
Abstract. A new effective analytical approach to describing
electromagnetic waves in nonmagnetic anisotropic media is
proposed. An analytical description of the refraction and
reflection at an interface between isotropic and anisotropic
media is demonstrated. Beam splitting upon reflection and
refraction is reviewed, and surface wave generation is exam-
ined. D'yakonov surface waves and methods of their observa-
tion are discussed. Analytical and numerical calculations of
the reflection and transmission of plane-parallel uniaxial
plates are outlined.

1. Introduction

The description of electromagnetic waves in homogeneous
anisotropic media has not changed since Fresnel's time
more than 160 years ago. Here, for the first time since then,
a new, radically different, approach is presented. We will
not waste time describing the standard approach, which
can be found in all the textbooks on electrodynamics or

optics [1±13] 1 containing chapters on anisotropic media;
instead, we directly start with our approach.

The challenge is to describe the plane electromagnetic
wave

EE exp �ikrÿ iot� �1�

propagating in an arbitrary direction. We will mainly
consider a uniaxial medium, so the problem that faces us is
to describe a plane wave with an arbitrary direction of
propagation with respect to the anisotropy vector a. Describ-
ing the wave means finding its polarization vector EE and the
magnitude of the wave vector k�o� at a given frequency o. In
isotropic media, vector EE can have an arbitrary direction in
the plane perpendicular to the vector k, whose length is
k � jkj � no=c, where c is the speed of light in vacuum, and
n is the index of refraction of the medium. In an anisotropic
medium, everything is slightly different.

An anisotropic medium is usually characterized by
symmetric permittivity tensor components ei j. These compo-
nents are usually treated as phenomenological parameters, so
for defining the 3� 3 tensor, in general, it is necessary to enter
the 6 numbers. Actually, it is much easier. Anisotropy is
always determined by a certain direction and a parameter that
characterizes a peculiarity of the medium in this direction. In
the case of a single preferred axis directed along a unit vector
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a, the permittivity tensor can be written as

ei j � E1di j � E 0aiaj ; �2�

where aj are the components of a, and E 0 is a parameter
indicating how strong the anisotropy manifests itself. As
E 0 ! 0, the medium becomes isotropic.

The validity of such a representation of a uniaxial
anisotropy has been proved by Fedorov [12]. This approach
is fruitful not only in electrodynamics but also in the theory of
elastic waves [14].

The paper outline is as follows. In the main part of the
paper we will mostly present ideas and simple examples. The
mathematics necessary for specific calculations is shifted to
the Appendices. In Section 2, we find EE and k�o� in a
uniaxial anisotropic medium. A description of biaxial media
is given in Appendix A. In Section 3, the reflection and
refraction of waves at the interface between isotropic and
anisotropic media, the splitting of the waves upon reflec-
tion, the appearance of surface waves, and a possible device
for a laboratory demonstration of the splitting are discussed.
In Section 4, we show how to calculate the reflection and
transmission of plane-parallel transparent anisotropic plates.
Sections 5 and 6 are devoted toD'yakonov surface waves, and
the results obtained by D'yakonov himself [15] are comple-
mented. The conclusion (Section 7) summarizes all the results
obtained.

2. Plane waves in anisotropic media

First of all, we recall how the wave equation is derived from
the Maxwell equations, which in the absence of currents and
charges are given by

ÿ HH� E�r; t� � 1

c

q
qt

B�r; t� ; HH�H�r; t� � 1

c

q
qt

D�r; t� ;

HHB � 0 ; HHD � 0 ;
�3�

where

B � mH ; D � eE ; �4�
and m, e are the magnetic and dielectric constants. In the
following, we restrict ourselves to nonmagnetic media and
take m � 1, and then equations (3) are simplified to

ÿ HH� E�r; t� � 1

c

q
qt

H�r; t� ; HH�H�r; t� � 1

c

q
qt

eE�r; t� ;

HHH � 0 ; HHeE � 0 :
�5�

Differentiating the second equation in set (5) over time and
substituting it into the first equation yields the wave equation

ÿHH� �HH� E�r; t�� � 1

c 2
q2

qt 2
eE�r; t� : �6�

Note (this is mentioned in no textbook) that this derivation is
suitable only for homogeneous media. In the presence of an
interface between two half-spaces, we get different equations
in them, and transition across the border is governed by the
boundary conditions that are dictated by the Maxwell
equations themselves. By comparison, the SchroÈ dinger
wave equation in quantum mechanics is given once in the
whole space, and boundary conditions are dictated by the
SchroÈ dinger equation itself.

2.1 Plane waves in uniaxial anisotropic media
In a uniaxial anisotropic medium, we choose the tensor e in
the form (2). Therefore, for a plane wave (1), we obtain

e EE � E1EE � E 0a�a EE � ; �7�

and the last equation in set (5) is equivalent to

E1kEE � E 0�ka��a EE � � 0 : �8�

Substituting plane wave (1) into equation (6) leads to

k 2EE ÿ k�kEE � � k 2
0 e EE ; �9�

where k0 � o=c, and substitution of formula (7) into (9) gives

k 2EE ÿ k�kEE � ÿ k 2
0 e EE

� �k 2 ÿ k 2
0 E1�EE ÿ k�kEE � ÿ k 2

0 E
0a�a EE � � 0 : �10�

To find EE , we need to solve equation (10) with due account of
Eqn (8).

The 3-dimensional vector EE can be represented by
coordinates in some basis. If k is not parallel to a, we can
use three independent vectors: a, j� k=k, and

e1 � a� j �11�

as a basis . In this basis (notice that it is not orthonormal), EE is
presented as

EE � aa� bj� ge1 ; �12�

with coordinates a, b, and g being not independent, because of
Eqns (8) and (10).

Substitution of expression (12) into equation (8) gives

E1�kb� aka� � E 0ka�a� bja� � 0 ; �13�

from which it follows that

b � ÿ �1� Z�ja
1� Z�ja�2 a ; �14�

where Z � E 0=E1. Substitution of formula (14) into expansion
(12) yields

EE � a
�
aÿ j

�1� Z�ja
1� Z�ja�2

�
� ge1 � ae2 � ge1 ; �15�

which shows that the wave polarization vector EE lies in a
plane of two independent vectors: e1 � a� j, and the vector
orthogonal to it, namely

e2 � aÿ 1� Z

1� Z�ja�2 j�ja� � aÿ E2�y�
E1

j�ja� ; �16�

where the angle y between vectors j and a, and anisotropic
dielectric constant

E2�y� � E1
1� Z

1� Z cos2 y
�17�

were introduced.
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To find a and b coordinates, we substitute formula (15)
into equation (10) and multiply it by e1. As a result, we obtain

�k 2 ÿ k 2
0 E1�ge 21 � 0 : �18�

It follows, thence, that if g 6� 0, then equation (18) can be
satisfied only when

k 2 � k 2
0 E1 : �19�

Multiplying equation (10) by a and taking into account that

ae2 � 1ÿ �ja�2
1� Z�ja�2 ; je2 � ÿZja 1ÿ �ja�2

1� Z�ja�2 � ÿZ�ja��ae2� ;

�20�

we arrive atÿ
k 2 ÿ k 2

0 E2�y�
�
aae2 � 0 : �21�

Therefore, if a 6� 0 and a 6� j, equation (21) can be satisfied
only when

k 2 � k 2
0 E2�y� ; �22�

where E2�y� is given by relationship (17). Since the length of k
is different for two polarization vectors, a single plain wave
can exist only with a single polarization along either e2 or e1.

Thus, in general, only two types of plane waves can
propagate in any given direction. One wave has polarization
vector e1, and the other e2. Only when propagating along the
anisotropy vector �j� a� can the plane wave, as in the
isotropic case, have an arbitrary polarization perpendicular
to the wave vector k. Thus, k2 � E1k 2

0 .
Generally, we call the wave mode with polarization

EE1 � e1 `transverse', because e1?k, and the wave mode with
polarization along EE2 � e2 `mixed', because this mode
polarization vector, according to expressions (20), includes a
longitudinal component, i.e. a component directed along the
vector j. We believe that such a nomenclature is more
meaningful than the meaningless common names `ordinary'
for a wavewith polarization EE1 � e1, and `extraordinary' for a
wave with polarization EE2 � e2.

This part of our work is the most important. It shows a
very elementary way to describing plane waves with an
arbitrary direction of their propagation relative to the
anisotropy axis, i.e. to finding wave-vector lengths and their
vectors of linear polarization.With our description, we do not
need such auxiliary notions like a ray or wave surface, wave-
vector or dielectric constant ellipsoids. This is the first time it
has become possible since Fresnel's time. It is just for the sake
of the simplicity and beauty of this branch of physics that we
decided to `reinvent the wheel'.

2.2 Magnetic fields
Every electromagnetic wave, beside an electric field, contains
the magnetic one. From the equation HHH � 0, which is
equivalent to kH � 0 for the plane wave, it follows that the
field H is always orthogonal to k. It is also orthogonal to EE,
which follows from the first equation in set (5). After
substituting definition (1) into this equation, as well as the
field H in the plane-wave form

H�r; t� � HH exp �ikrÿ iot� ; �23�

with the magnetic polarization vector directed along HH, we
arrive at

HH � k

k0
j� EE : �24�

For transverse and mixed modes in uniaxial media, respec-
tively, we therefore obtain

HH1 � k

k0
j� e1 � k

k0
j� �a� j� ;

�25�
HH2 � k

k0
j� e2 � k

k0
j� a ;

and the total plane-wave field takes the form

W�r; t� � wj exp �ikjrÿ iot� ; �26�

where wj � EEj �HHj, and j enumerates mode 1 or 2. In
isotropic media, we can also choose, say, EE � a� j and
HH � j� �a� j�. However, there a can have an arbitrary
direction; therefore, the pair of orthogonal vectors EE and HH
can be rotated through any angle about the wave vector k.

3. Wave reflection from an interface
between anisotropic and isotropic media

Suppose that our space is split by the plane z � 0 into two
half-spaces. The part for z < 0 is a uniaxial anisotropic
medium, and the part for z > 0 is a vacuum with E1 � 1,
Z � 0. We have two different wave equations in these parts,
and the waves go from one medium to the other through the
interface where theymust obey boundary conditions imposed
by the Maxwell equations.

Let us look for reflection of the two possible modes
incident on the interface fromwithin the anisotropic medium.

3.1 Nonspecularity of reflection. Transformation of modes
First, we note that reflection of the mixed mode is not, in
general, specular. Indeed, since the direction of k after
reflection changes, the angle y between a and j also
changes, and k, according to condition (22), changes too.
However, the kk components parallel to the interface do not
change, so the change in k means a change in the normal
component k?, and this testifies to nonspecularity of the
wave reflection.

Let us calculate the change in k? for the incident mixed
mode with the wave vector k2r, where the subscript r means
that mode 2 propagates to the right, toward the interface. For
a given angle y between k2r and a, we can write

k2r? �
�����������������������������������
E1k 2

0 �1� Z�
1� Z cos2 y

ÿ k 2
k

s
; �27�

however, the quantity k2r? enters implicitly into cos y, so for
finding the explicit dependence of k2r? on a, it is necessary to
solve the equation

k 2
k � x 2 � Z�kkla� xna�2 � k 2

0 E1�1� Z� ; �28�

where x denotes k2r?, n is a unit vector of the normal directed
toward the isotropic medium, and l is a unit vector along kk,
which, together with n, constitutes the plane of incidence. The
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solution of this equation assumes the form

x � 1

1� Z�na�2
�
ÿZkk�na��la�

�
�������������������������������������������������������������������������������������������������������
E1k 2

0 �1� Z�ÿ1� Z�na�2�ÿ k 2
k
ÿ
1� Z�la�2 � Z�na�2�q �

:

�29�
The sign chosen before the square root provides the correct
asymptotics as Z! 0, equal to the isotropic value of
x � �E1k 2

0 ÿ k 2
k �1=2.

In general, vector a is representable as a � an� bl� gt,
where t � �nl� is a unit vector perpendicular to the plane of
incidence. The normal component k2r? depends only on part
of this vector, a0 � an� bl, which lies in the plane of
incidence. If we denote a � ja0j cos ya, b � ja0j sin ya, where
ja 0j is the projection of a onto the plane of incidence, and
introduce new parameter Z 0 � Zja0j2 4Z, then formula (29) is
simplified to

k2r? � 1

2�1� Z 0 cos2 ya�
�
ÿZ 0kk sin �2ya�

� 2
����������������������������������������������������������������������������������
E1k 2

0 �1� Z��1� Z 0 cos2 ya� ÿ k 2
k �1� Z 0�

q �
: �30�

For the reflected mixed mode (mode 2, propagating to the
left of the interface), equation (28) takes the form

k 2
k � x 2 � Z�kklaÿ xna�2 � k 2

0 E1�1� Z� ; �31�

where x � k2l?, and its solution is written as

k2l? � 1

2�1� Z 0 cos2 ya�
�
Z 0kk sin �2ya�

� 2
����������������������������������������������������������������������������������
E1k 2

0 �1� Z��1� Z 0 cos2 ya� ÿ k 2
k �1� Z 0�

q �
: �32�

It is evident that the difference between the normal wave-
number components of the incident and reflected waves of
mixed modes, k2l? ÿ k2r?, is

k2l? ÿ k2r? �
Z 0kk sin �2ya�
1� Z 0 cos2 ya

: �33�

In the following, we will present such differences in dimen-
sionless variables:

D22 � k2l? ÿ k2r?
k0

����
E1
p � Z 0q sin �2ya�

1� Z 0 cos2 ya
; �34�

where q 2 � k 2
k =k

2
0 E1. The reflection angle depends on the

orientation of anisotropy vector a and can be larger than the
specular one, when ya > 0, or smaller, when ya < 0.

In the case of the transverse incident mode, the length
k � jkj of the wave vector, according to formula (19), does
not depend on the orientation of a; therefore, this wave is
reflected specularly.

Generally, every incident mode after reflection creates
another one, because it is impossible to satisfy the boundary
conditions without another mode. Let us look at what the
normal component of the wave vector of the other mode will
be.

If the incident wave belongs to mode 2, the reflected
transverse mode (mode 1 propagating to the left, away from

the interface) will have k1l? � �E1k 2
0 ÿ k 2

k �1=2. Therefore,
according to (30), the difference D12 � �k1l? ÿ k2l?�=k0 ����

E1
p

is written out in the form

D12 �
��������������
1ÿ q 2

p
ÿ Z 0q sin �2ya� � 2

��������������������������������������������������������������������������1� Z��1� Z 0 cos2 ya� ÿ q 2�1� Z 0�p
2�1� Z 0 cos2 ya� :

�35�

In the opposite case, when the incident mode is a transverse
one, the reflected mixed mode will have k2l? shown in (32).
Therefore, the difference D21 � �k2l? ÿ k1l?�=k0 ����

E1
p � ÿD12.

Since reflection of mode 2 is, in general, nonspecular, it
can happen that the wave vectors of reflected and transmitted
waves will be arranged as shown in Fig. 1, and it follows that
there are two critical angles for j. The first critical angle, jc1

�q 2 � 1=E1�, is the angle of total reflection. The transmitted
wave becomes there evanescent. The totally reflected field
contains two modes. At the second critical angle, jc2, when q
falls in the range

1 < q 2 <
�1� Z��1� Z 0 cos2 ya�

1� Z 0
; �36�

the reflected mode 1 also becomes evanescent. Together with
the evanescent transmitted wave, mode 1 constitutes a surface
wave, propagating along the interface. In this case, we have
nonspecular total reflection of the single mode EE2 and the
surface wave tied to it.

z5 0 z4 0

a

t

l

n

j
EE
!
2

EE
 
2 EE

 
1 EE

!
0

j1

j0

x

Figure 1. Arrangement of wave vectors of all the modes created by the

incident wave of mode 2, i.e. of polarization EE
!
2, when the anisotropy

vector a has the direction shown here. The grazing angle of reflected mode

2, EE
 
2, is less than the specular one (the specular direction is shown by the

dashed arrow), and the grazing angle j1 of the reflected mode 1, EE
 
1, is still

lower. The grazing angle j0 of the transmitted wave EE
!
0 is even lower than

j1. It can be inferred that, at some critical value j � jc1, the angle j0

becomes zero, meaning that for j < jc1 the transmitted wave becomes

evanescent and all the incident energy is totally reflected in the form of two

modes. Moreover, there is a second critical angle jc2, whereat j1 � 0.

Below this angle forj < jc2, themode EE
 
1 also becomes evanescent. In this

case, all the incident energy is totally reflected nonspecularly in the form of

mode 2. At the same time, the two evanescent waves EE
!
0 and EE

 
2 combine

into a surface wave propagating along the interface. The arrows over EE
show the directions of wave propagation with respect to the interface. In

the figure is also shown the basis consisting of unit vector n along the

normal (z-axis), unit tangential vector l (x-axis) which, together with n,

defines the plane of incidence, and vector t (y-axis) pointing toward the

reader, which is normal to the plane of incidence.
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3.2 Beam splitting with the help of a birefringent cone
Beam splitting at the interfaces of an anisotropic medium can
be spectacularly demonstrated with the help of a birefringent
cone, as illustrated in Fig. 2. In the geometrical optics
approximation, a narrow incident beam of light, after
refraction on the side surface of the cone, is split into two
rays of two different modes, 1 and 2. Both modes are further
split into two components upon reflection from the base of
the cone. The four resulting beams, after refraction on the side
surface, leave the cone and produce four bright spots on a
vertical screen. Their positions and brightness depend on the
direction of the anisotropy axis inside the cone and vary with
cone rotation.

The direct numerical calculations for parameters E1 � 1:6,
Z � 0:8, with vector a in the figure plane, and for sin a � 0:5,
sin b � 0:3, and sin g � 0:5 show that outgoing beamsmoving
upwards have directions characterized by tan d1 � 0:2,
tan d2 � 0:4, tan d3 � 0:6, and tan d4 � 0:7, respectively.

4. Calculation of the refraction at the interfaces
of plane-parallel plates and of their transmission

To describe the reflection and transmission of a plane-parallel
anisotropic plate placed in an isotropic medium (for instance,
a vacuum), it is necessary to know the reflections and
refractions at interfaces from inside and outside the aniso-
tropic medium, which are obtained by imposing boundary
conditions stemming from the Maxwell equations. Know-
ledge of everything at the interfaces permits writing directly
the reflection and transmission of the plate by the method
which is explained in handbook [16] and will be briefly
described below (the corresponding mathematical formulas
are presented in the Appendices).

4.1 Wave reflection and refraction for incidence
on the interface from inside an anisotropic medium
The wave function of the electromagnetic field in the full
space may be represented as

C�r� � Y�z < 0�
�
exp �ik

!
j r�c
!
j �

X
j 0�1; 2

exp �ik
 

j 0r�c
 
j 0 r
!

j 0j

�
�Y�z > 0� exp �ik0r�

ÿ
ce t
!
e j � cm t

!
m j

�
; �37�

wherew� EE �HH,Y is a step function equal to unity when the

inequality in its argument is satiséed, and to zero in the

opposite case, half-space z < 0 is occupied by an anisotropic

medium, and the half-space z > 0 is a vacuum. The arrows

above the quantities mark the direction of wave propagation:

c
!

j denotes the incident wave of mode j � j � 1; 2�, c
 

j 0

� j 0 � 1; 2� denotes a reêected wave of mode j 0,
k
!

j � �kk; kj r?�, k
 

j 0 � �kk;ÿkj 0 l?�, k0 � �kk; �k 2
0 ÿ k 2

k �1=2�,
and ce;m, t

!
e;m j are the refracted éelds and refraction

amplitudes of TE- and TM-modes, respectively, for the

incident j-mode. To énd the reêection �r!� and refraction

�t!� amplitudes (the arrows over them point to the direction of

propagation of the incident wave toward the interface), we

need to impose boundary conditions on the éeld wave

function (37).

4.2 General relations based on boundary conditions

Every incident wave éeld can be decomposed into TE- and

TM-modes at the interface. In the TE-mode, the electric éeld

is perpendicular to the plane of incidence, EE / t; therefore, the

contribution of the jth mode to the TE-mode is EEj t. In the

TM-mode, the magnetic éeld polarization is perpendicular to

the plane of incidence, HH / t; therefore, the contribution of

the jth mode to the TM-mode is HHj t. For a refracted éeld in

the TE-mode, we may at once accept EE
!
e � t,HH

!
e � j0 � t, and

for a refracted éeld in the TM-mode we accept HH
!

m � t,

EE
!
m � ÿj0 � t.

4.2.1 Boundary conditions for TE-modes. In the TE-mode of
an electromagnetic field for an incident j-mode, we derive
the following three equations from the boundary condi-
tions.

(1) Continuity of the electric field (the field vector is
parallel to the interface) yields

t EE
!
j � t EE

 
1 r
!

1j � t EE
 
2 r
!

2j � t EE
!
e t
!
e j : �38�

(2) Continuity of themagnetic field component parallel to
the interface and the plane of incidence yields

lHH
!

j � lHH
 

1r
!

1j � lHH
 

2r
!

2j � l�j0 � t�t!e j � ÿk0? t!e j : �39�

(3) Continuity of the normal component of magnetic
induction in the plane of incidence yields (for m � 1)

nHH
!

j � nHH
 

1r
!

1j � nHH
 

2r
!

2j � n�j0 � t� t!e j � k0k t
!

e j : �40�

The last equation is, in fact, not needed, because it coincides
with equation (38).

4.2.2 Boundary conditions for TM-modes. In the TM-mode,
we also have three equations following from the boundary
conditions.

(1) Continuity of the magnetic field (the field vector is
parallel to the interface) yields

tHH
!

j � tHH
 

1r
!
1j � tHH

 
2r
!

2j � t
!
m j : �41�

(2) Continuity of the electric field component parallel to
the interface and the plane of incidence yields

l EE
!
j � l EE

 
1r
!

1j � l EE
 
2r
!

2j � ÿl�j0 � t�t!m j � k0? t
!
m j : �42�

g

a

d4

b

k

a

Figure 2.Demonstration of the light beam splitting in a birefringent cone.

Bright spots on a vertical screen change their positions and brightness

when the cone is rotated about a vertical axis.
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(3) Continuity of the normal component of field D in the
plane of incidence yields

ne EE
!
j � ne EE

 
1 r
!

1j � ne EE
 
2 r
!

2j � n�j0 � t� t!m j � k0k t
!
m j : �43�

Again, we can neglect the last equation, because it coincides
with Eqn (41). In the following, we will not show third
equations like (40) and (43), because they are useless.

So, there are four linear equations from which we can find
four quantities: the two related to refracted TE and TM
waves, and two others related to reflected waves of modes 1
and 2. This shows why the reflection of one mode generally
produces a different mode.

The resulting linear equations are easily solved in the
general case, and corresponding solutions are given in
Appendix B. Here, we restrict ourselves to the particular
case of normal incidence of the waves.

4.2.3 A particular case of normal incidence. In the case of
normal incidence, wave reflection and refraction are espe-
cially simple, because there is no splitting upon reflection. We
shall define the appropriate geometry by three basis vectors:
n, l, and t, where n denotes the normal directed along the
z-axis toward a vacuum, while vectors l and t lie on the
interface and define the directions of x- and y-axes, respec-
tively. The anisotropy vector a is supposed to lie in the �x; z�
plane at angle y with respect to n.

A plane wave propagating along n �j� k=k � n� can
have only two types of polarization: a transverse mode
with EE1 � e1 � t andHH1 � ÿn1l, where n1 � ����

E1
p

[see expres-
sion (2)], or a mixed mode with EE2 � e2 [see expression (16)]
and HH2 � n2�y� n� a, where n2�y� �

����������
E2�y�

p
[see expres-

sion (17)].
Since there is no wave splitting at normal incidence, the

boundary conditions are simplified. For mode 1, equations
(38) and (39) are reduced to

1� r
!
11 � t

!
e1 ; n1�1ÿ r

!
11� � t

!
e1 ; �44�

and the transmitted wave has field polarization EEe1 � t,
HHe1 � ÿl, identical to that of the incident field.

The solution of equation (44) is as follows:

r
!
11 �

n1 ÿ 1

n1 � 1
; t

!
e1 � 2n1

n1 � 1
; n1 � ����

E1
p

: �45�

With these formulas, we can immediately find the reflection
and transmission of a plane-parallel plate with thicknessD for
an electromagnetic wave with polarization EEe1 � t incident
from a vacuum:

R1 � ÿr!11
1ÿ exp �2ik1D�

1ÿ r
! 2

11 exp �2ik1D�
;

�46�

T1 � exp �ik1D� 1ÿ r
! 2

11

1ÿ r
! 2

11 exp �2ik1D�
;

where k1 � k0n1. We see that the incident plane wave with
linear polarization EEe1 � t parallel to that of mode 1 inside the
plate does not change polarization direction after transmis-
sion through the plate.

Now let us apply boundary conditions to the mixed mode
EE2 incident normally on the interface from inside the plate.

The boundary conditions are then reduced to

la
ÿ
1� r

!
22�y�

� � t
!
e2 ; �47�

k2�y� la
ÿ
1ÿ r

!
22�y�

� � k0 t
!
e2 ;

where the factor la appears because of the projection of the
polarization vector onto the interface. Therefore, since
k2 � k0n2�y�, and n2�y� �

����������
E2�y�

p
, the solutions of equations

(47) are as follows:

r
!

22�y� �
n2�y� ÿ 1

n2�y� � 1
; t

!
e2�y� � 2n2�y� la

n2�y� � 1
: �48�

From the symmetry consideration, we can immediately
find reflection and transmission amplitudes of the wave with
unit polarization along l, which is incident on the interface
from a vacuum:

r
 

e2�y� �
1ÿ n2�y�
1� n2�y� ; t

 
e2�y� � 2

la
ÿ
1� n2�y�

� : �49�

Whence, we can immediately find the reflection and transmis-
sion amplitudes for a plane-parallel plate of thickness L for a
plane electromagnetic wave with polarization EEe2 � l incident
from a vacuum:

R2�y� � ÿr!22�y�
1ÿ exp

ÿ
2ik2�y�L

�
1ÿ r

! 2
22�y� exp �2ik2�y�L

� ;
�50�

T2�y� � exp
ÿ
ik2�y�L

� 1ÿ r
! 2

22�y�
1ÿ r

! 2
22�y� exp

ÿ
2ik2�y�L

� ;
where k2�y� � k0n2�y�. We see that the incident wave with
linear polarization EEe2 � l, which lies in the plane �na�, does
not change polarization direction after transmission through
the plate.

Now we will consider transmission through the plate of a
plane wave exp �ik0zÿ io0t� EEe with intermediate polariza-
tion EEe � at� bl, where jaj2 � jbj2 � 1. The transmitted
electrical part of the wave, namely

Et�z; t� � exp
ÿ
ik0�zÿ L� ÿ io0t

��
aT1t� bT2�y� l

�
; �51�

will generally have elliptical polarization.

4.3 Wave reflection and refraction
for incidence on the interface from a vacuum
We now consider the case where the half-space for z < 0 is a
vacuum, and that for z > 0 is an anisotropic medium. The
incident wave moves from the left in the vacuum. The wave
function in the full space now has the form

W�r� � Y�z < 0�
h
exp

ÿ
ik
!

0r
�
c
!

j � exp
ÿ
ik
 

0r
� X
j 0�e;m

c
 

j 0 r
!

j 0j

i
�Y�z > 0�

h
exp

ÿ
ik
!
1r
�
c
!

1 t
!
1j � exp

ÿ
ik
!
2r
�
c
!

2 t
!
2j

i
; �52�

where j, j 0 designate e or m for the TE- and TM-modes,

respectively, and the term exp �ik
!

0r�c
!

j with the wave vector

k
!

0 � �kk; k0? � �k 2
0 ÿ k 2

k �1=2� describes the plain wave inci-

dent on the interface from the vacuum. In the TE-mode,

factor c
!

e � EE
!
e �HH

!
e contains EE

!
e � t and HH

!
e � j

!
0 � t. In the
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TM-mode, factor c
!
m � EE

!
m �HH

!
m contains EE

!
m � ÿj

!
0 � t

andHH
!

m � t.

The reêected wave has the wave vector k
 
0 � �kk;ÿk0?�

and éelds EE
 
e � t, HH

 
e � j

 
0 � t, HH

 
m � t, and EE

 
m � ÿj

 
0 � t.

The refracted éeld contains two wave modes with the wave

vectors k
!
1 � �kk; k1?�, k

!
2 � �kk; k2r?� and electric éelds

EE
!
1 � e1 � a� j

!
1 and EE

!
2 � e2 � aÿ j

!
2�a� j

!
2�E2�y

!
2�=E1.

Here, j� k=k, k1? � �E1k 2
0 ÿ k 2

k �1=2, and k2r? is given by

expression (30). For incident TE-mode, reêection �ree, rme�
and refraction �tje� amplitudes � j � 1; 2� are found from

boundary conditions

t EE
!
1 t
!
1e � t EE

!
2 t
!
2e � 1� r

!
ee ; �53�

lHH
!

1 t
!
1e � lHH

!
2 t
!
2e � ÿk0?

ÿ
1ÿ r

!
ee

�
; �54�

tHH
!

1 t
!
1e � tHH

!
2 t
!
2e � r

!
me ; �55�

l EE
!
1 t
!
1e � l EE

!
2 t
!
2e � ÿk0?r!me : �56�

The solution of these equations is elementary and is given in
Appendix C.

4.4 Reflection and transmission amplitudes
of a plane-parallel anisotropic plate with thickness L

Now, when we understand what occurs at interfaces, we can

build up [16] expressions for reêection and transmission

matrices [R̂
!
�L� and T̂

!
�L�, respectively] for a whole anisotro-

pic plane-parallel plate of some thickness L, when the state of

the incident wave is described by a general vector jn
!

0i. To do

this, let us denote the state of the éeld of the modes e1 and e2

incident from inside the plate onto the second interface at

z � L by unknown two-dimensional vector jx!i (106). If we
were able to énd jx!i, we could immediately write the state of a

transmitted éeld

T̂
!
�L�jn

!
0i � T̂

!
0jx!i ; �57�

where T̂
!
0 is the transmission matrix through the right

interface of the section. The state of the field reflected from
the whole plate assumes the form

R̂
!
�L�jn

!
0i � R̂

!
jn
!
0i � T̂

 
0Ê
 
�L�R̂

!
0jx!i ; �58�

where R̂
!

, R̂
!
0 are the reflection matrices from the left (from

the vacuum side) and from the right (from the anisotropic
medium) interfaces, respectively, T̂

 
0 is the transmission

matrix through the left interface of the section, and Ê
 
�L�,

Ê
!
�L� designate diagonal matrices:

Ê
 
�L� � exp �ik1?L� 0

0 exp �ik2l?L�
� �

;

�59�
Ê
!
�L� � exp �ik1?L� 0

0 exp �ik2r?L�
� �

;

which describe the propagation of two modes in the plate
between two interfaces. Here, k1? � �E1k 2

0 ÿ k 2
k �1=2, while

k2r? and k2l? are calculated according to expressions (29) or
(30) and (32), respectively.

It is very easy to put together a self-consistent equation for
the determination of vector jx!i:

jx!i � Ê
!
�L� T̂

!
jn0i � Ê

!
�L�R̂

 
0Ê
 
�L�R̂

!
0jx!i : �60�

The first term on the right-hand side describes the state of an
incident wave transmitted through the first interface and
propagated up to the second one. The second term describes
the contribution of jx!i itself to the state jx!i. After reflection
from the second interface, the appropriate wave propagates
to the left up to the first interface, and after reflection from it
propagates back to the point z � L. The two terms on the
right-hand side of expression (58) add together, giving rise to
some new state. But we denoted it as jx!i, and this explains the
derivation of equation (58).

From equation (58) we can directly find

jx!i �
h
Îÿ Ê

!
�L�R̂

 
0Ê
 
�L�R̂

!
0
iÿ1

Ê
!
�L� T̂

!
jn0i ; �61�

and substituting formula (61) into Eqns (57) and (58) gives

T̂
!
�L�� Tee Tem

Tme Tmm

� �
� T̂
!
0
h
Îÿ Ê

!
�L�R̂

 
0Ê
 
�L�R̂

!
0
iÿ1

Ê
!
�L� T̂

!
;

�62�
R̂
!
�L� � Ree Rem

Rme Rmm

� �
� R̂
!
� T̂
 
0Ê
 
�L�R̂

!
0
h
Îÿ Ê

!
�L�R̂

 
0Ê
 
�L�R̂

!
0
iÿ1

Ê
!
�L� T̂

!
: �63�

With these formulas at hand, we can easily calculate all the
required reflectivities and transmissivities for plane-parallel
plates:

jReej2 jRemj2
jRmej2 jRmmj2

 !
;

jTeej2 jTemj2
jTmej2 jTmmj2

 !
�64�

for arbitrary parameters, arbitrary angles of incidence,
arbitrary incident wave polarizations, and arbitrary direc-
tions of the anisotropy vector a. In Fig. 3 we present, as an

jR
ee
j2 ,
jR

m
e
j2

1.0

0.5

0
ÿ4 ÿ2 0 2 4

f, rad

Figure 3. Dependences of reflectivities jReej2 (solid curve) and jRmej2
(dotted curve) of an anisotropic plate with E1 � 1:6, Z � 0:8 and dimen-

sionless thickness Lo=c � 10 on angle f of the plate rotation around its

normal, when the anisotropy vector a is parallel to the interfaces and at

f � 0 is directed along kk. The incidence angle y is given by sin y � 0:9.
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example, the reflectivities of a TE-mode wave from a plate of
thickness L such that Lo=c � 10. The anisotropy vector is
parallel to the interfaces. Therefore, its orientation with
respect to wave vector k0 of the incident wave varies with
rotation of the plate by an angle f around its normal. The
transmissivities of the same plate, depending on the angle f,
are illustrated in Fig. 4.

5. D'yakonov surface waves (DSWs)

Above, we found that a surface wave can appear on the
interface upon total reflection of a mixed mode at some
angles of incidence. This surface wave, however, is coupled
to the incident and reflected waves and does not occur
without them. D'yakonov discovered in 1988 [15] (see also
Refs [17±20]) that free surface waves, analogous to elastic
Rayleigh waves on a free surface, can exist on the surface of
a uniaxial anisotropic medium. We will derive relevant
expressions for them with our tensor (2) and somewhat
correct the previous results obtained by D'yakonov [15].

Let us again consider the space separated by a plane at
z � 0 into two halves, as shown in Fig. 1. The left part �z < 0�
corresponds to an anisotropic medium with dielectric con-
stant (2), and the right part makes up an isotropic medium
with dielectric constant E � Ei.

The surface wave is characterized by the wave function

C�r; t� �
n
Y�z < 0��c1 exp �p1z� � c2 exp �p2z�

�
�Y�z > 0�ci exp �ÿpiz�

o
exp �ikkrk ÿ iot� ; �65�

where w� EE �HH, with

HH1; 2 �
kk
k0
�l� EE1; 2 ÿ iq1; 2 n� EE1; 2� ;

�66�
HHi �

kk
k0
�l� EEi � iqi n� EEi� ;

and parameters p1; 2; i providing exponential decay of the
surface wave away from the interface. In expressions (66) we

also introduced dimensionless parameters q1; 2; i � p1; 2; i=kk.
For q1; i, we have

q1; i �
�����������������
1ÿ E1; iz

p
; �67�

where we resorted to the designation z � k 2
0 =k

2
k . Parameters

q1; i are positive and real, when E1; iz < 1.
To find q2 for the field c2, we need to solve the equation

1ÿ x 2 � Z�laÿ ixna�2 � zE1�1� Z� ; �68�

where x denotes q2, n is a unit vector of the normal directed
toward the isotropic medium, and l is a unit vector pointed
along kk, which together with n constitutes the plane of
incidence. From this equation it is seen that q2 can be real
only if vector a is perpendicular to n or to l. In the first case,
the axis of anisotropy is parallel to the interface [15]:

a � al l� att � cos y l� sin y t ; �69�

and the solution to equation (68) is as follows:

x � q2�y� �
��������������������������������������������������
1� Z cos2 yÿ E1z�1� Z�

q
: �70�

It is seen that q2�y� is a positive real number, when

zE1
1� Z

1� Z cos2 y
� zE2�y� < 1 : �71�

In the second case, one finds

a � ann� att � cosf n� sinf t ; �72�

and the solution to equation (68) is given by

q2�f� �
�����������������������������
1ÿ E1�1� Z�zp ������������������������
1� Z cos2 f

p : �73�

Below, we will show that in the second case free surface waves
do not exist.

5.1 Waves when the anisotropy axis
is parallel to the interface
When a is parallel to the interface, vectors EE1; 2, according to
Section 2.1, can be represented as

EE1 � ÿC1

kk
a� k � C1�sin y n� iq1 a� n�

� C1�sin y n� iq1 sin y lÿ iq1 cos y t� ; �74�

EE2 � ~C2

�
aÿ k�ak�

k 2
k

1� Z

1ÿ q 2
2 � Z�la�2

�

� ~C2

�
aÿ �lÿ iq2n� al 1

1ÿ q 2
1

�
� C2

ÿ
iq2 cos y nÿ q 2

1 cos y l� �1ÿ q 2
1 � sin y t

�
; �75�

where C2 � ~C2=�1ÿ q 2
1 �, C1; 2 are some complex coefficients,

and we made use of relation (70).
On the basis n, l, t, specified in Fig. 1, polarization EEi in an

isotropic medium can be represented as

EEi � an� bl� gt �76�

jT
ee
j2 ,
jT

m
e
j2

1.0

0.5

0
ÿ4 ÿ2 0

f, rad
2 4

Figure 4. Dependences of transmissivities jTeej2(solid curve) and jTmej2
(dotted curve) of an anisotropic plate on angle f of the plate rotation

around its normal, with all the parameters the same as those given in the

caption to Fig. 3.
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with coordinates a, b, and g. In view of equation EiHHEEi � 0,
which is equivalent to

iqia� b � 0 ; �77�
vector (76) is reduced to the form

EEi � a�nÿ iqil� � gt : �78�

From the continuity of the t- and l-components of an
electric field at the interface, we obtain two equations:

iC1q1 sin yÿ C2q
2
1 cos y � ÿiqia ; �79�

ÿ iC1q1 cos y� C2�1ÿ q 2
1 � sin y � g :

To derive another two equations, we need to use the
continuity of tangential components of a magnetic field.
Substituting expressions (74), (75), and (78) into (66) and
neglecting common factor kk=k0, we arrive at

HH1 � C1

�ÿiq1 cos y n� q 2
1 cos y lÿ �1ÿ q 2

1 � sin y t
�
;

HH2 � C2�1ÿ q 2
1 ��sin y n� iq2 sin y lÿ iq2 cos y t� ; �80�

HHi �
ÿ
gnÿ iqiglÿ a�1ÿ q 2

i �t
�
:

The continuity conditions for the l- and t-components give

q 2
1C1 cos y� iC2q2�1ÿ q 2

1 � sin y � ÿiqig ; �81�
C1 sin y� iq2C2 cos y � ae ;

where we introduced designation e � Ei=E1. Excluding g and a
from these equations, we obtain a homogeneous system of 2
equations for the unknowns C1; 2:

q1 cos y�q1 � qi�C1 � iC2�q2 � qi�E1z sin y � 0 ; �82�
iC1 sin y�q1e� qi� ÿ C2 cos y�eq 2

1 � qiq2� � 0 :

The system of the two linear equations (82) has a solution
only if the determinant of its coefficients is equal to zero,
which gives an equation for z � k 2

0 =k
2
k :

f �z� � q1�q1 � qi��eq 2
1 � qiq2� cos2 y

ÿ E1z�q2 � qi��q1e� qi� sin2 y � 0 : �83�

Solution of this equation defines the speed of the DSW:
cD�z� � c

���
z
p

.
We deduced equation (83) so scrupulously to show that

result (83) slightly differs from the one presented by equation
(8) of Ref. [15], and it is not reducible to Eqn (9) of the same
paper, because the solution of equation (83) exists even for
Ei < E1 (E1 is denoted E? in Ref. [15]). Moreover, it follows
from Eqn (83) that the surface wave exists in a much wider
range of angles y than was found in Ref. [15]. For instance,
from the dependence of ratio v�y� � cD�z�=c on y in Fig. 5 it is
seen that the solution of Eqn (83) exists in the full range
0 < y < p=2 for E1 � 1:6, Z � 0:4, and Ei � 1.

5.2 Waves when the anisotropy axis
is perpendicular to the propagation direction
When a?l, vectors EE1; 2, according to Section 2.1, and HH1; 2,
according to formulas (66), can be represented as

EE1 � ÿC1

kk
a� k � C1�sinf n� iq1 sinf lÿ cosf t� ; �84�

EE2 � C2

��1ÿ q 2
1 � q 2

2 � cosf n� iq2 cosf l� sin y t
�
; �85�

HH1 � C1

�ÿ cosf nÿ iq1 cosf lÿ �1ÿ q 2
1 � sinf t

�
; �86�

HH2 � C2�1ÿ q 2
1 ��sinf n� iq2 sinf lÿ cosf t� ;

and EEi, HHi are the same as in formulas (78) and (80),
respectively. After performing the same procedure as above,
we obtain an equation for z � k 2

0 =k
2
k in the form

f1�z� �
�
Ei
E1

q2 � qi

�
cos2 f� �q2 � qi��1ÿ q1qi� sin2 f � 0 ;

�87�
which has no solution because all the terms in it are positive.
Therefore, surface waves do not exist at such orientations of
the anisotropy axis a, as was correctly pointed out inRef. [15].

6. A possible experiment for the observation
of D'yakonov surface waves

In the literature there are many reports on the experimental
observation of DSWs (see, e.g., paper [20] and review [17]).
We offer another layout of the experiment.

To observe D'yakonov surface waves, it is possible to use
the experimental scheme shown in Fig. 6, which is different
from the one used in paper [20]. A disc of a uniaxial crystal
with anisotropy axis a parallel to the surface can be pivoted

0.64

0.80

v�y�

0.48

0.32

0.16

0 0.3 0.6 0.9 1.2 1.5
y, rad

Figure 5. Dependence of v�y� � cD�z�=c on angle y (in rad) between

anisotropy axis a and direction kk of the surface wave propagation. The
curve was calculated for E1 � 1:6, Z � 0:4, and Ei � 1.

Uniaxial crystal DSW

Figure 6.A possible experimental scheme for the excitation and recording

of DSWs.
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around its axis to change the angle between the direction of
DSW propagation j� kk=kk and the vector a. The DSW is
excited at frustrated total reflection in an anisotropic cone,
similar to that shown in Fig. 2 (here, for simplicity, we draw
only one transmitted ray). Excitation takes place only when
the speed of the incident or reflected wave inside the cone
matches the speed of the DSW. Rotation of the cone around
its axis permits some tuning of the speed.

A second anisotropic cone, identical to the first one,
detects the DSW, and the light transmitted into it through
the small gap should be visible on a screen, as shown in Fig. 6.

7. Conclusion

In the case of uniaxial or biaxial anisotropic media, we used
expressions for the permittivity tensor Ei j in the form

ei j � E1�di j � Zaiaj� ; ei j � E1�di j � Zaaiaj � Zbbibj� ; �88�
where E1 is a parameter of the isotropic part of the tensors, a
and b are the unit vectors directed along axes of anisotropy,
and Z, Za; b are the respective anisotropy parameters. With
such tensors, we can immediately find analytical expressions
for the polarization vector EE and wave number k�o� for a
plain wave EE exp �ikrÿ iot� with an arbitrary direction
j� k=k of propagation. In the case of a uniaxial anisotropic
medium, we found that only two modes of linear polariza-
tions can propagate inside it. One is the transverse mode, with

EE1 � a� j ; k1 � o
c

����
E1
p

; �89�

and the other is the mixed mode (it has a component of
polarization parallel to the wave vector), with

EE2 � aÿ j�ja� E2�y�
E1

; k2 � o
c

����������
E2�y�

p
;

�90�
E2�y� � E1�1� Z�

1� Z cos2 y
; cos y � aj :

Next, we considered reflection of the obtained plain waves
from an interface between an isotropic and anisotropic media
and revealed that reflection of every mode is accompanied by
beam splitting, that the wave ofmode 2 is, in general, reflected
nonspecularly, and that, at some angles of incidence,
reflection of mode 2 can create a surface wave, which is
coupled with the incident and reflected waves of mode 2. The
beam splitting upon reflection can be spectacularly demon-
strated with the help of light transmission through an
anisotropic cone.

After calculation of wave reflection from interfaces from
inside and outside the anisotropic medium, we found an
algorithm for calculating reflection and transmission ampli-
tudes of plane-parallel plates without matching the wave field
at the two interfaces. In the case of normal incidence on the
plate of a plane wave with linear polarization, a transmitted
wave generally has elliptical polarization. The form of the
ellipse changes with rotation of the birefringent plate around
its normal and at two distinct orthogonal directions the ellipse
reduces to linear polarization identical to that of the incident
wave.

We also considered the excitation of a free DSW on the
surface of an anisotropic medium. We corrected an error in
the derivation presented in Ref. [15] and showed that DSWs
exist in a wider range of variation of dielectric constants and
in a wider range of angles between the direction of surface

wave propagation and the direction of anisotropy vector a.
We also proposed a new experimental scheme for observation
of DSWs, shown in Fig. 6.
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8. Appendices

A. Plane waves in a biaxial anisotropic medium
A biaxial anisotropic medium is characterized by two unit
vectors a and b, and two anisotropy parameters E 0a and E 0a.
Therefore, the tensor e has the matrix elements

ei j � E1di j � E 0aaiaj � E 0bbibj ; �91�

and equations (7), (8), and (10) take the respective forms

e EE � E1 EE � E 0aa�a EE� � E 0bb�b EE� ; �92�
jEE � Za�ja��a EE� � Zb�jb��b EE� � 0 ; �93�
�k 2 ÿ k 2

0 E1� EE ÿ k 2j�jEE� ÿ k 2
0 E1Zaa�a EE� ÿ k 2

0 E1Zbb�b EE� � 0 :

�94�

In the last two equations, we introduce notations Za � E 0a=E1
and Zb � E 0b=E1. For simplicity, we assume that a?b, introduce
the orthonormal basis a, b, c � a� b, and on this basis
represent the wave polarization vector as

EE � aa� bb� gc �95�
with coordinates a, b, g which are not completely indepen-
dent, because expansion (95) should satisfy equation (93).
Substituting formula (95) into equation (93) gives

aka� bkb� gkc� Zakaa� Zbkbb � 0 : �96�

Therefore, one obtains

gjc � ÿaja�1� Za� ÿ bjb�1� Zb� : �97�

From expression (95) we also find

EEa � a ; EEb � b : �98�

Let us now substitute Eqn (98) and jEE from equation (93) into
Eqn (94) andmultiply the latter consecutively by a and b. As a
result, we obtain a system of two linear equations:�

k 2
�
1� Za�ja�2

�ÿ k 2
0 E1�1� Za�

�
a� Zbk

2�ja��jb�b � 0 ;�
k 2
�
1� Zb�jb�2

�ÿ k 2
0 E1�1� Zb�

�
b� Zak

2�ja��jb�a � 0 :

�99�
The solution of this system exists if the determinant is equal to
zero. This condition can be written out asÿ
k 2ÿ Ea�ya�k 2

0

�ÿ
k 2ÿ Eb�yb�k 2

0

�� ZaZbk
2�ja�2�jb�2�

1� Za�ja�2
��
1� Zb�jb�2

� ;
�100�
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where

Ea; b�ya; b� �
E1�1� Za; b�

1� Za; b cos2 ya; b
; cos ya � ja ; cos yb � jb :

�101�

The solution of Eqn (100) provides two different values of
k1; 2, from which we find a, b. After substituting the latter
coordinates into formula (97), we obtain the last coordinate g.
Thus, we find two different plain waves with wave vectors
k1; 2 � k1; 2j and linear polarizations EE1; 2 (95).
B. Wave reflection from an interface
on the side of an anisotropic medium

The exclusion of t
!
e j from continuity conditions (38) and (39),

and exclusion of t
!

m j from analogous conditions (41) and (42)

gives two equations for r
!

1j, r
!

2j, which are convenient to

represent in the matrix form

lHH
 

1 � k0?t EE
 

1 lHH
 

2 � k0?t EE
 

2

k0?tHH
 

1 ÿ l EE
 

1 k0?tHH
 

2 ÿ l EE
 

2

0@ 1A r
!
1j

r
!

2j

 !

� ÿ
lHH
!

j � k0?t EE
!

j

k0?tHH
!

j ÿ l EE
!

j

0@ 1A: �102�

The solution to this equation is written out as

r
!

1j

r
!

2j

 !
� ÿ1

D

k0?tHH
 

2 ÿ l EE
 

2 ÿlHH
 

2 ÿ k0?t EE
 

2

ÿk0?tHH
 

1 � l EE
 

1 lHH
 

1 � k0?t EE
 

1

0@ 1A
�

lHH
!

j � k0?t EE
!

j

k0?tHH
!

j ÿ l EE
!

j

0@ 1A; �103�

where D is a determinant:

D � ÿlHH 1 � k0?t EE
 
1

�ÿ
k0?tHH

 
2 ÿ l EE

 
2

�
ÿ ÿlHH 2 � k0?t EE

 
2

�ÿ
k0?tHH

 
1 ÿ l EE

 
1

�
: �104�

Substitution of these expressions into formulas (38) and (41)

gives wave refraction amplitudes t
!

e;m j:

t
!
e j

t
!

m j

 !
�

t EE
!
j

tHH
!

j

0@ 1A� t EE
 
1 t EE

 
2

tHH
 

1 tHH
 

2

 !
r
!

1j

r
!
2j

 !
: �105�

The most general case. Above, we considered the case where
the incident wave has polarization vector ej with a unit
amplitude. (Let us recall that vectors ej cannot be normalized
to unity.) To find later reflections from plane-parallel plates,
we will consider a more general case where the incident wave
has both modes with amplitudes x1; 2. To find amplitudes of
reflected and transmitted waves in the general case, it is
convenient to represent the state of the incident wave in the
form of the two-dimensional vector

jx!i � x
!

1

x
!
2

 !
: �106�

Then, the states of reflected and refracted waves are also
described by two-dimensional vectors, which can be repre-

sented as

jw i �
c
 

1

c
 

2

0@ 1A � R̂! 0jx!i ; jw!0i �
c
!

e

c
!

m

0@ 1A � T̂! 0jx!i ;
�107�

where R̂
!
0 and T̂

!
0 are two-dimensional matrices

R̂
!
0 � r

!
11 r

!
12

r
!

21 r
!
22

 !
; T̂

!
0 � t

!
e1 t

!
e2

t
!

m1 t
!

m2

 !
: �108�

We introduced the prime here and below to distinguish wave
refraction and reflection from inside the medium, and the
similar matrices obtained for incident waves outside the
medium.

These formulas will be used later for calculating the wave
reflection and transmission amplitudes of plane-parallel
anisotropic plates. We have two interfaces for a plate;
therefore, we also need to describe wave reflection and
refraction at the left interface from inside the plate. They
can be easily found from symmetry considerations. Their
representation is obtained from formulas (103)±(105) by
reversing the top arrows and changing the sign of k0?. After
this action, we find

R̂
 
0 � r

 
11 r

 
12

r
 

21 r
 
22

 !
; T̂

 
0 � t

 
e1 t

 
e2

t
 

m1 t
 

m2

 !
: �109�

Reflection from outside the medium is to be considered
separately.

Energy conservation law. It is always necessary to ensure the
correctness of the formulas obtained. One of the best controls
is the check of energy conservation law. One should always
check whether the energy density flux of an incident wave
along the normal to the interface is equal to the sum of energy
density fluxes of reflected and refracted waves, and the correct
definition of the energy fluxes is most important. In isotropic
media, it is possible to define energy flux along a vector n as

Jn � kn

k

c��
E
p E EE 2 �HH 2

8p
; �110�

or

Jn � c
n�EE � HH �

4p
: �111�

In isotropic media, both definitions are equivalent, because
HH � k� EE=k0 and k EE � 0. The first definition seems even
more preferable, since the second one can be written even for
stationary fields, where there is no energy flux.

In anisotropic media, only the second definition is valid,
and because the field EE in mode 2 is not orthogonal to k, the
direction of the energy density flux is determined not only by
the wave vector, but also by the direction of the field EE itself.
C. Formulas for reflection and refraction amplitudes
at the interface outside an anisotropic medium

Exclusion of r
!

ee and r
!

me leads to the matrix equation

k0?t EE
!
1 ÿ lHH

!
1 k0?t EE

!
2 ÿ lHH

!
2

k0?tHH
!

1 � l EE
!
1 k0?tHH

!
2 � l EE

!
2

0@ 1A t
!

1e

t
!

2e

 !
� 2k0?

0

� �
; �112�
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and its solution is given by

t
!

1e

t
!

2e

 !
� 1

De

k0?tHH
!

2 � l EE
!
2 ÿk0?t EE

!
2 � lHH

!
2

ÿk0?tHH
!

1 ÿ l EE
!
1 k0?t EE

!
1 ÿ lHH

!
1

0@ 1A 2k0?
0

� �
;

�113�

where De is the determinant:

De �
ÿ
k0?t EE

!
1 ÿ lHH

!
1

�ÿ
k0?tHH

!
2 � l EE

!
2

�
ÿ ÿk0?t EE!2 ÿ lHH

!
2

�ÿ
k0?tHH

!
1 � l EE

!
1

�
: �114�

Substitution of t
!

j e into boundary conditions (53) and (55)
yields

r
!

ee

r
!

me

 !
� t EE

!
1 t EE

!
2

tHH
!

1 tHH
!

2

 !
t
!
1e

t
!

2e

 !
ÿ 1

0

� �
: �115�

In the case of the incident TM-mode, we have boundary
conditions

tHH
!

1 t
!

1m � tHH
!

2 t
!

2m � 1� r
!
mm ; �116�

l EE
!
1 t
!
1m � l EE

!
2 t
!
2m � k0?

ÿ
1ÿ r

!
mm

�
; �117�

t EE
!
1 t
!

1m � t EE
!
2 t
!

2m � r
!

em ; �118�
lHH
!

1 t
!

1m � lHH
!

2 t
!

2m � k0?r
!

em : �119�

Excluding r
!

me and r
!

mm leads to

k0?tHH
!

1 � l EE
!
1 k0?tHH

!
2 � l EE

!
2

k0?t EE
!
1 ÿ lHH

!
1 k0?t EE

!
2 ÿ lHH

!
2

0@ 1A t
!

1m

t
!

2m

 !
� 2k0?

0

� �
; �120�

therefore,

t
!

1m

t
!

2m

 !
� 1

Dm

k0?t EE
!
2 ÿ lHH

!
2 ÿk0?tHH

!
2 ÿ l EE

!
2

ÿk0?t EE
!
1 � lHH

!
1 k0?tHH

!
1 � l EE

!
1

0@ 1A 2k0?
0

� �
;

�121�

where Dm � ÿDe (114). Substitution of t
!

jm into formulas
(116) and (118) gives

r
!

em

r
!

mm

 !
� t EE

!
1 t EE

!
2

tHH
!

1 tHH
!

2

 !
t
!

1m

t
!

2m

 !
ÿ 0

1

� �
: �122�

In the general case, when the incident wave has an amplitude

x
!
e in the TE-mode, and an amplitude x

!
m in the TM-mode, the

state of the incident wave can be described by two-dimen-

sional vector

jn
!

0i �
x
!

e

x
!
m

0@ 1A ; �123�

and the states of reflected and transmitted waves can be
represented as

jn
 

0i �
x
 

e

x
 
m

0@ 1A � R̂! jn!0i ; jn
!
i �

x
!

1

x
!

2

0@ 1A � T̂! jn!0i ;
�124�

where R̂
!

and T̂
!

are the two-dimensional matrices

R̂
!
� r

!
ee r

!
em

r
!

me r
!
mm

 !
; T̂

!
� t

!
1e t

!
1m

t
!

2e t
!

2m

 !
: �125�
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