
Abstract. It is shown that for a given geometric body, the
Ferrers theorem not only relates the potentials of volume- and
surface-distributed scalar (charge or mass) sources (which it is
known to do) but also relates the vector (scalar) magnetic field
potentials produced by the volume- and surface-distributed
densities of a stationary current (i.e., vector sources). For a
body with a given magnetization, the magnetic multipole mo-
ments calculated from expressions for polarization magnetic
charges are shown to be equal to those of AmpeÁ re currents.
Using these results and noting the universality of the multipole
expressions, multipole representations of the scalar magnetic
potential of an ellipsoid can be (and, indeed, have been) obtained
rather straightforwardly.

1. Introduction

The problems of the theory of potentials discussed in this
paper, which are of interest in and of themselves, appeared in
our case in connection with the derivation of the multipole
representation of the scalar magnetic potential of an ellipsoid.
Unlike the theoretical analysis of electrostatic and gravita-
tional potentials of scalar sources (charge or mass density),
the theoretical analysis of the magnetic potential involves
many calculations due to the vector nature of its sources [the
volume j�r� and (or) surface i�r� current densities]. Another
complicationÐ in contrast to the case of scalar sourcesÐ is
that the density vector of a stationary current must satisfy the
solenoidal condition

div j � 0 �1�

and the boundary condition

jn
��
S
� 0 �2�

on the surface S of the current region. Finally, the most
radical difference between the scalar potential of charges
(masses) and the scalar magnetic potential of currents is that
the scalar potential does not exist in the spatial region where
currents are present. Therefore, as is well known, the Poisson
equation for the scalar potential does not exist, and hence its
formal solution representing the potential in the form of an
integral of the sources and the static Green function is absent.
The standard approach to overcome this difficulty involves
the use of the vector potential of a magnetic field.

It is natural, however, that when the external field is the
main interest (as, for example, in the derivation of the
multipole representation of the magnetic potential 1 of an
ellipsoid), the use of the scalar potential becomes possible
and efficient, especially when the spatial region with
currents is simply connected. Relations discussed in this
paper are of a quite general type (with respect to the
geometrical shape of the region with currents and the form
of functions describing the currents) and are useful for
solving particular problems.

2. Ferrers rule for the vector
and scalar magnetic potentials

In 1877, Ferrers [3] obtained a relation between the gravita-
tional potentials of volume and surface distributions of
sources for the same geometrical body. This result (the
Ferrers rule) applied to Coulomb fields consists in the
following. If we know an analytic expression for the potential
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1 Multipole representations are useful, in particular, because (for sources

distributed in an ellipsoidal region of space) they considerably simplify the

solution of the problem with equivalent sources, i.e., those producing

identical external fields, which was formulated by Frenkel [1, p. 103], [2,

p. 524].



FT of a charge distributed in a volume V with a density
r�x; y; z�, where r is a homogeneous (of degree k) function of
coordinates, then the expression

F � �k� 2�FT ÿ r
qFT

qr
�3�

allows finding the potential F of the surface charge distrib-
uted with the density s�r p on the boundary S of the same
volume. Hereafter in this section, for an arbitrary point K on
the boundary S, p is the length of a perpendicular lowered
from the origin (located inside V ) to a plane tangent to the
surface S, which passes through K. It is important that the
observation point in Ferrers rule (3) can be chosen both inside
and outside the regionV, while the shape of this region can be
arbitrary.

It is interesting to see whether the Ferrers rule can be
applied to stationarymagnetic fields.We discuss this question
following considerations similar to those presented in [4] in
the derivation of expression (3).

We consider a bounded simply connected spatial region
(hereafter, called a body) of volumeV in which currents with a
density j �r� circulate. Assuming that a closed surface S
enclosing V is smooth and convex, we choose the origin of
coordinates inside V. In the region containing currents, the
magnetic induction vector B is not a potential vector.
Therefore, as noted above, the scalar potential of the
magnetic field cannot be directly expressed in terms of the
current density j �r�, similarly to the expression of the
electrostatic potential in terms of the corresponding charge
density. In this case, we should use the vector potential 2

AT�r� � 1

c

�
V

j �r 0�
jrÿ r 0j dV

0:

Each Cartesian component of the volume current density is
assumed to be a homogeneous function (of degree k) of
coordinates:

j�lr� � lk j�r� ; �4�

where l is an arbitrary constant. The vector potential of the
same body at the point l r is

AT�lr� � lk�2

c

�
V

j�r 0�
jrÿ r 0j dV

0 � lk�2 A
T�r� ; �5�

whereV is the volume of a body whose boundary is similar to

that of the initial body and is oriented similarly, but is located

l times closer to the origin,3 and A
T�r� differs from AT�r�

only in that the integration region ofA
T�r� isV rather thanV.

Expression (5) was derived using the change of integration

variables r 0 ! lr 0 and property (4).
We now assume that l � 1� e, where e is an arbitrarily

small positive number. Then the boundaries of volumesV and
V form a homothetic shell whose thickness at an arbitrary
point is dp � pe. According to the superposition principle, the

vector potential of the shell is the difference between the
vector potentials of the bodies bounding the shell under the
condition that the current densities in the bodies coincide in
the volume shared by these two bodies. This is also valid, of
course, for any Cartesian component of the vector potential.
In particular, the component dAx of the vector potential of an
infinitely thin shell with an infinitesimal surface current
density di � j dp � j pe is expressed as

dAx � AT
x �r� ÿ A

T

x �r�
� AT

x �r� ÿ �1� e�ÿkÿ2AT
x �r� er�

� ��k� 2�AT
x ÿ rHHAT

x

�
e ; �6�

or

dA � ��k� 2�AT�r� ÿ �rHH�AT�r�	e :
Taking into account that e is a constant (although arbitrarily
small) number, we conclude that the surface current with the
finite density

i�r 0� � j�r 0� p�r 0� ; r 0 2 S ; �7�

circulating in a zero-thickness shell corresponds to the vector
potential

A�r� � �k� 2�AT�r� ÿ �rHH�AT�r� : �8�

The observation point in expression (8) can be chosen both
inside and outside the volume V.

We next consider the magnetic induction B � rotA, in
particular, some of the Cartesian components, for example,
Bz. We successively obtain

Bz � qAy

qx
ÿ qAx

qy
� �k� 1�BT

z ÿ x
qBT

z

qx
ÿ y

qBT
z

qy
ÿ z

qBT
z

qz
;

�9�

where Ax and Ay are determined by (8) and BT � rotAT.
Outside the volume V, the vector BT is potential:

BT � ÿHH~FT. This allows rewriting (9) for observation points
outside a body in the form

Bz � ÿ�k� 1� q
~FT

qz
� x

q2 ~FT

qx qz
� y

q2 ~FT

qy qz
� z

q2 ~FT

qz 2
;

where ~FT is the external scalar potential of the magnetic field
of volume currents with the density j�r� circulating in the
body. Taking into account that

q
qz

�
z
q~FT

qz

�
� q~FT

qz
� z

q2 ~FT

qz 2
;

we finally obtain

Bz � ÿ�k� 2� q
~FT

qz
� q
qz

�
x
q~FT

qx
� y

q~FT

qy
� z

q~FT

qz

�
: �10�

Cyclic permutations in (10) give similar expressions for Bx

and By, whence the result is written in the vector form as

B � ÿHH~F : �11�

2 We distinguish the vector potential AT�r� of volume currents from the

vector potential A�r� of surface currents of the same body. The notations

for the speed of light c and the semiaxis c of an ellipsoid should also be

distinguished.
3 A layer whose surfaces are similar and are similarly oriented is called a

homothetic layer.
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Here, the scalar magnetic potential of a shell of the same body
whose surface currents have density (7) is given by4

~F � �k� 2�~FT ÿ r
q~FT

qr
: �12�

Expressions (8) and (12) are the statement of the Ferrers
rule for constant magnetic fields; the former is valid in all
space, whereas the latter is valid only outside the region with
currents.

3. Mutual integral correspondence
between Poisson magnetic charges
and AmpeÁ re molecular currents

We now consider magnetic multipole moments. It is known
that the general feature of multipole moments of any physical
nature (gravitational, electric, or magnetic) is that, being
integral characteristics of the corresponding source system,
they contain concrete information on the material structure,
shape, and size of the system producing the corresponding
external field. Therefore, relations expressed in terms of
multipole moments always have universal properties. An
example is given by multipole expansions of the potentials
of electrostatic fields for arbitrary three-dimensional charge
distributions bounded in space [5]. These expressions,
describing fields outside the source system, are valid for
both discrete and continuous distributions (over the volume,
surface, and line) of free or bound charges. Similar expres-
sions obtained by replacing electric moments with magnetic
moments and equating themonopolemoment to zero are also
valid for magnetic fields produced by electric currents. In this
case, it makes no difference whether these currents are
conduction currents or belong to convection or molecular
currents.

Another example is the multipole representations of the
external electrostatic (gravitational) potential of charges
(masses) continuously distributed (with a polynomial depen-
dence on coordinates) over the volume or surface of an
ellipsoid [6±8]. These expressions are less universal than the
multipole expansion and are valid only for ellipsoidal
configurations. In Section 4, we use this universality to
obtain multipole representations for the scalar magnetic
potential of stationary currents in an ellipsoid.

But first, we consider some mathematical corollaries
concerning the two different treatments of the origin of
magnetic fields of (nonferromagnetic) magnets in the history
of magnetism. We assume that a magnet of this type is a
simply connected body located in a nonmagnetic medium
placed in an external magnetic field. The magnetic properties
of such a magnet are characterized by the magnetization
vector I.We are interested in themagneticmultipolemoments
of the body and consider them using a semimicroscopic
description of sources.

Poisson [9±11] explained the origin of a magnetic field by
the presence of bound magnetic charges with the volume �~r�
and surface �~s� densities given by

~r � ÿdiv I ; ~s � In : �13�
These expressions are similar to that for the density of bound
electric charges in terms of the polarization P. Maxwell, in his

Treatise on Electricity andMagnetism [12, S. 430], rejected the
magnetization mechanism proposed by Poisson, because it
contradicted experiments. Remarkable, however, are the final
words of Maxwell's critical statement: ``Of course the value of
Poisson's mathematical investigations remains unimpaired, as
they do not rest on his hypothesis, but on the experimental fact
of induced magnetization.''

AmpeÁ re [12±14] assumed that the magnetic field of
magnets is produced by molecular currents, which are related
to the magnetization by

jA � c rot I ; iA � cRot I : �14�
Here, jA and iA are the respective volume and surface densities
of the AmpeÁ re molecular currents, and Rot I is the so-called
surface rotor of the vector I (see, e.g., [15]),

Rot I � �n�I2 ÿ I1�
� � ÿ�nI� : �15�

The unit vector n of the external normal to the body surface S
is directed from medium 1, in which I1 � I, to medium 2,
where I2 � 0 in our case. We note that AmpeÁ re currents
satisfy conditions (1) and (2) automatically.

Obviously, multipole systems can be produced by both
charges and currents. In this connection, the question arises:
What is the relation between themagnetic multipolemoments
of Poisson magnetic charges (13) and the magnetic multipole
moments of AmpeÁ re molecular currents (14)? In this case, of
course, we consider the same bodywith amagnetization I.We
recall that the vector I is the mean density on the magnetic
(dipole) moment in a physically infinitely small volume, i.e.,
the magnetic moment of the body

M �
�
I dV : �16�

The magnetic multipole moments of magnetic charges are
defined by the expressions

Mi1... il �

�
~r�r� yi1... il�r� dV ;�
~s�r� yi1... il�r� dS ;

8>>><>>>: l � 1; 2; . . . ; �17�

which are absolutely similar to the deénition of electrostatic

multipole moments (in which the value l � 0 is also allowed,

however) (see, e.g., [16]). The tensors yi1... il � D̂i1 . . . D̂il � 1

introduced in [17] are the result of the action of the product of

components of the vector operator D̂ � 2r�rH� ÿ r 2H� r on

unity. In particular,

y �0� � 1 ; yi � xi ; yi j � 3xixj ÿ r 2di j ;

yi j k � 3
ÿ
5xixjxk ÿ r 2hhdi jxkii

�
;

yi j k l � 3
ÿ
35xixjxkxl ÿ 5r 2hhdi jxkxlii � r 4hhdi j dklii

�
;

yi j klm � 15
ÿ
63xixjxkxlxmÿ 7r 2hhdi jxkxlxmii� r 4hhdi j dklxmii

�
:

Here, dkn is the Kronecker delta and the double angular
brackets denote the special symmetrization operation in
which all noncoincident tensors obtained from the tensor in
angular brackets are added to this tensor with all possible
permutations of the indices. For example,

hhdi jxkxlii � di jxkxl � dikxjxl � dj kxixl � dilxjxk

� dj lxixk � dklxixj :4 An arbitrary constant appearing in our derivation of (12) is set equal to

zero, such that both potentials ~FT�r� and ~F�r� tend to zero as r!1.
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The magnetic multipole moments of currents (in our case,
AmpeÁ re currents) are defined by the expressions [5, 18]

Mi1... il �

1

�l� 1�c
�
V

�r jA�k
q
qxk

yi1... il�r� dV ;

1

�l� 1�c
�
S

�r iA�k
q
qxk

yi1... il�r� dS :

8>>><>>>: l � 1; 2; . . . :

�18�
For both points of view (Poisson's and AmpeÁ re's) to

coexist simultaneously and self-consistently, expressions (17)
and (18) must, obviously, lead to coincident results. This
section is devoted to the proof of this statement.

But first, we verify how the dipole moments of AmpeÁ re
volume currents

MV � 1

2c

�
�r jA� dV �

1

2

�
�r rot I� dV �19�

and the dipole moments of AmpeÁ re surface currents

MS � 1

2c

�
�r iA� dS � 1

2

�
�rRot I� dS �20�

agree with expression (16) for the magnetization.We consider
the double sum in (19) and (20),

2M �
�
�r rot I� dV�

�
�rRot I� dS

�
�
�r rot I� dVÿ

� �
r�nI�� dS ; �21�

where (15) is taken into account. For the x-component of the
integrand in the volume integral, we obtain

�r rot I�x � y rotz Iÿ z roty I

� ÿ
�
y

q
qy
� z

q
qz

�
Ix � q

qx
�yIy � zIz�

� ÿ q
qy
�yIx� ÿ q

qz
�zIx� � q

qx
�yIy � zIz� � 2Ix ;

or

�r rot I�x ÿ 2Ix � q
qx
�r I� ÿ div �Ix r� : �22�

Integrating (22) over the body volume and using the Gauss±
Ostrogradskii theorem, we find�ÿ�r rot I�x ÿ 2Ix

�
dV �

�
nx�r I� dSÿ

�
Ix�rn� dS : �23�

Taking into account that
�
r �nI�� � n�r I� ÿ I�rn�, we rewrite

(23) in the vector form�
�r rot I� dV � 2

�
I dV�

� �
r �nI�� dS : �24�

Substituting (24) into (21), we see that relation (16) is
satisfied and that additive integral characteristics related to
currents (in particular, molecular currents) should be
calculated taking the contribution of the surface currents
into account whenever they are present These characteristics

include, of course, not only the magnetic dipole moment but
also the moments of higher-order magnetic multipoles.

We do not verify that the dipole moment of Poisson
magnetic charges (13) also corresponds to expression (16).
We prove a more general statement about the coincidence
of magnetic multipole moments of an arbitrary rank for the
systems of molecular currents (14) and magnetic charges
(13) for the same body with the magnetization I.

We use expression (18) for the rank-l magnetic multipole
moment tensor and first consider the contribution

M �V �
i1... il
� 1

�l� 1�c
�
V

�r jA�k
q
qxk

yi1... il dV

� 1

l� 1

�
V

�r rot I�k
q
qxk

yi1... il dV �25�

to this moment from volume currents with the density
jA � c rot I and the contribution

M �S�
i1... il
� 1

�l� 1�c
�
S

�riA�k
q
qxk

yi1 ... il dS

� ÿ 1

l� 1

�
S

�
r�nI��

k

q
qxk

yi1 ... il dS �26�

from surface currents with the density iA � cRot I � ÿc �nI�
[see expressions (14) and (15)].

We transform the integrand in (25). We obtain succes-
sively

�r rot I�k
qy
qxk
� eklmxl emnr

qIr
qxn

qy
qxk
� eklmenrmxl

qIr
qxn

qy
qxk

� �dkndlr ÿ dkrdln� xl qIrqxn

qy
qxk
� xl

qIl
qxk

qy
qxk
ÿ xl

qIk
qxl

qy
qxk

;

�27�

where eklm is the totally antisymmetric unit pseudotensor. In
addition, to shorten the representation of the tensor yi1... il , we
temporarily omit all the tensor indices as long as these are not
involved in transformations being performed. It is convenient
to reduce each of the terms in the rightmost expression in (27)
to the forms

xl
qIl
qxk

qy
qxk
� q

qxk

�
xlIl

qy
qxk

�
ÿ Il

qy
qxl
ÿ xlIl Dy ; �28�

xl
qIk
qxl

qy
qxk
� q

qxl

�
xlIk

qy
qxk

�
ÿ 3Il

qy
qxl
ÿ Ikxl

q
qxl

qy
qxk

: �29�

We next use the fact that each component of the tensor
yi1... il�r� is a spherical function, i.e., a homogeneous harmonic
polynomial of degree l (see [17]). This means that, first, the
last term in (28) vanishes because Dy � 0 and, second, the last
term in (29) allows applying the Euler theorem for homo-
geneous functions to the function qy=qxk, whence 5

xl
q
qxl

qy
qxk
� �lÿ 1� qy

qxk
:

5 It is in view of the anticipated use of the Euler theorem that we used

the old-fashioned notation �q=qxl��qy=qxk� for the second derivative

q2y=qxl qxk.
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As a result, Eqn (27) takes the form

�r rot I�k
qy
qxk
� q

qxk

�
xlIl

qy
qxk

�
ÿ Ik

qy
qxk

ÿ q
qxl

�
xlIk

qy
qxk

�
� 3Ik

qy
qxk
� �lÿ 1�Ik qy

qxk
;

or

�r rot I�k
qy
qxk

� q
qxk

�
xlIl

qy
qxk

�
ÿ q
qxl

�
xlIk

qy
qxk

�
� �l� 1�Ik qy

qxk

� q
qxk

�
rI

qy
qxk

�
ÿ q
qxl

�
xlIk

qy
qxk

�

� �l� 1� q
qxk
�Iky� ÿ �l� 1�y div I : �30�

Substituting (30) in volume integral (25) and using the
Gauss±Ostrogradskii formula three times, we obtain the final
expression

M �V�
i1... il
� 1

l� 1

�
S

rI
q
qn

yi1... il dS

ÿ 1

l� 1

�
S

�rn� Ik q
qxk

yi1... il dS

�
�
S

�In� yi1... il dSÿ
�
V

yi1 ... il div I dV : �31�

We next consider integral (26). Identifying the double
vector product

�
r �nI�� in it, we obtain the expression

M �S�
i1... il
� ÿ 1

l� 1

�
S

nk�rI� q
qxk

yi1 ... il dS

� 1

l� 1

�
S

Ik�rn� q
qxk

yi1 ... il dS ;

which, combined with (31), gives the expression

Mi1... il �
�

~r yi1... il dV�
�

~s yi1... il dS

for the total multipole moment only in terms of densities (13)
of the magnetic bound charge.

Hence, the concept of bound magnetic charges used in
calculations of total multipole moments taking the total
contribution from volume and point sources into account
gives results that quantitatively agree with those obtained
using AmpeÁ re currents. This conclusion, which, following
Maxwell, we regard as purely mathematical, can be used as a
link between multipole expressions in electrostatics and
magnetostatics (see Section 4).

In this paper, we are interested inmagnetic fieldsmainly at
observation points located outside the current region. The
separation of currents into volume and surface currents at
such points is conventional to some extent because volume
currents can always be replaced by equivalent surface
currents. This is confirmed by the following consideration.
Let all the space be occupied with a superconductor in which a
cavity exists with a stationary electric current circulating in it.

Because the magnetic field is always absent inside a super-
conductor, this means, from the standpoint of the super-
position principle, that the magnetic field produced by the
volume currents in the cavity is `quenched' by the magnetic
field of surface currents induced on the cavity surface. It then
follows that currents on the cavity surface taken with the
opposite sign are equivalent to volume currents.

4. Multiple representations
of the scalar magnetic potential of an ellipsoid

In this section, we consider a three-axial ellipsoid as a
geometrical object in which constant magnetic field sources
are distributed.

It is known that for a ball or a sphere with a polynomial
(of degree k) source density (charges or currents), all the
multiple moments of rank greater than k are zero, and
therefore the multipole expansion is represented by a finite
series. In contrast to the sphere, no moment for an ellipsoid
can exist without the simultaneous existence of all higher
multipole moments of the same parity. Therefore, the multi-
pole expansion of the potential of an ellipsoid is always an
infinite series. At the same time, the volume and surface
external potentials of an ellipsoid generated by polynomial
densities can be described [6±8] in the so-called multipole
representation,6 which, as the multipole expansion of the
potential of a sphere mentioned above, has the form of a
finite sum of components of multiple moments times some
standard tensor functions.

We recall the form of multipole representations of the
electrostatic potential of an ellipsoid. If the ellipsoid surface is
described by the equation

x 2

a 2
� y 2

b 2
� z 2

c 2
� 1 ; �32�

then one of the multipole representations has the same form
both for volume charges with the polynomial density

r�r� � rL � PL�x; y; z� ; L � 0; 1; . . . ; �33�

and for charges distributed over the ellipsoid boundary with
the surface density s�r� � sL�2, where

sL � rL p ; L � 0; 1; . . . ; �34�

this multipole representation is given by

FLÿ2�r� �
�
rLÿ2
R

dV

CL�r� �
�
sL
R

dS

9>>=>>;�
XL
K�0

qi1... iKci1... iK
�r� ;

L � 2; 3; . . . ;

L � 0; 1; . . . ;

8<:
�35�

while another representation is valid only for a volume charge
of the density

r�r� � rG
L � GL

�
x

a
;
y

b
;
z

c

�
; L � 0; 1; . . . ; �36�

6 We note that all analytic results in [6±8] obtained for gravitational fields

are directly transformed to their electric analogs written in the Gaussian

system of units if the gravitational constant is replaced by unity and the

density and multiple moments of masses are respectively treated as the

charge density and electrostatic multiple moments.
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and is given by

FG
L �r� �

�
rG
L

R
dV �

XL
K� 0

~qi1... iK ji1... iK
�r� : �37�

Here, it is more convenient to let the potentials of volume and
surface sources (which were denoted in Section 2 identically)
be denoted differently, asF andC respectively. In expressions
(33) and (36), PL and GL are polynomials of degree L, GL is a
harmonic function of its arguments,

p �
�
x 2

a 4
� y 2

b 4
� z 2

c 4

�ÿ1=2
�38�

is the distance from the ellipsoid center to the tangent plane
at the point �x; y; z�, and R is the distance from the
integration element dV or dS to the observation point
outside the ellipsoid. The irreducible totally symmetric
tensors ji1... iK

�r� and ci1... iK
�r� are respectively the so-called

tensor potentials of an ellipsoid and a homoeoid.7 These
tensors serve as reference special functions generated by the
multipole representation theory. Each component of these
tensors is a harmonic function of Cartesian coordinates. The
explicit form of tensor potentials is known, but is not used in
this paper.

The coefficients qi1... iK and ~qi1 ... iK in (35) and (37) are the
components of tensors of so-called partial electric multipole
moments. It is important that qi1... iK and ~qi1... iK can be
expressed via linear recurrent relations in terms of the
components of tensors of the total electric multipole
moments Qi1... iK of the ellipsoid. These relations for qi1... iK

have the form (which depends on the tensor rank parity) [7]

q j1... j2l�1 � Qj1... j2l�1 ÿ �4l� 1�!!
Xlÿ1
n�0

4n� 3

�2l� 2n� 3�!!
� hhq j1... j2n�1K j 2n�2 j 2n�3 . . . K j2l j2l�1ii ; �39�

q j1... j2l � Qj1... j2l ÿ �4lÿ 1�!!
Xlÿ1
n�0

4n� 1

�2l� 2n� 1�!!
� hhq j1... j2nK j2n�1 j2n�2 . . . K j2lÿ1 j2lii ;

where 8

Ki j � a�i�a� j �di j � a 2
�i� ; i � j ;

0 ; i 6� j :

�
Expressions for ~qi1... iK differ from expression (39) for qi1... iK

only in that 4n� 3 in the numerators of the fractions in the
sum should be replaced by �4n� 3��4n� 5� and 4n� 1
should be replaced by �4n� 1��4n� 3�.

Thus, any polynomial volume distribution [including
(36)] admits a multipole representation of the potential in
form (35), harmonic distribution (36) also having the
additional representation (37) of its potential using lower-

rank multipoles. But multipole representation (35) has a
more general character, being valid not only for volume but
also for surface charge distributions for which the ratio s=p
is polynomial. In this case, the two types of surface
distributions on an ellipsoid, s0 and s1, have multipole
representations of their potentials that cannot be repro-
duced by any volume charge. At the same time, an arbitrary
polynomial volume distribution can always be replaced by a
surface charge distribution with the same multipole repre-
sentation of the potential.

As shown in [21] with the example of simplest particular
cases, multipole representations of the scalar potential of an
ellipsoid also exist in magnetic fields produced by direct
electric currents. The derivation of the corresponding general
expressions presented below also illustrates the use of the
results obtained in Sections 2 and 3.

We consider a (nonferromagnetic) magnet of the shape of
ellipsoid (32) with an induced magnetization I. If the
conduction current is absent, then, as is known [22, 23], the
magnetostatic problem considered here (in our case, in the
ellipsoid field) is mathematically equivalent to an electrostatic
problem (in the absence of free charges), the only difference
being the replacements E! H andD! B. Taking the result
obtained in Section 3 into account, we can assert that if the
solution of such an electrostatic problem for the external
region is represented in the form of the total scalar potential
FS � F�C expressed in terms of electrostatic multipole
moments Qi1... il , then the replacement

FS ! ~FS ; P! I ; Qi1... il !Mi1 ... il ; l � 1; 2; . . . �40�

(where P is the polarization vector and ~FS � ~F� ~C is the
sum of the volume and surface scalar magnetic potentials)
gives the external solution of the corresponding magneto-
static problem.

We now assume that the electric charge is distributed in
ellipsoid (32) with some volume �rL� and (or) surface �sL�2�
density, such that the total charge Q of the ellipsoid is zero.
Themultipole representation of the potential of such a system
of charges does not differ from the multipole representation
of the potential of the system of bound charges, in which the
volume, r � ÿdivP, and surface, s � Pn, charge densities are
polynomials of respective degrees L and L� 2. (Such
densities are provided by the polarization vector P whose
Cartesian components are polynomials of degree L� 1.)

It follows from (35) and (39), according to (40), that an
ellipsoidal magnet with bound magnetic charges (13) char-
acterized by polynomial densities of the same degrees
produces an external magnetic field with the scalar potential

~FLÿ2�r�
~CL�r�

)
�
XL
K�1

m i1... iK ci1... iK
�r� L � 3; 4; . . . ;

L � 1; 2; . . . ;

�
�41�

where

m j1... j2l�1 �M j1... j2l�1 ÿ �4l� 1�!!
Xlÿ1
n�0

4n� 3

�2l� 2n� 3�!!
� hhm j1... j2n�1 K j2n�2 j2n�3 . . . K j2l j2l�1ii ; �42�

m j1... j2l �M j1... j2l ÿ �4lÿ 1�!!
Xlÿ1
n�1

4n� 1

�2l� 2n� 1�!!
� hhm j1... j2n K j2n�1 j2n�2 . . . K j2lÿ1 j2lii :

7 The term homoeoid introduced by Thomson (Lord Kelvin) and Tait [19]

to denote an infinitely thin layer formed by two similar and similarly

oriented surfaces is used here, as in Routh's monograph [20], for an

ellipsoidal simple layer if the surface density of sources is proportional

to p.
8 Here, a�i� is the ellipsoid semiaxis lying on the coordinate axis xi.

Nontensor subscripts are in parentheses.
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Here, m i1... iK and M i1 ... iK are respectively the partial (see
below) and total magnetic multipole moments, and the
absence of magnetic monopoles is taken into account.

Based on the results in Section 3, we can assume that
multipole representation (41) of the scalar magnetic potential
is caused not by bound magnetic charges but by the system of
AmpeÁ re currents (14) characterized by the magnetization I
with Cartesian components described by polynomials of
degree L� 1.

Finally, due to the universality of multipole expressions,
we can assert that multipole representation (41) of the
magnetic potential of an ellipsoid is valid not only for
molecular currents (14) but also for conduction or convec-
tion currents for which the Cartesian components of vectors
j�r� and i�r�=p are polynomials of respective degrees L and
L� 2, while the currents themselves, as any stationary
currents in a bounded spatial region, obey conditions (1)
and (2).

Thus, we obtained the multipole representation of the
external scalar magnetic potential for electric currents in the
ellipsoidal region whose densities were characterized above.

It would seem that a similar consideration is also
applicable to multipole representation (37) of the potential
produced by system of charges (37) if, of course, the total
charge of the system is zero. Indeed, free charges with density
(36) can be replaced by bound electric charges with the same
density. In this case, the electrostatic potential retains form
(37), only now both L5 1 and K5 1. Then, using transition
rule (40), we find that the system of bound magnetic charges
with the volume density ~rG

L , which, like (36), is a polynomial
harmonic function of degreeL,9 produces the scalarmagnetic
potential outside the ellipsoid with the multipole representa-
tion

~FG
L �r� �

�
~rG
L

R
dV �

XL
K�1

~m i1 ... iK ji1... iK
�r� : �43�

The partial magnetic multipole moments ~m i1... iK of volume
currents in (43) can be finally expressed using the recurrent
expressions

~m j1... j2l�1 �fM j1... j2l�1 ÿ �4l� 1�!!
Xlÿ1
n�0

�4n� 3��4n� 5�
�2l� 2n� 5�!!

� hh~m j1... j2n�1 K j2n�2 j2n�3 . . . K j2l j2l�1ii ; l � 0; 1; 2; . . . ;
�44�

~m j1... j2l �fM j1... j2l ÿ �4lÿ 1�!!
Xlÿ1
n�1

�4n� 1��4n� 3�
�2l� 2n� 3�!!

� hh~m j1... j2n K j2n�1 j2n�2 . . . K j2lÿ1 j2lii ; l � 1; 2; 3; . . .

in terms of the total multipole momentsfM i1... iK . Hence, as in
the electrostatic case, an additional multipole representation
of the magnetic potential exists (based onmoments of a lower
rank). However, it is not clear so far to which electric currents
representation (43) corresponds.

To elucidate this question, we consider simpler (partial)
sources, which play a key role in the construction ofmultipole
representations of the potentials of an ellipsoid [6±8]. A
density given by a homogeneous harmonic polynomial (e.g.,

of degree n) is called the partial density of a volume charge.
The multipole representation of the corresponding partial
potential is known [7]. If the total charge Q of the ellipsoid is
zero, we can assume that we are dealing with bound charges.
In turn, according to (40), the system of bound electric
charges and its external potential can be replaced by the
system of boundmagnetic charges and its potential. Thus, the
scalar partial potential of the magnetic field acquires the
multipole representation10

~F �n� � ~m j1... j n jj1 ... jn
�

X
i�j�k�n

n!
i ! j ! k!

~m i j k ji j k ; n5 1 ;

�45�
having the form of the total contraction of two symmetric
tensors of rank n. The expressions are presented here both in
the usual tensor notation, where two repeated indices imply
summation, and in the so-called three-index notation. The
latter is applied only to symmetric tensors (or at least to the
combination of indices in which a tensor is symmetric), which
is illustrated with the example

jklm � j x . . . x|���{z���}
k times

y . . . y|���{z���}
l times

z . . . z|��{z��}
m times

:

Partial magnetic potentials (45) can, of course, also be
produced by electric currents. To find the answer to the
question of how these partial currents `look', we consider, as
in Section 3, a nonferromagnetic magnet with the induced
magnetization I, but now we are dealing with an ellipsoidal
body. If the Cartesian components of the vector I are
homogeneous harmonic polynomials of degree n� 1, then,
as is shown in the Appendix, the density ~r of the magnetic
charge of the ellipsoid is also described by a homogeneous
harmonic polynomial (of degree n), i.e., is partial, and
therefore the appearing field is characterized by poten-
tial (45). It is clear that the AmpeÁ re current jA in (14)
corresponding to the same magnetization should be consid-
ered partial. It is shown in the Appendix that each Cartesian
component of the vector jA is a homogeneous harmonic
polynomial of degree n.

Because of its universality, multipole representation (45)
of the partial magnetic potential also retains its form for
conduction currents. In this case, the density of the partial
volume current of the ellipsoid is given by11

j
�n�
x

a
�

X
k�l�m�n

n!
k! l !m!

ax; klm

�
x

a

�k�
y

b

�l�
z

c

�m

; �46�

j
�n�
y

b
�

X
k�l�m�n

n!
k! l !m!

ay; klm

�
x

a

�k�
y

b

�l�
z

c

�m

; �47�

j �n�z

c
�

X
k�l�m�n

n!
k! l !m!

az; klm

�
x

a

�k�
y

b

�l�
z

c

�m

; �48�

9 Hereafter (including the Appendix), it is assumed that a harmonic

function describing sources in the ellipsoid is harmonic in the coordinates

x=a, y=b, and z=c.

10 In this section, the partial magnetic multipole moments ~m i j k of volume

sources are indicated by a tilde, to distinguish them from themoments mi j k

of surface sources.
11 We note that the direct proof of the fact that current (46)±(48) produces

potential (45) outside the ellipsoid proved to be, in accordance with the

discussion in the Introduction, too cumbersome and is therefore not

presented here. We also note that the expression for the simplest (partial)

volume current in the ellipsoid and the multiple representation of its scalar

potential can be found in [21].
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where the polynomials are harmonic and n5 1. Current (46)±
(48) should, in addition, satisfy conditions (1) and (2). The
combination of coefficients ax; klm, ay; klm, and az; klm form a
tensor of rank n� 1 that is symmetric in all indices except one,
which is separated by a semicolon. For symmetric indices, we
hereafter use the three-index notation, the sum k� l�m � n
indicating the number of symmetric tensor indices.

If any Cartesian component jGL�x=a; y=b; z=c� of the
density vector of a current circulating in the ellipsoid volume
is a harmonic polynomial of degree L and conditions (1) and
(2) are satisfied, then the equality

jGL

�
x

a
;
y

b
;
z

c

�
�
XL
n�1

j �n�
�
x

a
;
y

b
;
z

c

�
�49�

holds. This is obvious because any harmonic polynomial is a
sum of homogeneous harmonic polynomials. According to
the superposition principle, current (49) corresponds to sum
(45) of potentials given by (43). Thus, we found the expression
for currents corresponding to magnetic potential (43).

It follows that the type of coordinate dependence of the
current in (46)±(48) (homogeneity of degree n) satisfies the
condition for the applicability of the Ferrers rule. We use this
possibility.

Letting ~C denote the magnetic potential of surface
currents, we can rewrite Ferrers rule (12) in the form

~C �n� � F̂ �n� ~F �n� ; �50�

where, according to (7), the surface (partial) current density is
i �n� � j �n�p and the operator is

F̂ �n� � n� 2ÿ r
q
qr
:

Substituting expression (45) in (50), we obtain

~C �n� �
X

i� j�k�n

n!
i ! j ! k!

~m i j k F̂
�n�ji j k : �51�

We now use the relation [6, 8]

ci j k �
1

2n� 3
F̂ �n�ji j k ; n � i� j� k ;

expressing the tensor potentialci j k on a homoeoid in terms of
the tensor potential ji j k of an ellipsoid. Expression (51) then
becomes

~C �n� � �2n� 3�
X

i� j�k�n

n!
i ! j ! k!

~m i j k ci j k : �52�

It remains to replace partial multipole moments ~m i j k of
volume sources (46)±(48) by partial moments mi j k of surface
currents i �n� � j �n�p. The corresponding expression derived
in [7] for electric multipoles, which is of course also correct for
magnetic multipoles in the corresponding notation, has the
form �2n� 3� ~m i j k � m i j k. Thus, we finally obtain

~C �n� � m j1... jn cj1... jn �
X

i� j�k�n

n!
i ! j ! k!

m i j k ci j k : �53�

Now let the surface current in the ellipsoid be such that
each Cartesian component of i=p is an arbitrary polynomial

of degree L > 0, i.e.,

iL � jL

�
x

a
;
y

b
;
z

c

�
p : �54�

In this case, the known expression (see, e.g., [24]) for the
expansion of a polynomial in spherical functions (homo-
geneous harmonic polynomials) can be applied to each
component of the current density (and therefore to the vector
as a whole). This gives

jL �
XL
k�1

X�k=2�
l�0

�
x 2

a 2
� y 2

b 2
� z 2

c 2

�l
j �kÿ2l � ; �55�

where �k=2� is the integer part of k=2. Substituting (55) in (54),
using coupling equation (32) applicable in this case, and
taking into account that a sum of spherical functions of the
same degrees is a spherical function of the same degree, we
obtain the current density iL and (according to the super-
position principle) the potential ~CL:

iL �
XL
n�1

i �n� ; ~CL �
XL
n�1

~C �n� ;

which is an independent confirmation of expression (41).

5. Conclusions

To summarize, we list some features of multipole representa-
tions found in our study.

The multipole representation of external volume �~F� and
surface � ~C�magnetic potentials of an ellipsoid is universal in
the sense that the potentials ~CL�2 cannot be distinguished
from the potentials ~FL �L � 1; 2; . . .�, as follows from (41).
Therefore, it is impossible to determine from the external
scalar potential of an ellipsoid by which currents (surface
currents with the density iL�2 or volume currents with the
density jL, or a combination of the two) it is generated. At the
same time, no volume current can reproduce the magnetic
field of the surface current i1.

The universality is also manifested in the fact that the
multipole representation for a fixed observation point is
invariant on passing from one ellipsoid to any other confocal
ellipsoid. This invariance follows from the similar invariance
of the tensor potential of a homoeoid [6]. Hence, the external
magnetic potential of the ellipsoid does not contain informa-
tion on the size of ellipsoid (32) and the particular form
(coefficients) of a polynomial describing sources, but depends
on the observation point, the degree of the polynomial
describing j or i=p, and the size and orientation of the elliptic
discÐ the limit shape of the family of focused ellipsoids.

For potentials ~FG
L of an ellipsoid in which the current

density jL is a harmonic polynomial in x=a, y=b, and z=c, in
addition to the universal representation using the tensor
potential of a homoeoid, another multipole representation
exists that involves the tensor potential of the ellipsoid and is
described by expressions (43) and (44). This specific repre-
sentation is more `economical' because it operates with
multipoles with a maximum rank that is lower by two than
that in the universal representation. The external potentials
~FG
L are also invariant under the confocal transformation of

ellipsoids.
The magnetostatic correspondences considered in this

paper and magnetoelectrostatic analogies used here are, of
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course, not exhaustive. Other useful analogies can be found,
e.g., in recent paper [25].

As regards the methodology, in our opinion, this paper is
instructive in the following:

(i) the use of old results, which have lost their physical
certainty but have retained their mathematical reliability,
sometimes allows simplifying the derivation of the required
result;

(ii) the universal formulas can be derived for a narrower
subtype of physical systems.
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6. Appendix. Partial sources
of the magnetic field of an ellipsoid

We consider a relation between the partial volume densities of
charge and current sources of an ellipsoidal current.Magnetic
charges and AmpeÁ re currents are related by the induced
magnetization vector I.

Let the Cartesian components of the magnetization be
homogeneous harmonic polynomials (with respect to the
coordinates �x � x=a, �y � y=b, and �z � z=c) of degree n� 1:

Ix �
X

k�l�m�n�1

�n�1�!
k! l !m!

Kx; klm �xk�y l�zm ; �A:1�

Iy �
X

k�l�m�n�1

�n�1�!
k! l !m!

Ky; klm �xk�y l�zm ; �A:2�

Iz �
X

k�l�m�n�1

�n�1�!
k! l !m!

Kz; klm �xk�y l�zm : �A:3�

The polynomial coefficients Kx; klm, Ky; klm, and Kz; klm in
(A.1)±(A.3) form a tensor of rank n� 2, which is symmetric
in all its indices in the three-index notation, except for the
first index (separated from the other by a semicolon). The
harmonicity of the polynomials is provided in this case by
the irreducibility of the tensor K in the symmetric indices, i.e.,
by the relations

Kx; k�2; l;m � Kx; k; l�2;m � Kx; k; l;m�2 � 0 ; �A:4�
Ky; k�2; l;m � Ky; k; l�2;m � Ky; k; l;m�2 � 0 ; �A:5�
Kz; k�2; l;m � Kz; k; l�2;m � Kz; k; l;m�2 � 0 ; �A:6�

expressing in the three-index notation that the contraction of
K in any pair of symmetric indices vanishes.

The chosen magnetization type corresponds, according to
Poisson, to the volume density of a (bound) magnetic charge:

~r � ÿdiv I � ÿ
X

k�l�m�n�1

�n� 1�!
�kÿ 1�! l !m!

Kx; klm

a
�xkÿ1�y l�zm

ÿ
X

k�l�m�n�1

�n� 1�!
k!�lÿ 1�!m!

Ky; klm

b
�xk�y lÿ1�zm

ÿ
X

k�l�m�n�1

�n� 1�!
k! l ! �mÿ 1�!

Kz; klm
c

�xk�y l�zmÿ1 :

The respective changes of summation indices k! k� 1,
l! l� 1, and m! m� 1 in the first, second, and third

sums gives

~r �
X

k�l�m�n

n!
k! l !m!

aklm

�
x

a

�k�
y

b

�l�
z

c

�m

;

where three-index components of the rank-n tensor a
symmetric in all its indices are given by

aklm
n� 1

� ÿ Kx; k�1; l;m
a

ÿ Ky; k; l�1;m
b

ÿ Kz; k; l;m�1
c

: �A:7�

We note that the totally symmetric tensor a is irreducible.
Indeed, its contraction with respect to any two indices is zero.
The three-index notation of this statement has the form

ak�2; l;m � ak; l�2;m � ak; l;m�2 � 0

and follows from the equality

1

a
�Kx; k�3; l;m � Kx; k�1; l�2;m � Kx; k�1; l;m�2�

� 1

b
�Ky; k�2; l�1;m � Ky; k; l�3;m � Ky; k; l�1;m�2�

� 1

c
�Kz; k�2; l;m�1 � Kz; k; l�2;m�1 � Kz; k; l;m�3� � 0 ;

which is satisfied because of (A4)±(A6).
The irreducibility of a implies the harmonicity of the

polynomial ~r�x=a; y=b; z=c� and proves that ~r � ~r �n�, i.e.,
the volume density of the boundmagnetic charge under study
is the partial density.

The magnetization in (A.1)±(A.3) corresponds to the
volume density jA � c rot I of AmpeÁ re currents. In particular,

� jA�x
c
� qIz

qy
ÿ qIy

qz
�

X
k�l�m�n�1

�n� 1�!
k! �lÿ 1�!m!

Kz; klm
b

�xk�y lÿ1�zm

ÿ
X

k�l�m�n�1

�n� 1�!
k! l ! �mÿ 1�!

Ky; klm

c
�xk�y l�zmÿ1:

Changing the summation indices as l! l� 1 andm! m� 1
in the first and second sums allows combining them. This
gives

� jA�x
c
�

X
k�l�m�n

n!
k! l !m!

bx; klm

�
x

a

�k�
y

b

�l�
z

c

�m

;

where

bx; klm

n� 1
� Kz; k; l�1;m

b
ÿ Ky; k; l;m�1

c
:

It is easy to see that the irreducibility of the tensor K in
symmetric indices of the y and z components of the tensor
leads to the irreducibility of the x component of b. Indeed,

1

n� 3
�bx; k�2; l;m � bx; k; l�2;m � bx; k; l;m�2�

� 1

b
�Kz; k�2; l�1;m � Kz; k; l�3;m � Kz; k; l�1;m�2�

ÿ 1

c
�Ky; k�2; l;m�1 � Ky; k; l�2;m�1 � Ky; k; l�1;m�3� � 0 :

Obviously, the y and z components have similar properties.
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Thus, the density jA of the AmpeÁ re current corresponding
to magnetization (A.1)±(A.3) is the partial current density,
i.e., jA � j �n�.
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