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Abstract. Several types of electrostatic oscillators, with an
electrically charged ball as the load, are examined, noting that
a physical and a mathematical electrostatic pendulum together
with a grounded conducting plate form a bistable oscillator for
which the same set of parameters produces two stable and one
unstable equilibrium positions. For this oscillator, bifurcation
curves are drawn and nonlinear oscillations are studied. The
electrostatic string pendulum also has a bifurcation point and,
besides, can self-oscillate when electrically broken down. It is
shown that a liquid—liquid interface placed in an external elec-
tric field can be regarded as an electrostatic oscillator. Experi-
mental results confirming theoretical predictions are presented.

1. Introduction

In this paper, we use the term ‘‘electrostatic pendulum” to
refer to a physical pendulum modified such that its ball is
charged. This kind of pendulum has been used, in particular,
as an electrostatic dynamometer to measure the electrostatic
force [1]. Experiments using such a dynamometer to measure
the electric image force acting on a charge from a grounded
conducting plate have shown that the electrostatic pendulum
exhibits interesting properties under these conditions. In
particular, there are bifurcation points in the working range
of oscillator parameters that separate regions with stable
equilibria, those with unstable equilibria, and those with
neither of the two. Importantly, for one and the same set of
pendulum parameters, the pendulum can simultaneously
have one unstable equilibrium and two stable equilibria,
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which places it into the category of bistable Chua oscillators
[2, 3], devices that exhibit chaotic behavior under certain
conditions [2-4]. However, the electrostatic pendulum has a
two-dimensional phase space, and therefore bistability
cannot drive it to chaotic behavior. Bifurcation properties
also occur in the string electrostatic pendulum. Under certain
conditions, systems containing such a pendulum exhibit self-
oscillations. Another example of where such self-oscillations
are observed is given by distributed oscillatory systems
(capillary devices, etc.).

Based on the results obtained, electrostatic oscillators are
arguably physical objects of considerable scientific and
methodological interest.

2. Electrical image method in experiment

The correct way to explain the electrical image method is by
modeling the conductor as a half-space bounded by a planar
surface [5]. Then, if the field-producing charge ¢ is positive,
q > 0, the surface acquires an excess negative charge, whereas
the corresponding positive charge is at infinity and has no
effect on the situation. We then have the full image of the
charge, ¢’ = —q, placed at the same distance from the surface
as the source. As a consequence, the source charge is subject
to the Coulomb force from the image charge, which attracts
the charge to the plane and is given by F = kq?/4S?
(assuming the charge is point-like), where S is the distance
between the charge and the plane.

A frequently used approach, however (see, e.g., Refs [6, 7]),
is to consider a large, thin, grounded conducting plate instead
of a conducting half-space, in which case the full imaging of
the charge is assumed. This assumption was tested experimen-
tally using an electrostatic dynamometer [1] and a grounded
duralumin plate 645 x 380 x 2 mm? in size. A foam plastic
ball 24 mm in diameter coated with thin aluminum foil was
glued to a ballpoint pen rod with a wire from a high-voltage
source passing inside. The Coulomb force can cause the entire
system to rotate (Fig. 1a). The remaining setup parameters are
as follows: a = OC = 2.0 mm, b = 60 mm, 2 = 100 mm, and
m = 1.1 g. A voltage of 15 kV was applied to the ball from a
high-voltage source through an insulated lead. Suspending
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Figure 1. (a) Schematic of the electrostatic dynamometer. Point C is the
center of mass. The rotation axis passes through point O. (b, ¢) Possible
varieties of the electrostatic pendulum.

the plate by a fishing line eliminated such factors as the
surface conductivity of the surrounding bodies and the
additional induced capacitance, thereby insulating the plate
from all bodies except the grounding wire.

When the pendulum is in its equilibrium position, the
moment of the Coulomb force about the O axis is balanced by
the moment of the entire system force of gravity,

Fbcoso = mgasina, (1)

or

F= (%)tana, tana:£7 F= <%>f- (2)

Assuming the ball to be a point-like charge, the Coulomb
force acting on it from the full image is

kq? 1
= E 3 3 (3)
where & is the electrodynamic constant. The distances L, b, h,

and f (Fig. 1a) were measured by a millimeter ruler, and the
distance S was calculated from

A

 4me

S=L—-—x=L-— (4)

Based on experimental data, the force F was plotted (see
Fig. 2) as a function of the inverse square of the ball-center—
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Figure 2. Interaction force between a charged ball and a grounded
conducting plate as a function of the inverse square of the distance
between the ball center and the plate. The straight line is the Coulomb
law. In the shaded region, there are no stable equilibrium positions for the
pendulum.

plate distance (each data point represents at least five
measurements and the force is measured in relative units: in
fact, the vertical axis is in centimeters because all the
remaining quantities in the right-hand side of the last
equation in (2) are constant). The straight line in the figure
corresponds to the Coulomb law. For each initial ball
position shown (L =28.0, 8.2, 8.3 cm), there are two
corresponding stable equilibrium positions of the pendulum,
on the left and on the right from the shaded region. In this
region, there are (according to theory) no stable equilibria for
the pendulum, nor has experiment revealed any.

The experimental results obtained suggest that in a
sufficiently large grounded conducting plane, the full charge
image ¢’ = —q forms and that in the parameter range studied,
the charge—source interaction force obeys the Coulomb law,
as indeed it should. A quite unexpected finding was that the
conducting plate—electrostatic pendulum system has the
bistability property, i.e., can have two stable equilibria
simultaneously for the same set of parameters.

3. Equilibrium and stability
of an electrostatic pendulum

It is easy to see that the problem of the equilibrium of the
pendulum in Fig. la is equivalent to the problems in Fig. 1b
and Fig. 1c: the equilibrium condition for the pendulum in
Fig. 1b is identical to Eqns (1) and (2), and that for the
pendulum in Fig. 1c has the form F/(mg) = tan o and can be
reduced to Eqn (2) by renormalizing the constants m or g.

Using Fig. la, we obtain the dimensionless form of the
equilibrium equation

2 =~ . 2 2 qu ~ L

Q= (L—-sina) tana, Q = Gmgab”’ L_b. (5)
Transcendent equation (5) serves to determine the angular
displacement of the pendulum from equilibrium as a function
of two parameters, Q2 and L. Because algebraic equations are
easier to deal with, we eliminate the angle using the equality
sino = L — S, where S = S/b. The tilde is omitted hence-
forth. The equilibrium condition then becomes

S2(L - S)

\/1—(L—S)2'

0= (6)
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Figure 3. The distance S from the center of the ball in the equilibrium
position to the plane as a function of the initial distance L for different
values of the dimensionless ball charge Q.

Equation (6) determines S as a function of two parameters,
L and Q2. Equation (6) is difficult or impossible to solve for S
analytically, but it allows, for example, expressing L explicitly
as a function of S, with Q left as a parameter. After some
algebra, we find that
2
L=s+—2 (7)
VSR

Figure 3 presents the inverse dependence S(L) calculated
for different values of Q. Curves I, 2, 3 correspond to
0% =10.05, 0.20, 0.60. For a given value of L on curve 2,
there are three values of S that correspond to the equilibrium
equation. However, point B cannot be a stable equilibrium
because decreasing L here corresponds to increasing S, which
is physically impossible.

We see that curves / and 2 have local extrema, but curve 3
does not. To find what parameter values produce extrema, we
take the derivative of L with respect to S and set it to zero to
obtain

S4_22/3Q4/352+Q4:0- (8)

Equation (8) has positive roots

1/2
Q4/3 Q8/3
S12 = [Wi 22T_Q4 ; )
which exist only if
0>< 02, =05. (10)

This is indeed seen in Fig. 3: curve 3 corresponding to
0? = 0.6 has no extrema.

We find the conditions necessary for a pendulum initially
positioned at L < 1 to have equilibria. From Eqn (7), setting
L =1 and replacing the equality sign by <, we find after
some simple manipulation that

(1-25)S2

VS2-=5)

Analysis shows that the right-hand side of this equation has a
maximum. To find it, we take the derivative and perform

0° <

some algebra to obtain the quadratic equation

3
2— —_ =
§*-35+5=0,

which has the suitable (S < 1) root

S=15-v0.75~=0.634.

The corresponding maximum value is then given by
Q}F ~0.158. Hence, for Q2 > 0.158 and L < 1, there can be
no equilibria for the pendulum, which, accordingly, overturns
on the plane.

The potential energy of a pendulum deviated from its
original vertical position (in which the potential energy is
taken to be zero) can be written as

W(x):mga{(l—m) +Q2<%_L1X)} ’(11)

x=L-—S=sinoa.

In what follows, it is more convenient to directly use the
displacement x of the ball from its initial position instead of S.
Figure 4 shows the potential energy plotted in units of mga as
a function of the deviation x of the pendulum from its
equilibrium position. Corresponding to curves /, 2, 3 are the
initial positions L < 1: L = 0.83, 0.88, 0.90 and 0% = 0.063,
0.110, 0.220. We see that curve / has two local extrema,
one for a stable and the other for an unstable equilibrium.
Curves 2 and 3 do not contain equilibrium points, that is, the
ball moves from its initial position straightaway to a position
where it is in contact with the plane. Curves 4, 5, 6 correspond
toinitial position L > 1: L = 1.27, 1.29, 1.50, with Q2 = 0.29,
0.34, 0.56. Importantly, curves 4 and 5 each have two local
minima corresponding to stable equilibria and one maximum
corresponding to an unstable equilibrium. Curve 6, which
corresponds to Q% = 0.56 > 0.5, contains only one stable
equilibrium.

Further examination of the positions of extrema on the
potential energy curves gave the following results. In Fig. 5,
curve [ corresponds to a set of parameters for which the
maximum of the potential energy is zero, max W = 0. The
shaded area in Fig. 5a represents a range of parameters in
which the pendulum has no stable equilibria and flips back
from its equilibrium position, i.e., jumps to the position
x = L (contact with the plane) at L < 1. Curve 2 in Fig. 5a

W(x) 0> L
1 —0.063 0.83
0 2-0.11 0.88
3022 0.90
—0.02 4029 127
5034 129
—0.04 6—0.56 1.50

—0.06

—0.08

—0.10

Figure 4. Potential energy of a pendulum as a function of the displacement
of its center from the initial position (in dimensionless units) for different
values of the control parameters L and Q.
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Figure 6. Map of the stable equilibria of the pendulum (bright region). The
shaded region contains no stable equilibria. Different symbols refer to
stable equilibria observed in experiments for different voltages.
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Figure 5. Curve / corresponds to the set of parameters for which the
potential energy of the pendulum at the maximum drops to zero. Curve 2
in panel a is a bifurcation line that separates the region of parameters that
contains a stable equilibrium from the (dashed) region that does not.
Points on curve 2 in panel b are those where the first minimum of the
potential energy curves disappears.

is in fact a bifurcation line separating the region that contains
a stable equilibrium (unshaded region) from the region that
does not (shaded region). Curves / and 2 in Fig. 5b have the
same meaning; in the shaded region, however, there is now
one stable equilibrium corresponding to the second mini-
mum, in which x & 1. The bifurcation value of the parameter

2 . = 0.5 separates regions II and I in Fig. 5b, with the
former containing two stable equilibria and the latter only
one.

Figure 6 presents a (Q2, x) diagram of the stable and
unstable equilibrium positions of the pendulum. In the
shaded region, there are no stable equilibria, and given the
appropriate value of L, the pendulum can flip back onto the
plane to occupy the position x = L. The transition marked /
corresponds to the transition to a stable equilibrium on curve
1 (see Fig. 4); 2 corresponds to the parameters of curve 2 in
Fig. 4 and to the exit of the ball to the plane; 3 corresponds to
the parameters of curve 3 in Fig. 4; 4 corresponds to the
transition to the stable position of the first minimum of curve
4 in Fig. 4; 5 corresponds to the transition to the stable
position of the second minimum on curve 5 in Fig. 4;
6 corresponds to the transition to the minimum on curve 6
in Fig. 4.

Experiments on the detection of stable equilibria of
a pendulum used the electrostatic dynamometer circuit
shown in Fig. la. The setup parameters were ¢ = 2.0 mm,
b =60 mm, 4 =100 mm, and m = 1.1 g. The experimental
points are plotted in Fig. 6. The parameter x = sino was
determined either from a computer photo image (at angles

close t0 90°) orassino = f///f2 + h2. The parameter Q> was

QZ_

/ /o
*m(L—

2

which follows from Eqns (1)—(3). We note that friction in
the experiments was so strong that in each run, the
pendulum first reached the first minimum and then, slightly
pushed by a glass rod, made a transition to the equilibrium
position corresponding to the second minimum. (This
suggests that most of the friction force is due to air
resistance to the motion of the pendulum.) These two
equilibrium positions, the first and the second maxima, are
shown in Figs 7a and 7b (the voltage is 15 kV). Compar-
isons of experimental results with theoretical predictions
show not only obvious qualitative but also quantitative
agreement: for example, according to theory, the minimum
on curve 6 corresponds to x ~ 0.48, and the same value of x
is obtained in experiment corresponding to transition 6 in
Fig. 6.

It is now appropriate to ask at what distance the finite
size of the ball has to be taken into account. It was shown in
[8] that a charged ball and a finite conducting plane interact
similarly to how two identical oppositely charged balls
interact. A calculation predicts [8] that even at the center-
to-center distance /= 2.6R (R being the ball radius), the
interaction energy of such balls is less than 10% greater
than the Coulomb energy (with point-like charges located at

&

Figure 7. Photographs of two stable equilibrium positions of the pendulum
that occur for the same set of parameters.
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the centers of the balls). The rightmost minimum on curve 5
(Fig. 4) occurs at x ~ 0.975, meaning that the correspond-
ing center-to-center distance between the ball and its image
is /=2Sh= 2(L—x)b~40.3 mm, or /= 3.36R. Thus,
because their interaction force differs from (exceeds) the
Coulomb force only at very small distances between the ball
and the plane, it follows that we are quite justified in
adopting the point-like charge approximation.

Reference [9], a popular undergraduate problem solving
book with eight editions published, poses the following
problem: “A large metallic plate lies in the vertical plane
and is connected to the ground. At the distance ¢ = 10 cm
from the plate there is a fixed point, from which a small ball
of mass m=0.1 g is suspended by a string of length
[ =12 cm. When a charge ¢ is delivered, the ball is attracted
to the plate, resulting in the string deviating by the angle
o = 30° from the vertical. Find the charge of the ball.” The
solution is given as

q = 2(a — Isina) y/4mgymg tan o = 20 nC,

which easily follows from equating the projections of all the
forces acting on the ball to zero. Exactly the same problem is
considered in Refs [10, 11]. Neither the conditions of the
problem nor the solution are correct, however. Indeed, the
parameter L in this problem is L=a//~0.83 < 1, and the
value of x corresponding to the angle of 30° is x = sina = 0.5.
From Fig. 5, we see that the region corresponding to this set
of parameters has no stable solutions. Under the conditions
of this problem, Q% = (kq?)/(mgl?) = 0.063. Corresponding
to these values of L and Q2 is curve / in Fig. 4, whereas
corresponding to the unstable equilibrium point found in the
problem is the maximum at this point.

We note that the problem has a correct solution if posed
differently. For example: “Given a charge of 20 nC, find the
angular deviation of the string.” From the dependence W(x)
(curve I in Fig. 4) for the parameters of the problem, it is
possible to determine which minimum on the curve corre-
sponds to the stable equilibrium position. The result is
x =sino =~ 0.129, and hence o ~ 7.4°.

(12)

4. Nonlinear oscillations of the pendulum

We now consider the dynamics of an electrostatic pendulum,
taking the friction force into account. The equation of motion
of a physical pendulum is /6 = ), M;, where / is the moment
of inertia of the pendulum about the axis of rotation, and M;
are the moments of the external forces acting on the
pendulum. In our case, we can write

16 = Fbcoso — mgasino — . (13)

The last term in the right-hand side of Eqn (13) is the
moment of inertia of the force of friction, which is propor-
tional to the angular velocity. The Coulomb force acting on
the ball from its image in the conducting plate is

F=

kq? kq? ~ L
3 (14)

ML —bsina)’ 42(L —sina)’’

(The tilde is dropped hereafter). We make the equation of
motion dimensionless by dividing both sides by mga and
choosing the time unit such that the coefficient of ¢ is unity:
[f] = \/I/(mga). In its final form, the equation of the motion

0.24
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0 0.32 0.64 0.96 1.28 o

Figure 8. Phase portrait of an electrostatic pendulum with L = 1.29;
02 =034.

of the pendulum becomes

2
4 Bt sino — 2% g,
L —sina)
kq? y
2 = = . 15
Q dmgab’ b VIgma (15)

Numerical integration of this equation using the MathCad
package gave the following results.

Figure 8 shows the phase diagram of the physical
electrostatic pendulum in the case where it forms a conserva-
tive system with § = 0 and L = 1.29; 92 = 0.34 (for all phase
trajectories shown, &(z = 0) = w(¢ = 0) = 0). Corresponding
to Fig 4 (curve 5), the phase diagram features two centers
(black dots), a saddle point corresponding to a local mini-
mum, and separatrix branches passing through the saddle
point.

The shape of oscillations and the phase trajectory
resulting from the integration of Eqn (15) with the initial
conditions ot = 0) = &(r = 0) = 0 are another example to
consider. Of particular interest is the moderate charge, the
L > 1 case, where the potential energy of the pendulum has
two local minima. Figure 9 shows the time variation of the
angular coordinate and the corresponding phase trajectory of
the parameters L = 1.25, 0% = 0.284, and f = 0.005. It can
be seen that oscillations initially cover almost the entire range
of the angular coordinate and then concentrate around the
stable focus at (0.31, 0).

5. Equilibrium, stability, and oscillations
of a spring pendulum

We now consider the case of an electrostatic pendulum.
Figure 10 illustrates the ways in which the problem can be
formulated in this case (k is the rigidity of the spring, which is
assumed to work in both tension and compression).

In the case shown in Fig. 10b, an image charge (shown
dashed) forms on the grounded plate. We neglect the force of
gravity as obviously of little or no importance. We also
assume that at the initial instant, the spring is undeformed
and that the balls instantly receive a charge ¢, and we let L
denote the center-to-center distance between the upper and
lower balls (in the case in Fig. 10b, L is the distance from the



July 2012

Electrostatic oscillators 705

1.2

03

1 | 1
0 12 24 36 48 t

0.24

0.08

—0.08

—0.24

—0.40 1 1 1 1
0 0.3 0.6 0.9 1.2 o

Figure 9. (a) Angular coordinate vs time and (b) the corresponding phase trajectories for the pendulum parameters L = 1.25, 02 = 0.284, and # = 0.005.
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Figure 10. Schematic diagrams of electrostatic spring pendulums.
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center of the ball to the plate). We consider the balls to be
point-like charges for simplicity and concentrate in what
follows on the situation shown in Fig. 10a. (Reference [12]
was the first to address this problem.)

If no electrical breakdown occurs, then, when the voltage
is switched on, the upper ball starts moving down. To see how
it behaves further on, we write the potential energy it gains
due to its displacement downward by x:

The potential energy is taken to be zero at the initial position
of the ball. Using the length L and the energy kL2 /2 to pass to
dimensionless variables, we obtain the equation

2keq?
2 €
0 =24 (17)

Figure 11 shows the plot of W(x) for different Q2 (curves /, 2,
3 are for 0% = 0.15, 0.23, 0.30). We see that starting from a
certain value Q?2, the function W/(x) shows no local minima,
which means that Q2 is a bifurcation value of Q2 that
separates the region where the pendulum can have equili-
brium positions (including a stable one) from the region
where it cannot. To determine Q2, we find the force acting
on the ball and set it equal to zero to obtain
F.— -2 Qiz - 2 _ —x)?
Y= —2x+ 5=0, or 07 =2x(1-x)".
(I—x)

X

W(x) =x* = 0% +—,

(18)

It is easily seen that the right-hand side of the last equality has
a local maximum at x,,, = 1/3. The maximum value Q?(xp),
which is exactly the one corresponding to Q2, is

02 =3 ~0296.

2= (19)
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Figure 11. Potential energy of the spring pendulum vs displacement in
dimensional units. Curves /, 2, 3 are for Q2 = 0.15, 0,23, 0.30.

(Interestingly, @, = (2/3)¥%.) For 0% < 02, Eqn (18) has
two real roots in the interval 0 < x < 1, of which the smaller
(greater) corresponds to the stable (unstable) equilibrium
position.

There are therefore two types of motion possible for the
upper ball: it can either undergo damped oscillations near the
bottom of the potential well (which is a stable equilibrium
position) or monotonically approach the second ball to
within an arbitrarily small neighborhood, depending on
whether the parameters of the problem are such that
0% < Q2 or 0% = Q2. Another point to note is this. If the
system is nearly frictionless, then, in the case where the
potential energy has a local maximum below line AB in
Fig. 11, the upper ball starting its motion from point A can
pass the local maximum position and undergo a transition to
a state in which it irreversibly moves toward the lower ball.
The critical value of Q2 at which this occurs is found by
requiring W(x) = W(x =0) = 0, giving

» 07

1 —x

X +0%=0.

(20)

Noting that x should also satisfy the maximum condition for
the potential energy, Eqn (18), and eliminating Q2 from
Eqn (20), we obtain x,, = 1/2. The corresponding critical
valueis Qf = 1/4 =0.25.

The following magnetic analogy of the problem discussed
here is well known [13]. A lead of length / with a current I; is
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suspended by two springs of rigidity k. Placed at a distance L
from the lead, in the same plane, is another, infinite-length
lead though which a current 7, is passed at the initial instant.
The motion of the short-length lead and its possible
equilibrium positions are here determined by the parameter
J? = pol1 b1/ (4nkL?) (an analog of Q?). The bifurcation
value of J? separating regions with and without a stable
equilibrium point is J? = 1/4.

Thus, it follows from the above that the problem of the
motion of the electrostatic pendulum is analogous, but not
identical, to that of the magnetic spring pendulum. Indeed,
there is an essential difference between them in that in the
former case, an electrical breakdown inevitably occurs in the
air gap between the oppositely charged balls as they approach
each other arbitrarily close.

6. Self-oscillations

It is shown, for example, in Ref. [12] that as two oppositely
charged balls approach each other more closely, the field in
the air gap between them infinitely increases in strength,
which means, for the situation in Fig. 10a, that the gap is
inevitably broken down electrically for Q2 > Q2. Now, if the
two balls acquire the initial charges at the instant when the
upper ball returns to its initial position, the process repeats
itself. We thus conclude that for the appropriate parameter
values for the electrical circuit in Fig. 12a, it can be
successfully used to induce self-oscillations in the system.

Such self-excited systems, referred to as electromechani-
cal, are well known and classically exemplified by a spring
pendulum carrying an electrical current (see, e.g., Ref. [14]).
The spring of this pendulum has its end immersed in a
conducting liquid. When a current is passed through the
spring, Ampere forces act to contract it, the current ceases to
flow, and the spring moves downward under the action of
gravity, causing the entire process to repeat.

Due to their self-excitation mechanism, such oscillations
are called discontinuous (relaxation) oscillations [13—16], one
example being capacitor voltage oscillations. Discontinuous
oscillations involving an electrical discharge arise in the
circuit shown in Fig. 12b, with neon lamp N acting as a
discharger [13, 15], although a simpler alternative featuring
an air gap between electrodes is also a possibility [16].

The major difference between the circuits in Fig. 12a and
Fig. 12b is that the former has its oscillation period
determined by the relaxation time 7= RC, whereas the
latter, by the natural oscillation period T = 2ny/m/k, with
m being the mass of the ball. In this case, implementing
positive feedback requires that the relaxation time be close to
half the natural oscillation period, RC = T/2 (assuming that
the discharge time is negligibly small). We note that the
condition Q2 > Q2 is not necessary for the system in
Fig. 12a to develop self-oscillations because, if gap break-
down occurs within the interval AB in Fig. 11, self-oscillation

T Te
Figure 12. Circuits implementing discontinuous self-oscillations. N is a
neon lamp.

onIF

are also possible, even if smaller in amplitude. Because the
event in which equilibrium loses its stability is critical by its
nature, the self-oscillations within the interval AP can be
called precritical, and those at Q2 > Q2, postcritical. Refer-
ence [12] describes our experiments on precritical oscillations
of a spring-suspended steel ball.

It is inevitable that electromechanical systems are subject
to friction. The way friction affects self-oscillations can be
understood by numerically simulating how such oscillations
develop in the system shown in Fig. 10a. Introducing a friction
force proportional to the velocity, we can write the equation of
motion of the upper ball as

keq?
(L—x)
where m is the ball mass and y is the friction coefficient. To
reduce the number of parameters, we use the length scale L

and time scale /m/k to pass to dimensionless variables,
which yields

mX = —kx — yx + , (21)

Q2

v=—-X—pv+ ,
4 2(1 —x)?

(22)

This system of two first-order differential equations was
integrated numerically with the initial conditions
x(t=0) =v(t =0) =0 assuming, for simplicity, that the
charging and discharging of the balls are instantaneous
processes. For 02 =0.23 and ¢ = 0 (the first case consid-
ered), integration shows that immediately after the condition
x > 0.3 is satisfied, both balls have their charge instanta-
neously reduced to zero (9% =0 at x > 0.3) and that they
immediately regain their initial charge Q2 = 0.23 when the
upper ball moves upwards, even for x < §. Calculations were
mainly performed for 6 = 0.001. Therefore, Eqns (22) must
be solved with the conditions

0%2=023 at t=0, 0?=0 if x>03 and x>0,

0?=1023 if x<d and ¥x<0. (23)

Figure 13 shows the results of the integration of system
(22) with conditions (23) for = 0.05 (curve /) and f = 0.15
(curve 2). Oscillations set in in the interval —0.487 < x < 0.599
for the friction coefficient f=0.05 and in the interval
—0.240 < x < 0.394 for = 0.15, within about ten or four

Figure 13. Time dependence of the ball center coordinate, illustrating how
the self-oscillations of the electrostatic spring pendulum set in for § = 0.05
(curve I) and f# = 0.15 (curve 2).
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Figure 14. Schematic setup for the observation of the self-oscillations of a
liquid-liquid interface in an external electrical field.

oscillation periods, respectively (the setting-in criterion is that
increasing the calculation accuracy leaves the minimum or
maximum value of x unchanged to within three significant
digits; the corresponding limits are shown dashed). It can be
seen that increasing friction decreases both the swing of the
oscillations and the time it takes for them to set in.

As expected, the oscillations have a period close to that of
the natural oscillations of the spring, i.e., 7'~ 27 in the units
chosen. A change of £0.01 in the coordinate ¢ close to which
the balls regain their previous charge indicates that the
oscillation amplitude slightly increases as J increases and
decreases when it decreases.

Integrating system (22) with conditions (23) for Q2 = 0.4
(postcritical state) and with all other parameters unchanged
left the main conclusions unaltered. The oscillation amplitude
increased and was found to be (—0.628, 0.798) for f = 0.05
and (—0.300, 0.523) for § = 0.15.

Self-oscillations of an electrostatic spring pendulum are
analogous to those occurring in distributed oscillatory systems
with a continuous set of frequencies. An example is the
oscillations of a liquid-liquid interface in an external electric
field. These were observed in Ref. [17] using the setup (see
Fig. 14) consisting of a cylinder that contains a solution of
tablesalt (NaCl, density p,)and alayer of kerosene (density p; ).
Other setup parameters were as follows: resistance,
R=10 mQ, capacitor capacitance C = 100—400 pF, and a
smoothly time-varying voltage from a high-voltage source, up
to 15 kV. In kerosene, at a distance of 1.5-2.0 cm from the
interface between the two liquids, was one electrode, the
second one being the interface. Increasing the voltage to a
certain critical value (of the order of 7 kV) makes the
equilibrium of the flat interface unstable, with the result that
gravitational capillary waves of peaks and troughs develop on
the surface: a phenomenon well known as the Tonks—Frenkel
instability (see, e.g., Ref. [12]). This instability leads to the
breakdown of the kerosene layer and, ultimately, only one

fundamental mode, with a wavelength of about 2/3 the
cylinder diameter, takes part in the breakdown and in the
oscillations that set in. The self-oscillations are in this case
postcritical, because they occur after the system has lost its
stability.

Capillary oscillations can also occur on the surface of a
single liquid droplet, such that under certain conditions, a
droplet of a conducting liquid can also participate in
discontinuous self-oscillations. Experimenter A 1 Zhakin,
who serendipitously observed such oscillations, kindly
provided us with some results, including a video. The video
snapshots in Fig. 15 feature a liquid droplet oscillating in an
external electric field at the end of a capillary and show the
three successive phases it passes through. The liquid was
water, the potential difference between the capillary and the
electrode (a ring 0.5 cm in radius made of wire 2 mm in
diameter and placed 2 cm above the capillary end) was about
5 kV, the diameter of the capillary was 1 mm. The time
interval between the neighboring phases shown in Fig. 15
corresponds to a quarter of the oscillation period and equals
0.13 s, and the oscillation period of the droplet is correspond-
ingly 0.52 s (oscillation frequency o = 12 s~!). It is seen that
the phase in Fig. 15b is one in which the droplet stretches in
length and loses its charge (the latter fact giving rise to a violet
glow). Because the frequency spectrum of the capillary
oscillations of the droplet depends on the charge on the drop
and the strength of the external field [12], the n=2
fundamental mode may well have an oscillation frequency
about 12571,

We note that the corona discharge is not the only reason
why the droplet can lose its charge: the same can occur if the
equilibrium ellipsoidal shape of the droplet surface becomes
unstable [12]. The condition for this is arguably that the
electrical pressure on the surface of the droplet exceeds the
Laplace pressure,

eE? 20
> — )
2 R

(24)

where o is the surface tension coefficient of water, E is the
electric field strength on the droplet surface, and R is the
curvature radius of this surface. With r=0.5 mm and
o =72mN m~!, Eqn (24) yields the field strength estimate
E > 80 kV cm™!. Because such a value was hardly achievable
in the experiments reviewed, it is to be concluded that a
corona discharge was underlying the loss of charge, and the
self-oscillations were therefore precritical. We note in conclu-
sion that the conditions of the experiments above can well be
reproduced —and hence a similar phenomenon can also
occur—in natural environments (in a thunderstorm, for
example).

Figure 15. Photographs of three successive phases of an oscillating droplet in an external electric field.
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7. Conclusions

The experiments performed to measure the force exerted on a
charged ball by its image in a grounded conducting plate
showed that from the standpoint of formation of the electrical
image, a large grounded plate is equivalent to a conducting
half-space: the electrical image in the plate turns out to be full,
q' = —¢q, and the force obeys the Coulomb law and is equal to
F = kq?/4S5?, where S is the distance from the center of the
ball to the plate. Moreover, there is an interesting property
the electrostatic pendulum exhibits in this situation as a key
element of the electrostatic dynamometer: for the same set of
parameters, the pendulum can have two equilibrium positions
and one nonequilibrium position.

An examination was performed, both theoretically and
experimentally, of the ways in which a ball can interact with a
conducting plate. There are two key (control) parameters in
such a system, one proportional to the square of the charge of
the ball and the other to the original distance between the ball
and the plate. Plotted in the plane of these parameters was a
bifurcation line separating the region of parameters in which
the pendulum has stable equilibria from the region where it
does not. In the (0?2, x) plane, stable and unstable states are
mapped and experimental points are shown where one or two
stable equilibria were observed. It is pointed out that some
undergraduate exercise books [9-11] give an incorrect
formulation of the problem of the equilibrium of an
electrostatic pendulum by overlooking the fact that some
pendulum positions (found as solutions) can be unstable.

By numerically solving the equation of motion of the
physical electrostatic pendulum, its nonlinear oscillations are
considered and its phase portrait is constructed.

Also, the dynamics of the electrostatic spring pendulum
are examined. It is shown that this system, with one control
parameter Q2 proportional to the square of the charge of the
balls, has a bifurcation point that separates the region where
stable states exist from the region where they do not. In the
case where a system of a spring pendulum can have an electric
charge and the balls are connected to a DC voltage source, it is
found that self-oscillations at a near-natural frequency are
possible. Examples are given of distributed capillary electro-
static oscillators (that is, of those characterized by a
continuous set of natural frequencies) with self-oscillations
occurring at the fundamental mode frequency.
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