particles N is conserved, N =
J(p, + pg) dxdy = const, the dynamics is described by the
corresponding conservation laws

ai pg = 7VJg +](7 af pp = VJP 7./{7 (12)
where J, , are the corresponding mass fluxes, and function 7
describes the gas/precipitate conversion which depends on
Py, p» the applied vertical electric field £, and conductivity of
the electrolyte (proportional to the concentration of alcohol
¢). The fluxes can be written in the following generic form (a

combination of diffusive and advective fluxes)
Jop = —DgpVpy, = OC%P(E)pg,pvi(l = Bgp(E) pg»P) - (13)

Here, Dy, are the diffusivities, and oy, f,, are linear/
quadratic advection coefficients for each fraction. The term
1 =B, P, describes flux saturation for large particle
concentrations. v, is the horizontal (in-plane) velocity of the
liquid. The horizontal velocity v, can be obtained from the
incompressibility condition Vv, + 0,v, = 0. Assuming that
the vertical vorticity w. = 0,vx — O,v, is small compared to
the in-plane vorticity, for @, = 0 the horizontal velocity can
be obtained from the quasipotential ¢: v, = —V¢. The
incompressibility condition then yields

V3¢p =0.v,. (14)
In turn, the depth-averaged vertical (z) component of velocity
V=hn"! foh v-dz, where 4 is the thickness of the cell, can be

obtained from the corresponding Navier—Stokes equation
(see for detail [52]):

OV =wW3V—-(V+ cEJ K([r—r'[)(pg +pp)dr’,  (15)

where v is the kinematic viscosity, { accounts for the
dissipation due to friction with the walls, and the last term
describes the depth-averaged force acting on charged weakly
conducting fluid containing charged microparticles.
K([r —r'|) is a phenomenological localized kernel which
determines the scale of emergent patterns. With the appro-
priate choice of the model parameters and functional form of
the conversion rate f, the model captured, on a qualitative
level, the entire complexity of the experimental phase
diagram, as well as the primary patterns observed in the
experiment: static crystals, honeycomb lattices, and even
dynamic pulsating rings and rotating vortices (Fig. 14a—f).

A hybrid model based on discrete particle dynamics and a
continuum hydrodynamic model for the liquid was used to
describe the formation of self-assembled magnetic snakes and
swimmers [58] (Fig. 14g—i). In this approach, the Newton
equations for positions and orientations of colloidal particles
at the interface between air and water were coupled to the
Navier—Stokes equation for the fluid flow. The full nonlinear
Navier—Stokes equation (rather than the linear Stokes
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Figure 14. (Color and animation online.) (a—c) Formation of rotating
vortex ‘stars’ in the model of electrostatically driven nonaqueous suspen-
sion of conducting microparticles, (movie 14.1) [52]. (d-f) Rotating
vortices transform into randomly pulsating rings upon reversal of the
direction of an applied electric field (movie 14.2). The structures obtained
by computer modeling qualitatively resemble those observed experimen-
tally; compare Fig. 2a—c, rotating stars and (d-i), pulsating rings.
(g) Magnetic snake formed from 225 initially randomly distributed
particles at the water—air interface; colors indicate elevation of the water
surface, and arrows denote hydrodynamic surface flow generated by the
snake (movie 14.3). (From [58].) (h) Flow pattern in the vicinity of the
snake’s tail. (i) Self-assembled swimmer formed by a snake attached to a
nonmagnetic bead (large black circle); white arrow indicates the direction
of swimming (movie 14.4); compare to images shown in Fig. 3b—f.

equation) is necessary for describing the rectified large-scales
flows generated by the snakes. To reduce the computational
load associated with the numerical solution of the three-
dimensional nonlinear partial differential equation for the
fluid flow, the Navier—Stokes equation was solved in a much
simpler shallow water approximation [59] for the depth-
averaged horizontal velocity v, valid when the thickness of
water layer & becomes small compared to the size of a
magnetic snake. These equations are of the form

0h+Vhv=0, (16)
OV 4 Vv = (Vv — {v) = Vi + 6VV?h
+ Hysin (wt) Zs(r —1)p; - (17)

J

Here, o is the surface tension, and { describes friction with the
bottom. The last term describes the flow generated by the
vertical ac magnetic field with the magnitude H, and
frequency w acting on magnetic dipoles with the orientation
p; = (cos (¢;),sin (¢;)), and function s(r) describes the parti-
cle’s shape. The positions r; and orientations ¢; of the
particles are governed by the following Newton equations of

motion:
mp¥; + wi; = F; + pv — pVh, (18)

I+ ;= T; + Z; + icHy sin (1) Vi X, (19)
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where my, I, i, and . are the particle’s mass, moment of
inertia, and translational and rotational viscous drag coeffi-
cients, and F; and T are forces and torques due to magnetic
dipole-dipole interaction and steric repulsion between the
particles (torques have only one nonzero component). X; is
the torque exerted by shear hydrodynamic flow on a solid
particle.® Equations (17)-(19) have the following meaning: in
addition to magnetic and hydrodynamic forces and torques
F;, T;, and X, the particles are subject to advection by the
hydrodynamic flow (~ v), sliding down the gradient of the
surface due to gravity (fVh). The last term in Eqn (19)
deserves special attention: it describes the magnetic align-
ment of particles along the direction of projection of the
external ac magnetic field parallel to the surface of the fluid.
The in-plane component of the field, oscillating with the same
frequency w, appears due to the deformation of the surface,
and is proportional to the slope VA. This in-plane field
facilitates antiferromagnetic ordering of the neighboring
segments and is crucial for the formation of snakes and
asters. The model Eqns (16)-(19) successfully reproduced the
assembly of a snake from random dispersion of the particles,
as well as formation of the self-propelled snake-bead hybrid
(Fig. 14g-).

5.3 Kinetic approach

Significant progress has been achieved in the understanding
of collective motion in suspensions of self-propelled swim-
mers via analysis of simplified probabilistic models, while the
detailed role of the specific physical mechanism is a matter of
active discussion. The most recent theoretical approaches are
based on the mean-field Fokker—Plank—Smoluchowski-type
kinetic equations for the time-dependent probability density
P(r,d, ) of finding a particle in a certain position r with an
orientation d. In the majority of these approaches, the
hydrodynamic interactions are described in the dilute limit,
when the flow field generated by many bacteria is close to a
superposition of individual fields [99, 100]. The bacterial
collisions are often incorporated via binary collision integral
[101]. In the most general form, the kinetic equation can be
written as follows:

0P =—-V,((Vod +u)P) = V,(wP) + I, + DV}P + D,V P,
(20)

where, V) is the speed of an individual bacterium with respect
to the liquid in the direction of its unit orientation vector d, u
is the hydrodynamic velocity induced by all swimming
particles, @ = (I — dd)(yE + W)d is the rotational velocity
induced by bacteria, E and W are the rate of strain and
vorticity tensors, y is the shape parameter which is close to one
for slender bodies like bacteria, D, and D, are translational
and rotational diffusions (e.g., due to tumbling), and V, and
V. are vector differential operators for positions r and
orientations d [73]. I is a binary collision integral describing
short-range alignment interaction between the bacteria:
direct steric collisions between the bacteria make their
orientations after collision more aligned, and, consequently,
more correlated [101] (see Fig. 9). In addition to collisions,
bacteria interact via long-range hydrodynamic forces
described by the translational and rotational velocities v, .
Various versions of Eqn (20) are solved directly (mostly in

8 For typical experimental conditions, this torque appears to be small
compared to other terms in Eqn (19).

2D), or reduced to a much simpler system of equations for
coarse-grained quantities, such as concentration p = [ Pdd
or average orientation t = [dPdd. While these kinetic
models are able to reproduce some key experimental observa-
tions, like the onset of motion at some critical concentration,
the agreement with experiment remains mostly qualitative.

6. Conclusions

Active colloids is a rapidly expanding and developing area,
and many scientific and technological breakthroughs may
occur in the near feature. One of the intriguing research
avenues is the collective behavior of shape-anisotropic
colloids, like rods, platelets, or even more complex shapes,
e.g., chiral. Similar to liquid crystals [6], where a variety of
nontrivial phases arises due to the shape anisotropy of the
molecules, we can anticipate a rich spectrum of nontrivial
dynamic states and structures when the suspension of
anisotropic particles is energized by electric or magnetic
fields. These states, showing unique optical and mechanical
properties, will play a bigger role in reconfigurable smart
materials for emerging technologies based on the self-
assembly of anisotropic colloids, from photonics [102, 103]
to microfluidic machines [62] and robotics [36, 104, 105].

Scientific breakthroughs are expected in the field of
artificial swimmers. Technical progress will likely happen in
the design of swimmers, optimization of their swimming
abilities, and functionalization for specific applications.
Current swimmer designs are based mostly on hydrogen
peroxide propulsion, which makes them unsuitable for the
majority of medical applications related to targeted drug
delivery. The use of biologically common fuels, such as
glucose, is highly desirable and promising in this respect.
Another intriguing application is the design and optimization
of microswimmers for specific collective tasks, like targeted
cargo delivery, parallel assembly, scavenging of contami-
nants, and other tasks generally associated with ‘swarm
intelligence’, an approach to the coordination of multirobot
systems consisting of large numbers of simple microrobots
[106].

Thanks to the revolutionary increase in computing power,
a significant fidelity increase in the numerical algorithms for
active colloidal suspensions is widely anticipated. The
majority of current theoretical approaches are based on
direct discrete particle simulations with stochastic forces due
to thermal fluctuations, whereas hydrodynamic interactions
are included on a highly simplified level, mostly via viscous
friction acting on the particle or in the mean-field approxima-
tion (see, e.g., [58, 61, 98, 107]). A more adequate treatment of
the hydrodynamic forces between colloidal particles beyond
pair-wise interactions is highly desirable, but still computa-
tionally prohibitive. In addition to discrete particle simula-
tions, a number of continuum phenomenological approaches
have been proposed to describe dynamic states, like rotating
binary clusters and self-propelled magnetic snakes [33, 52].
Thus, further progress is expected in the derivation of coarse-
grained models for dynamic states in colloidal suspension.
The models derived from the first principles, for example, in
the framework of kinetic theories, should incorporate long-
range forces (hydrodynamic, magnetic), as well as short range
interactions (collisions, lubrications), etc.

There has been a rapidly growing number of computa-
tional and theoretical studies on the generic dynamic and
statistical properties of collective behavior exhibited by self-
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propelled particles with simplified interactions, from point-
like particles to rigid rods and swimming flagella (see, e.g.,
[108—113]). A variety of dynamic phases have been predicted,
including moving clusters, bands, and swarming states.
However, to date, the connection between these simulations
and experimentally the observed dynamics of self-propelled
colloids has remained not fully satisfactorily explained.
Refined computational models will likely incorporate, on a
more realistic level, the specific properties of self-propelled
colloids and a variety of inter-particles forces, whether
electric, magnetic, steric, or hydrodynamic.

This work was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materi-
als Science and Engineering, under Contract DEAC02-
06CH11357.
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Abstract. Stationary regimes of active systems — those in
which dissipation is compensated by pumping — are consid-
ered. Approaching the bifurcation point of such a regime leads
to an increase in susceptibility, with soft modes making the
dominant contribution. Weak noise, which is inherent to any
real system, increases. Sufficiently close to bifurcation, the
amplitude of random pulsations is comparable to the average
value of the fluctuating quantity, as in the case of developed
turbulence. The spectrum of critical pulsations is independent of
the original noise. Numerical simulation of the neighborhood of
a bifurcation point is considered unreliable because of the poor
reproducibility of results. Due to the high susceptibility, calcu-
lation roundings result in ‘chaotic’ jumps of the solution in
response to a smooth change in the parameters. It is therefore
necessary in the simulation process to introduce a small random
function of time, white noise. The solutions of the Langevin
equations obtained in this way should be processed statisti-
cally. Their properties (except for the intensity of pulsations)
are independent of the noise induced. Examples of the statistical
description of bifurcations are given.

1. Introduction

By an active system, we mean one that, while submerged in a
heat bath, is kept far from equilibrium by a certain external
action (for example, an applied voltage produces a current in
a conductor). In the absence of an external action, the system
relaxes to equilibrium with the heat bath. The time this takes
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is called the relaxation time, and, importantly, the final state
is independent of what the initial state was. Switching on an
interaction results in the dependence on the initial conditions
and on the time scale of relaxation disappearing, leading to a
steady-state regime that is the same for the entire set of initial
conditions. This set forms a basin of attraction in the space of
states, containing an attractor to which all the trajectories of
the basin converge.

For a time-independent interaction, steady states can
occur among the regimes that set in. Equilibrium can be
considered a limit case of a steady-state regime in which the
intensity of the external influence tends to zero. One of the
characteristics of equilibrium is susceptibility, which can be
defined as follows [1]. Let a system be subject to a small
sinusoidal perturbation. The state of the system then changes
at the same frequency, and the susceptibility is the ratio of the
amplitude of this change to that of the perturbation. A similar
definition applies to a steady-state far-from-equilibrium
regime, in which case a small sinusoidal addition to a
constant perturbation should be considered.

As system and/or perturbation parameters change, the
steady-state regime can lose its stability and transform into a
different regime. For point-like systems, the space of states is
finite dimensional, and the point corresponding to a steady
state in this space is a limit one. The proximity of bifurcation
often suggests a contraction, at least in one direction, of the
distance of this point from the boundary of its attraction
basin. If the state is somewhat away from the limit point in
this direction, the ‘force’ that returns the system to its original
regime is small. For equilibrium systems, there is a visual way
to explain why this is the case. Corresponding to a stable point
is a minimum of a (thermodynamic) potential, and to an
unstable point, a maximum (in the given direction). Bringing
the two points together decreases the potential gradient (i.e.,
force), and thus creates a situation close to indifferent
equilibrium (for both point-like and distributed systems).
Even a small change in the perturbation causes a significant
deviation from the steady-state regime under critical condi-
tions (when the system parameters are close to the bifurcation
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point), and the deviation relaxation time increases; in other
words, the susceptibility increases (primarily in its low-
frequency part, because at low frequencies the system has
enough time to deviate considerably before the external
influence changes its direction).

Critical phenomena are due to high susceptibility and, as
far as equilibrium is concerned, were first studied in
connection with the liquid—vapor transition. The important
results obtained then were the increase in susceptibility (in this
case, compressibility) and (primarily soft-mode) density
fluctuations [2] (specifically, thermal fluctuations, whose
variance can be found by thermodynamic calculations). Far
from the equilibrium, thermal noise often occurs (random
input voltage oscillations being an example). Weak noise has
no noticeable effect on the behavior of the system as long as
the system parameters are far from the bifurcation point, but
approaching this point causes the noise to increase due to
the high susceptibility. Indeed, sufficiently deep in the critical
region, the random amplitude of pulsations is comparable
to the average value of the fluctuating quantity, similarly
to the developed turbulence case. The steady-state regime
turns out to be chaotic. The pulsation spectrum is indepen-
dent of the ‘core’ noise and is dominated by low frequencies.
The closer to the bifurcation point, the higher and sharper the
low-frequency peak is. Unlike flicker noise [3], this peak
disappears as the parameter values move farther and farther
from their critical values.

Numerical simulation of the bifurcation region is con-
sidered unreliable due to poorly reproducible results. The
number of digits is always constant, and unavoidable round-
ings result in smooth variations of the parameters, leading to
jumps in solutions at high susceptibility. The way out, as we
see it, is to bring the situation closer to experiment by adding a
small random function of time (white noise) to the constant
source. The solutions of the Langevin equation [4] obtained in
this way are also random functions and should be processed
statistically. For given values of the parameters, it is possible
to find the variance of the pulsations, their frequency spectra,
critical exponents, n-point correlators, etc., thus obtaining a
reliable description of critical phenomena. The bifurcation
theory must have a bearing on statistics.

In a real system, noise is not white in general, and its
statistics are typically unknown. As the bifurcation point
is approached, however, the pulsation correlation time
increases and definitely exceeds the noise correlation time,
with the result that any noise looks like a d-correlated (white)
one. For a complex system, especially for a distributed one,
the susceptibility can be difficult to calculate; sufficiently deep
in the critical region, nonlinear susceptibility is important. On
the other hand, these quantities should not necessarily be
used. As noted above, solutions of the Langevin equations are
chaotic time series similar to what is obtained in real life
experiments. If the series are sufficiently long (which means a
long computation time), high accuracy can be achieved in
determining bifurcation statistics.

Systems with a relatively small (n > 3 [5]) number of
dependent variables allow chaotic solutions without noise
addition (dynamical chaos). But the phase trajectories
corresponding to such solutions are locally smooth and
should be monitored for a long time (for example, by
constructing a Poincaré map [6]) in order to detect chaos.
The trajectories of the Langevin equations are Brownian. In
typical cases, extending the spectral density of critical
pulsations to all frequencies (up to the inverse atomic

collision time) would give a temperature ~ 103 K. In fact,
the spectrum falls off sharply with increasing the frequency,
only soft modes are excited, and the substance remains cold.
On a scale that is larger than atomic (but, normally, smaller
than the system size), intense mixing occurs.

In bifurcation theory (see, e.g., Refs [7, 8]), following the
spirit of the geometry of smooth maps [9], much attention is
given to state space singularities, in which context exotic
objects such as the ‘saddle—node’, ‘saddle—focus’, and, in the
case of many dimensions, even more complex objects are
introduced, which, elegant as they are, are still not observable
in real life. We see below that (1) in the region of criticality, the
neighborhood of a limit point becomes a chaotic attractor
consisting of Brownian trajectories and (2) singularities are
smeared out.

There is a large amount of literature on dynamic chaos
with locally smooth trajectories (see, e.g., Ref. [10] for a
review). Because noise cannot be fully eliminated in reality,
the question arises: are such attractors of interest for physics?
Far from bifurcation, where the susceptibility is not high, the
Brownian nature of trajectories is not apparent. Our objective
is to draw attention to an unusual type of critical attractor
that becomes relevant if the parameters involved are close to
the bifurcation point of a steady-state regime. A critical
attractor consists of Brownian trajectories. A similar remark
should be made concerning Hamiltonian systems with a
saddle point in the phase space. The appearance of a
‘stochastic layer’ next to the separatrix [11], in fact, implies
that noise cannot be neglected in this situation.

The above suggests that it is in principle possible to create
devices that, given a complex natural or artificial system, can
warn of the nearing bifurcation of its stationary regime (i.e., a
catastrophe) based on the enhancement of soft modes in the
system noise spectrum. Of course, the soft mode range is
specific for each system. For example, for a continuously
stirred tank reactor (CSTR), frequencies smaller than the
inverse mixture residence time should be considered. In
designing such a device, at least a basic understanding is
needed of the processes in the system the device is intended
for. Macrokinetic equations, including those for mass,
momentum, and energy balance, are indispensable for this
purpose.

2. Critical susceptibility

We first consider the case of a point-like system, i.e.,
dXx; .
d—t':f,-(Xl,Xz,...)—&—y,-(tL i=1,2,...,n. (1)

Here, X; are coordinates (dependent variables), ¢ is time, the

vector field f; depends on the coordinates and the constant

force applied to the system, and y; are small time-dependent

force additions. If these additions are neglected, system (1)

can have constant solutions X} satisfying the equations

S X3, =0 2)
Such solutions correspond to steady-state regimes of an active
system specified by the field f;. If deviations from the steady
state, x; = X; — X7, are assumed to be small, we can write the
linear equations

de

— = i 3
a KXk + Y 3)
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where repeated indices imply summation and — A = 9f;/0X}
is the Jacobi matrix calculated at the limit point X; = X} of
the state space.

Close to bifurcation, the limit point is approached by the
boundary of its attraction basis along at least one direction.
We let X denote the coordinate corresponding to this
direction; the relaxation time for deviations x = X — X°® is
large compared to that for the other degrees of freedom, due
to the small ‘restoring’ force for this coordinate (bifurcation
variable). Deviations for the other, fast-relaxing, coordinates
are averaged, and hence, relative to x, they can be considered
to be equal to the steady-state values x; = 0. This leaves us
with only one of Eqns (3),

dx ,
PP +y. 4)

Here, the coefficient 1 plays the role of a bifurcation
parameter, its value at the bifuraction point being 4 = 0.
The susceptibility o(w) at a frequency w is defined as the
Fourier component ratio x,,/y,. According to Eqn (4),

()]

Reo =

mao =
)LZ

P4 o?

(5)

+w?’

As 4 — 0, both the real and imaginary parts of the suscept-
ibility increase primarily at low frequencies, @ < A. The closer
to the bifurcation point, the higher and sharper the low-
frequency peak is.

Weak noise, an inherent feature of any real influence (as
exemplified by random oscillations in an input voltage),
becomes higher as the susceptibility increases. For suffi-
ciently small 2, the amplitude of random pulsations is
comparable to the average value of the fluctuating quantity
(i.e., X®), as in the case of developed turbulence. To put it
another way, approaching bifurcation causes the regime to
change from steady state to chaotic. As is clear from the
above, for an arbitrary initiating noise, the pulsations must
have a low-frequency peak in their spectrum. But in contrast
to the flicker noise [3], this peak disappears as the parameters
are moved away from the bifurcation point.

In the mathematical theory of bifurcations (see, e.g.,
Refs [7, 8]), much attention is focused on rearrangements in
the state space, which are treated using the geometry of
smooth maps [9]. We suppose, for example, that there are
two singular points, a node and a saddle, which approach
one another as the parameters are varied. According to
Refs [7, 8], a saddle-node pair forms at the critical values of
the parameters, after which the singularity disappears. As
we have seen, including noise makes saddle—node and
saddle—focus pairs (and, in higher dimensions, more com-
plex objects) unobservable. The trajectories randomly
intersect one another and, because of the increased noise,
cannot even approximately be considered autonomous. A
further point to emphasize is that critical chaos differs from
the chaotic solutions that autonomous systems with a
relatively small number of equations provide in a certain
parameter range [5]. In this last case, the trajectories are
locally smooth, and to see the presence of chaos, it is
necessary to monitor them for some finite period of time
(for example, by constructing the Poincaré map [6]). The
critical trajectory turns out to be Brownian and densely
covers the neighborhood of the limit point. As already
noted above, however, here, in contrast to the standard

Brownian motion (thermal fluctuations), only soft modes
are excited. The chemically interesting fact of an increased
mixing intensity (critical diffusion) should also be noted
[13].

If the bifurcation is such that n variables relax anom-
alously slowly, we can introduce a susceptibility matrix oy (@)
as the resolvent of the Jacobi matrix in Eqn (3),

oi(0) = (ix — iwdz) ™" (6)

Here, the exponent —1 denotes the inverse matrix. In the case
of equilibrium, the variance of thermal fluctuations can be
calculated by thermodynamic formulas. The coefficients A
are expressed in terms of the derivatives of the entropy S,

. 1 s
Aik = — E 6x,- an ) (7)

taken at the limit point, where the entropy has a maximum.
The most detailed studies have been performed on equili-
brium bifurcations corresponding to continuous phase
transitions. In this case, the bifurcation variable is referred
to as an order parameter. Near the critical liquid—vapor
transition point in the pressure—temperature plane, the
bifurcation curves of a spinodal decomposition converge to
the phase equilibrium line (boiling curve), forming a cusp, the
end of the bistable (overheating and overcooling) region. In
the neighborhood of this point, the compressibility (the
susceptibility with respect to the transition order parameter,
the density) is large. The theory of continuous transitions and
critical phenomena under equilibrium conditions has been
worked out in detail (see, e.g., Ref. [12]). We do not discuss
these questions here.

3. Langevin equations

Numerical simulation cannot be considered a reliable way of
studying the neighborhood of bifurcations because (1) the
computed results show a lack of reasonable reproducibility;
and (2) a smooth change in parameter values leads not to
smooth changes but to random jumps in the solution. The
reason for this is obvious: as a result of high susceptibility,
roundings involved in the numerical integration of finite-
difference equations cause significant changes in these
solutions. The way out is to bring the problem formulation
closer to the experimental situation. Random pulsations in
the critical region not only are observed in numerical
simulations but also are seen in experiment. Along with
thermal fluctuations, nonthermal noise can be a source of
such pulsations, which, in equilibrium, are due to inhomo-
geneities, impurities, and other factors that act to ‘smear out’
a continuous phase transition. In active systems, an influence
is inevitably accompanied by weak noise at least, necessitat-
ing that the governing equations be augmented by a
controlled noise term that makes solutions more chaotic
compared to what the roundings produce in an uncontrol-
lable way. The resulting solutions—which are random
functions of time—should then be subjected to statistical
processing.

Equations containing a weak random source are referred
to as Langevin equations [4]. In the case of Eqn (4) alone, we
take the function y(7) to be white noise:

(p(1)y(t")) = constd(t —1"). (8)
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Random pumping gives rise to random motion near the limit
point. According to Eqn (4), the correlator is

<x(t1)x(tz)> = exp [—ﬂ(ll + lz)}

<[ @l wboxnesteral o

or

const

<X(l1) X(lz)> = 2

exp (_;Llll —12|). (10)

The constant in Eqns (8) and (10) is (»2),,, where the white
noise Fourier component is independent of frequency. For
the Fourier components of the correlator,

(x?), = Jjo (x(r)x(t—1"))yexp (iwt")dt’, (11)
we have
2/1 ( 2)(/)
(x2)m _ yEa (x2) = AZJ; <l (12)

Formulas (9)—(12) are identical to similar expressions for
equilibrium [1]. In Ref. [1], however, the variance (x2) is a
known quantity calculated from thermodynamic formulas.
For example, for the temperature, (AT?) = kgT?/cy, where
kg is the Boltzmann constant and cy is the specific heat at
constant volume. Therefore, the constant in Eqn (8) is not
arbitrary and should be chosen such that equalities (10) and
(12) hold at a given variance (x2). In the case of an active
system far from equilibrium, the intensity of a random source
»(2) should be regarded as a specified noise component of the
influence. Pulsations due to this noise are usually stronger
than thermal fluctuations.

Using the Langevin equations, high-susceptibility systems
can be numerically simulated in a way closely corresponding
to the experimental situation. The order of actions is as
follows. One or more of the equations is augmented by a
weak white noise term and the resulting system is then
integrated numerically over a chosen time interval, which
should be large compared to the time scales of the original
problem (relaxation time, etc.). This procedure is repeated for
different values of the bifurcation parameter in the critical
region and for a number of values of the noise intensity
(spectral density). The data array (or rather a set of time
series) so obtained is processed statistically. In Section 4, we
consider a simple example of the numerical simulation of
critical phenomena.

4. Critical attractor

Viewed from the perspective of nonlinear physics, exother-
mic reactions are interesting because of the feedback
between temperature and the reaction rate in the sense that
a reaction causes heating, which in turn accelerates the
reaction. A mathematical model for processes involving
such reactions should include equations with exponential
sources (the reaction rate is usually activation-temperature
dependent). Strong nonlinearity makes the physical picture
more contrasting and new effects easier to discover. An
exothermal transformation in a CSTR is described by the

equations [14, 15]

dn ol
ar_ 0
E*?‘P—O‘(T— T,) (14)

for the reaction product concentration (transformation
depth) n and temperature 7. The reaction rate in the simplest
case is given by

® = (1 —n)kexp <—§) ;

where k is a constant of dimension frequency and E the
activation energy expressed in the same units as temperature.
Usually, E > T. Other notations are: 7 is the reactor residence
time of the mixture, Q is the reaction heat, ¢ is the specific
heat, o = ! + ¢!, 7 is the reactor cooling time under no-
flow conditions, i.e., for T — oo, and T, is the temperature of
the heat bath and the supplied mixture.

It was noted as early as Ref. [14] that system (13), (14)
exhibits bistability in the sense that depending on the initial
conditions, either a cold (7,) steady-state regime or a hot
(T — T, = Q/cor) regime is established. It is assumed that the
mixing time is small compared to 7. Instead of Eqns (13) and
(14), a single second-order equation can be considered. For
example, expressing  in terms of 7’and d7'/d¢ using Eqn (14),
we obtain [16]

dv

T=— = y(T.T)T

(15)

(16)

(with the dot denoting time differentiation),

dVﬁ 0 E E 1
97 _Ekexp (—7_) + |:keXp <—7,> +;:|OC(T_ T.),

(17)

~ (18)

1 E .
y = cx—i—;—l—kexp (—?> 72 (T —T,)+T].
Mathematically, Eqn (16) is equivalent to the equation of
motion in one dimension 7 for a particle of unit mass subject
to potential force (17) and the friction force —y7. If p and T
are specified at the initial instant, the initial ‘velocity’ T is
determined by Eqn (14). The ‘friction coefficient’ in Eqn (18),
depending on the parameters, can change sign and become
negative —a feature that makes Eqn (16) similar to the Van
der Pol equation [17]. Whether the inequality y < 0 holds
depends on the pumping, i.e., the material flow through the
reactor.

The potential V(7T') has one minimum outside and three
extrema (two minima and one maximum in between) inside
the bistability region. The extrema T4 < Ty, < T clearly
have positions coincident with the temperatures of steady-
state solutions of system (13), (14). A closer look at V(T)
allows us to see which of the two stable states corresponds to a
deeper minimum. Let the problem parameters be taken as the
Damkohler and Semenov numbers,

D = tkexp <7£), S=D(ar)", (19)

T:

and the scale temperature 7, be the temperature at the cusp
where the bistable region in the (D, S') plane terminates (and
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Figure 1. Overall view of the critical attractor.

where all three extrema merge). It is readily seen [18] that the
cusp is similar to a critical point in the pressure—temperature
plane for the liquid—vapor system. The curve Vg =V, is
similar to the boiling curve (phase equilibrium), and the
boundaries of the bistable region are similar to spinodals.
For the purposes of numerical simulation, it is useful to
introduce the dimensionless temperature

19:T£C2(T—Tc), exp (—;‘:) A eXp (—%)expﬂ. (20)
Atthecusp, D = 1and S = 4/Z, where Z = EQ/(cT?) is the
Zeldovich number, ¢ = 0, and the heat bath temperature is
¥, = —2. The convenient parameters to use in the neighbor-
hood of this point are d and s such that D=1+ d and
S=(4/Z)(1+s), in terms of which the boundary of the
bistability region takes the form

d 2V2
:—:l:—
$T3F 3

The straight line s = d/2 corresponds to phase equilibrium
for d < 0 and is similar to a critical isochore for d > 0. On this
line, as before, ¥ ~ 0, and in the bistability region,
¥ = +v/—6d. On the spinodals, ¥ ~ Fv —2d.

As trajectories approach the limit point in the state space,
they start oscillating in a random manner, covering quite a
large region, a critical attractor. We examine the properties of
such an attractor with the example of the system

(—d)**. (21)

n=(-nexpd—yD", (22)

. 249 2
9= 71— 9 — —Z(t
(1 —n)exp 5 Sy(),

(23)

obtained from Eqns (13) and (14) using the transformations
discussed above. The source of weak noise in Eqn (23) is
turbulence in the reactor cooling system. Figure 1 shows a
trajectory [19] in the (5,9) plane for D, — 1 = 3 x 10~* and
S. — 1 = 1.5 x 1074, demonstrating the shape and size of the
critical attractor. In Fig. 2, a small portion of this plot is
shown on an enlarged scale, demonstrating the Brownian
nature of this trajectory.

5. Van der Waals and fluctuation regions

We linearize Eqn (16) in the vicinity of the minimum %, to
obtain

by + 9001 + 039, =0, (24)

—0.004 —0.002 0

Figure 2. A magnified view (100x) of a small portion of the attractor
shown in Fig. 1. The Brownian nature of the trajectory can be seen.

where the time scale is (1/k)exp (E/T¢), 91 = 9(t) — Vo,
70 = 7(¥ =, ¥ = 0), and

= |exp Z_3+% L]/z
@o = |SXPV T T DS|

The frequency wq vanishes at the cusp and is small near it
(which implies a small value of the restoring force that occurs
when the reactor deviates from the steady-state operation). A
small excitation ¢ exp (—iw?) in the right-hand side of Eqn (24)
produces a response A4 exp (—iwt?). Defining the susceptibility
a(w) as the ratio 4 /¢, we obtain

2 2
Wy — W

R I

(25)

Imo:%, R= (0} — o) +yj0”.

(26)

Reo =

With the right-hand side of Eqn (24) taken to be weak white
noise, the Fourier components of the correlation function
(91(¢) ¥91(¢")) are found as

_ Imo

2
(19 )ul = py() @ )

(27)
where p is the frequency-independent spectral noise density
(an analog of the fluctuation—dissipation theorem, with p/2y,
playing the role of temperature). The integral over spectrum
(27) is the variance, and hence in the limit 9y — 0, all modes
increase, but the soft one especially so. The closer the critical
point is, the higher and sharper the low-frequency peak.

Equations (24)—(27) hold for what can be called the van
der Waals region. In a sufficiently small neighborhood of
the cusp, the nonlinearity is important. By analogy with
Ginzburg’s criterion [20], we can compare the variance of
critical fluctuations (¥) and the characteristic value
V¢ ~ |d| to determine the boundaries of this neighbor-
hood. Nonlinear effects have been investigated in [21] by
integrating system (22), (23) numerically. The weak noise in
Eqn (23) may be due to turbulence in the reactor cooling
system.

Figure 3 shows the variation of the variance (97) with |d|
on a log-log scale. For d > 0, i.e., outside the bistability
region, we see that the initial power-law increase is followed
by saturation. The critical exponent is, according to Eqn (27),
—1, to be compared with the least-square value —0.99.
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6. Kramers transitions

For d < 0, there is a variance peak between the van der Waals
and fluctuation regions in the plot in Fig. 3. In the bistable
region, the potential has two minima, with the barrier
between them lowering with decreasing |d|. This allows
spontaneous transitions between the minima [22] due to the
noise-induced diffusion in the field dV//d¥. The transition
probability W obeys the Arrhenius law, which, in this
particular case, has the form

(28)

Figure 4 shows a plot of ¥(¢) for two values of d of the same
magnitude but opposite sign. For d < 0, along with critical

pulsations, large temperature jumps are observed: instead of
oscillations about one of the limit points in the (n,v) plane,
oscillations about another limit point in the same plane occur.
A kind of intermittency is observed in the plot. Transitions
between hot and cold states lead to a significant increase in the
variance (0 — 9)?). As |d| — 0, the difference Vi, — Vg.u
decreases and the contribution from the jumps vanishes. As
|d| increases, probability (28) falls off exponentially, and no
jumps occur during the computation run. Nonlinear effects in
the bistability region are more pronounced due to the
quadratic terms in the expansion of dV/d¢ in powers of
around the potential minimum (for d > 0, no such term is
present). As can be seen from Fig. 3, this region also contains
the interval of a power-law behavior (97) o |d| ™", but with an
exponent noticeably larger than unity (n ~ 1.2).

Similar jumps in a bistable system are described in
Ref. [23], which is concerned with stimulated oscillations of
a micromechanical vibrator, with bistability due to an S-like
nonlinear resonance curve. We also note the numerical
simulation of fluctuations at the transition from one
potential well to two [24] (where only one— single-mini-
mum — phase was studied).

7. Limit cycle developing out of critical chaos

Unlike the critical point for transitions between phases of
the same symmetry, system (22), (23) can have periodic
solutions [25-27]. According to Eqn (16), the oscillatory
instability boundary is determined by the conditions
(T = Ty, T=0) =0, where Ty is the temperature of the
steady-state regime under consideration. If the parameters
vary along the straight line s = d/2 (d > 0), y vanishes at
Z=2Z,~8+2d? Close to this threshold, for Z =8, the
pulse spectrum does not look qualitatively different from that
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Figure 4. Example plots of the time dependence of temperature, |d| = 3 x 107*: (a) d > 0, (b) d < 0.
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for Z = 7. Further evolution of the spectrum is illustrated in
Fig. 5, which shows that the spectrum broadens at Z = 8, a
small ‘friction’ causes the excitation of a large number of
modes, but the spectrum remains continuous. The expansion
continues at Z = 8.1, i.e, where the regime of regular
oscillations would set in in the absence of noise. It is only at
large values of Z, deep in the instability region, that peaks at
the fundamental frequency and higher harmonics appear.
The fact that the power of the continuous spectrum condenses
into lines can be interpreted as a synchronization effect [28] or
a classical analog of Bose—Einstein condensation. To see that
this is indeed the case, we note that a state of a time-periodic
system is characterized by a phase. Upon condensation, the
number of particles (or quanta) in a given state is large, and
the uncertainty relation for the number of particles and the
phase imposes no significant restriction on how accurately the
phase can be determined. A similar discussion on the
macroscopic filling of long-wavelength modes at the expense
of short-wavelength ones can be found in Ref. [29].

8. Traveling fronts and pulses
near the propagation threshold

As an example of a distributed-parameter system, we consider
a set of small CSTR systems interacting via diffusion and heat
conduction. Instead of Eqns (22), (23), we now write

i =LAn+ (1 —n)expd —nD", (29)
. 249 2
19:A19+Z(1—n)expﬁ—%—gy(l)’ (30)

where +/(y/k)exp (E/T,) is the length scale, y is the heat
diffusivity, L is the Lewis number (the ratio of diffusivity to
heat diffusivity), and the scale temperature is chosen to be
T. = T, + Q/c. The reactors can be arranged in the form of
a chain or a membrane, and A is the one- or two-
dimensional Laplace operator. For solitary waves along

the chain, the boundary conditions for Eqns (29) and (30)
can be written as
o o

x==o00, axar (31)

We use a no-flow, T — oo scenario to study a traveling
front. With the noise y(z) turned off in Eqn (30), such a front
consists of three zones: heating, reaction, and cooling [30].
The reaction zone concentrates near the temperature max-
imum and is narrow compared to the other two. In the heating
zone, the reaction can be neglected due to the insufficiently
high temperature, and in the cooling zone, the original
material is already used up. In the wave-comoving frame of
reference, Eqns (29) and (30) are steady state, with
0/0t — u0/0x, where u is the wave velocity. We approximate
the chemical source in Eqn (30) with the function 6(x), where
x is the reaction zone coordinate, and replace Eqn (29) with
the condition

u = ug exp O , (32)
where uy is the front velocity under no-loss conditions for
S — oo and Yy, is the maximum temperature. It is easily seen
that problem (29)—(32) has two solutions: two branches of
u(S), the upper increasing and the lower decreasing with
increasing S. This situation is clearly unstable. The threshold
is located where the branches merge.

For the problem with a ¢ source, it is easy to write the
nonsteady-state wave solution:

L_[" et P ] g
NEJO N {_m} de'=1, (33)
L [" et Py -],
ﬁLmeXp{_m_T}d’ =1+ Z0n,
(34)
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Figure 6. Typical pulsation spectrum u(¢) — (u). Abscissa: the frequency
® = 2mn/ty, with n being an integer and ¢y = 60,000 the computation time.
Inset: spectral maximum width versus distance to the threshold.

where @2 = ud exp ¥y, and /(¢',7) = [, u(t")dt". In general,
however, Eqns (33) and (34) are nonlinear integro-differential
equations for # and ¥,, by no means easier to solve than the
original problem. Near the threshold, the velocity varies
slowly, allowing an expansion in the small parameter, which
leads to the quasi-steady-state equation [31]

dv s 202 ; Z

Ve 2
cv_ . L-1+2L+2)|. 35
do ool S [EEEETE EY

where v =u/uy, — 1 and s = S/Sm — 1, with the index th
denoting threshold values. Above the threshold, there are two
steady-state points, the smaller of which is unstable; fors < 0,
the velocity decreases and the wave decays. Because a realistic
medium always contains at least small-size inhomogeneities
and because the near-threshold susceptibility is high, the wave
motion becomes chaotic. A point to note is the dominance of
soft modes. The velocity fluctuation spectrum behaves as
shown in Fig. 6.

The quasi-steady-state equation is in fact valid only for L
close to unity. For L > 1, the planar front is unstable and
becomes curved, whereas for L < 1, an oscillatory instability
develops. Near the threshold, this instability produces
random velocity pulsations in the absence of external noise
(dynamical chaos). The period doubles as the parameter
values shift to the threshold. The intervals between the
doublings decrease as a geometric progression in accordance
with Ref. [32]. The chaotic regimes are bounded by
S, = 326.611. The time dependence of the velocity shows an
intermittent behavior between S, and Sy, = 326.2, as does the
evolution of the frequency spectra with increasing S. Example
spectra are shown in Fig. 7 [33].

If the flow transverse to the chain has a nonzero velocity,
the solutions can be either switching waves between the hot
and cold regions or traveling pulses. In the pulse after the
reaction zone, the initial state restores itself due to the flow.
Numerical simulations were performed for L = 1 [34]. It was
found (Fig. 8) that as the parameters approach their threshold
values, the time it takes for a pulse to attain the uniform
motion regime increases, and oscillations occur. The oscilla-
tion period is large compared to the characteristic time
(1/k)exp [E/(T, + Qc™")] and increases as S — Sy. As

Figure 7. (See in color online.) Frequency spectra of the velocity pulsations
as a function of @ = 2nn/ty, computation time #) = 10°. The values of S:
350 (1), 328 (2), 326.914 (3), 326.640 (4), 326.620 (5), 326.611 (6), 326.551
(7), 326.500 (8), 326.466 (9), 326.400 (10), 326.375 (11), 326.350 (12),
326.315 (13), 326.250 (14), 326.230 (15), 326.219 (16), 326.213 (17).
Discrete spectrum changes to continuous via intermittency.
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Figure 8. Time dependence of the pulse power (integral over the source) for
S values close to the threshold. The top curve is constructed for S = 770,
and each subsequent one, with S decreased by unity. For S < 761, the
pulse decays irreversibly.

before, the dominance of soft modes near the bifurcation is
seen.

9. Conclusions

The growth of soft modes near a bifurcation is a universal
phenomenon. To study it, in addition to numerical simula-
tion, real experiments were conducted [35] using an electrical
circuit with a dinistor as a working element. This device,
which exhibits an S-shaped current—voltage characteristic,
was connected in series with a constant (current-independent)
resistor R. The direct current regimes are determined by the
intersection of the /( V) characteristic and the loading straight
line I = (Vy — V)/R (Iis the current, Vj is the applied voltage,
and V is the voltage across the dinistor). Depending on the
values of R and V), either one or three intersections are
possible (with the middle one unstable in the latter case). For
each R, Vj pair, the variation of the pulsations of voltage 7
with time was recorded, with a recording time of 100 s. In
total, 256 experimental runs were made. Example spectra are
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Figure 9. (See in color online.) Frequency spectra of pulsations close to and
at a distance from the bifurcation point. (a) R=75kQ, V=30V,
(b) R=60kQ, Vy =32 V. Frequency is in units of 2nn/ty, fy is the
duration of the experiment.

shown in Fig. 9. Far from the bifurcation, usual white noise is
observed, but close to it, all the modes increase (the spectrum
is normalized to the variance), but the soft modes especially
so. At zero frequency, a maximum, or more precisely a
resonance, forms.

The approach of a complex system (artificial or natural)
to a bifurcation of its steady-state regime (i.e., to a
catastrophe) can be predicted beforehand from the enhance-
ment of soft modes in its noise spectrum, obviously motivat-
ing the development of spectrum-monitoring devices. The
report by the Federal Service for Ecological, Technological
and Atomic Surveillance (Rostechnadzor) on the Sayano-
Shushenskaya hydroelectric station accident (for the online
version, visit http://www.scientific.ru/trv/archive/act.doc)
contains only one plot of the vibration amplitude for the
turbine bearing cover. What happened in the accident was
that the cover broke off and water rushed in to flood the
station engine hall. During the observation period, the
average value of the amplitude increased threefold, and its
maximum value increased fifteenfold. As the report states, no
resonances were detected, implying that the difference
between the average and maximum values is due to the
compression of the spectrum (zero frequency resonance, as
discussed above). The term ‘catastrophe precursors’ is used in
[36] in referring to soft modes. In an alternative ‘compressive
sensing’ approach [37] for predicting catastrophes, unknown
equations are restored from experimental data (time series).
The right-hand side of each equation is written as an
expansion in powers of dependent variables, with the
expansion coefficients calculated by a computer program
(most of them, incidentally, turn out to be negligibly small).
But as the description in Ref. [37] implies, this procedure is
realistic only for a small number of degrees of freedom (or the
number of equations), not to mention distributed systems. By
contrast, the method we propose here is simple and has no

such restrictions, and we see it as our duty that it be made
known as widely as possible throughout the science and
technology community.
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1. Direct observation of 7-invariance violation
in a system of B mesons

The direct measurements of the violation of T-invariance
(invariance of processes under time reversal) for K mesons
were previously performed at CERN and at the Fermi
National Accelerator Laboratory, but the results obtained
were not free of considerable uncertainty. Violation of
T-invariance in a system of B mesons was earlier established
only indirectly, by examining the violation of CP-invariance.
Now, it was proved possible to measure the effect of
T-invariance violation for B mesons directly, without resort-
ing to the CPT-theorem, by using a new method of data
analysis in the BaBar experiment conducted at the National
Accelerator Laboratory (SLAC). In the BaBar experiment,
decays of )4S) resonances created pairs of B°B’ in
quantum-entangled states. Entanglement made it possible
to compare the rates of the processes corresponding to
different ordering of B” and B° decays in time, and also
under the permutation of the final states (of decay products).
As a result, the violation of T-invariance has been estab-
lished with high statistical significance — 14¢. The measured
parameters that characterize the violation of T-invariance
correspond to magnitudes previously derived from the effect
of CP-invariance violation.
Source: Phys. Rev. Lett. 109 211801 (2012)
http://dx.doi.org/10.1103/PhysRevLett.109.211801

2. Superconductivity in La; ,Sr,CuQy

A team led by Ivan Bozovic of Brookhaven National
Laboratory has continued to work on the experiments
described earlier [see, e.g., Phys. Usp. 51 170 (2008)] and
discovered that, under certain conditions, a drop in tempera-
ture, instead of resulting in the transition to superconducting
state, suppresses superconductivity in the compound
La, Sr,CuO4. A La, Sr,CuO,4 layer was grown on a
substrate by an improved molecular-beam epitaxial techni-
que which allows controling the doping level x. Near the
superconducting transition temperature, Bozovic et al.
observed superconducting fluctuations which normally pre-
cede the emergence of superconductivity. Unexpectedly,
superconducting fluctuations were suppressed in specimens
with x = 0.055 — 0.06, plus they were completely absent in
sufficiently high magnetic fields. As temperature was further
reduced, suppression was enhanced, and superconductivity
would not emerge. One cause of this could supposedly lie in
structural defects which at low temperatures hamper electron
flow (the electron localization effect). As the doping level
increased, the suppression effect disappeared. For example, a
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specimen with x = 0.07 became superconducting when
cooledto T, = (9 + 1) K.
Source: Nature Materials 12 47 (2013)
http://dx.doi.org/10.1038/nmat3487

3. Acoustic analogue of the dynamic Casimir
effect

C I Westbrook and his colleagues at the C Fabry Laboratory
(Université Paris-Sud, France) have implemented an acoustic
analogue of the dynamic Casimir effect, which was first
observed in 2011. In the dynamic Casimir effect, virtual
particles transform into real ones due to rapid nonadiabatic
changes in boundary conditions. In the experiment by
C I Westbrook et al., researchers varied the potential of the
optical trap holding a Bose—Einstein condensate of helium
atoms, which led to a change in the speed of sound and in the
spectral composition of oscillations in the condensate. The
potential was varied by changing the intensity of the laser
beams that formed the trap. In version I of the experiment, the
potential was changed sharply once, while in version II it was
subjected to 10% sinusoidal modulation for 25 ms until the
trap was turned off and the condensate cloud broke apart. As
a result of these changes, the thermal fluctuations in the
condensate transformed into pairs of elementary excita-
tions— quasiparticles moving in opposite directions with
momenta of identical magnitude and frequency equal to one
half of the modulation frequency. Excitations corresponded
to lateral components in the velocity distribution of gas
particles in the expanding cloud. These excitations satisfied
the Bogoliubov—de Gennes dispersion relation both in the
phonon mode, when excitation consisted of several correlated
atoms, and in the single atoms mode. The researchers are
looking forward to fabricating an acoustic analogue of
Hawking radiation, similarly to how in 2009 an experiment
by J Steinhauer et al. generated an acoustic analogue of the
black hole horizon.
Source: Phys. Rev. Lett. 109 220401 (2012)
http://dx.doi.org/10.1103/PhysRevLett.109.220401

4. Effect of light on the conductivity
of insulators

F Krausz (Institute for Quantum Optics, Max Planck Society,
Germany) and colleagues have been able to demonstrate a
method of ultrafast control of dielectric conductivity using
high-power femtosecond pulses of near-infrared radiation
(NIR), comprising a mere several oscillations of the light
wave. The conductivity of amorphous silicon dioxide (SiO;)
exposed to these pulses increased over = 1 fs by about
18 orders of magnitude and dropped back over the same
time. A wave field with an intensity of several volts per
angstrom substantially altered the electronic structure but,
nevertheless, this transition occurred reversibly, without
destroying the atomic structure of the specimen. Conductiv-
ity measurements were made by spectroscopic methods and
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by recording the current flowing across the electrodes. The
observed properties are well explained by the theoretical
model developed by V Apalkov and M Stockman. Even
though the conductivity of semiconductors is much simpler
to control than that of insulators, the changes caused in
conductivity are much slower. In principle, the new effect
offers the possibility of ultrafast control of electrical signals in
promising devices operating in the terahertz, and even
pentahertz, ranges (105 Hz).
Sources: Nature 493 70 (2013), Nature 493 75 (2013)
http://dx.doi.org/10.1038/naturel 1567
http://dx.doi.org/10.1038/naturel1720

5. Gamma-ray bursts caused by lightning

Sometimes lightning discharges generate gamma-ray flashes
several thousandths of a second long, known as terrestrial
gamma-ray flashes. A GBM detector aboard the NASA’s
Fermi Gamma-ray Space Telescope is currently recording
approximately two gamma-ray flashes due to lightning per
week with a time resolution of about 2 ps. It was assumed in
the past that powerful radio bursts which are also generated
by lightning discharges are not directly traceable to the
generation of gamma-rays. However, as follows from the
new data collected with the GBM detector, gamma-ray
flashes and some broad peaks in radio bursts in fact occur
simultaneously and have similar pulse shapes. Consequently,
these gamma and radio signals appear to be of the same
origin, being generated in one and the same area of the
electrical discharge. It is highly probable that ‘runaway
electrons’, whose theory was developed by A V Gurevich
and his colleagues (Lebedev Physical Institute, RAS), are
responsible for high-energy phenomena in the lightning.
Source: http://www.nasa.gov/mission_pages/GLAST/
news/vision-impro ve.html

Prepared by Yu N Eroshenko
(e-mail: erosh@ufn.ru)
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