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Spin physics in semiconductor nanosystems

E L Ivchenko

1. Introduction

The rapid development of nanotechnologies in the past two
decades has aroused sustained interest in semiconductor spin
physics (see Refs [1±3] for a review). The driving factor behind
this interest is the paradigm of using spin, an additional
degree of freedom of an electron, as a tool for the quantum
processing of information. In classical computing, the basic
unit of information is a bit, which, regardless of its particular

physical realization, takes one of the two mutually exclusive
values, either 0 or 1 (yes/no, yin or yang, etc.). A qubit
(q-bit, or quantum bit), similar to a bit, admits two
eigenstates, j0i and j1i. The difference between the bit and
the qubit is fundamentally that, whereas a bit can only be in
one of the available states, a qubit has the possibility of being
not only in one of the two basis states but also in any
normalized superposition of these:

jci � aj0i � bj1i; jaj2 � jbj2 � 1 ;

with the complex coefficients a and b. One of the qubit
implementation scenarios (of which there are many) uses the
spin �1=2 states of a charge carrier (an electron or a hole).
For pure quantum-mechanical states, the coefficients a, b and
the average projections of the electron spin onto the x-, y-,
z-axes of the Cartesian coordinate system are related by the
well-known expressions

sx�Re fa �bg ; sy�Im fa �bg ; sz � 1

2

ÿjaj2 ÿ jbj2� : �1�
The states of a qubit can be described by a vector s on the
Bloch sphere. A qubit can store much larger amounts of
information compared to a bit, the exact amount depending
on how accurately the position of the vector s is known. Spin-
dependent optical and transport phenomena and their
practical applications advancing the prospective technolo-
gies based on electron spin devices and apparatus are the
subject of the field generally known as spintronics. Semi-
conductor spintronics has as its tasks to study the orientation
(injection), accumulation, and detection of spins and their
ability to be optically and electrically controlled. While
spintronics is currently still in its infancy and in need of new
conceptual ideas to realize effective electron spin-based
devices, the attractive and exciting world of spin-dependent
phenomena is definitely worth exploring and, as is often the
case in other fields of physics, basic research will be sooner or
later translated into practical applications. This brief report
starts with a bird's eye view of spin-dependent phenomena
that are explored in the physics of semiconductor nanostruc-
tures, followed by a more detailed review of two groups of
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phenomena related to the optical control of electron spins in
planar arrays of quantum dots and to the magneto-optics of
single quantum dots.

2. Problems in spintronics

In this section we consider one by one the problems
(illustrated schematically in Fig. 1) whose solution will
potentially benefit the practical application of spintronics.
Sections 3 to 5 will provide some illustrative examples of how
electron spins can currently be controlled.

Effective g factor. This parameter, also know as the Land�e
factor, is key to describing the interaction of the electron spin
with the magnetic field (Zeeman effect). In a typical
semiconductor, the effective g factor is highly sensitive to
the band gap width and to the valence band spin±orbit
splitting. The bulk semiconductor values of the g factor vary
from �2 to ÿ50. In nanostructures, superlattices, quantum
wells, quantum wires, and quantum dots, the g factor is
strongly dependent on the shape and geometrical sizes of the
nanoobject. In a magnetic field B, the electron spin rotates
about the vector B with an angular velocity XB � gmBB=�h,
where mB is the Bohr magneton (Larmor precession).

The theory of the Zeeman effect in heterostructures
developed in the 1990s [4] yields the following formula for
the transverse electron g factor (gxx � gyy) in the lower
conduction subband of a quantum well (QW), quantum
wire (QWR), and quantum dot (QD) [5]:

g � g0 �
ÿ
gA�Ee1� ÿ g0

�
wA �

ÿ
gB�Ee1� ÿ g0

�
wB

� ÿgB�Ee1� ÿ gA�Ee1�
�
V3ÿd�R� f 2�R� : �2�

The notation here is as follows: g0 is the free electron g factor
(g0 � 2); d is the nanostructure dimensionality (d � 0; 1; 2 for
a QD, QWR, and QW, respectively); Vn is the generalized
volume (4pR 3

QD=3 for a spherical quantum dot of radiusRQD,
pR 2

QWR for a cylindrical quantum wire of cross-section radius
RQWR, and 2RQW for a quantum dot of width a � 2RQW);
A(B) stands for the composite material the well (barrier) is
made of; Ee1 is the dimensional quantization energy of the
ground state electron (e1) as counted from the conduction
band bottom of material A; wA (wB) is the probability of
finding the electron in material A (B); gA�E� � g�E� and
gB�E� � g�Eÿ DEc�:

g�E� � g0 ÿ 4

3

jpcvj2
m0

D
Eg�Eg � D� � Dg ; �3�

Eg is the band gap width; D is the valence band spin±orbit
splitting; DEc is the conduction band discontinuity at the A/B

interface; pcv � hSj p̂xjX i is the interband matrix element of
the momentum operator calculated between the orbital Bloch
functions G1 and G15; Dg is the remote band contribution to
the g factor treated as a small fitting parameter, and, finally,
f �R� is the boundary value of the electron envelope wave
function.

Figure 2 reproduces a comparison taken from Ref. [6] of
the experimental data on the electron g factor in quantum dot
structures with the calculated results based on the theory
developed in Refs [4, 5]. The theory of the longitudinal
g factor (gzz) of light holes in quantum wells has recently been
presented in Ref. [7].

Spin splitting of dimensional quantization subbands. In a
d-dimensional medium (d � 1, 2, 3) with no inversion center,
free carrier states are spin-split. In particular, the effective
Hamiltonian for quantum dot electrons in the lower dimen-
sional quantization subband e1 contains, in addition to the
standard parabolic dispersion �h 2�k 2

x � k 2
y �=2m � (m � is the

effective mass), spin-dependent terms linear in the wave
vector [8, 9]:

H�1�k � blmsl km �4�

(where sl are Pauli matrices), which have the effect that, even
in the absence of amagnetic field, the spin of an electron in the
state with wave vector k precesses at an angular frequencyXk

with components Okl � 2blmkm=�h. The fact that the compo-
nents blm of the pseudotensor are electric field-dependent
allows the spin to be controlled by both a magnetic and an
electric field. The theory of the spin splitting of electronic
subbands is described in book [10], which also includes a basic
bibliography on the topic. In centrosymmetric bulk semi-
conductors, for example, in Si crystals, symmetry prevents
such splitting. However, there is no inversion center in an Si
quantum dot with an odd number of atomic planes, so that
the splitting is nonzero; the components of the corresponding
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Figure 1. Purposes (center) and problems of spintronics.
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tensor b were calculated using the microscopic strong
coupling method [11].

Spin relaxation. Spin relaxation time is another key
parameter in spintronics. In semiconductor quantum wells,
spin relaxation is predominantly via the Dyakonov±Perel
mechanism, due to spin precession with angular frequency
Xk (see above). An electron scattering from a state with wave
vector k to that with k 0 changes the direction of its axis of
rotation, resulting, as the electron undergoes multiple
successive collisions, in its spin vector exhibiting random
diffusive motion over the Bloch sphere. But this is exactly
spin relaxation, because diffusive random walk reduces the
average spin value exponentially. Prior to Ref. [12], the
corresponding relaxation time was believed to be determined
by the transport relaxation time for defect or phonon
scattering, i.e. by the mobility-determining time. In Refs [12±
14] it was shown that, while electron±electron collisions have
no effect on the mobility, they have an effect on the spin
relaxation time. Indeed, for an electron to change the
direction of its wave vectorÐand hence the direction of a
spin precession axisÐ it does not matter whether the
scattering is by a defect, a phonon, or another electron. As
seen from Fig. 3, which compares theoretical and experi-
mental results, the Dyakonov±Perel relaxation is due to
electron±electron collisions in perfectly doped quantum well
structures at temperatures between 10 K and 100 K.

Fine structure of exciton energy spectrum. What is
commonly referred to as a mechanical exciton is a bound

electron±hole state calculated by allowing only for the direct
pairwise Coulomb interaction in the semiconductor. Because
electron (hole) states in a quantum dot are (doubly) spin-
degenerate, the ground state of a mechanical exciton is
fourfold degenerate. Including the exchange electron±hole
interaction removes the degeneracy of the exciton level, at
least partially. The theory of the fine structure of exciton
states in semiconducting structures can be found in books [10,
15] and review paper [16] (see also original paper [17]). In
Section 5, the nanostructure potential shape and the crystal-
lographic orientation of the quantum dot will be discussed in
terms of how they affect the splitting behavior of the exciton
sublevels, and new experimental and theoretical results will be
presented on the spin properties of unstrained GaAs/AlGaAs
(111) quantum dots [18].

Emission of entangled photon pairs. In quantum dots
possessing D2d (D3h, C3v) symmetry, there is a twofold
degeneracy for the exciton sublevels that are optically active
in the directions normal to the growth axis. The photolumi-
nescence of biexcitons in such dots allows entangled photon
pairs to be generated that are described by the wave function

1���
2
p

�
js�ibiexc jsÿiexc � jsÿibiexc js�iexc

�
; �5�

where js�ibiexc is a photonwith polarization s� or sÿ, emitted
due to biexciton recombination with the production of a
photon and an exciton, and js�iexc is the second photon
emitted on the recombination of the remaining exciton, with
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Figure 3. Temperature dependence of an electron spin relaxation time for four GaAs/AlGaAs quantum dot structures with electron concentrations:

1:75� 1011 cmÿ2 (a), 2:3� 1011 cmÿ2 (b), 3:1� 1011 cmÿ2 (c), and 3:3� 1011 cmÿ2 (d). Experimental results are marked by squares. Solid and dashed

lines are calculated, respectively, with and without account for electron±electron collisions. In either case, account was taken of electron scattering by

defects and phonons, which is described by the momentum relaxation time tp determined independently from transport measurements [14].
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polarization being opposite to that of the first photon. Due to
the interparticle interaction, the two phonons differ in energy
by 1±2 meV and are distinguishable spectroscopically. In
quantum dots of lower symmetry, the radiation doublet splits
into two linearly polarized dipoles, resulting, if the splitting
exceeds the uncertainty �h=t (t is the exciton lifetime), in the
disappearance of entanglement, i.e. of coherence between the
two bracketed states in expression (5). References [19, 20]
consider two independent mechanisms, one paramagnetic
and one diamagnetic, in which a magnetic field suppresses
the original splitting of the radiation doublet.

Coupled spin±spin systems. What in particular distin-
guishes quantum dots from quantum wells (or wires) is the
absence of free two-dimensional (or one-dimensional) motion
in them and the fact that the Dyakonov±Perel spin relaxation
mechanism does not work. However, with as many as
105ÿ106 host lattice nuclei in a typical quantum dot, the
random nuclear spin exerts influence on the electron spin in
this case [21]. Given the optical orientation of the electrons,
the nuclear spins can also be polarized, thus giving rise to a
coupled spin±spin system, a subject of active research in
recent years (see, for example, Refs [22, 23]).

Spin noise. Noise determines the minimum signal ampli-
tudes which can be processed with themeans of electronics (in
particular, spintronics). Moreover, the study of spin fluctua-
tions provides independent information about the properties
of the spin system in equilibrium and nonequilibrium
conditions. While fluctuations of the free carrier spin
polarization in semiconductors have been under theoretical
study since the 1970s [24], it is only relatively recently that spin
noise was detected in experiments on semiconductors (see
Ref. [25] for a review)Ðmany years, incidentally, after a
similar observation in atomic physics back in 1981 [26].
Under equilibrium conditions, the spectral fluctuation
density has the Lorentzian form

hds 2i io �
1

2

nts
1� �ots�2

; �6�

where n is the electron concentration, ts is the electron spin
relaxation time, and i � x; y; z. In a magnetic field B, the spin
polarization has its transverse component ds ? B fluctuating
according to formula (6), with the frequencyo replaced by the
difference oÿ OB. As a result, the spectral peak shifts from
point o � 0 to the Larmor precession frequency OB, which is
exactly what is observed in a 2D electron gas [25]. A similar
phenomenon has been observed for an assembly of quantum
dots [27]. Some theoretical aspects of spin fluctuations in
quantum wires were treated recently in Ref. [28].

Spin photogalvanics. Similar to wheel or propeller rotation
converting to translation, gyrotropic media allow the conver-
sion, direct or inverse, of the angular momentum into
translational motion. In the electron Hamiltonian, it is the
spin-dependent terms linear in k [see formula (4)] which
incorporate this possibility and, hence, account for the circular
photogalvanic effect theoretically predicted inRef. [29] in 1978
(more details are in paper [30] and books [10, 15, 31]).

3. Faraday and Kerr spin effects

Currently, themost popular optical spectroscopy approach to
the study of electron spin orientation in nanostructures is to
adopt the two-beam pump±probe method. Theoretical paper
[32] was apparently the first publication to suggest applying
this method to bulk semiconductors. The paper considered

two monochromatic beams: one highly intensive and circu-
larly polarized, which is responsible for the optical orientation
of electron spins, and the other polarized linearly, which acts
as a probe. The aim was to study how the probe beam rotates
its polarization plane in the transmission geometry (the so-
called Faraday spin effect) or in the reflection geometry (Kerr
spin effect) (the magnitude of rotation being proportional to
the induced electron spin). The current pump±probe setup
uses short, picosecond pulses and measures the angle of
rotation y of the probe pulse polarization plane as a function
of the interpulse time delay t (Fig. 4a).

4. Spin synchronization in an assembly
of charged quantum dots

Figure 4b shows the beats of the spin Faraday rotation and
induced ellipticity signals measured at a temperature of 4 K
as a function of time delay t on an array of charged
InGaAs/GaAs quantum dots. The sample under study,
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Figure 4. (a) Schematic setup for measuring the rotation angle of the probe

beam polarization plane in the spin Faraday effect induced by a circularly

polarized pump beam. (b) Ellipticity and Faraday rotation temporal
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subjected to a transverse magnetic field (B � 4 T, and
Larmor precession period � 33 ps), was periodically excited
by short circularly polarized pump pulses at a repetition
period TR � 13:2 ns, with the periodic probe pulse train
shifted by time t (see Ref. [34]). In the performance of an
experiment it was possible to vary the mismatch between the
carrying frequencies of the pump pulses (oP) and the probe
pulses (opr). The pump pulse can cause a so-called trion to
form in the quantum dot, namely a system of two opposite-
spin electrons and a heavy hole. Because the trion recombina-
tion time equals� 0:4 ns, most of the time each quantum dot
contains one electron, whose optical orientation is precisely
what produces the spin Faraday effect. Increasing the delay t
decreases the amplitude of the spin beats. The reason for this
loss of spin coherence does not relate to the time of the actual
spin relaxation, which greatly exceeds the repetition period
TR, but rather is due to the spread in the electron Larmor
precession frequencies in the excited quantum dots, whose
resonance frequency o0 differs from the carrying frequency
oP by no more than the inverse pulse duration tÿ1p .
Surprisingly, at first sight, the occurrence of a signal at
negative values of t (Fig. 4b). To describe this unusual effect,
a microscopic theory was developed [35] to account for the
excitation and measurement of long-lived spin coherence and
how to control it in singly charged quantum dots by using
short-duration optical pulses in the pump±probe mode. As
seen from Fig. 4b, calculations for negative values of t using
this theory agree well with the experiment.

The key stages of the theoretical treatment are briefly as
follows. The starting point is to find out the effect of a short-
duration pulse on a single, charged quantum dot. The
resonance approximation yields the following equations:

i�h _c3=2 � �ho0c3=2 � V��t�c1=2 ; i�h _c1=2 � V ���t�c3=2 ;

i�h _cÿ3=2��ho0cÿ3=2 � Vÿ�t�cÿ1=2 ; i�h _cÿ1=2�V �ÿ�t�cÿ3=2 :
Here, c�1=2 and c�3=2 are the respective detection probability
amplitudes of a single spin�1=2 electron or a hole spin�3=2
trion in the quantum dot, V��t� � ÿ

�
d�r�Es��r; t� d3r are

the interaction matrix elements with the electric field Es��r; t�
of the right and left circularly polarized light wave, and
_c � qc=qt. The optical transition dipole moment, a quantity
characterizing the efficiency of interaction, is given by

d�r� � ÿi epcv
o0m0

F�r; r� ; �7�

where e is the electron charge, andm0 is the free electronmass.
The two-particle envelope F is defined as

F �r; r� � jh�r�j �tr�e �r�
�
d3r 0je�r 0�j �tr�e �r 0� ; �8�

where j �tr�e and jh are the electron and hole one-particle
enveloping functions in the trion, respectively, and je is the
envelope of the single (resident) electron in the quantum dot.

The spin S� of an electron after being acted by the pump
pulse is related linearly to the spin Sÿ at the moment when the
pulse with polarization s� arrives:

S�a � LabSÿb �
Q 2 ÿ 1

4
daz ;

L̂ �
Q cosF Q sinF 0
Q cosF ÿQ sinF 0

0 0
Q 2 � 1

2

2664
3775 : �9�

For rectangular pulses with f �t� � V��t� exp �ioPt�=�h � f0
for jtj < tp=2, and f �t� � 0 outside this interval, we obtain

Q �
�����������������������������
1ÿY 2

x 2
sin2

x

2

s
; F � pyÿ f ; �10�

where Y � 2f0tp, x �
��������������������������
�2py�2 �Y 2

q
is the effective Rabi

frequency, y � �oP ÿ o0� tp=2p is the dimensionless fre-
quency mismatch, and sinf � �y=Qx� sin �x=2�. In a mag-
netic field Bkx, the transverse spin components oscillate:
Sb�Dt� � Mbg�Dt�S�g , where the time Dt is measured from
the moment at which one of the periodic pump pulses arrives,
and where the nonzero components of the matrixM have the
formMyy�Mzz�cos �OBDt�,Mzy�ÿMyz�sin �OBDt�, and
Mxx�1. As a result, the following closed linear equation can be
utilized to find the stationary value of the vector S�:

S�a � LabMbg�TR�S�g � daz
Q 2 ÿ 1

4
:

A similar computation yields the probability amplitude
corrections dc�1=2, dc�3=2 linear in the probe pulse electric
field, thus allowing the angle of rotation y to be calculated by
first finding the spin-dependent amplitude corrections for the
transmitted (or reflected) probe pulse and then summing
them over the quantum dots.

Quantum dots with a Larmor precession period that is a
multiple of TR, i.e. OBTR � 2pN (where N is an integer),
exhibit a resonant accumulation of spin and contribute
dominantly to the spin Faraday rotation. Due to the spread
in the frequency OB, the commensurability condition is
satisfied by quantum dots with N's differing by �1, �2; :::.
Thus, the attenuation of the signal upon increasing t > 0 is
due to the fact that in quantum dots with different values of
N, electron spins rotate with different angular velocities.
However, by the time of the arrival of the next pump pulse,
the spins steadily align themselves along the z-axis. This
phenomenon is similar to the synchronization of laser
modes [36].

5. Spectroscopy of single quantum dots

In a quantum dot grown along the [001]-axis and character-
ized by the point symmetry C2v, the electron and hole ground
states transform according to the equivalent spinor represen-
tations G5 (or, in an alternative notation, E 0). In the absence
of exchange interaction, the ground state of an exciton e1 ±
hh1 is fourfold degenerate [37]. The exchange interaction
between an electron and a hole removes the degeneracy
completely and leads to the splitting of the exciton level to
the sublevels G1, G2, G3, G4 (or, accordingly, A1, B1, A2, B2 in
other notations of irreducible representations). In Cartesian
coordinates (x1 k�1�10�; y1 k �110�; zk�001�), the states G2 and
G4 are optically active for ekx1 and eky1 polarizations,
whereas transitions to the other two states, G1 and G3, are
forbidden for e ? z. In a longitudinal magnetic field Bkz, the
pair of states G1, G3 undergoes mixing, as does the pair G2,
G4 Ðbut there is no mixing between the pairs of sublevels.
Therefore, the absorption or emission spectra exhibit two
lines linearly polarized in the absence of a magnetic field, and
circularly polarized in a strong longitudinal magnetic field.
For a similar reason, only two of each four processes
�Xÿ; j � ! �e1; s� and �X�; s� ! �hh1; j � are permitted in
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the radiative recombination of a trion Xÿ (two singlet-state
electrons and a heavy hole) or a trion X� (two singlet-state
holes and an electron) in an external longitudinal magnetic
field, so that the emission spectrum exhibits doublets, not
quartets. Here, s; j are the indices of the split Zeeman
sublevels of a trion or a single carrier in a quantum dot.

GaAs/AlGaAs quantum dots grown along (111) direc-
tion obey totally different selection rules. Figure 5 displays
the photoluminescence spectrum of an individual quantum
dot for stationary over-barrier optical excitation. In this
case, time-integrated spectra contain both emission lines of
neutral excitons X0 and those of trions Xÿ and X�. As seen
from the figure, in a longitudinal magnetic field Bjj�111�,
instead of doublets comprising circularly polarized s� and
sÿ lines, one observes a quartet, two lines of which are right-
hand circularly polarized, s�, the other two being left-hand
circularly polarized, sÿ. The fact that quantum dots grown
along [001]- and [111]-axes differ in the structure of their
photoluminescence spectra is naturally explained by the
difference in their symmetry point groups C2v and C3v. It
should be remembered that in the C2v group the heavy hole
states j � 3=2i transform according to the two-dimensional
irreducible representation G5, and the direct product
G5 � G �5 � G1 � G2 � G3 � G4 contains only one representa-
tion G3, according to which the magnetic field component Bz

transforms. In C3v, the states j � 3=2i form the basis of the
reducible representation D � G5 � G6, and the direct pro-
duct D�D� � 2G1 � 2G2 includes two representations G2,
according to which the component Bz 0 (z

0 k �111�) transforms
in this group. As a result, the Zeeman Hamiltonian in the
field Bk�111� is described by two linearly independent
parameters gh1, gh2, and the basis j� 3=2i has the form of a

2� 2 matrix:

HB � 1

2
mB Bz 0

gh1 gh2
gh2 ÿgh1
� �

: �11�

The eigenvalues of the matrix (11) are given by

E� � �gh mB Bz 0 ; gh �
�������������������
g 2
h1 � g 2

h2

q
; �12�

and the corresponding eingenfunctions can be reduced to the
form

jh;�i � C1

���� 32
�
� C2

����ÿ 3

2

�
;

jh;ÿi � ÿC2

���� 32
�
� C1

����ÿ 3

2

�
with the coefficients

C1 �

��������������������������������������������
1

2
1� gh1�������������������

g 2
h1 � g 2

h2

q
0B@

1CA
vuuuut ;

C2 � sign �gh2�

��������������������������������������������
1

2
1ÿ gh1�������������������

g 2
h1 � g 2

h2

q
0B@

1CA
vuuuut :

It should be noted that the coefficients C1, C2 are
independent of the magnetic field. For C2 6� 0, a spin 1/2
(or ÿ1=2) electron can recombine both with a hole jh;�i
and with a hole jh;ÿi to emit a sÿ (or s�) photon. Thus, all
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Figure 5. Photoluminescence (PL) spectrum of a single GaAs/AlGaAs (111) quantum dot measured in a magnetic fieldBz 0 � 5 T in the emission range of

trion X� (a), trion Xÿ (b), and neutral exciton X0 (c); k is taken as a conditional intensity measurement unit. Circles and squares show the right and left

circularly polarized emission lines, respectively. (d±f) Change in the position of the corresponding emission line with increasing magnetic field [18].
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four transitions turn out to be optically active, whereas in
(001) quantum dots the parameter gh2 is zero, implying that
C2 � 0 and that only two recombination processes are
allowed. It should be emphasized that the mixing effect of
�3=2 states in a longitudinal magnetic field can show its
worth in trigonal systems with arbitrary dimensionality
d � 0ÿ3, including an exciton in Ge crystals formed by an
L-valley electron and a G�8 hole and bound on a neutral
donor [38].

A nonzero value gh2 of the g factor can be obtained by
noting that in bulk zinc blende lattice semiconductors the
Zeeman interaction of G8 holes with a magnetic field is
described by the Hamiltonian

H�G8�
B � ÿ2mB

h
kJB� q�J 3

x Bx � J 3
y By � J 3

z Bz�
i
; �13�

which contains two dimensionless coefficients, k and q. Here,
x; y and z are the crystallographic axes [100], [010] and [001],
and Jx, Jy, and Jz are the angle momentummatrices in the G8

basis. Let us go over in Hamiltonian (13) to the coordinates
x 0 k �11�2�, y 0 k ��110�, z 0 k �111� and introduce the basis functions
j3=2i0, j ÿ 3=2i0, which transform according to the reducible
representation D � G5 � G6 of the C3v group. Then, the
Zeeman splitting in the field Bk�111� will be described by a
2� 2 matrix with gh1 � ÿ6k, and gh2 � 2

���
2
p

q.
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Spin transport in heterostructures

L E Golub

1. Introduction. Spin splittings

In the absence of an external magnetic field, electronic states
can be spin-split if the system has no space inversion center.
The reason for these spin splittings is the spin±orbit interac-
tion. The simplest example of a noncentrosymmetric medium
is a surface. TheHamiltonian of the spin-orbit interaction in a
half-infinite medium assumes the following (Rashba [1, 2])
form:

Hso � a�r � k� n : �1�

Here, the vector r is composed of Pauli matrices, k is the
electron wave vector, a is a certain number, and n is a unit
normal vector to the surface. This form of such spin±orbit
interaction occurs in various noncentrosymmetric semicon-
ductors, metals, and superconductors.
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In addition to expression (1), an interaction of a different
formÐDresselhausÐoccurs in heterostructures grown
from noncentrosymmetric semiconductors (for example,
GaAs). The Hamiltonian of any type of such interaction has
the form Hso / si kj, si kj kl km and can be conveniently
written down in the Zeeman form

Hso � �h

2
r X�k� : �2�

Here, the effective Larmor frequency X�k� is a pseudovector
odd in k. The spin splitting energy is Dso�k� � �hjX�k�j. The
directions of X�k� in k space for the Rashba interaction are
shown by arrows in Fig. 1a. In real heterostructures, both
types of splitting exist. Their interference results in suppres-
sing electron spin relaxation for one of the spin orientations in
the plane of a structure grown along the [001] direction if the
Rashba and Dresselhaus fields are equal in magnitude [3±5].
Based on these ideas, a model of a spin transistor capable of
realizing diffusive spin transport was proposed [6].

2. Weak localization of electrons
and exciton polaritons

A transport phenomenon which clearly displays spin split-
tings is weak localizationÐan effect consisting in enhanced
backward scattering due to the interference of the incident
and scattered waves. There are a variety of pathways for a
wave propagating through a system of scatterers, some of
them forming a special class of self-intersecting or loop-
containing trajectories. Trajectories with loops following
clockwise and counterclockwise are accounted for indepen-
dently, and the phase incursions of the wave passing along
these trajectories are equal. As a result, the waves reflected
after passing along two such trajectories interfere, and the
passage through a system of scatterers becomes less probable
than in a classical calculation. Such a reduction in passage is a
localization in character, even though it occurs for freely
propagating particles, which is the reason why this phenom-
enonÐenhanced backward scatteringÐcame to be known
as the weak localization effect.

Because of their wave properties, electrons also exhibit
this effect, if to a small degree. In electronic systems, weak
localization shows its worth as a decrease in conductivity, as
opposed to the classical Drude value scl. The correction to the
conductivity due to the weak localization is equal to
DsWL � �l=l � scl, where l is the de Broglie wavelength, and
l is the electron mean free path. As a result, we have
DsWL � e 2=�h [7].

What is remarkable about the correction DsWL is its
sensitivity to a classically weak magnetic field which does
not produce a considerable Lorentz force. The field depen-
dence is due to the fact that electron waves that have passed a

self-intersecting trajectory in two opposite directions differ in
phase by an amount equal to the magnetic field flux through
the loop. As a result, the field destroys the wave interference,
and the conductivity returns to its classical value, i.e.
increases. There are a variety of semiconductors, metals, and
heterostructures that exhibit positive magnetoconductivity or
negative magnetoresistance. This magnetoresistance is
referred to as anomalous due to its strong dependence on the
magnetic field and temperature.

The presence of spin splittings we touched upon in the
Introduction changes the weak localization picture markedly.
From Fig. 1a it is seen that, if the spin follows the change in
the effective field X, a clockwise or counterclockwise path
tracing imparts to the electron a (Berry) phase equal to �p.
Considering the existence of an electron spin, this difference
in sign is significant, because the wave function of a backward
scattered electron differs by a factor � i from the incident
wave function. As a result, the constructive interference
becomes destructive, the backward scattering is suppressed
rather than enhanced, the correction to the conductivity is
positive, and the magnetic field destroying this correction
leads to positive magnetoresistance. Because all this is
opposite to the spinless case, this mode of electron behavior
is called weak antilocalization. In the case of moderately
strong spin±orbit interaction, when Dso is much less than the
Fermi energy, the time between collisions is too short for an
electron to fully align along the field X, so that magnetore-
sistance is sign-variable and is represented by a curve with a
maximum.

The mid-1990s theory [8] of weak localization for
heterostructures with Rashba and Dresselhaus (see Eqn (2))
spin splittings was successful in describing magnetoresistance
in low-mobility heterostructures available at the time [9].
Anomalous magnetoresistance was typically observed in
much weaker magnetic fields than the `transport' field in
which the magnetic length becomes equal to the electron
mean free path, Btr � �h=�2el 2�.

However, starting from the 2000s, experimental studies
began to appear that demonstrated anomalous magnetore-
sistance in fields B9Btr. The application of the theory
developed in Ref. [8] sometimes led to meaningless fitting
parameters. Especially challenging for theorists was the
finding [10] that the formulas of Ref. [8] produce different
fitting parameters for the decreasing and increasing portions
of the magetoconductivity curve. It became clear that high-
mobility heterostructures require for their description a new
expression for anomalous magnetoresistance, which is suita-
ble for both the diffusion and ballistic modes of weak
antilocalization.

It was Ref. [11] which came up with the new theory. In the
presence of the spin±orbit interaction (2), an electron which
resided in one of the spin states jai before tracing the loop is,
generally, in a different state, jbi, after tracing it due to the
spin having rotated in the effective fieldX. In accordance with
the electron spin having two possible projections onto the
growth axis before and after the loop tracing (a; b � �1=2),
there are four interferential contributions to the conductivity.
It is convenient to introduce two variables, the total electron
moment S before and after tracing the loops, and its
projection m onto the heterostructure growth axis. It turns
out that the interference is constructive or destructive if,
respectively, the electron spin states form a singlet (S � 0,
m � 0) or a triplet (S � 1, m � 0, �1) before and after the
loop tracing. The correction to the conductivity is calculated

kx

ky
a b

kx

ky

Figure 1. Effective magnetic fieldX�k� for electrons (a) and polaritons (b).
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by the Green function method. In a magnetic field, the
probability of backward scattering is calculated as a function
of Landau level indices N. Whereas in the singlet channel all
Landau levels contribute independently, in the triplet channel
contributions from different levels are engaged. For example,
independent contributions in the case of the Rashba interac-
tion come from the states �N;m� with equal N�m: �N; 1�,
�N� 1; 0�, and �N� 2;ÿ1�, whereas in the case of the
Dresselhaus interaction they come from those with equal
Nÿm. In either case, the triplet contribution to the con-
ductivity is described by the trace of a third-rank matrix [11].
According to the new theory, the magnetoconductivity may
have its minimum equally well in fields larger and smaller
than Btr. For B4Btr, the magnetoconductivity comes to the
asymptotic value

DsWL � ÿ0:25
������
Btr

B

r
e 2

�h
;

whatever the magnitude of the spin±orbit interaction.
The theory proved successful in describing experimental

data on anomalous magnetoresistance in various hetero-
structures [12, 13]. Experimental results described by the
theory for various temperatures and various concentrations
of two-dimensional electrons are reviewed in Ref. [14].

Reference [15] considers anisotropic spin splitting for the
case with both the Rashba and Dresselhaus contributions
present. In this case, the contributions toDsWL from different
Landau levels do not break up in groups, and the triplet
contribution is described by an infinite-rank matrix. In the
case of a spin splitting cubic in the wave vector, which occurs
for a high electron concentration, the triplet contribution is
made by trios of states with equal values of N� 3m [15]. The
expressions obtained are also valid for hole type quantum
wells, for which spin splitting is also cubic in the wave vector.
The anomalous magnetoresistance in hole heterostructures
has recently become a subject of study for several experi-
mental groups simultaneously.

Weak localization comprises a wave interference phenom-
enon and, as such, also occurs for light. A suitable hetero-
structure system to study light interference is the microcavity.
Experiments on the Rayleigh scattering of exciton polaritons
demonstrate the enhancement of backward scattering [16]. In
polarization-resolved measurements, light of different polar-
izations excites different polariton states. These are conveni-
ently described by introducing the pseudospin vector S
composed of the polarization Stokes parameters. The long-
itudinal±transverse splitting of polaritons is described by the
same Hamiltonian (2) as the electron spin splitting, with the
important difference that the effective Larmor frequency of
polaritons is quadratic in their momenta in the microcavity
plane, k. Its directions in k space are shown in Fig. 1b. Due to
the evenness ofX�k�, the Berry phaseÐa phase incursion of
a polariton as it traces a loopÐequals 2p (if the spin follows
the direction of X) rather than p, as for electrons. Therefore,
polariton interference is constructive, backward scattering is
enhanced, and localization takes place. As a result, backward
scattering increases in intensity compared to scattering
through other angles [17].

In polarization-resolved experiments, the scattering of
polaritons with a fixed pseudospin projection can be studied
separately. This makes a polariton system advantageously
different from its electronic counterpart, in that in the latter
the only quantity which is measured is the conductivity equal

to a sum of the singlet and all the triplet interferential
contributions. It turns out that for a pseudospin oriented in
the microcavity plane (light is polarized linearly), the back-
ward scattering intensity enhances, whereas for the pseudos-
pin directed along the growth axis (circular polarization of
light) it shows a dip [18]. If the cavity is nonsymmetric, the
longitudinal±transverse splitting becomes anisotropic with
respect to various directions of k in the plane of the
structure, resulting in the difference in backscattering for
two linear polarizations. Further still, interferential effects act
to convert linear polarization to circular [18].

The presence of a longitudinal±transverse splitting also
affects the classical dynamics of polarization in microcavities
in which the multiple elastic light scattering mode is realized
[19]. This requires that the polariton elastic scattering time t1
be much shorter than the lifetime t0. The kinetics of a
polariton pseudospin is described by the equation [17]

Sk

t0
� Sk �X�k� � Sk ÿ hSki

t1
� gk : �3�

Here, Sk is the pseudospin of a polariton with a wave vector k,
the angular brackets stand for averaging over the directions
of k, and gk is the generation rate to the k state. Pseudospin
rotations in the field X�k� lead to the emission of circularly
polarized light when the exciting polarization is linear.
Instead of the labor-consuming computer calculations that
were done in Ref. [19], the kinetic theory of Ref. [18] can be
used to describe the experimental results.

3. Spin orientation by electric current

The conversion of linearly polarized radiation to circularly
polarized one is a special case of themore general transforma-
tion of translational motion to rotational. In electronic
systems, an example of such a phenomenon is the electric
current-assisted orientation of spin.

The appearance of spin s due to the flow of electric current
with density j is described phenomenologically by the equality

si � Qim jm ; �4�

where Q̂ is a second-rank pseudotensor. This relation applies
only to gyrotropic media. Although bulk GaAs type semi-
conductors are not gyrotropic, the fact is that, virtually
regardless of the material used to grow a heterostructure, its
Q̂ has nonzero components. Symmetry analysis shows that if
gyrotropy is due to the structural asymmetry of the system
(similar to the Rashba splitting), the spin aligns along the
plane of the structure perpendicular to the current (Fig. 2a).
The absence of a spatial inversion center in a bulk material
(for example, in GaAs) leads, in addition to Dresselhaus

a b c

jx

jy

Figure 2. Spin orientation by current in (z-axis grown) heterostructures

with strong structural asymmetry (a), and in A3B5 quantum dots with

zk�001� (b) and zk�110� (c).
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splitting, to the possibility of a spin being oriented by an
electric current. In this case, the effect is crystallographically
sensitive. In A3B5 heterostructures grown along the cubic
[001]-axis, the current orients the spin to lie in the plane, as
shown in Fig. 2b: parallel or perpendicular to the current
depending, respectively, on whether the current flows along
the axes [100], [010] or along [110], [1�10]. In [110]-grown
heterostructures, a current flowing along the [1�10]-axis causes
the spin to align along the growth axis (Fig. 2c).

Experimental studies of current-assisted spin orientation
were carried out on heterostructures grown fromGaAs, InAs,
ZnSe, and GaN in different crystallographic directions [20±
22].

The microscopic mechanism of spin orientation by
current is related to the spin±orbit splitting (2). In an external
electric field E, the electronic system acquires a drift
quasimomentum kdr � eEttr=�h, where ttr is the mobility-
controlling transport relaxation time. The presence of a
finite quasimomentum formally implies a nonzero spin
splitting D so�kdr� � �hX�kdr� due to the effective magnetic
field. As a result, spin polarization emerges, which, by
analogy with the Zeeman effect, can be represented in the
form

s � ÿc D so�kdr�
�E

; �5�

where �E is the average electron energy equal to the Fermi
energy or the temperature in the degenerate and Boltzmann
cases, respectively.

For a system in a real magnetic field, the constant cwould
be 1/4. For spin orientation by an electric field, this coefficient
is also on the order of unity. However, a difference shows up
in this case between the thermodynamic effect of spin
orientation by a magnetic field and the kinetic effect of
electric current-assisted spin orientation. In the presence of
an electric field, the electron distribution in k space undergoes
a shift in any of the spin branches and, taking into account the
spin±orbit splittings of the energy spectrum, has the form
shown in Fig. 3a. However, until there is no coupling between
the spin subsystems, the spin up and spin down electrons are
equal in number, thus preventing the appearance of an
average spin. It is spin relaxation which allows the spin
subbands to `communicate'. The arrows in Fig. 3a indicate
spin flip processes. It is seen that, if the probability of a spin
flip scattering event depends on the momentum transfer, spin
generation will occur: transitions from the spin-up subband
to the spin-down subband and those in the opposite direction
will occur at different rates. However, because spin relaxation
is controlled by the same processes, the spin flip probability
does not affect the stationary value of spin. This leaves us with
formula (5) as the correct oneÐwith the caveat, however,
that theoretical studies (of which there are many) yield
different values for c (for a review, see Ref. [23] and
references cited therein). The spread is due to the fact that
the degree of spin orientation depends on the ratio of the spin
to energy relaxation rates. If energy relaxation processes are
faster than those of spin relaxation, they rapidly mix spin
between electrons of different energies. In this case, the spin
distribution over energy is equilibrium, albeit c � 1=2, i.e.
twice the value in a real magnetic field. In the opposite limit of
slow energy relaxation, spin establishes itself for each energy
independently. Although this results in c � 1=4, the distribu-
tion of spins over the energy is nonequilibrium [23]. Experi-
mentally, energy relaxation processes are slow at tempera-

tures from 4±10 K, but at higher temperatures energy
relaxation becomes faster than the spin relaxation. For
comparable values of energy and spin relaxation times, the
coefficient c ranges between 1/4 and 1/2.

Of interest is the case of symmetrically doped (110)
quantum wells. In such systems, symmetry allows the normal
spin component to be oriented by a current flowing along the
�1�10�-axis, but the Rashba spin splitting is zero, and the
Dyakonov±Perel spin relaxation is absent. Allowing fluctua-
tions in the position of a doping impurity makes a quantum
well locally nonsymmetric, resulting in the fluctuation of the
spin±orbit interaction and giving rise to spin relaxation [24].
This also enables current-assisted spin orientation but,
remarkably, the coefficient c in formula (5) becomes a
function of the correlation length of the spin±orbit field
fluctuations [23]. Also of interest are the kinetics of current-
assisted spin orientation in such a system, in particular, the
fact of their becoming nonmonoexponential for slow energy
relaxation [23].

Two-dimensional topological insulators realizable, for
example, on the surface of three-dimensional Bi2Se3 com-
pounds, are yet another class of systems allowing for spin
orientation by current. The electronic spectrum of such
systems is linear in the two-dimensional wave vector and is
described by the effective Hamiltonian (1). Importantly,
because of the absence of terms quadratic in k, contribution
(1) is not a small correction in this case. Spin in topological
insulators is oriented perpendicular to the current (see
Fig. 2a), and its magnitude is s � kdr=�2kF�, with kF being
the Fermi wave vector [23]
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Kinetic and discrete turbulence
on the surface of quantum liquids

L V Abdurakhimov, M Yu Brazhnikov,
A A Levchenko, I A Remizov, S V Filatov

1. Introduction

Wave turbulence is a nonequilibrium state in a system of
interacting nonlinear waves in which the energy pumping and
dissipation ranges are well separated in the wave number
space. A turbulent state is characterized by a directed energy
fluxP in the k-space.Wave turbulence states can be realized in
many nonlinear systems, for example, in plasmas [1],
magnetic systems in solids [2], and on the surface of seas and
oceans [3]. In our experiments, we explore the turbulence in a
system of capillary waves, where surface tension plays the
main role. Waves on a water surface are conventionally
referred to as gravity waves if their wavelength exceeds
17 mm, and as capillary waves otherwise.

The frequency o of capillary waves on the surface of a
liquid is defined by the modulus of the wave vector k together
with the surface tension coefficient s and fluid density r:

o �
�
s
r

�1=2

k 3=2 : �1�

Dispersion law (1) for capillary waves is of a decaying type,
i.e., it permits the three-wave processes of wave decay into
two waves or coalescence of two waves into a single wave

while such that the energy and momentum are conserved,

o1 � o2 � o3 ; k1 � k2 � k3 : �2�

When the surface of a liquid is excited by an external force,
a turbulent state can develop in the system of capillary waves,
in which the energy flux P in the k-space is directed from the
pumping range toward large wave numbers (high frequen-
cies), forming a direct cascade. Under the assumption that
wave interactions are weak and hence the main contribution
to energy transfer comes from three-wave processes, the
theory of (weak) wave turbulence [4] predicts a power law
for the energy distribution over frequencies, E�o� � oÿ3=2.

However, exploring the energy frequency spectrum in
experiments with capillary waves is a rather difficult task.
From the standpoint of an experimentalist, it is most
convenient to explore not the energy distribution Eo but the
pair correlation function I�t� � hZ�r; t� t� Z�r; t�i for the
deviation of the surface elevation from equilibrium at a
point r, because the deviation Z�r; t� from a planar surface is
directly measurable.

The wave turbulence theory [4] for a system of capillary
waves on the surface of a liquid predicts the formation of a
turbulent cascade in the inertial range bounded by the
pumping at low frequencies and the dissipation range at
high frequencies. Within the inertial range, the pair correla-
tion function I�t� in the Fourier representation is described by
a power-law function of the frequency (turbulent cascade):

Io � oÿm ; �3�

and E�o� � o 4=3Io. The exponent m depends on the spectral
characteristics of the driving force. Under the excitation of
the surface of the liquid by a low-frequency noise in a broad
band Do (with a bandwidth exceeding the characteristic
pumping frequency op, Do5op), the turbulent cascade Io
is described by the functionoÿm with the exponentm � 17=6.
Numerical simulations [5] provide an estimate of m that is
close to the theoretical prediction. The results of numerical
modeling in Ref. [6] indicate that as the bandwidth of noise
pumping Do is reduced, a series of equidistant peaks emerges
in the turbulent cascade, with their widths behaving as a linear
function of the frequency. For a narrow-band pumping,
Do < op, the decrease in the height of these peaks as the
frequency increases is described by a power-law function of
frequency with an exponent that exceeds the value for
broadband noise pumping by one, i.e., m � 23=6.

Our experimental studies on the surface of liquid hydro-
gen have shown that the spectral characteristic of the applied
force determines the value of the power-law exponent [7].
When the surface is perturbed by a low-frequency harmonic
force, the correlation function Io exhibits a set of narrow
peaks whose frequencies are multiples of the pumping
frequency op. The peak maxima are well described by a
power law oÿm with m � 3:7� 0:3. When, in addition to
pumping at a single resonance frequency, a harmonic force at
another resonance frequency is applied, the exponent
decreases to m � 2:8� 0:2. The exponent was also close to
m � 3� 0:3 when the surface was excited by a broadband
low-frequency noise. In these experiments, we have qualita-
tively shown that in passing from the surface excitation with
broadband noise to pumping by a harmonic force at the
single-cell resonance frequency, the exponent m increases.
Detailed results characterizing the evolution of a turbulent
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cascade under variations in the spectral characteristic of the
excitation force (in passing from broadband pumping to a
narrowband one) are obtained in Ref. [8].

In a stationary turbulent spectrum in a system of capillary
waves, the energy is transferred to the region of high
frequencies, where it is converted to heat through viscous
losses, and the turbulent cascade decays. To keep the
turbulent cascade in a stationary state, the energy has to be
permanently supplied at low frequencies. The high-frequency
boundary of the inertial range can be estimated by assuming
that at the bounding frequencyob, the time scale of nonlinear
wave interaction tnl becomes comparable in the order of
magnitude to the viscous dissipation time tn [3],

ob �
�
P 1=2

n

�6=5

�
�
Z 2
0 o

17=6
0

n

�6=5

; �4�

where Z 2
0 is the wave amplitude squared at the pumping

frequency op and n is the kinematic viscosity of the liquid.
At high frequencies, the spectrum behavior is determined

by the details of energy dissipation and nonlinear wave
interaction. When waves in the dissipation range interact
mainly with the nearest neighbors but not with waves from
the inertial range, the wave distribution at high frequencies
becomes close to exponential [9]. A detailed analysis [10] gives
a quasi-Planck spectrum for the correlation function in the
dissipation range,

Po � o s exp

�
ÿ o
od

�
; �5�

where od is the characteristic frequency of the distribution.
Results of numerical modeling for capillary waves [10]
corroborated the exponential dependence of the wave
distribution in the dissipative range. In our research, we
therefore concentrated on a detailed study of the evolution
of a turbulent cascade as the bandwidth Do was varied: from
broadband noise pumping (kinetic regime) to narrow-band
noise excitation, and further to monochromatic pumping
(discrete mode).

In bounded geometries, the continuous spectrum of
capillary waves becomes discrete, whereas the separation
between the resonance modes increases with the frequency.
In the case of monochromatic forcing of the liquid surface,
the turbulent cascade consists of harmonics whose frequen-
cies aremultiples of the pumping frequency. Simple reasoning
leads to the conclusion that for such surface excitation,
system of equations (2) does not have any solutions [11, 12].
However, as shown in Ref. [13], this limitation is lifted if
nonlinear broadening of resonance peaks is taken into
account. In that case, the conservation laws have to be
written as��jk1j3=2 � jk2j3=2 ÿ jk3j3=2�� < d ; k1 � k2 ÿ k3 � 0 ; �6�

where d is the characteristic nonlinear broadening of the
resonance peak. Additionally, it is necessary to take into
account that for a classical liquid at high frequencies, the
discrete spectrum becomes quasicontinuous because of
viscous broadening of the resonance peaks. But in liquid
hydrogen and, especially, helium, the kinematic viscosity
coefficient is less than in water, by a factor of 10 for hydrogen
and 100 for helium. Therefore, the quantization can play an
important role in the energy transfer in the cascade [14] under

monochromatic excitation. Our work [15] presents results
obtained on the surface of superfluid helium under harmonic
forcing when the discrete character of the system is essential
(discrete turbulence). At the same time, for broadband
pumping applied to surfaces of liquid hydrogen and helium,
the case of kinetic turbulence is realized, which is closest to the
model system worked out theoretically in Ref. [4].

2. Experimental procedure

In recent years, owing to advances in experimental technol-
ogy and computer methods for processing rapidly varying
signals, substantial progress has been achieved in exploring
capillary turbulence on the surface of water [16±19], ethanol
[20], silicon oil [21], and even mercury [22]. Our previous
experiments [23] have shown that using liquid helium and
hydrogen in studies of turbulence offers a number of
advantages over the use of traditional media owing to the
small density and low kinematic viscosity of helium and
hydrogen.

In our research, we used a technique [24] based on
measuring the power of a laser beam reflected from the
oscillating surface of a liquid. Measurements were conducted
in optical cells located in the vacuum cavity of a helium
cryostat. A plane horizontal capacitor was installed inside the
cells. Gaseous hydrogen or helium was condensed in a
cylindrical copper cup. Its diameter was 60 mm in experi-
ments with hydrogen and 30 mm in experiments with helium.
The cup height was varied in the range 4±6 mm. Above the
cup, the upper horizontal metallic plate of a capacitor was
mounted, leaving a gap of 3.5 mm. The liquid was accumu-
lated until it reached the edge of the cup. The temperature
during measurement was T � 15:5 K in experiments with
hydrogen and 1.7 K in experiments with helium.

The lower plate of the capacitor is fitted with a radioactive
source emitting b-electrons with the mean energy 5 keV.
Under the action of radiation, an ionized layer of liquid is
formed in the vicinity of the source. A voltage of 1000 V
applied to the capacitor plates drives positive ions out of the
ionized layer toward the surface of the liquid. In this manner,
the charged liquid surface and the upper metallic plate form a
plane capacitor.

Waves on the charged fluid surface are excited by an
alternating electric field generated by AC voltage with an
amplitude of 1±100 V applied to the metallic cup, in addition
to DC voltage. Pumping either is harmonic at frequencies
close to the resonant frequencies of the cylindrical cell or
represents broadband noise. The noise pumping signal was
synthesized through the inverse Fourier transformation given
the power spectrum and applying random phases. Using an
electric field to excite the surface of the liquid offers a number
of advantages. Indeed, it allows applying the force only to the
surface and controlling the symmetry of forcing together with
its spectral characteristics.

Changes in the power of the reflected laser beam were
measured by a Hamamatsu s3590-08 semiconductor receiver.
The AC output of the photoreceiver P�t�, proportional to the
power of the reflected ray, was stored in computer memory at
a sampling rate up to 100 kHz with the help of a fast 24-bit
analog-to-digital converter (ADC). The recording time of the
signal P�t�was varied from 3 s to 100 s. The dependences P�t�
were processed with a fast Fourier transform (FFT) routine.
As a result, we obtained the distribution of the squared
amplitude of the harmonics over frequency P 2

o, which for a
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broad beam, as shown in Ref. [24], is proportional to the pair
correlation function for the surface deviation from equili-
brium, Io � P 2

o.

3. Modification of a turbulent cascade
with a reduction in the forcing bandwidth

Figure 1a shows part of the signal P�t� recorded from the
surface of liquid hydrogen excited by noise. The bandwidth of
the electric signal V�t� applied to the guard ring was 64 Hz
(from 39 Hz to 103 Hz), i.e., the surface was excited by
broadband noise. The maximum amplitude of the noise
forcing signal was 10 V, while maximum steepness of waves
(angular amplitude) did not exceed 0.03 in the pumping
range.

Figure 1b shows the distribution P 2
o (the dark curve) that

corresponds to the signal in Fig. 1a. In the frequency range
from 200 Hz to 8 kHz, a turbulent cascade formed whose
frequency dependence was described by a power law with the
exponent m � 2:8� 0:1. For comparison, the straight line
shows a function proportional to oÿ17=6. The deviation from
the power law at high frequencies (4±8 kHz) is amanifestation
of the impact of viscous losses in the liquid on the turbulent
distribution [4]. The dissipation range becomes well pro-
nounced as the excitation force amplitude decreases. The
light curve in Fig. 1b corresponds to the spectrum P 2

o with
pumping in the same frequency range, but with the amplitude
two and half times smaller. The high-frequency boundary of
the inertial range decreased to 2.5 kHz. In the frequency range
above 2.5 kHz, a sharp reduction in the oscillation amplitude
is observed, which is characteristic of the spectrum in the
dissipation range.

When the bandwidth of noise pumping was reduced
relative to the mean pumping frequency such that
Do � o=2, several peaks emerged on the turbulent cascade.
The distribution P 2

o for noise pumping in the frequency range
57±89 Hz is shown in Fig. 2a. The angular wave amplitude
was 0.03, the same as in the previous case. The first peak lies in
the pumping range. The second and third peaks correspond to
waves appearing as a result of a nonlinear interaction. The
separation between the centers of the peaks is approximately
equal to the pumping frequencyop � 73 Hz. It is clearly seen
that a well-developed turbulent cascade formed in the
frequency range 250 Hz±6 kHz. At frequencies above the
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upper boundary of the inertial range ob � 6 kHz, the decay
of the cascade is observed, caused by viscous losses.

As the pumping bandwidth Do is reduced further, the
peaks in the turbulent cascade become more expressed, and
the minima go deeper. Figure 2b shows the distribution P 2

o
when the surface is excited by noise in the frequency band of
4 Hz (from 71 Hz to 75 Hz). About 30 peaks are distinctly
visible in the turbulent cascade. The separations between the
peaks stays the same (73 Hz). The inertial range extends from
200Hz to 15 kHz. The frequency dependence of peakmaxima
within the inertial range is close to the power law oÿ3:8�0:1.
We note that the difference in exponents in cases of narrow-
and broadband pumping is 1:0� 0:2.

The peak widths Df increase with frequency. The experi-
mental dependence of peak widths on frequency is presented
in Fig. 2c for noise pumping in the frequency range 71±75 Hz.
Obviously, the increase in Df with frequency is described by a
linear function, and satisfactory agreement is observed
between experimental data and the linear dependence pre-
dicted by the theory. The solid line in Fig. 2c corresponds to
the linear function Df � 0:027o. This means that the effective
width of the pumping range in the capillary wave system is
about 2 Hz, while the noise bandwidth in the electric signal
applied to the guard ring is 4 Hz. This discrepancy comes
from the discreteness of the capillary wave spectrum in the
experimental cell and the finite width of resonance modes.
The separation between two neighboring resonances at
frequencies about 100 Hz amounts to � 10 Hz for the peak
width about 1 Hz. Thus, for a surface forced with noise in the
frequency band of 4 Hz, there is such a position of the
pumping interval relative to the resonance frequencies of the
cell that only a single resonance harmonic can be excited.
Arguably, this happens in the case displayed in Fig. 2b.

The linear dependence of the peak width on frequency can
readily be explained [6]. Indeed, if nonlinear waves are excited
in the range op � Do, then, by virtue of the nonlinear
interaction between them, waves appear in the frequency
range 2op � 2Do, and so on. Hence, the linear dependence of
the peak width on frequency must pass through the
coordinate origin. Precisely these considerations have been
used to draw the solid line in Fig. 2c.

The experimental results presented above showed that the
change in the spectral characteristics of noise forcing (the
bandwidth) leads to a qualitative modification of the
turbulent cascade in the system of capillary waves on the
surface of liquid hydrogen. For broadband pumping, the
turbulent distribution is described well by a monotonically
decaying power-law function with the exponent close to
m � 2:8� 0:1. By contrast, for narrowband forcing, a set of
peaks appears in the turbulent cascade, their maxima
following the power law with the exponent m � 3:8� 0:1.
Our results turn out to be in very good agreement with theory.

4. The decay of the turbulent cascade
in the dissipation range

Inthesamefashionas intheexperimentsdescribed inSection3,
capillary waves on the surface of liquid hydrogen were excited
by a random force in the range 39±103 Hz. The mean
amplitude of AC voltage (pumping) Vp, averaged over the
frequency range, was varied from zero (in the absence of
pumping) to the maximum amplitude Vp � 30 V, which was
limited by the maximum angular wave amplitude allowed by
the geometry of our low-temperature optical system.

Figure 3a shows the Fourier spectrum of the power of a
reflected laser beam for various excitation amplitudes. The
pumping range can well be discerned on the low-frequency
side. It is followed by the inertial range within which the
spectrum P 2

o can be described by power law (3). The width of
the inertial range, as is clearly seen, depends on the pumping
amplitude. When the surface is excited with a force that
corresponds to the amplitude Vp � 4 V, the dissipative
range begins immediately after the pumping range, while the
inertial range is absent. The increase in the amplitude of the
driving force expands the inertial range, and its high-
frequency boundary ob shifts toward higher frequencies.
The widest inertial range, from 0.3 to 4 kHz, is observed for
the maximal pumping amplitude Vp � 30 V. At frequencies
above the inertial range boundary, surface perturbations
decay because of viscous losses, and the cascade smoothly
fades out, disappearing in instrumental noise. The turbulent
cascades recast in linear coordinates (Fig. 3b) show that the
decay in the wave amplitude in the dissipative range can be
approximated rather well by the exponential dependence
P 2
o � exp �ÿo=od�. In the fitting, it is assumed that o4od,

i.e., that the characteristic frequency (viscous boundary)od is
much lower than the frequency of waves from the dissipation
range. For example, the spectrum obtained for pumping with
the amplitude Vp � 26 V is approximated by the exponential
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and 26 V, respectively.

August 2012 Conferences and symposia 821



with od � 0:6 kHz in the frequency range 5±9 kHz. Unfortu-
nately, the fitting interval turns out to be insufficiently broad
for reliably estimating the power of the pre-exponential factor
in quasi-Planck distribution (5). The values of od thus found
are several times smaller than the visible boundaries separat-
ing the inertial range and dissipation range (Fig. 3b). This
discrepancy can be explained by some arbitrariness in the
definition of the high-frequency inertial range boundary, and
hence the value ofob is only known by an order ofmagnitude.
The characteristic frequency od obtained by fitting an
exponential to the spectra grows with the pumping ampli-
tude in the dissipation range. To correctly plot the depen-
dence of od on the pumping amplitude, we used the surface
response Z0 � P at the frequency 53 Hz as a measure of the
excitation level. The quantity Z0 is directly proportional to the
mean wave amplitude at this frequency. Figure 4 shows the
dependence of od on the amplitude Z0. The experimental
dependence is described by the power law od�Z0��Z n

0 with
the exponent n� 0:85�0:05.

It is noteworthy that the approximation of experimental
spectra with quasi-Planck distribution with a small value of
the exponent s (no higher than 2) does not significantly affect
the value of od (by less than 20%), nor does it influence the
power-law exponent n in the amplitude dependence of the
characteristic frequency od�Z0�.

The obtained value of the exponent n � 0:85 differs
substantially from the value 12/5 expected from Eqn (4),
which is surprising because for a turbulent cascade formed by
a harmonic force, themeasured amplitude dependence proves
to be in good agreement with the theoretical estimate
od�Z� � Z 1:3.

We note especially that the turbulent cascade in the
dissipation range decays noticeably faster for monochro-
matic than for broadband pumping. Figure 5a shows the
turbulent cascade at the surface of superfluid helium forced
monochromatically at a frequency of 79.7 Hz. The turbulent
cascade very closely resembles distributions observed pre-
viously in experiments on the surface of liquid hydrogen [7]
and in our first studies on the superfluid helium surface [25].
The spectrum consist of equidistant harmonics: the first
harmonic corresponds to pumping, while the others are
generated as a result of the nonlinear interaction of waves
with frequencies that are multiples of the pumping frequency.
At frequencies greater than 4 kHz, the cascade decays
extremely rapidly because of viscous losses and disappears,
being buried in instrumental noise. The value of 4 kHz can be
treated as the high-frequency boundary ob of the inertial
range. The decay is described by an exponential dependence
with the characteristic frequency od � 170 Hz close to the

pumping frequency op [26]. We mention that for broadband
forcing of the superfluid helium surface, the turbulent
distribution in the dissipation range smoothly decays follow-
ing an exponential law with the characteristic frequency ob

that is close to the frequency of the high-frequency edge of the
inertial range (Fig. 6b).

We can assume that the condition of locality for waves
from the dissipation range is violated under harmonic
excitation. For these waves, the interaction with waves from
the inertial range proves to be dominating. Indeed, the
nonlinear interaction time for three-wave processes with
strongly different wave vectors (k1 5 k2, k2 � k3) satisfies
the relationship tnon � kÿ1=2 [10], whereas for the local
interaction �k1 � k2 � k3� the time tloc � k 1=4 [27]. Thus,
the waves from the dissipation interval most efficiently
interact with low-frequency waves from the inertial range,
concentrated in the vicinity of the pumping range.

5. Discrete turbulence

In experimental studies of turbulent distributions on the
surface of superfluid helium, we used two types of driving
forces to generate surface waves. In experiments of the first
type, the surface was excited by a sinusoidal force at one of the
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cell resonance frequencies. In experiments of the second type,
the surface was excited by noise in a bounded frequency
range.

Figure 5a displays the spectrum P 2
o of capillary waves

obtained in an experiment in which the superfluid helium
surface was forced by an AC voltage at the frequency 79.7 Hz
and amplitude 11 V. In the inertial range, the amplitudes of
the harmonics decay with frequency according to the power
law P 2

o � oÿm with m � 3:7, in agreement with the theore-
tical prediction for narrowband forcing [6].

If the forcing amplitude is slightly reduced, to 10 V, the
shape of the turbulent cascade experiences qualitative
changes. The high-frequency boundary of the inertial range
shifts toward low frequencies, in agreement with the results of
our previous experiments [7]. However, a new phenomenon is
observed: the formation of a distinct local maximum close to
the high-frequency boundaryob of the inertial range (marked
by the dashed line in Fig. 5b). As the pumping amplitude is
reduced further, the local maximum shifts to low frequencies.
The spectrum consist of several harmonics for minimum
pumping, and the local maximum is not observed.

We summarize common features of the results obtained in
experiments. First, a local maximum is formed at high
frequencies close to the end of the inertial range. Second, the

shape and position of the maximum depend on the pumping
frequencyop and the pumping wave amplitude. For example,
Fig. 6a shows the spectrum P 2

o obtained for the surface of
helium forced sinusoidally at a frequency of 34 Hz, with a
well-pronounced maximum in the dissipation range, and not
in the inertial range as in Fig. 5b.

When the surface is forced by noise, the local maximum is
not observed. As an illustration, Fig. 6b presents a turbulent
distribution for a helium surface forced with noise in the
frequency range 60±130 Hz. The pumping amplitude was
selected such that the end of the inertial range was located at
the same frequencies as in Fig. 5b. It can be seen that this
spectrum is qualitatively different from spectra obtained with
monochromatic pumping: it is smooth and continuous.

The formation of a local maximum can be interpreted as
energy accumulation in a narrow frequency interval near the
end of the inertial range where the transition from nonlinear
energy transfer to viscous decay occurs. A possible reason for
this accumulation can be a bottleneck that impedes energy
transfer to the dissipation range. It was shown in [10] that an
insufficient rate of energy dissipation through viscous losses
can in principle essentially modify the cascade shape at high
frequencies in the inertial range. However, judging by the
frequency and amplitude dependences of the maximum
position, the formation of the cascade is not related to the
trivial influence of viscosity. On the other hand, we are
dealing with a weakly interacting nonlinear discrete wave
system, and, as shown in Refs [11, 12], we can expect the
discreteness of the system to affect wave interactions. In the
later study [13], a model of frozen turbulence was proposed,
and it was shown that the discreteness can result in an
oscillating turbulent spectrum for surface waves in a square
geometry, when the wave number space is two-dimensional.
In our experiment, the geometry is circular, surface oscilla-
tions are described by the Bessel functions, and the wave
number space is one-dimensional. Because the cell shape and
size define the density of resonance modes, we made some
estimates in order to understand the influence of the discrete
character of spectra on the turbulent cascade in our experi-
ments. We suppose that the main reason for the bottleneck
and, consequently, the maximum formation is a detuning
between frequencies of two discrete spectra, namely the
spectrum of surface oscillations in a finite-size cell and the
spectrum of turbulent cascade harmonics. If the surface is
excited by a harmonic force, the frequency of the first peak
in the turbulent cascade coincides with the frequency
of resonance harmonics op, which satisfies dispersion
relation (1).

For surface waves in a cylindrical cell of diameter D, the
resonance values of wave vectors satisfy the equation
J1�kD=2� � 0, where J1�x� is the Bessel function of the first
order. For large magnitudes of wave vector k, the resonances
becomes equidistant with the stepDk � 2p=D. Consequently,
the distance between two nearest resonances in the frequency
space increases with frequency:

Do � do
dk

Dk � 2p
do
dk

1

D
� 3p

D

�
s
r

�1=3

o 1=3 : �7�

In other words, resonances in the case of capillary waves are
not equidistant, in contrast to frequencies of harmonics in the
turbulent cascade, which are multiples of the pumping
frequency op.

Obviously, frequency detuning can be essential only when
the resonance broadening do is small compared to the
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separation between resonances Do (Fig. 7),

do
Do

< 1 : �8�

The resonance broadening do can be represented as a sum of
viscous don and nonlinear donl broadening:

do � don � donl : �9�

Broadening of the resonance peak caused by viscous losses
increases with the frequency,

don � 4nk 2
o � 4n

�
r
s

�2=3

o 4=3 ; �10�

while the characteristic time of viscous damping decreases,
don�tÿ1n .

Broadening due to the nonlinear energy transfer in the
turbulent cascade can be estimated from the characteristic
time of nonlinear interaction tnl as donl � tÿ1nl . In the case of
harmonic pumping, we assume that tnl � o 1=6 [7], whence
donl � oÿ1=6. As the driving force amplitude A increases, the
nonlinearity of waves increases, if the frequency is kept fixed.
We can therefore write

donl � e�A�oÿ1=6; �11�

where e�A� is an increasing function of the wave amplitude A
at the pumping frequency. Substituting Eqns (7) and (9)±(11)
in Eqn (8), we obtain the condition for the detuning to be
important:

4n�r=s�2=3o 4=3 � e�A�oÿ1=6
�3p=D��s=r�1=3o 1=3

< 1 :

On the high-frequency boundary ob of the inertial range,
the nonlinear energy transfer along the spectrum gives way to
viscous dissipation. Therefore, as noted above, it is assumed
that at the frequency ob, the characteristic time of viscous
damping is close to that of nonlinear interaction, tn�ob� �
tnl�ob�. Although the precise form of the function e�A� is
unknown, we can conclude that the resonance peak broad-
enings induced by the nonlinear interaction and by viscous
losses are also close to each other at the frequency ob,
don�ob� � donl�ob�.

It follows from estimates that in our experiments, the total
relative broadening of the resonance peak satisfies condition
(8) in a finite frequency interval located near the high-
frequency boundary ob (see Fig. 7). In this interval, the
frequency detuning between harmonics in the turbulent
cascade and resonance peaks becomes essential, and the
discrete regime of capillary turbulence is realized. Following
the logic of Ref. [10], we suppose that the energy flux
bottleneck forms in that region, which determines the
specific shape of the distribution P 2

o. At high pumping
amplitudes (or at high frequencies), the relative broadening
exceeds unity, the system becomes quasicontinuous, and the
kinetic regime of turbulence is realized. However, based on
this simple assumption, we cannot compute the exact position
of the local maximum or its form. Rigorous theoretical
analysis and numerical simulations are needed.

The proposed model presumes that the following condi-
tions, needed for the energy to accumulate in a system of
capillary waves, are satisfied: insignificant viscous broad-
ening of the resonance peak, not very strong nonlinear
broadening (moderate pumping amplitudes), and large
separation between neighboring resonance frequencies (a
relatively small cell size). We stress that it is the use of
superfluid helium with extremely low viscosity [28] that
enabled us to observe the energy condensation in the
turbulent cascade.

6. Conclusions

Passing from broadband to narrowband and further to
harmonic pumping in experiments on the formation of a
turbulent state in a system of capillary waves leads to a
qualitative change in the turbulent distribution: a set of
peaks evolves in the cascade modifying the frequency
dependence of the correlation function. A quasi-Planck
distribution of waves over frequency is formed in the
dissipation range with the characteristic frequency defined
by spectral characteristics of pumping.

Using superfluid helium with an extremely low value of
kinematic viscosity enabled observing the discrete regime of
capillary turbulence. The influence of the discreteness of the
surface oscillation spectrum on the turbulent distribution is
manifested in the formation of a local maximum near the end
of the inertial rangeÐ the energy condensation in a narrow
frequency range. The fundamental cause of this phenomenon
is the frequency detuning between the harmonics in the
turbulent cascade and resonance modes of the cylindrical
resonator, and also in the formation of a bottleneck for the
energy flux toward higher frequencies.

The authors are grateful to L P Mezhov-Deglin,
E A Kuznetsov, and G V Kolmakov for the useful discus-
sions. The research was supported in part by the RFBR grant
11-02-12147.
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Motion of the Sun through
the interstellar medium

V G Kurt, E N Mironova

1. Introduction

The motion of the Sun includes many components with
different velocities, directions, and reference systems. For
example, the Sun moves in a complicated open trajectory
around the solar system barycenter. Themaximum amplitude
of this motion sometimes exceeds the radius of the Sun itself.
This excursion is due to the motion of the most massive
planets in the Solar System, Jupiter and Saturn, with the
respective orbital periods 11.859 and 29.428 years. The Sun
also moves relative to the 100 nearest stars in the direction

toward the Hercules constellation with a velocity of
19.2 km sÿ1. This motion was discovered by W Herschel
(1738±1822) at the end of the 18th century based on the
analysis of proper motions of the brightest (and correspond-
ingly closest) stars. Naturally, Herschel could not express the
value of this velocity in units such as km sÿ1 because he did
not know the distance to these stars. Distances to stars were
measured only in the early 1830s almost simultaneously by
V Ya Struve (1793±1864) (Russia), F Bessel (1784±1846)
(Prussia), and T Henderson (1798±1844) (England) using
annual parallaxes of stars, which amount to only fractions
of an arc second, even for the nearest stars. The direction to
the apex of this motion is a � 270� and d � 30�.

The Sun also participates in an almost circular orbital
motion around the galactic centerwith avelocity of 220kmsÿ1

in the direction perpendicular to the direction to the galactic
center. With the distance 7.9 kpc to the galactic center, the
orbital period of this motion is about 200 mln years, and
during its life (5 billion years), the Sun has already made
about 25 revolutions around the galactic center.

The Sun, together with the Galaxy, also has a peculiar
velocity relative to nearby galaxies of the Local Group of
galaxies. For example, the Galaxy approaches the center of
the Andromeda nebula (M31) with a velocity of 290 km sÿ1

relative to the Solar System barycenter.
Finally, the Sun, together with the Milky Way and the

Local Group, moves relative to the isotropic 3 K cosmic
microwave background with the velocity (667� 22) km sÿ1 in
the direction l � 276� � 3� and b � 30� � 3� (galactic coordi-
nates). In a certain sense, this reference frame is a peculiar,
singular coordinate system. Just this motion is responsible for
the presence of the dipole component in the decomposition of
cosmic microwave background in spherical functions. The
amplitude of the dipole component is 6.706 mK.

This paper is focused on the study of themotion of the Sun
relative to the local interstellar medium (LISM) on scales
smaller than one or several parsecs but larger than 1000
astronomical units (a.u.).

2. Brief history of the discovery of the motion of
the Sun relative to the local interstellar medium

In 1959, a group of astronomers from the Naval Research
Laboratory (NRL) in the USA headed by G Fridman
discovered a bright UV glowing of the sky from the rocket
Aeroby-w, which was capable of reaching only a 140 km
altitude. The glow was measured in the atomic hydrogen line
La (l � 1215:7 A

�
) with the intensity reaching 20 kR

(1 Rayleigh (R)=106 photons cmÿ2 sÿ1 (4p sr)ÿ1). The
minimum of this glow was found to come from the anti-
solar direction, and its intensity at a distance exceeding 90 km
from Earth slowly decreased with increasing height [1]. In the
same year, using a cell filled with molecular hydrogen
supplied with a filament for its dissociation, which provided
a sufficient amount of neutral hydrogen atoms for La line
absorption, Morton determined that 7% of the discovered
UV emission has a temperature exceeding 7000 K [2]. This
could be explained by the presence of both a hot atomic
hydrogen component in the upper atmosphere of Earth and
an extra-atmosphere `hot' emission component.

At almost the same time, starting in 1961, a research
program of the Moon, Venus, and Mars explorations using
automatic interplanetary stations (AISs) started in this
country.
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In 1961, our group from the Sternberg Astronomical
Institute of Moscow State University carried out similar
studies of the upper atmosphere glow at altitudes up to
500 km using the R5 geophysical rocket. For this purpose,
we constructed the two-channel ultraviolet photometer, LA-2
(Fig. 1), for observations in both the hydrogen La line and
atomic oxygen triplet l � 1302, 1304, and 1305 A

�
. A specially

designed Geiger counter of photons filled with NO and an
LiF orCaF2 windowwith a diameter of 2mmwas used. From
the shortwave side, the sensitivity of the detector was limited
by the window transparency at l � 1050 A

�
and l � 1225 A

�

for LiF and CaF2 respectively, while from the longwave side,
the sensitivity of these detectors was limited by the ionization
potential 9.3 eV (l�1340 A

�
) of nitrogen oxide. The first

detector measured the total intensity in the La line and in the
atomic oxygen triplet lines, while the detector with the CaF2

window measured only the intensity of the atomic oxygen
triplet lines.

Using the opportunity to install our detectors aboard
the AIS launched to Venus and Mars, we were able to
measure the extended hydrogen corona of Earth up to
distances of 125,000 km, i.e., 20 Earth radii [3, 4]. To our
surprise, at large distances (up to 100 mln km from Earth),
the intensity did not vanish, but stayed almost constant at
the level of 300±500 R, which, with the sensitivity of our
detectors, corresponded to about 1000 counts per second.
The counter with the calcium fluoride window allowed
measuring the cosmic ray background, which was about
20±30 counts per second. Using the charged particle back-
ground suppression system enabled us to decrease this
background rate to 2±3 counts per second. Theoretical
estimates for the dependence of the interplanetary atomic
hydrogen density on the solar wind particle flux and atomic
hydrogen dissipation from the upper atmosphere of large
planets could not explain such a high intensity of the neutral
hydrogen atomic density in the interplanetary space. Nor
could a detailed calculation of this emission intensity from
even the nearest stars explain the observed effect, because
the absorption by the interstellar dust and atoms with a low
ionization potential (alkali metals) totally excluded the La

line emission with such a high intensity. Scattering of solar
La emission by the interstellar neutral hydrogen near the
Sun was the only explanation for the effect observed.

However, it was clear that an H II zone, similar to
Stroemgren zones (a cavity filled with fully ionized hydro-
gen) found around hot early type O, B, and A giants, must
exist around the Sun.

Calculations [5] showed that the observed intensity can be
provided by the formation of an empty spherical region
(cavern) around the Sun with a radius of 100 a.u. in an
infinite medium (the Milne problem) filled with atomic
hydrogen with a density of 0.01 cmÿ3.

Indeed, exactly such zones of fully ionized hydrogen exist
around hot blue early type (O, B, A) giants. The size of such a
stationary Stroemgren zone is determined by the photon flux
emitted by the star with l < 912 A

�
and by the electron

number density ne of the medium. Equating the number of
photons emitted by the star per second to the number of
recombinations at all levels except the first one in the total
volume of the Stroemgren sphere (the H II zone), we can
calculate the Stroemgrem sphere radius

RS � nÿ2=3e

�
4pF��Lc��3=4� p

aS ÿ a1

�1=3
;

where 4pF��Lc� is the total flux of quanta with the energy
hn > 13:56 eV emitted by the star (Lc is the notation for the
Lyman continuum), aS is the recombination coefficient at all
levels, and a1 is the recombination coefficient at the first level.

The mass of gas confined inside the Stroemgren sphere
exceeds that of the star itself by 100 or even 1000 times, and
the radius of the Stroemgren sphere reaches several parsecs.

The boundary between the H II zone and the neutral-
hydrogen zone H I is very thin (� 0:05 pc), its width is
DRS � 1=nHsi, where nH is the neutral hydrogen number
density in the interstellar medium, of the order of 1 cmÿ3 and
si is the ionization cross section of atomic hydrogen near the
ionization threshold, which is about 8� 10ÿ18 cm2.

However, it is clear that the Stromgren theory is totally
inapplicable to cold solar-type dwarf stars. Indeed, the time of
ionization of a hydrogen atom at the distance 1 a.u. from the
Sun is about 3� 106 s, while the recombination time is 100±
1000 times as long. Clearly, even with the velocity 10±
30 km sÿ1 relative to the interstellar medium, the Sun `flies'
a distance of about 104 a.u. over the recombination time,
forming a recombination tail 0.1 pc or even longer in size.
This fact was first noted by theorists Blum and Far [6] from
Bonn University.

Ionization of neutral hydrogen atoms passing by the Sun
is in turn determined by twomechanisms: photoionization by
hard emission from the solar corona with hn > 13:56 eV and
charge exchange reactions with solar-wind protons. The
effective cross section of the resonance charge exchange
process of neutral hydrogen atoms with solar-wind protons
is very high: at the maximum (close to 15 eV), it reaches
1:5� 10ÿ15 cm2, and this process is 2±3 times more effective
than photoionization.

Interstellar neutral hydrogen atoms, obviously, move in a
hyperbolic trajectory, which is determined by the impact
parameter P relative to the velocity at infinity V1. In polar
coordinates, the trajectory is written as

1

r
� GMeff�1� cos y�

V 21P 2
� sin y

P
;

whereMeff �M��1ÿ m� and G is the gravitational constant.
The factor 1ÿ m takes the radiation pressure acting on a

Figure 1.LA-2 two-channel ultraviolet (UV) photometer: the detector unit

and Geiger counter.
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hydrogen atom into account, which, as gravitation, is
inversely proportional to the square of the distance from the
Sun. This allows introducing the effectivemassMeff instead of
the mass of the Sun, where m is the ratio of the radiation
pressure in the La line to the gravitational attraction force. At
m � 1, hydrogen atoms move in straight trajectories. In this
case, only ionization is effective.

The critical intensity in the La line center at which m � 1 is
equal to 3:32� 1011 photons per cm2 per s. Such a high value
of the intensity is hardly possible, even at the solar maximum
activity. Nevertheless, the linear trajectory model is very
convenient for approximate analytic calculations of the
intensity of the observed scattered La radiation.

Next, to calculate the volume emissivity of the interstellar
medium in the La line, we should include the Doppler shift
from the projection of the hydrogen atom velocity in a
hyperbolic orbit on the radius vector (centered in the Sun) of
a point in the interplanetary space.Here, it is also necessary to
take the complex profile of the La solar emission line with
exponential wings into account. The total width of the La

emission is about 1 A
�
, while the Doppler shift at the velocity

about 30 km sÿ1 can reach 0:1 A
�
at a distance of the order of

1 a.u., which is quite substantial.
The probability that an atom flies without being ionized

up to a point with polar coordinates r, y is

p � exp

�
ÿ r 20 y
V1tP

�
;

where r0 � 1 a.u.,V1 is the atom velocity `at infinity', and t is
the lifetime, 1=t � 1=t1 � 1=t2, where t1 and t2 are respec-
tively the atom lifetimes at the 1 a.u. distance due to
photoionization and charge exchange reactions with solar-
wind protons.

Clearly, at each point of space, there are two types of
atoms with different impact parameters P with the densities

n1 � n1
� ����Ap � 1�2

4
����
A
p ;

n2 � n1
� ����Ap ÿ 1�2

4
����
A
p ;

where A � 1� 4Meff G=�V1 r �1� cos y� �.
It is clear that for m � 1, i.e., when gravitational attraction

is fully compensated by radiation pressure acting on the
hydrogen atom, n2 � 0, which corresponds to the `linear
trajectory' model.

The volume emissivity j�r; l� [cmÿ3 4p sr] can be written
as

j�r; l� � n�t; j _rj� pFS�l� p�y�
�
r0
r

�2

s ;

where n�r; j _rj� is the atomic hydrogen density as a function of
coordinates and the radial velocity, pFS�l� is the solar
radiation flux as a function of wavelength, and

p�y� � 1

16p

�
11

3
� cos2 y

�

is the scattering diagram.
To obtain the observed intensity, the volume emissivity

should be integrated along the line of sight and over
wavelengths within the solar La line width.

Such a primitive model assumes, clearly, that velocities of
all atoms `at infinity' are equal to V1 and are parallel to each
other, which corresponds to zero temperature of the local
interstellar medium. This model, called the `cold model', can
be applied with sufficient accuracy only in the region ahead of
the solar motion direction in the LISM within the angle
ycr � arctan�VT=V1�, which approximately corresponds to
y � 27�, where VT is the thermal velocity of atoms, which is
equal to

�����������������
2kT=mp

p
. For larger angles, the Maxwellian

distribution of hydrogen atoms over both velocity modulus
and direction must be taken into account. For this, we should
integrate `cold models' with a weight proportional to the
Maxwellian velocity distribution and homogeneous distribu-
tion over angles.

Therefore, to tune the `cold model' to the observational
data, the following parameters of the Sunmotion in the LISM
should be determined:

V1, the absolute value of the Sun's velocity;
l and b, the two angles characterizing the direction of the

Sun's motion in the ecliptic coordinates, which can then be
easily transformed into the galactic coordinates;

n1, the hydrogen atom number density at infinity;
m, the ratio of the radiation pressure force to the

gravitational attraction force;
pF�0�, the intensity in the solar emission La line center;
T1, the temperature of hydrogen atoms at infinity.
Hence, the minimum number of sought parameters is 7.

However, the agreement between theory and observations
can be improved by introducing additional parameters, for
example, the solar proton flux anisotropy as a function of the
heliographic altitude, because the charge exchange process
dominates in the ionization of hydrogen atoms.

Figure 2 shows the distribution of the La volume
emissivity inside the Solar System.

In [7], using the `hot model', an analytic expression for the
helium atom density along the Sun's direction of motion was
also obtained, which allows `sewing' the data on the helium
atom number density ahead of the Sun's motion to that in
other directions and thus obtaining the complete picture of
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Figure 2. The volume La-line luminosity distribution [cmÿ3 sÿ1] for the
model parametersV1 � 20 km sÿ1, t � 1:2� 106 s, and m � 1. The plane

of the figure represents one of the cuts passing through the direction of the

wind and the Sun. The upwind direction is to the right. The region with the

maximum volume luminosity is located between 2 a.u. and 4 a.u. in the

upwind direction.
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the atom number density inside the Solar System. Figure 3
shows the atomic helium density at distances up to 10 a.u. [8].
The sharpminimum (about 0.3 a.u.) is due to photoionization
of helium atoms near the Sun.

In addition, it is necessary, although it is unclear how, to
account for the interaction of hydrogen atoms with the high-
temperature plasma between two shocks (probably super-
sonic) that were formed by solar wind stopping at a distance
of about 100 a.u. and by interstellar medium stopping at a
distance of 200 a.u. Clearly, this effect is not dominant,
because the effective conventional `optical depth' for number
densities about 10ÿ3 or 10ÿ4 cmÿ3, the cross section less than
10ÿ15 cm2, and the length of the intermediate zone between
the LISM and the heliosphere about 1015 cm does not exceed
10ÿ3 or 10ÿ2. Nevertheless, this question remains open (see [9,
10]) and its solution can possibly slightly change the LISM
parameters discussed below.

An important question is the determination of the profile
of scattered radiation in the La line, which would allow an
independent measurement of the incident interstellar matter
flow. However, to solve this problem, an optical dispersion or
interferometric spectrometer is needed, which is not an easy
task for the radiation intensity of only 500 R at the maximum
and the line width less than 0:1 A

�
. To solve this problem, very

much as R Wood did in his experiments with sodium vapors,
we used an absorbing cell filled with atomic hydrogen, similar
towhat was used byMorton in the first rocket observations of
the La-emission.

Clearly, the observed bolometric intensity after passing
through the cell filled with atomic hydrogen can be written as

I�t0;TE;TA�

� I�0� 1
p

�1
0

exp

�
ÿ x 2 ÿ t0 exp

�
ÿ TE

TA

�
xÿ Vr

c

��2�
dx ;

where t0 is the optical depth of the cell in the La line center,TE

andTA are the respective radiation temperatures of the LIMS
and atomic hydrogen in the cell, Vr is the radial velocity
component of a hydrogen atom, and c is the speed of light in
the vacuum. As the first approximation, we used the Doppler
profile of the LISM emission line. The cell temperature (close
to 300 K) was measured by a temperature probe on the cell
surface. For the ratio TE=TA 4 1 and t0 � 10, the approx-

imate expression:

RF � I

I0
� 1ÿ 32:2������

TE

p exp

�
ÿ 60:6V 2

r

TE

�
;

is valid for TE � 7000 K with an accuracy better than 5%.
A more precise expression, taking both the La- absorp-

tion and scattering inside the cell into account, was obtained
in [11].

3. Observations and data processing

Observations of the intensity of scattered La-radiation by a
diffraction spectrometer and photometers both with and
without an absorbing cell filled with hydrogen were carried
out by us from the Venera andMars IASs. However, the best
observations were apparently obtained in the joint Soviet±
French experiments aboard the Prognoz-5 and Prognoz-6
satellites (Fig. 4). Both satellites moved in highly eccentric
orbits with an apogee of about 200,000 km, a perigee of about
1000 km, and an orbital period of 4 days. The principal
inertia moment axes of the satellites were pointed toward
the Sun, and the satellites rotated around them with a spin
period of 2 min, corresponding to the angular velocity
3 deg sÿ1. During the axial rotation, special optical trackers
periodically registered Earth, the Moon, and the Sun passing
across their field of view, which allowed calculating the Euler
angles and extrapolating the orientation of the satellites for
the subsequent 12 h interval of time. Then, new rotation
parameters were determined. The reorientation of the main
inertia axis to the Sun was repeated every 4±10 days. The
correctness of the orientation was checked by matching the
results at the beginning of the next 12 h interval. The system of
orientation of the apparatus axes was controlled by observing
hot bright stars with a UV photometer. Using this method,
the orientation of the optical axis of the photometer was
determined with an accuracy of 1±2 deg, and sometimes
better. The photometers had two optical axes; the main one
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Figure 3. The volume luminosity in the He I l � 584 A
�
line in the plane

passing through the Sun and the wind axis (for the model parameters

V1 � 25:5 km sÿ1, T � 7000 K, and t � 1:0� 107 s, the Doppler width

of the solar l � 584 A
�
line is WD � 35:5 km sÿ1). Solar parameters are

assumed to be isotropic.

x

Figure 4. General view of the four-channel UV photometer installed

aboard the Prognoz-5 and Prognoz-6 satellites.
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had three detectors centered on the H I La line and the He I
(l � 584 A

�
) and He II (l � 304 A

�
) lines supplied with the

absorbing cell and a narrow-band interferometric filter in the
La-channel. For the He I and He II channels, broadband
filters made of thin metal films with a bandwidth of 100 A

�

were used. The optical axes of these channels were directed
normally to the spin axis of the satellite, i.e., normally to the
direction to the Sun. An additional He I channel was oriented
at an angle of 10 deg to the anti-solar direction. The Prognoz-5
and Prognoz-6 satellites actively operated for four and six
months, respectively. The telemetry was received once every
10.7 s, but because the spin period of the satellite (120 s) and
the time the telemetry was taken were incommensurable, the
intensity and reduction factor (the ratio of switched-on to
switched-off cells of theH ILa-detector) depended on the spin
angle of the satellite continuously with a high spatial
resolution (about 1±3 deg). Clearly, all scan trajectories
passed through both ecliptic poles, which provided constant
control of the detector sensitivity stability. Figures 5 and 6
show examples of scans in theH ILa line andFR. The passage
of the field of view through Earth's hydrogen corona is clearly
seen.

In the data processing, all points with the impact
parameter of the optical axis passed at distances smaller
than 50000 km for the La line and 70000 for the He I
(l � 584 A

�
) line were rejected. This excluded the influence

of extended hydrogen and helium atmospheres of Earth. The
He II (l � 304 A

�
) channel was used by us as the `background'

channel registering cosmic rays and induced radiation from
the spacecraft. Its counts were subtracted from those of all
other detectors. We note that in the H I La channel, the count
rate was 100 times higher than in the He I (l � 584 A

�
)

channel. Figure 7 clearly demonstrates how the optical axis
of the detector crosses the focusing cone of helium atoms
`behind the Sun'.

4. Measurement of LISM parameters

When interpreting H I observations, all data were fitted
to obtain all LISM parameters simultaneously [12]. In
exactly the same way, the French group processed the He I
results [13]. Our group divided all parameters into two parts.
The solar data (theHe I line width and the lifetime of a helium
atom at a distance of 1 a.u.) were taken from the literature.
The direction of the Sun's motion in the LISM (two angles in

the ecliptic coordinate system) was determined from the easily
observed maximum of the glow on the He I (l � 584 A

�
) line,

i.e., when the optical axis of the detector crossed the focusing
cone axis. Two parameters were fitted: the LISM temperature
and the absolute value of the Sun's velocity [14±16]. In our
opinion, the fitting with only two parameters gives more
reliable results than fitting with a larger number of para-
meters. We note that the determination error of the Sun's
velocity relative to the LISM does not exceed 2 km sÿ1, while
the temperature is determined with a much worse accuracy.
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Tables 1 and 2 list the results obtained by us and from
measurements by the EUVE (Extreme Ultraviolet Explorer)
and SOHO/SWAN (Solar and Heliospheric Observatory/
Solar Wind Anisotropy) satellites. The coordinates of the
downwind direction measured by the Prognoz-5 and Prog-
noz-6 satellites are related to the epoch 1950,0, while those
measured by the EUVE and SOHO satellites, to the epoch
2000,0.

Both hydrogen and helium densities are factors in the
expression for the observed intensity. Clearly, their determi-
nation accuracy depends only on the absolute calibration of
the detectors, i.e., on the recalculation of the observed count
rate into physical units erg cmÿ2 sÿ1 srÿ1 or Rayleighs. For
calibration, we used two sources whose intensity can be
calculated based on several parameters; for a blackbody
(BB) source, only one parameter (its temperature) is needed.

However, for our observations in the vacuum UV range, a
source with a temperature of 10,000 K are even 20,000 K was
required. Such sources were manufactured by us jointly with
the Institute of High Temperatures, RAS using high-pressure
lamps filled with gas (for example, xenon). However,
determination of the temperature with the required accuracy
(about 25 K) is a very complicated problem. Obviously, the
black-body approximation can be used only in lines, because
in the continuum, the hot gas emission is optically thin and
the black-body formula cannot be applied. The radiation is
optically thick and corresponds to the black-body intensity
only in the emission lines. We used the method of the Balmer
line width determination for hydrogen, which was added to
the noble gas in small amounts (1±3%). This allowed
estimating the electron density in the lamp, which, in turn, is
determined by the Saha formula, and thus the temperature
was ultimately calculated. Unfortunately, the absolute cali-
bration accuracy obtained by this method was rather low
(more than 50%) due to errors in the temperature determina-
tion. In addition, it proved to be very difficult to take a huge
radial temperature gradient in the gas-discharge tube into
account, with the temperature changing from 25,000K on the
tube axis to 300 K on the fresh-water-cooled walls.

Synchrotron radiation is the second source with the
known absolute intensity. To calculate its intensity, the
curvature radius of the relativistic electron trajectory,
magnetic field strength, energy of the electron, and the
number of electrons in the accelerator channel should be
known.We used the VEPP-2M electron±positron accelerator
of the Nuclear Physics Institute, Siberian Branch of RAS,
where our group was invited by A M Budker, who was the
director of the institute at that time. Using this method
allowed increasing the absolute calibration accuracy to 15±
20%. Finally, during the satellite flight, we could test or
improve the calibration by observing bright blue and hot stars
accidentally occurring in the field of view of the detectors.

5. Direct (nonoptical) methods of measurements
of the local interstellar medium parameters

As far as we know, the first successful measurements of the
atomic helium density were carried out by a group of
researchers from the Max-Planck Institute for Aeronomy
(Lindau, Germany) using detectors aboard the Ulysses
extra-ecliptic station of the European Space Agency,
launched on 6 October 1990 and operated until 1 July
2008, i.e., for 17 years [17]. Ulysses crossed the ecliptic
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Figure 7. TheHe I (l � 584 A
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) line emission intensity along six scan circles

during the passage through the maximum helium atom density cone.

Table 2. LISM parameters from Prognoz 5, 6 observations of the La line.

Satellite jVj, km sÿ1 l, deg b, deg T, K n (H), cmÿ3

Prognoz-5 and Prognoz-6 20� 1 71� 2 ÿ7.5� 3 8000� 1000 0.065� 0.015

SOHO (SWAN) 21.5� 0.5 72.3� 0.7 ÿ8.7� 0.9 11;500� 500 ?

Table 1. LISM parameters from Prognoz 5, 6 observations of the He I (l � 584 A
�
) line.

Satellite jVj, km sÿ1 l, deg b, deg T, K n (He I), cmÿ3

Prognoz-6 (our results [12]) 25.3� 1.9 77.5� 2.6 ÿ6.2� 2.1 13,500� 1700 0.018� 0.002

Prognoz-5 (results of the French group [13]) 27� 3 74.5� 3 ÿ6� 3 11,000 ë 24000 0.015� 0.0023

EUVE (USA) 24.5 74.7� 0.5 ÿ5� 0.1 7000 0.0135� 0.08

830 Conferences and symposia Physics ±Uspekhi 55 (8)



plane four times and could observe both solar poles. In
particular, the latitude asymmetry of the solar wind was
measured, which directly confirmed our results obtained
from the Prognoz satellites [18].

To register helium atoms that entered the Solar System
from the interstellar medium, a group of researchers headed
by H Rosenbauer at the Max-Planck Institute for Aeronomy
designed a detector based on the interaction of helium atoms
having an energy of about 15 eV (which corresponds to the
velocity of 25 km sÿ1) with a thin gold foil. Electrons kicked
out from the foil were detected by a channel photomultiplier,
which, with the known velocity of the electrons, allowed
estimating their local density (in contrast, in our integral
method, the radiation on the l � 584 A

�
line was measured

along the entire path from themeasurement point to infinity).
The detector scanned almost the entire sky, enabling the
determination of the direction of helium atom trajectories.
The measurements were carried out from different points in
the Solar System, owing to which a high accuracy was
achieved (Table 3). Data obtained in a completely different
way are in good agreement with our results obtained by
`optical' means.

6. Conclusion

From the brief consideration of the problem of the motion of
the Sun relative to the local interstellar medium given above,
we conclude that the basic parameters of the LISMare known
quite well. These include the density of atomic hydrogen and
helium in the close vicinity of the Solar System (at distances
exceeding 20 a.u.) and the direction of the motion of the Sun
relative to LISM. The LISM temperature is known with less
accuracy. Undoubtedly, the temperature values derived by us
from measurements on La lines of hydrogen (l � 1215:7 A

�
)

and helium (l � 584 A
�
) are different, and this fact calls for

explanation. Second, the temperature measurement error on
these two lines highly exceeds the relative measurement errors
of the solar motion direction relative to the LISM and of the
hydrogen and helium atomic density.

It is very plausible that the temperature difference for
hydrogen and helium atoms is due to the interstellar atoms
crossing the transient zone between the heliosphere and `pure'
interstellar space. Hopefully, new results obtained by the
IBEX (Interstellar Boundary Explorer) satellite can be used
to improve the parameters of the local interstellar medium.
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Generation of cosmological êows
in general relativity

V N Lukash, E V Mikheeva, V N Strokov

1. Introduction

The Copernicus principle is known to cast doubt on the
uniqueness of our Universe. Therefore, it seems likely that
there is some physical mechanism of gravitational reproduc-
tion of cosmological flows of matter expanding from super-
large to small curvatures and densities. We relate the solution
of the cosmogenesis problem (the origin of universes) to black
holes, in which regions with high space±time curvature are
formed in a natural evolutionarymanner during gravitational
collapse. We only need to continue the singular states that
appeared in this way in time and to see what geometrical
structures are found beyond them in the future.

An analytic continuation of general relativity (GR)
solutions through singular hypersurfaces r � 0 is realized in
the model class of `black-white' holes with integrable
singularities [1, 2]. In these models, the space±time of a
black hole can be connected with a white hole endowed with
the metric of a homogeneous cosmological model, allowing
an explicit realization of the geometrical concept of a
multisheet universe (hyperverse). These topics are discussed
in this paper.

2. How the Schwarzschild metric can be continued

A black hole with a positive external mass M > 0 without
rotation or charge is described in GR by the Schwarzschild
metric in the vacuum:

ds 2 �
�
1ÿ 2GM

r

�
dt 2 ÿ dr 2

1ÿ 2GM=r

ÿ r 2 �dy 2 � sin2 y dj 2� ; �1�
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Table 3. LISM parameters from the Ulysses measurements of the helium
atom flux.

jVj, km sÿ1 l, deg b, deg T, K

26� 1 72� 2 ÿ2:5� 2:7 6700 � 1500
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where the variable r > 0 is defined as the internal curvature
radius of a closed homogeneous isotropic 2-space dY 2 �
gi j dy

i dy j, which does not depend on y i �i � 1; 2�, and G is
the gravitational constant. TheY-space is invariant under the
group of motions G3 (two translations that allow moving to
an arbitrary point Y, and rotation around a point), and it can
be reduced to the form dY 2 � r 2 dO, where dO �
dy 2 � sin2 y dj 2 decribes the unit-radius 2-sphere S2,
y i � �y;j�. Any of the S2 points can be taken as the pole
y � 0, and turning around the pole is described by the anglej.

The space X orthogonal to Y is given in the Eulerian
gauge, in which one of the coordinates xI coincides with r.
Additionally, metric (1) is independent of the coordinate
t 2R1. Therefore, the black hole in the vacuum has the
group of motions G4 acting on the hypersurface
C3 �R1� S2 (three translations in C3 and homogeneous
rotations in S2).

Topologically, geometry (1) represents a 4-cylinder with a
homogeneous 3-surface C3 and the radial coordinate r, which
in the region r > 0 determines the Schwarzschild sector of a
black (or white) hole. Attempts to extend this solution
inevitably lead to regions occupied by matter. Therefore, the
problem of the analytic continuation of metric (1) must be
solved using more general GR metrics with matter, which we
restrict by requiring the spherical symmetry G3 in S2.

We consider a class of such metrics that in the orthogonal
gauge (gIi � 0) have the form

ds 2 � dX 2 ÿ dY 2

� ÿNK dt 2 � dr 2

4rKÿ r�dy 2 � sin2 y dj 2� ; �2�

where the real variable rÿ1 is not restricted by the sign and is
defined as the Y-space internal curvature scalar that is
independent of y i:

R
�Y�
i j � rÿ1gi j : �3�

TheRicci 2-tensor is constructed from themetric gi j, which by
the spherical symmetry can always be reduced to the form
dY 2 � r dO. For general reference frames, r, K, and
N are 4-scalars depending on the coordinates of theX-space
dX 2 � nI J dx

I dxJ; here, K is the kinetic term of r and N is
restricted to have positive values:

K � r; m r
;m

4r
� ÿ1ÿ 2F ; N � N 2 > 0 ; �4�

with F being the metric gravitational potential. The energy±
momentum tensor has the form T n

m � diag �TJ
I ;ÿp?;ÿp?�,

where TJ
I � �E� p� uI uJ ÿ pd J

I . For r > 0, the functions E, p,
p?, and u m � �u I; 0; 0� respectively describe the energy
density, longitudinal and transversal tension, and 4-veloci-
ties of matter (uIu

I � 1). Metric (2) transforms into solution
(1) in the part of the domain

���
r
p � r > 0 that is free of matter.

Therefore, by definition, we call the domain K > 0 the
T-region of space (2). There, in particular, the component Tt

t

describes the pressure 1 and the meaning of the other
components depends on the sign of r.

The GR equations relate the metric and matter scalars:

F 0 � 2pGP ; _F � 2pGT r
t ; �5�

N 0

N
� 2pG�E� P�

K ; �6�

� rNE �0
N

� p? ÿ P

2
� ÿ�N

3Ttr�_
4N 3K ; _P � �T r

t �0 ; �7�

where the prime and dot respectively denote partial deriva-
tives with respect to r and t, and

P � ÿT t
t ÿ

F
4pGr

; E � Tr
r �

F
4pGr

: �8�

By modeling the state of the effective matter, we can
determine P and E from Bianchi identities (7), and integrat-
ing (5) and (6) over dx I from external solution (1) into the
future, we can reconstruct the metric potentials. Similarly,
Eqns (5) are transformed for the mass function m � m�xI�:

F � ÿGm���
r
p ; m ; I � 4pr eIK TK

J

qxJ

Nqt
; �9�

where �. . .�; I � q=qxI and the totally antisymmetric tensor in
X is given by

eI J �
�� det �nI J���1=2 0 ÿ1

1 0

� �
;

�10�
e I J � ��det �nI J���ÿ1=2 0 1

ÿ1 0

� �
:

3. Space±time near an integrable singularity

We are interested in solutions (2) generated by metric (1) that
are geodesically complete. The sufficient condition for the
metric to pass through r � 0 is the finiteness of the potentials
F and N and their derivatives. We call such models black-
white (or black/white) holes with integrable singularity [1].
They are described by the mean (average over vacuum
state (1)) 4-dimensional metric space without punctures,
which provides a continuous extension of the affine para-
meters of world lines of test particles through the singular
hypersurface r � 0. Using reference frames constructed on
these particles, we investigate the geometry of black-white
holes outside the Schwarzschild sector.

The effective matter generated by a strong gravitational
field near the singularity changes the space±time near r � 0
and is the physical reason for the existence of an integrable
singularity. The formation of matter in extremely strong
gravitational fields corresponds to the Le Chatelier princi-
ple: this is how Nature reacts to a sharp increase in the metric
potential amplitudes as r! 0 (which would continue to
increase in the absence of matter) and thus precludes their
divergence. Specific quantum gravitational mechanisms of
mutual transformations of matter and gravitational degrees
of freedom under extreme conditions need to be considered
separately. Here, developing papers [1, 2], we postulate the
continuity of gravitational potentials (2) in the presence of
effective matter.

In the R-region of space±time (2) with the signature
��;ÿ;ÿ;ÿ� specified by generating metric (1), we have
K < 0 and r � r 2 > 0. Here, the hypersurface r � 0 is
degenerate and represents a time-like worldline of the center
of a spherically symmetric distribution of matter (for
example, the center of a star). If there is no matter in the1 In particular, under the comoving condition Tt

t � ÿp in (2).
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R-region, it follows from (1) that r > 2GM, i.e., the hypersur-
face r � 0 does not lie in the R-region.

In the T-region, we have K > 0, and the variable r can
have any sign because the physics in this region is determined
by nonlinear quantum effects, and a priori there are no
grounds to believe that the signature remains indefinite [3].
Here, the singular hypersurface r � 0 splits the 4-space into
domains with different signatures �ÿ;�;ÿ;ÿ� for r > 0 and
�ÿ;ÿ;�;�� for r < 0. The complete geometry depends on
the distribution and properties of the effective matter near
r � 0.

We assume that the effective matter distribution main-
tains the symmetry of the generating field. For example, the
region that is evolutionary adjacent to that with the
Schwarzschild metric (for example, Tmn 6� 0 for r4 r0 �
const < 2GM and Tmn � 0 for r > r0) preserves the Killing
t-vector and depends only on r. The region inside the star
keeps the spherical symmetry and the field homogeneity of
the star. We use these constraints in constructing the models
in Sections 4±6.

Several properties of geometries (2) should be noted.
� The continuity of the potential F implies the integr-

ability of P�t; r� along the lines t � const [see (5)]:

F�t; r� � F0 � 2pG
�
0

P dr ; F0 � F�t; 0� : �11�

� The continuity of F and N implies the integrability of
E�t; r� along the lines t � const [see (6)]:

N�t; r��N0 exp

�
2pG

�
0

E� P

K dr
�
; N0�N�t; 0� : �12�

� For K0 � ÿ1ÿ 2F0 � K 2
0 � const > 0, the space±time

at r! 0 has the structure

ds 2 � ÿ d~t 2 � dU dVÿUVK 2
0 sin

2 y dj 2 ; �13�

~t � K0

�
N0 dt ; r � K 2

0 UV ; y � 1

2K0
ln

����UV
���� :

The direction y can be taken along any meridian in S2 and
counted from an arbitrarily chosen pole y � 0.

It follows that the integrable singularity of a black-white
hole includes horizon hypersurfacesU � 0 andV � 0 lying in
the T-region and intersecting along the space-like bifurcation
lineU � V � 0. They separate the T-region in cone sectors of
the black (U < 0;V < 0) and white (U > 0;V > 0) holes and
the static zone (UV < 0). The horizons have the cylindrical
symmetry R1� S2 with the space-like longitudinal axis t 2R1

and null geodesics in S2 (t � const). 2 Photons propagating in
these directions are confined gravitationally at r � 0, where
they perform infinite oscillations in Y within a finite interval
of the affine parameter. Trajectories of other particles,
including photons with a projection in R1, intersect the
singular hypersurface r � 0 and go away into other metric
domains.

4. Geometric maps of an oscillating hole

The structure of a 4-space can be described by 2- and
3-dimensional cross sections and cuts, which can be covered

with a net of trajectories of test particles on them. It is
convenient to choose coordinates such that the light trajec-
tories have a slope of 45� as in the flat world [4]. By the
spherical symmetry, all geodesics in (2) can be represented by
three groups of cross sections:
� X-planes: longitudinal cross sections �y;j� � const;
� UV-planes: transversal cross sections �t;j� � const;
� tUV-hypersurfaces: longitudinal±transversal cutsj�const.
The X-planes are filled with radial or longitudinal

geodesics, the tUV-planes contain particles propagating
in both longitudinal and transversal directions, and the
UV-planes orthogonal to the bifurcation line are filled with
spiral geodesics that do not escape beyond the T-region (see
the Appendix) (Fig. 1).

As an example, we consider metric (2), which is indepen-
dent of t, with matter in the T-region r4 r0 � const < 2GM.
The matter is distributed in the UV-planes along bundles of
straight lines �t; y;j� � const intersecting at the points
U � V � 0. Integrating (9) along the time lines r � ���

r
p

from
black-hole region (1) to the future, we obtain continuous
potentials

F � ÿGm

r
; m �Mÿ 4p

�
r0

p�r� r 2 dr � ÿ4p
�
0

prdr ;

�14�

which directly connect both holes. The black-hole metric is in
the sector r > 0, while a white hole is obtained from the
extension of solution (14) into the region r < 0 under the
finiteness condition pr � F0=4pG � const at r � 0. The
complete geometry can be restored by integrating from the
bifurcation line points along all bundles of lines, including
regions r < 0.

For illustration, we consider the model of an oscillating
black-white hole with a triggered matter distribution depend-
ing on r4r0 � r 20 (see [1, 2], case B). In other words, the
transversal pressure increases jump-wise: p? � l0y� r0 ÿ r�.
The longitudinal pressure, which is chosen to be vacuum-like
(p � ÿE), is calculated using Bianchi identities (7):

r4r0 : P � ÿE � 2

3
l0 ; F � 1

2
H 2

1 � rÿ 3r0� ; �15�

r > r0 : P � ÿE � M

4pjrj3 ; F � ÿGM

jrj ; �16�

r � 0

r � ÿ
2G
M

r �
2G
M

r �
2G
M

I 0

I 0

J ÿ

J �

a

r � ÿ2GM

r � 2GM

r
�
ÿ1

r�
ÿ1

r �
0 r �

0

b

Figure 1. (a) Longitudinal and (b) transversal cross sections of an

oscillating black-white hole. J � is the light-like infinity of the future for

observers in the region r > 0, J ÿ is the light-like infinity of the past in the

region r < 0, and I 0 are spatial infinities of the R-regions.

2 A comparison is suggested with horizons r � 2GM of an eternal black

(white) hole for the Kruskal metric, which are null in the radial direction

and space-like in S2 and intersect over a space-like bifurcation 2-sphere.
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where H 2
1 � 8pGl0=3 � GM=r 30 � const. Substituting (15)

and (16) in (2), we obtain the metric with matter (r4r0):

ds 2 � ÿK dt 2 � dr 2

4rKÿ r dO

� ÿ�1ÿ ~r�2 d~t 2 �Hÿ21 ~rÿ1 d~r 2 ÿ 4r 21 ~rdO

�1� ~r�2 �17�

and the metric in the vacuum ( r � r 2 > r0)

ds 2 �
�
1ÿ 2GM

jrj
�
dt 2 ÿ dr 2

1ÿ 2GM=jrj ÿ r 2 dO ; �18�

where ~t � K0t, r � 4r 21 ~r�1� ~r�ÿ2, K � K 2
0 ÿH 2

1 r, r1 �
K0=H1 � r0�3ÿ r0=GM�1=2, K 2

0 � ÿ1ÿ 2F0, and F0 �
F�0� � ÿ3GM=2r0. The value of the potential of the
integrable singularity is one and a half times lower than that
at the matter boundary, and this ratio is independent of the
parameter r0.

We represent (17) using the proper interval on the r axis:

r � r 2 2 �0; r0� : ds 2

� dt 2 ÿ cos2�H1t� d~t 2 ÿ r 21 sin
2�H1t� dO ; �19�

r4 0 : ds 2 � ÿ dx 2 ÿ cosh2�H1x� d~t 2

� r 21 sinh
2�H1x� dO ; �20�

where r�ÿr1 sin �H1t�2�ÿr0; r0� and r�ÿr 21 sinh2�H1x�40.
The space±time of static domains is asymptotically anti-
de Sitter:

r5 ÿ r20 : T m
n � ÿl0d m

n ; R m
n � 3H 2

1 d
m
n : �21�

For this reason, the regions r < 0 are also referred to as
anti-de Sitter (AdS) zones.

5. Source of an eternal black (white) hole

Eternal holes that are almost everywhere free of matter can be
obtained in the limit r0 ! 0 in Eqns (15)±(18):

r 2R1 : E � ÿp � 2p? �M
d�r�
2pr 2

; �22�

r < 0 : p � ÿE � p? � l0 � 3M

8pr 30
: �23�

The AdS zones are strongly curved by the dense vacuum l0
[see (20)]:

r5 ÿ r 20 : ds 2 � ÿ dx 2 � 3

4
r 20 exp �2H1x�

� �ÿH 2
1 dt

2 � dy 2 � sin2 y dj 2�; �24�
which produces a d-like material source with the geometry of
eternal black hole (18) in the region r 2R1. This source,
localized at jrj4 r0, has the density � l0 and the total
mass M. The value of r0 can be calculated in quantum field
theory. In our classical treatment, r0 is a free parameter of the
problem. We also note that the relation between the long-
itudinal and transversal tensions in (22) is not universal: it
depends on the chosen condition of the model p � ÿE.

Solutions (22)±(24) show that the polarized vacuum in
static AdS zones is the source of eternal black holes. The

gravitational mass of the effective matter of each of the AdS
zones, via its light hypersurface of the future r � 0, generates
the causally connected Schwarzschild metric of a black-white
hole in the vacuum, which extends in time to the next
integrable singularity r � 0, where the process repeats (see
Fig. 1). The full geometry is invariant under the reversal
r! ÿr of the spherical coordinate system relative to the
bifurcation lines. In this sense, phase transitions between
gravitational and material degrees of freedom in this model
are reversible.

In Section 6, we construct one more example of a
reversible geometry, in which the parent star, collapsed from
the R-region with the formation of a singularity in the
T-region, is the source of a black hole. During the evolution,
this model passes the stage of the effective matter and
transforms into a white hole with the metric of a homo-
geneous cosmological model.

6. Astrophysical black-white hole

We consider the model of a black-white hole with an
integrable singularity, assuming that the black hole was
formed during the collapse of a star from the parent
universe. The star is modeled as a homogeneous sphere with
the radius r�T;R � 1� � a�T�, which was at rest in a flat
space±time and had a mass M (a4 2GM at T! ÿ1), and
then started collapsing due to self-gravitation, with the initial
pressure being negligible. Here, T and R are the Lagrange
coordinates comoving with the star material, and the proper
time T 2R1 and radial markers of spherical shells R5 0 are
normalized such that R � 1 on the star surface.

The symmetry of the field is determined by the initial and
boundary conditions of the problem. Inside the star (R4 1),
the symmetry of R1�E3 is the 6-parameter group G6 on E3

and the potentials a,H, E, p are functions ofT. Outside the star
(R > 1), the group of motions G4 on C3 and all potentials
depend on r. To avoid crossing matter flows, we assume that
the longitudinal tension, which is produced outside the star at
large curvatures, is vacuum-like. Then, at R > 1, N � 1 and
the energy±momentum tensor is invariant under motions in
X: T m

n � ÿdiag �p; p; p?; p?�. Inside R4 1, the matter is
Pascalian, T m

n � �E� p� unu m ÿ pd m
n (with the 4-velocity

un � T; n), and its state is calculated from the boundary
conditions. The homogeneity of the star suggests the con-
tinuity of F and p at the boundary R � 1 (r � a), whereas the
density and transversal pressure can change discontinuously.

Inside the star, the metric has the form [5]

ds 2 � dT 2 ÿ a 2�dR 2 � R 2 dO�

� a 4H 2 dt 2 ÿ dr 2

1� 2F
ÿ r 2 dO ; �25�

where the Euler and Lagrange coordinates are related as

R4 1 : r � aR ; t � ÿ
�

dT

a 2H
ÿ R 2

2
; �26�

and the Hubble functionH � da=a dT can be found from the
Friedman equations:

H 2�8pG
3

E � 2Gm

r 3
� ÿ 2F

r 2
;

dE
dT
� 3H�E� p��0 : �27�

Initially, the pressure is absent and the star collapses freely
(H < 0, a 3H 2 � 2GM). The Newtonian potential in this limit
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is FN � GM�R 2 ÿ 3�=2a. The internal tension in the star
appears at a4 r0 < 2GM, and it can be calculated from the
matching conditions with the effectivematter at the boundary
R � 1.

Outside the star, the metric has the form

ds 2 � �1� 2F� dt 2 ÿ dr 2

1� 2F
ÿ r 2 dO

� dT 2 � 2F dR 2 ÿ r 2 dO ; �28�

where the Lagrange reference frame comoves with the shells
of free dust particles following the collapse of the star surface:

R > 1 : Rÿ T�
�

dr����������ÿ2Fp ; t � Tÿ
� ����������ÿ2Fp

dr

1� 2F
; �29�

F � ÿGm

r
� ÿ 1

2
H 2r 2 ; m�Mÿ 4p

�
r0

p�r� r 2 dr : �30�

The source of the Schwarzschild metric is the mass M of the
star with the continuous potential F � ÿGM=r at the star
boundary. The discontinuity of the functions N, t, and gRR is
due to the density jump atR � 1. The effective matter outside
the star emerges at r4 r0 and preserves the symmetry of the
parent metric. The continuity ofF suggests thatm�0� � 0 and
leads to the formulas in Section 4.

By extending the reference frame of free particles to the
entire cone r � r 2 5 0, we continue the metric from the
black-hole region (r > 0) to the white-hole region (r < 0),
bypassing the body of the star itself (R > 1) [see (14)±(18)].
Closing the external metric, we then restore the complete
solution on the entire manifold R5 0 by matching p at the
star boundary (Fig. 2). As a result, everywhere in the effective
matter zone, we obtain P � 2l0=3 and

jrj4 r0 ~R : r � ÿ
���
3
p

r0 ~R sin�H1
~T � ;

F � 3

2
F0

~R 2 cos2�H1
~T � ; �31�

where ~R � min�R; 1� and ~T � T� �1ÿ R� y�Rÿ 1�. The
state of effective matter inside the star is described by the
equation E� 3p � 2l0.

Freely falling shells of the star intersect simultaneously at
one point r � 0 separating the time-like and space-like parts
of the axis r � 0 (see Fig. 2). At this bifurcation point, the
equation of state of the effective matter is p � ÿE=3 and the
motion is rectilinear: a / T. Gravity is `switched off' due to
the mass ar r � 0, which provides the finite amplitude of tidal
forces and the continuation of matter world lines into the
future.

7. Physical nature of integrable singularities

The concept of integrable singularities allowed us to radically
advance in solving the cosmogenesis problem using the new
class of black-white-hole models in GR. Are these solutions
only research tools or do they really exist? If they do, thenwhy
and how do they form? These questions require separate
studies. Here, we discuss some ideas on the physical nature of
integrable singularities.

Reasons for the formation of singular structures with a
finite gravitational potential are related to the redistribution
of matter and space±time degrees of freedom in strong
gravitational fields of the singularities themselves. (At high

intensities and small scales, quantum effects apparently play
the key role.) That is why we talk about the effective matter,
which includes both material and gravitational degrees of
freedom that remain after averaging the metric over the
quantum state. However, we keep notions of energy±
momentum and laws of motion in the form of Bianchi
identities. This allows describing the back reaction using the
Einstein equations in which the left-hand side is defined using
the mean metric gmn and the right-hand side contains the
energy±momentum tensor of the effective matter T m

n , includ-
ing all polarization, gravitationally modified, and other terms
of quantum theory that need to be calculated.

We illustrate the method by considering the development
of one degree of freedom in the given physical symmetry of a
collapsing star. Let the physical variable be described by a
massless field j minimally coupled to metric (25). Secondary
quantization leads to the following equation for the ampli-
tudes of Fourier harmonics jk � nk�Z�=a [5]:

n 00k � �k 2 ÿU � n � 0 ; �32�

U � U�Z� � a 00

a
� a 2H 2 � �aH�0 � ÿ2F� F 0����������ÿ2Fp ; �33�

where the prime denotes the derivative with respect to the
conformal time Z � � dT=a, k is the wave number, and F is
the gravitational potential on the stellar surface.

As long as the pressure in the star is low, the tidal potential
increases with decreasing the radius: U � GM=a � a 2H 2=2.

r � 0

r
�

0

r � ÿ
2G
M

r �
2G
M

I 0

I 0

J ÿ

J ÿ

J �

J �

Figure 2. Penrose diagram of an astrophysical black-white hole. The light

gray region is the body of the star, the dark gray region is the effective

matter, the dashed line separates the R- and T-regions inside the star, and

the line with arrows is a contour t � const.
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At large a, the state of the field is vacuum-like: it oscillates
near an equilibrium point in the adiabatic zone U < k 2.

During the collapse, the field enters the parametric zone,
and its amplitude unlimitedly increases with increasing
U > k 2:

jk �
exp �ÿikZ�

a
�����
2k
p ! H

k 3=2
; j;mj

;m ' H 4 lnU : �34�

At this stage, the pressure cannot be neglected any more; the
vacuum is polarized and in turn affects the metric, which
changes the gravitational potential and the rate of collapse
near a � 0 (for the solar mass and the number of degrees of
freedom � 100, this occurs at H ' 0:1MP�lnU0�ÿ1=2 �
1017 GeV).

We can suppose that the back reaction described by the
Friedman equations restructures the solution such that tidal
potential (33) stops increasing infinitely and saturates:
U�r! 0� � U0 � ÿ2F0 � const. This precludes an ultravio-
let catastrophe and saves oscillators from being destroyed,
because high-frequency modes with k 2 >U0 remain in the
adiabatic zone and are not polarized. Thus, the notion of the
Heisenberg state vector stays valid, which corresponds to the
Minkowski vacuum in the R-region, and the main require-
ment of themetric theory on the finiteness of the gravitational
potential on a singular hypersurface is secured.We call such a
structure an integrable singularity.

This example illustrates the difference between our theory
and models with bounces (see, e.g., [6]), which have no
singularity, a > 0, and H � F � 0 at the bounce. The last
requirement, in our opinion, is redundant and is not a
necessary condition. In our models, the potential F reaches
an extremum at the singularity r � 0, which weakens the
singularity but does not fully eliminate it. For a / T, the
situation resembles the explosive model of nongravitating
particles byMilne. At the moment of crossing, particles move
by inertia and do not feel the central mass attraction.
Gravitation is switched off at this moment (m�0� � 0);
therefore, the space does not curve, although the energy
density diverges.

8. The arrow of time and natural selection

Gravitational tidal models of black-white holes containing
expanding flows of matter elucidate many fundamental
unanswered questions in modern physics. One of them is the
causality principle, which puts the causal relationships in
correspondence with the arrow of time. In the context of our
work, we can discuss the origin of the cosmological arrow of
time, which we regard as the orientation of the future light
cone in the direction of the volume expansion of a large-scale
flow of matter.

As is well known, dynamical equations describing micro-
scopic processes are invariant under the change in the sign of
time. However, the local dynamics have to be completed with
an external arrow of time, because the invariance under time
reversal is lost in the limit transition to the global geometry.

Geodesically full geometries with integrable singularities
suggest the origin of the arrow of time. They include different
space±time domains separated by event horizons r � 0 and
r � 2GM: nonstationary regions of black and white holes
(lying between the Schwarzschild and singular horizons),
alternating static R-zones (connecting the Schwarzschild
horizons of white and black holes), and AdS zones (connect-

ing singular horizons of black and white holes). Here, all
possibilities are realized. Each collapsing and anticollapsing
(cosmological) region has its own time. The static regions are
time-independent, but are not spatially homogeneous.

We are dealing with a unique geometry that is split into
sectors with time and space parity. When crossing any of the
horizons, the meaning of the coordinate r on which the metric
depends changes [7]. In some domains, r is the time coordinate
(andwe then obtain black holes and/or cosmologicalmodels),
while in other domains, it is a spatial coordinate (static zones).
The complete geometry can then remain invariant under the
change r! ÿr.

Therefore, the origin of the cosmological arrow of time is
related to the initial conditions. We (observers) belong to a
cosmological flow of matter and live in its proper time, which
started 14 bln years ago at the moment r � 0. The time
coordinate can be extrapolated into the past, to the pre-
cosmological epoch, but there it described the time in the
T-zone of the parent black hole. In the evenmore remote past,
this coordinate represented the radial coordinate of an
asymptotically flat space of the parent universe in which the
star had lived before it collapsed into a black hole. The
integrable singularity r � 0 that emerged during the collapse
`kindled' our Universe, and after several billion years, the
nonlinear large-scale structure began developing to initiate
the process of star formation. As a result, new black holes
appeared; they can be entrances to new universes.

This process of evolution of a multisheet space±time
resembles the growth of a tree (a genealogical tree, so to
speak). Such a tree can flourish, or can wither if no new black
holes form in the daughter universes. The critical situation
appears when the development conditions do not provide the
production of seed density fluctuations to form gravitation-
ally bound matter clumps and their collapse into black holes.
But another scenario can be realized: one collapse under
favorable conditions, which gave rise to inflationary para-
meters and phase transitions in a white hole, can lead to the
flourishing of a whole tree with nondecaying chains of new
universes. Because of these processes, cosmological natural
selection works [8]: only universes where black holes can be
formed survive and develop, and this is possible for a certain
set of parameters, world constants, etc.

This concept of a multisheet universe is based on the
gravitational instability processes, which resemble oscillating
tides. Anticollapsing space±time regions (white holes) stem
from collapsing black holes, and, conversely, an expanding
quasihomogeneous flow of matter of a white hole disinte-
grates into clumps collapsing into black holes. The former
process is related to the r � 0 horizon and the latter is related
to the r � 2GM horizon. At both horizons, the gravitational
potential is relativistic, and quantum gravitational processes
of vacuumpolarization and pair creation should be taken into
account [9]. However, while these effects are suppressed by
the mass parameter at the Schwarzschild horizon (the
Hawking evaporation), they dominate at r � 0 and form
structures of integrable singularities.

9. Conclusions

In the framework of our concept of integrable singularities, a
new class of black-white holes in GR is obtained, which can
be the key to solving the cosmogenesis problem. An
integrable singularity at r � 0 can be compared with a
classical cusp, in which the energy density or the longitudinal
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tension of matter diverges, but the mass is zero, 3 m�0� � 0,
and the gravitational potential r � 0 is bounded. Because of
this property, the tidal forces are finite and any geodesics
freely extend from a black hole into a white hole, where the
geometry is equivalent to that of an expanding cosmological
model.

The mass of matter in a multisheet universe can be
arbitrarily large, because it is compensated by the negative
gravitational binding energy. Hence, the total energy of holes,
measured in static zones, is constant in time. The integrable
singularities are reminiscent of machines for reprocessing
gravitational degrees of freedom into material ones; how-
ever, the quantitative characteristics of this process can be
determined only in the self-consistent quantum theory.

The work was supported by the Ministry of Education
and Science of Russia grant 16.740.11.0460 of 13.05.2011 and
the RFBR grant ofi-11-02-00857. VNS thanks FAPEMIG
for support.

10. Appendix.
Motion of test particles in a black-white hole

We consider the motion of test particles in metric (2), which is
independent of the time t. Let km � dx m=dl and l be the
tangent vector, and the affine parameter along the trajectory
be x m � x m�l�. From the geodesic equation kmkn;m � 0, we
obtain

k � kt � const ; k? � ky � kj

sin2 y
� const ; �35�

where kj � const is the azimuthal angular momentum.
Unlike invariants of motion for the longitudinal and
transversal momenta, the value of the azimuthal number
depends on the orientation of the polar coordinate system.
By adjusting the pole y � 0 with one of the points on the
trajectory, we have j � const and kj � 0 everywhere on the
world line of a particle. In the projection on the 2-sphere, the
particle moves along a meridian with the angle y monotoni-
cally increasing within the interval 2p by the number of turns
in S2:

dy
dl
� ÿ k?

r
;

�
dr
2 dl

�2

ÿ �k 2
? � nr� K � k 2r

N 2
: �36�

The equation for l�r� follows from the normalization integral
kmk

m � n � const, where n � 0 for the null and n � 1 for the
time-like geodesics. Inside the cone r � r 2 5 0 of a black-
white hole, Eqn (36) has the form�

dr

dl

�2

� f � k 2

N 2
ÿ n ; f � k 2

?
r 2
�1� 2F� � 2nF ; �37�

where the potential f � f�r� tends to zero as r!1 (Fig. 3).
The longitudinal light geodesics (n � k? � 0) propagate

directly from the black hole into the white hole with the
continuous affine time l � ÿkÿ1 � N dr. The spiral light

geodesics on the cross sections (n � k � 0) lie in the T-region
of the black or white hole, K � K 2 5 0, coming from AdS
zones and going back to AdS zones: y � ÿk?

�
dl=r �

� � dr=�2rK �. Of special interest are photons with
n � k � k? � 0 living on the horizons r � 0:

y � � ln jlÿ l0j
2K0

; r � �2K0�lÿ l0� k? ! 0 ; �38�

where l0 is the value of the affine parameter on the
bifurcation line.

Trajectories of photons with the impact parameter
k � k?�3

���
3
p

GMk�ÿ1< 1 connect the R- and T-regions.
Photons with k � 1 return to R-regions at the radius
r � 3GM. For k > 1, there are photons of two kinds: in the
R-region with r > 3GM, and in the zone r < 3GM that unites
the T-region and the inner part of the R-region adjacent to it.
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