
Abstract. We discuss recent research on phase transitions in
cerium under pressure, including new experiments on the c! a

transition, which indicate that it is a hidden structural phase
transition. We also discuss some models of relevance to the
field, both theoretical and computational.

1. Introduction

Ceriumwas discovered in 1803 simultaneously in Sweden and
Germany. It was named after the dwarf planet Ceres found
two years earlier [1]. (Currently, Ceres is the largest and most
massive body in the asteroid belt, and contains almost a third
(32%) of the total mass of the belt.) Cerium is the most
abundant (about 0.0046±0.0068% of Earth's crust by weight)
and least expensive of the rare earth elements. Nowadays,
cerium is widely used for commercial applications. In the
form of cerium oxide, for example, it is added to fuel to reduce
emissions and to glass and enamels to change their color,
while in the form of flint (iron-cerium alloy), it is used in
lighters. Cerium oxide (CeO2) is also an important compo-
nent of glass polishing powders and phosphors used in screens
and fluorescent lamps.

But from the fundamental physics standpoint, cerium is
most interesting because of its unusual electronic structure,
which manifests itself in the phase polymorphism of its
condensed state [2]. Seven allotropic phases of cerium are
currently distinguished: a (cubic), b (double hexagonal close
packed, dhcp [3]), g (face-centered cubic, fcc, Fm3m), d (body-
centered cubic, bcc [4]), a 0 (C-type orthorhombic [5, 6] or the
a-U structure), a 00 (C2=m monoclinic [7, 8]), and e (body-
centered tetragonal, bct, I2=m [9, 10]). (See Tables 1, 2 and
Fig. 1.) It is also worth noting that the density of the liquid
phase is higher than the density of the bulk d phase. In
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addition, the liquid phase of cerium is stable in an unusually
wide range of temperatures (2648 K), inferior only to
thorium. It is believed that plutonium, which also exhibits
several allotropiesÐ a, b, g, d, d 0, (z)Ð is the actinide analog
of cerium [11].

Among the phase transformations of cerium, the best-
known transition is from g-Ce to a-Ce [2]. It is usually
observed at room temperature under the pressure
P � 0:8 GPa, but it can also be induced by decreasing the
temperature at atmospheric pressure. In the latter case, the
transition goes through the intermediate b-phase [3], which is
practically impossible to eliminate afterwards. The g! a
transformation was first observed by Bridgman in 1927 [12].
However, the most famous property of the transitionÐ its

isostructurenessÐwas established in X-ray experiments only
in 1949 and 1950, first by applying pressure [13] and then by
decreasing temperature [14]. In both cases, the same face-
centered structure for g-Ce and a-Ce was reported. The two
phases therefore differ only by the numerical value of the fcc
lattice constant (see Table 1). Because two energy minima of
the same structure had not been observed previously, the issue
was considered of great scientific interest. Later, however,
other isostructural phase transitions were found, for example,
in NpO2 (Tc�25:5 K) [19, 18] and YbInCu4 (Tc � 42 K) [20]
(NpO2 is discussed below in Section 6.6.1). The g! a
transition is accompanied by such a big volume change at
room temperature (15%) that the term `volume collapse' was
applied to this case (Fig. 2). This volume change is sometimes

Table 1. Crystal structures of cerium allotropes.

Phase Crystal structure Space symmetry Lattice parameters, A
�

Conditions, Reference

a Cubic Pn�3m, Pa�3 (see Sections 6, 7) a � 4:824 P � 0:81 GPa, room T [15]

b Double hexagonal close packed (dhcp) P63=mmc a � 3:6810
c � 11:857

P � 0, room T [16]

g Face-centered cubic (fcc) Fm�3m a � 5:1610 P � 0, room T [16]

d Body-centered cubic (bcc) Fm�3m a � 4:11 P � 0, T � 1041 K [2, 4]

a 0 a-U structure:
C-centered (based)
orthorhombic

Cmcm a � 3:0143�2�
b � 5:8935�3�
c � 5:1603�3�
y � 0:1014�2�

P � 7:5 GPa, room T [8]

a 00 Monoclinic C2=m a � 5:813�2�
b � 3:145�1�
c � 5:612�2�
b � 113:10�2��
�x; y; z� � �0:2800�5�,
0, 0.2516(6))
c 0 � 6:300
b 0 � 55:02�

P � 8:3 GPa, room T [8]

e Body-centerd tetragonal (bct) I4=mmm a � 2:92
b � 4:84

P � 17:5 GPa, room T [17]

Table 2.Nearest bond lengths in cerium phases.

Phase Bond lengths (Ce-Ce), A
�

Volume per Ce, A
� 3

Lattice parameters, A
�

Conditions

a 3.411 28.065 a � 4:824 P � 0:81 GPa, room T

b 3.681(6),
3.647(6) 34.784

a � 3:6810
c � 11:857

P � 0, room T

g 3.649 34.367 a � 5:1610 P � 0, room T

d 3.559 34.713 a � 4:11 P � 0, T � 1041 K

a 0 2.8435(2),
3.0394(4),
3.0143(2),
3.3098(4)

22.918

a � 3:0143�2�
b � 5:8935�3�
c � 5:1603�3�

P � 7:5 GPa, room T

a 00 2.9633(1),
3.1142(2),
3.145(2),
3.3046(4),
3.3525(2),
3.3629(1)

23.593
a � 5:813�2�
b � 3:145�1�
c � 5:612�2�
b � 113:10�2��

P � 8:3 GPa, room T

e 2.92(4),
3.181(4) 20.634

a � 2:92
b � 4:84

P � 12 GPa, room T
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called unique, but this is an overstatement. For example, in
passing from graphite to diamond, the volume decrease per
carbon atom is much larger (57±69%). In that case, we are
dealing with different covalent bonding of carbon, which is
studied well both theoretically and experimentally. Inspired
by the carbon case, we may suggest that in g-Ce and a-Ce, we
are dealing with different manifestations of themetallic bond of
cerium. In particular, the metallic bond in g-Ce can differ
from the bond in a-Ce by its spatial orientation. In that case,
the g! a transition would be not a truly isostructural but a
hidden structural transition, closely connected with the
symmetry change of the cerium electron density. This idea
leads to the theory of quadrupolar ordering, which is
discussed in Section 6.

In addition to the g! a phase transition, a great scientific
discussion was prompted by the problem of the identification
of the phase in which cerium transforms from a-Ce under
pressure [8]. As possible candidates, the monoclinic structure
(I2=m [10] orC2=m [7, 8]) or base-centered orthorhombic (the
a-U structure) [5,6] were considered. Nowadays, it is
established that the symmetry of this phase depends on the
method of production and sample history [8]. If a sample is
prepared with cold (low-temperature) synthesis, it is trans-
formed into the a 00 phase of cerium, which is the monoclinic
C2=m structure. If the sample is prepared at a high
temperature (and pressure) and cooled to room tempera-
ture, the transition is from the a-cerium to the a 0 phase with

the a-U structure. This question is discussed in general terms
in Section 9.

The phase diagram of cerium (Fig. 1) is also constantly
discussed and refined, especially in the region of phases a, a 0,
a 00, and e, and transitions between them [21±26]. Phase
boundaries between them were determined by measuring the
electric resistivity of a sample at several PÿT points. In the
first study [21], the phase boundary between the a 0 (or a 00) and
e phases was found to form a straight line that extrapolated to
the minimum of the cerium melting curve. These data were
used in reference book [22]. However, already in 1981, a
dome-shaped curve of phase boundaries was found in [23],
which was later confirmed in [24] and [25]. In [25, 26], the
cerium phase diagram was studied in the region of high
temperatures and pressures. There, the direct phase transi-
tion from the tetragonal phase (e) to the cubic a phase [25] and
the transition in the opposite direction (i.e., a! e) were
found at pressures of 7.1 GPa (T � 735 K) and 7.2 GPa
(T � 800 K) [24, 26] (see Fig. 1). Based on these studies, a
suggestion about the existence of an a±a 0±e triple point at
6.9 GPa and 600 was made [26].

In this paper, we consider the abovementioned problems
and, in particular, discuss recent experimental data on the
g! a phase transition [27±29]. We also review other phase
transitions under pressure, paying much attention to theore-
tical and computational methods.

2. Peculiarities of the electronic structure
of atomic cerium and the chemical bond
of the cerium dimer (Ce2)

It is widely accepted that the phase variety of ceriumwith four
valence electrons (4f5 6s2) is caused by its single 4f electron.
Indeed, cerium is virtually the first element in the periodic
table in which an appreciable occupation of the 4f electron
shell is realized. However, the direct participation of the 4f
states in metal bonding is doubtful. In cerium, the properties
of valence electrons, that is, the 4f electron from one side and
the 5d6s2 from the other, are so different that they are
grouped into two separate electron subsystems [36]. Three
valence 5d6s2 electrons are usually regarded as convention-
ally metallic, meaning that they form a typical chemical
(metallic) bond, whereas the core-like 4f electron remains
mainly localized. This conclusion follows from the radial
dependence of the partial electron density (Fig. 3). From the
general theory of chemical bonding, it follows that the
optimal radius of the cerium atoms is found at the maximal
value of its valence electron density. In accordance with this
criterion, we see (Fig. 3 and Table 3) that 5d and 6s electrons
are actually responsible for the metallic bond, because their
electron density is maximal at rg, which is the contact radius
(the radius of touching spheres) of g-Ce. Meanwhile, the 4f
electron does not participate or barely participates in the
process, because its average radius rf is considerably smaller
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Table 3. Radial maxima � r�r� r 2� of atomic shells and valence electron
density of cerium (A

�
). (The data are obtained from the relativistic atomic

calculation of cerium within the density functional theory [107] in the
local density approximation [184].) For comparison, the radii rc of close
contact spheres are rg � 1:825, ra � 1:706 in the solid state, and rCe2 �
1:31ÿ1:33 (A� ) in the cerium dimer.

4f5/2 5d3/2 6s1/2 (5d16s2) (5d1.56s1.5) (5d26s1)

rmax 0.375 1.154 1.971 1.800 1.634 1.379

July 2012 The puzzle of the g!a and other phase transitions in cerium 659



than the characteristic bonding length, rf 5 rg (see Table 3).
We see in what follows that this scenario is fully supported by
many-electron relativistic calculations of the cerium dimer
(Ce2) [32, 33].

However, the 4f electron does affect the metallic bonding
indirectly, and it certainly cannot be considered an ordinary
core electron, which simply screens the nuclear charge.Unlike
other core electrons, the 4f shell is open. This fundamental
property implies 4f electron degrees of freedom, which are
absent in the case of a fully occupied electron shell. The
completely filled electron shell leads to a spherically sym-
metric electron density and to a trivial spherically symmetric
potential that screens the nuclear field. In atomic cerium,
because of the orbital degrees of freedom, 4f states are
grouped (coupled) with states of other valence electrons, 5d
and 6s to minimize the resultant intrasite 4f±5d and 4f±6s
Coulomb repulsions (Fig. 4 and Table 4). Thus, already in
atomic cerium, rather strong 4f±5d and 4f±6s interactions
exist that induce 4f±5d [37] and 4f±6s [38] correlations.

These correlations can be found in the atomic spectrum of
cerium (see Table 4). Its four valence electrons, 4f5d6s2, are
grouped into the 1G4 many-electron ground state with the
spin quantum number S � 0, whereas according to the first
Hund rule, S should bemaximal [40]. In atomic physics, this is
a rare case of the first Hund rule violation [40]. The origin of
the anomaly is discussed in detail in Ref. [39], where it is
shown that in the 1G4 state, the quartic Fermi hole of the

fourth order is formed that optimizes the energy of the 4f±5d
Coulomb repulsion.

To describe cerium in the condensed state, the authors of
Refs [41±43] model many-electron effects of the 4f5d6s2

valence shell by introducing a spin polarization and an
orbital term, which artificially restore the first Hund rule for
atoms of Ce. Taking into account that the first Hund rule is
not valid for the 1G4 ground state of the cerium atom, the
correctness of the approach and its results are under question.

Another peculiarity is the presence of the excited 4f5d26s
configuration (see 5H in Table 4), which dominates in the
cerium atomic spectrum starting from 0.29 eV. Clearly,
4f5d26s mixes with 4f5d6s2 in molecules and solids. Indeed,
the 6s! 5d transition can potentially lead to a strengthening
of chemical bonding because the 6s shell becomes unoccupied
and allows the formation of a 6s±6s bonding between
neighboring cerium atoms in molecules and solids. As shown
in Table 3 and Fig. 3, the strengthening of metallic bonding
results in an effective decrease in the characteristic radii and
bond lengths. Interestingly, a partial increase in the d-orbital
occupation was found in the Compton scattering experiment
[44], and hence the discussed transfer indeed occurs at the
g! a phase transition in cerium. It is worth noting that based
on the effective unit cell energy, it was concluded that various
solid phases differ from each other not only by crystal
structure but also by their electronic structure [46]. Different
electronic structures of g and a cerium were also found in
optical conductivity measurements [47].

It is instructive to study the peculiarities of chemical bond
formation in the cerium dimer [34], because it is the simplest
electron system and the simplest molecular bond binding two
cerium atoms. Here, many-electron calculations are to be
done where relativistic effects are taken into account.
Calculations of that level have become possible only recently
[32, 33]. According to their results, a triple bond is realized in
Ce2: the first bond is formed between 6s states of neighboring
atoms, two others are between 5d states. [If two cerium nuclei
lie on the z axis, the double d-bond is formed between the d-
functions of two cerium atoms with the same azimuthal
dependence (m), that is, between exp �ÿji � and exp �ÿji �,
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and between exp ��ji � and exp ��ji �.] Correspondingly,
there are six valence electrons on this bond: �6ssg�2�5dpu�4
(the 1S�g many-electron state). More importantly, one 4f
electron remains in each cerium atom that does not partici-
pate in chemical bonding. The conclusion on the inertness of
4f states is nontrivial. For example, in the uraniumdimer (U2),
5f states behave differently anddoparticipate in the formation
of a quintuple chemical bond [48].

Although the two remaining 4f electrons of cerium do not
form a chemical bond, they play an important role in the low-
lying excitation spectrum of Ce2. In ab initio calculations [32,
33], six low-lying many-electron states (1S�g ,

1Sÿu ,
3Sÿg ,

3S�u ,
36u,

16g) were found that are practically indistinguishable
(0.01±0.07 eV). In [49], it is shown that the existence of such
excitations is caused by 4f±4f interactions, where the
dominant one is the Coulomb repulsion of two localized 4f
electrons. Hence, the following scenario is realized in cerium
(Fig. 4). The chemical bond of Ce2 is made of 5d and 6s
electron states that form occupied molecular orbitals. The
fixed bonding 5d and 6s orbitals directly influence the space of
4f states via Coulomb repulsion. The effective active space of
the 4f states is narrowed to just two orbital f-states [with the
azimuthal dependences exp �ÿ3ji � and exp ��3ji �]. But
unlike in other valence states (5d and 6s), the electron degrees
of freedom of the localized f-electron are still not completely
frozen. These electron degrees of freedom of nearly degen-
erate 4f states are responsible for the low-lying molecular
energy spectrum. It is conceivable that the same scenario is
realized in crystalline cerium.

3. c! a phase transition in cerium
(review of models)

As noted in the Introduction, the unusual feature of the
g! a phase transition is its isostructural nature, discovered

in 1949±1950 [13, 14]. In 1970±1980, the focus was on
different magnetic properties of the g and a phases [2, 50±
52], and theoretical models were expected to explain this
difference.

The magnetic susceptibility wg of g-cerium follows the
Curie±Weiss law (Y � ÿ50 or ÿ9 K, peff � �2:4ÿ2:52� mB)
[50, 51] with an effective magnetic moment close to the value
peff � 2:54mB for a single free f-electron. The magnetic
susceptibility of a-cerium shows only a weak dependence on
temperature, and therefore a-Ce is characterized as a Pauli
paramagnet [52, 53]. However, the minimal value of wa (at
T � 50 K) is 4.5 times larger than the value deduced from
electronic specific heat measurements [53]. The susceptibility
wa demonstrates a slow increase with temperature for
T > 60 K and a steep increase on decreasing the temperature
to T < 20 K (which is usually accounted for by b-impurities).
The data are conventionally explained by the presence of
nearly free f-electrons in the g phase, which become bound in
the a phase. But this is a simplistic interpretation. Indeed, we
saw in Section 2 that the f-electron is not free even in the
cerium atom, because it interacts with d- and s-valence
electrons via Coulomb repulsion. The strength of this
interaction is of the order of 1 eV (see Table 4), and hence
the fact that the effective magnetic moment coincides with
that of a free f-electron is probably coincidental [49]. In
condensed cerium, as in the dimer, there can be low-lying
many-electron 4f excitations. These excitations can be
magnetic (with a nonzero magnetic moment) or nonmag-
netic (with a zero magnetic moment). Their characteristic
splittings are of the order of 10±100 K, and currently it is
practically impossible to predict their energy positions with
confidence. (Nevertheless, this can be done in some cases; see
Ref. [49].)

The g! a transition is possibly a record holder for the
number of models suggested for its description. First, it was

Table 4. Low-lying energy spectrum of the cerium atom.

Leading
conéguration

Term J g (Lande) DE, eV, experiment [45] DE, eV [33]

4f5d6s2 1G 4 0.945 0 0

4f5d6s2 3F 2
3
4

0.765
1.077
1.077

0.028
0.206
0.384

0.076
0.197
0.397

4f5d6s2 3H 4
5
6

0.890
1.032
1.160

0.159
0.274
0.493

0.188
0.305
0.539

4f5d6s2 3G 3
5

0.735
1.150

0.172
0.521

0.227
0.521

4f5d26s 5H 3
4
6
7

0.600
0.986
1.166
1.237

0.294
0.302
0.589
0.719

0.299
0.340
0.631
0.752

4f5d6s2 1D 2 0.937 0.295 0.338

4f5d26s 5I 4
5
6
7
8

0.666
0.907
1.117
1.216
1.250

0.396
0.467
0.552
0.659
0.844

0.602
0.690
0.797
0.921
1.066

4f26s2 3H 4
5
6

0.805
1.035
1.169

0.591
0.774
0.965
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considered that the localized f-electron that is present in the
g phase becomes part of the metallic (6s5d) band in the
a phase. This is the promotional model [54±56], which at
that time was linked with the cerium valence instability [57,
58]. According to this model, the transition occurs as

�g-Ce� 4f 15d16s2 ! 4f 05d26s 2�a-Ce� ;

whence it follows that the g and a phases differ by the number
of f-electrons. This conclusion was checked in positron
annihilation experiments [59, 60] and in Compton scattering
experiments [44]. In both cases, nearly equal occupation of
the f-states (nf � 1) was established, and the promotional
mechanism was concluded to be irrelevant. This fact is
supported by an accurate theoretical consideration. Indeed,
the 4f! 5d (4f! 6s) transition is very energy consuming.
The required energy can be approximated by 4 eV from the
experimentally measured transitions (4f5d2�4H7=2� ! 5d3 in
Ce1� [45]). In addition, the calculations of the electron band
structure of the g and a phases by the density functional
theory (DFT) in the local density approximation (LDA) have
shown that the number of occupied f-states in both phases is
almost equal to one per cerium atom [61]. Recently, the
conclusion concerning the number and nature of f-states
was even strengthened: inelastic neutron scattering experi-
ments indicate that the 4f electron remains localized at the
g! a phase transition [62, 63].

A detailed analysis on the partial occupations of valence
states in the g and a phases given in the Compton scattering
measurements [44] is particularly worth mentioning. It has
turned out that the number of 4f electrons in the a phase is
close to one, and even a small change in the occupation
number leads to a worsening of the correspondence between
the experiment and the model. At the same time, the
occupation numbers of d- and s-states do change: in the
a phase, the number of d-states increases by 0.6, which
perfectly fits the scenario of the chemical bonding discussed
in Section 2.

In 1974, having analyzed the thermodynamic properties
of cerium, Johansson put forward a Mott-like (localization±
delocalization) model for the 4f-electron subsystem at the
g! a phase transformation [36]. Now the number of 4f
electrons remains constant in both phases, but the change
concerns their nature: in the a phase, the electrons are band-
like, while in the g phase, they are localized. Two fcc phases
(g and a) then correspond to two minima of the free energy,
which develop within the same space symmetry (Fm�3m).
Later, the theory was confirmed by model band structure
calculations of cerium [41±43, 64].

The description of the g! a transition in cerium and
other metals (for example, in actinides [65, 66]) within the
dilemma of localization±delocalization of f-states [36, 41±43,
64] has become widespread. However, the explanation of the
physical and chemical properties within the concept remains
essentially one-electronic. In the many-electron approach,
this contradistinction is not really relevant. Indeed, the
localized atomic or the delocalized Bloch functions are only
characteristics of different basic sets. From the Bloch states,
by a corresponding linear transformation, we can obtain the
localized atomic functions and vice versa, whereas the correct
solution to the electronic problem should not depend on the
choice of the basis set. One can say, of course, that the Bloch
functions are preferable because they explicitly take the
translation symmetry of a crystal into account. But the Bloch

functions are symmetry adapted only for the one-electron
problem. In the realistic many-electron case, the translation
symmetry is exact only if all crystal electrons are subjected to a
translation. The situation here is completely analogous to the
many-electron atomic one. In the atomic problem, the many-
electron Hamiltonian is invariant under rotations that act on
all electrons of the atom. In the case of only one-electron
rotation, theHamiltonian is not invariant. The same holds for
crystal translations in the many-electron case.

There is another approach, called the Kondo volume
collapse model, which competes with the theory of a Mott-
like transition in cerium [30, 31, 67]. From its name, it is clear
that themodel exploits a large volume change at the transition
and the Kondo mechanism [68] for demagnetization of
magnetic moments. In the Kondo model, the 4f electron in
the first approximation stays localized in the g and a phases,
but the interaction between the 4f electrons and band
electrons at the Fermi level is much more intense in the a
phase. Quantitatively, this implies that the Kondo tempera-
ture is small (50±100 K) in the g phase and is relatively large
(1000±2000 K) in the a phase. In addition, the so-called
hybridization between 4f and band states gives rise to the
formation of a singlet ground state, which is separated from
the magnetic states by an energy gap of kBTK. Hence, the last
feature to be explained is the appearance of twominima of the
same fcc lattice. It is worth noting that such behavior has not
been observed in molecular structures. Molecules often have
close energy minima, but these always correspond to different
structures (conformations). Therefore, in order to describe
two minima, the Kondo model always exploits a nonlinear
empirical dependence. In the first formulation, that was the
dependence of the Kondo temperature on the cerium unit cell
volume [30]. In the recent formulation, the dependence of an
effective Debye temperature is used [70].

Another shortcoming of themodel (as well as of themodel
of localization±delocalization of the 4f-electron density) is
that it is effective only for one unique phase transition
(g! a). The other phase changes in cerium should then be
explained by traditional means. One phase transition (g! a)
is thus singled out from the whole set of phase transforma-
tions, which is not completely logical.

Two abovementioned models (Mott-like and Kondo-like
for 4f states) have been actively developed over the last
20 years, and have become more and more complicated
from the technical standpoint (see Section 5.1). Nowadays,
theKondo effect is described within the dynamical mean-field
theory (DMFT) (see Section 5.2) and has lost the character-
istics of an empirical approach. But even today, there is no
consensus on the ultimate approval of just one of these
models [70 71]. We finally note that recent inelastic neutron
scattering measurements of a-Ce (in a sample doped by
10 at.% Sc) [62] have found that its magnetic form factor
differs appreciably from the one calculated in [42], where the
4f states are considered itinerant (delocalized) (Fig. 5).
According to Ref. [62], the 4f electrons remain localized
even in a-Ce. This conclusion is in full agreement with papers
[32, 33] on the many-electron calculations of the cerium
dimer, from which it also follows that the 4f electrons do not
participate in chemical bonding (see Section 2). It is worth
mentioning that in both the Kondo model and the localiza-
tion±delocalization model of the 4f electron subsystem, the
isostructural nature of the phase transition has never been
questioned and has always been considered a well-established
fact. However, there is another approach [73±75], which
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treats the phase change as a hidden structural transformation
(see Section 6). In 2010, this approach for the first time
received experimental support [28, 29]. There also appeared
experimental evidence of the active role of the lattice in the
g! a transition [27].

4. Significant role of the lattice
in the c! a transition

Until the work of Jeong et al. [27], it was assumed that the
cerium lattice plays a passive role in the g! a transition,
often disregarded in theoretical models. In [27], it was first
emphasized that the vibrational contribution to the entropy
change per atom �DS gÿa

vib � �0:75� 0:15� kB, where kB is the
Boltzmann constant) is about half the total entropy change
(1:5kB [2]). In this section, we consider the active role of the
lattice in the g! a transition, which manifests itself through
a softening of some phonon branches of g-cerium [76, 77] and
a softening of the bulk modulus [78, 79], which eventually
results in such a large lattice contribution to the transition
entropy change [27, 80].

4.1 Softening of the bulk modulus at the c! a transition
and other elastic phenomena
Elastic phenomena in the g! a transition were first observed
and reported in [78]. At room temperature in polycrystalline
cerium, the authors monitored the bulk modulus B, the shear
modulus G � c44, the effective Debye temperature YD, and
the Poisson ratio as functions of the applied pressure in
ultrasound measurements. As the pressure increased above
0.4 GPa and approached the onset of the g! a transition,
they found that the Poisson ratio fast decreasedwhileG slowly
increased and the Debye temperature YD remained nearly
constant. Upon completing the transition to the a phase, all
elastic moduli and the Debye temperature increased stepwise,
after which they continued to rise slowly. This behavior was
further confirmed in more precise measurements [69, 79]. In
[79], experimental data were collected up to the pressure of
9 GPa, thus covering not only the g! a but also the next
a! a 0 (or a! a 00 [8]) phase transition.

The phonon frequencies of g-cerium single crystals along
the [100], [110], [111], and [0x1] high-symmetry directions of
the Brillouin zone were studied in [76, 77] (Fig. 6). The

comparison of the phonon dispersion curves with those of
thorium [81] shows that the spectrum of g-cerium is in general
softer (i.e., its vibration frequencies are smaller) than can be
expected from the Lindemann criterion for melting. The
softening is more pronounced for the longitudinal (L) modes
and the T �111� and T1�110� transverse modes, and less
pronounced for the T2�110� and T �100� branches (see Fig. 6).
The T �100� mode almost corresponds to that of thorium (no
softening) [81]. Therefore, the softening is absent for those
branches (T �100� and T2 �100�) that have no connection with
the elastic constants c11 and c12 in the long-wavelength limit
(q! 0). The dominant effectÐ softening of the phonon
spectrum of g-CeÐ is directly related to the decrease in its
bulk modulus B � �c11 � 2c12�=3.

We note that the very low frequencies along the GÿL line
(the T �111� curve) are caused by another (martensitic) phase
transition, g! b (fcc! dhcp), which occurs at 260 K (see
Section 8). This conclusion is supported by the anomalous
behavior of phonon modes around the L point (2p=a) (1/2,
1=2, 1/2) of the Brillouin zone [77]. The frequency at the L
point decreases as the temperature decreases from 0.94 Hz
(875 K) to 0.82 THz (295 K), while the reverse effect is
observed for the other modes of g-cerium [77]. The same soft
mode (� 0:82 THz) at the L point was also found in
lanthanum (T � 660 K), where a transition of the same type
occurs: fcc! dhcp. (The fcc! dhcp transformation
involves four transverse waves propagating along the [111]
direction with three reduced vectors (2p=a)(x, x, x), where
x � 1=4 and 1/2 [82].)

From the dispersal curves of g-cerium, the authors of
[76, 77] found the atomic force constants of the Born±
von K�arman model (Table 5), which fully determine the
phonon spectrum, that is, the effective Debye temperature
YD�T � (YD � 119ÿ135 K) and the elastic constants
c11 � 2:41, c12 � 1:02, and c44�1:94 in 1010 N mÿ2 or
1011 dynes cmÿ2. Also, they concluded that there was no
well-defined low-energy crystal field excitation in g-Ce. The
obtained values of the elastic constants imply a large crystal
anisotropy. In particular, the shear elastic constant c44 is three
times larger than the quantity

c 0 � c11 ÿ c12
2

; �1�
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that is,A � c44=c
0 � 2:8. It has turned out that the anisotropy

is even higher in the high-temperature d phase (bcc): A � 5:6
[82]. The phonon spectrum of d-Ce [82] and its peculiarities
are discussed in detail in Section 8.

The dependence of phonon dispersion on pressure at
room temperature was recently studied by high-energy-
resolution inelastic X-ray scattering [80]. Notably, the
phonon dispersion curves of a-Ce were obtained in this
work for the first time at P � 0:8 and 2.5 GPa. The
dispersion curves were found to change mainly along the
[110] and [111] directions, with the most noticeable difference
in the vicinity of the X point. The Gruneisen parameters
g! a for the T �001�, T2�110�; and L�110� modes become
negative around the X point, which on the one hand implies a
phase instability and on the other points to its special role.

The behavior of the bulk modulus in polycrystalline
cerium samples in the proximity of the g! a transition was
studied in [27], by finite differences of the PÿV data,
B�ÿV dP=dV�ÿVDP=DV (Fig. 7). Pronounced softening
of the bulk modulus of the g phase as the pressure approaches
the onset of the phase transition is an indication of an
increasing elastic instability of the lattice, and the disconti-
nuity ofBT at the transition implies that the transition is of the
first order. The bulk modulus in the g phase can be fitted by a
polynomial dependence BT/jPÿPcj a (Pc � 0:83 GPa,
a � 0:46). The obtained isothermal bulk modulus BT is in
good agreement with the adiabatic bulkmodulusBS obtained

from ultrasoundmeasurements in [78, 79]. In the cubic phase,
the bulk modulus is given as

B � 1

3
�3c11 ÿ 4c 0 � P� ;

where c 0 is the shear modulus and P is the applied hydrostatic
pressure. In a first approximation, c 0 is independent of pressure
[78, 79, 69], and therefore the softening of the bulk modulus is
directly related to the softeningof c11.This conclusion is confirmed
by the softening of the measured longitudinal sound velocity with
increasing pressure [78, 79, 69] and the transverse phonon
frequencies at normal pressure [76].

4.2 Atomic mean square displacements and the lattice
contribution to the entropy change
InRefs [27, 83], a new experimental technique [27] was used to
study isotropic mean square thermal displacements of
atoms in g-Ce and a-Ce. Traditionally, phonon spectra are
obtained from inelastic neutron scattering or from high-
energy-resolution inelastic X-ray scattering, often obtained
in synchrotron radiation measurements. In both cases, a
single crystal is required, whereas powder samples are
considered inappropriate for the purpose. However, the
study of the g! a transition in cerium single crystal involves
some serious technical problems (see Section 7). Therefore,
the alternative approach based on the analysis of the atomic
pair distribution function obtained by means of high-energy
synchrotron and pulsed neutron sources in powder samples is
of great importance [84]. The pair distribution function is a
real-space Fourier transform of the diffraction spectrum.
From the pair distribution function (the peak positions and
widths), we can obtain the mean square thermal displace-
ments of cerium nuclei hu 2

isoi, which are then used for further
analysis. In Ref. [27], the mean square thermal displacement
hu 2

isoi of a cerium atom in the crystal lattice in g and a phases
was studied as a function of temperature at 0.412 and
0.527 GPa and a function of pressure at 300 K. In the Debye
approximation, this quantity is given by

hu 2i � hu 2i0 �
3�h

MoD

�
1

4
�
�

T

YD

�2

F1

�
;

where YD � �hoD=kB is the Debye temperature, hu 2i0 is a
temperature-independent constant, and

F1 �
�YD=T

0

x
ÿ
exp �x� ÿ 1

�ÿ1
dx :

Table 5. Force constants Fab�Rn� (in n mÿ1 or 103 dynes cmÿ1) of g-Ce in the Born±von K�arman model with 8 nearest coordination shells obtained by
fitting the phonon spectrum [76]. N is the number of atoms in the shell, a�b� � x; y; z.

Rn N xx yy zz xy xz yz

a�1=2; 1=2; 0� 12 4.373 ÿ0.226 4.580

a�1; 0; 0� 6 ÿ2.356 0.077

a(1, 1/2, 1/2) 24 0.206 0.317 ÿ0.050 ÿ0.055

a�1; 1; 0� 12 0.123 0.011 0.151

a�3=2; 1=2; 0� 24 ÿ0.053 ÿ0.099 ÿ0.104 0.019

a�1; 1; 1� 8 ÿ0.332 ÿ0.219

a�3=2; 1; 1=2� 48 0.106 ÿ0.114 0.026 ÿ0.007 0.076 0.005

a�2; 0; 0� 6 0.001 0.222
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By linear fitting, the authors of Ref. [27] extracted the Debye
temperatures for both phases: Y g

D � 104�3� K and
Y a

D � 133�3� K.
At high temperatures (T > YD), the vibrational contribu-

tion to the entropy change is given by

DSvib � 3NkB

�
1� ln

T

Y0
� . . .

�
;

where Y0 is the logarithmic phonon moment (it is assumed
thatY0 � YD in what follows). We then obtain

DS gÿa
vib � DS g

vib ÿ DS a
vib � 3kB ln

Y a
D

Y g
D

:

From the last expression, it follows that

DS gÿa
vib � 3kB ln

133��3�
104��3� � �0:75� 0:15� kB :

Thus, according to [27], the estimated vibrational entropy
change per atom in the g! a transition, DS gÿa

vib , is about half
the total entropy change DS gÿa

tot � 1:5kB obtained from the
latent heat and the Clausius±Clapeyron relation [2]

dP

dT
� DS gÿa

tot

DV gÿa :

The phonon dispersion of cerium as a function of
pressure was recently studied by high-energy-resolution
inelastic X-ray scattering [80]. Although the authors have
confirmed an appreciable contribution to the gÿa transition
entropy, their result DS gÿa

vib � 0:33kB differs from the one in
[27] quantitatively. For completeness, we quote the Debye
temperature and hu 2

isoi obtained in [80] just before and after
the phase transition: Y g

D � 122 K, Ya
D � 138 K; hu 2

isoi �
0:0206 A

� 2
in g-Ce and 0.0168 A

�
in a-Ce.

4.3 Interpretation of experimental data
It is pointed out in [27] that the dependence of the thermal
mean square displacement hu 2i on temperature or pressure
and the behavior of the bulk modulus BT in the g! a
transition can be described by a well-known model [85, 86],
where the energy contribution (of the order-parameter±
strain-field coupling type) has the functional form

DFvib � ler 2 : �2�

Here, e is a characteristic lattice strain (a component of the
strain tensor) and r is the order parameter amplitude. The
effect of lattice softening preceding a structural phase
transition is a universal feature of coupling (2). The
physical mechanism responsible for the elastic instability
and a renormalization of the bulk modulus were first
studied theoretically in [85, 86]. These models and the
form of Eqn (2) itself indicate that the lattice displacements
(volume collapse) are secondary parameters. We note that a
contribution of exactly the same type has been obtained in
the quadrupolar model (see Eqs (6) and (7) below and
Sections 6.2, 6.3).

The authors of Ref. [27] also point out an inconsistency
with the Kondo volume collapse model, because the esti-
mated value DSKondo

tot � kB ln �2J� 1�, where J � 5=2, over-
estimates the experimental valueDS gÿa

tot by 15%.Hence, in the

Kondo volume collapse model, there is simply no room for
the lattice contribution DS gÿa

vib . It is not the first time such
inconsistencies have appeared. Earlier, a serious discussion
was prompted by the interpretation of resonance photoemis-
sion spectra [87, 8].

In recent studies [70] and [89], attempts were made to
incorporate the lattice contribution into the Kondo approach
and remove the discrepancy in the framework of an empirical
Kondo model and the DMFT, correspondingly.

5. Models of the electronic structure of c-Ce
and a-Ce without space symmetry change

Cerium is a unique element in the theory of the electron
structure of correlated metals, with its g! a transition being
a testing ground for the implementation of new theoretical
approaches in computational solid state physics. This results
in a great number of studies in which its electronic structure is
modeled [41±43, 64, 65, 71, 90±103], starting with the first
DFT±LDA calculation [90] and ending with recent work [96±
102] within the DMFT [104, 105]. Some of the studies, along
with principal approximations and computed characteristics,
are given in Table 6.

It is very important to note that in all these calculations
[41±43, 64, 65, 71, 90±103], the isostructural nature of the
transition is taken for granted. However, new experimental
data that emerged recently indicate that the g! a phase
change is a hidden structural transition (see Sections 6 and 7)
[28, 29, 73±75, 37].

5.1 Electron band structure calculations of cerium
One of the first calculations of cerium was done by Gl�otzel
[90] within the local spin density approximation of the DFT.
In the spin-polarized treatment corresponding to the unrest-
ricted Hartree±Fock method [106], the electron density is
split into spin-up and spin-down components, and an
empirical expression [107] of the free electron gas is used
for the exchange interaction. In this approach, the description
of g-Ce is unsatisfactory, because the ground state is
ferromagnetic with a wrong equilibrium volume. Subsequent
studies followed the path of more and more sophisticated
computational schemes, which incorporated uncontrolled
empirical approaches. For example, in [41±43], a so-called
orbital polarization was introduced, that is, an energy term
was added to the effective one-electron Hamiltonian to
simulate three Hund's rules for cerium. This procedure
ignores the fact that the first Hund rule is violated in the
cerium atom (see Section 2). In [92±95], band structure
calculations were corrected to explicitly exclude the self-
interaction of the localized 4f states of cerium. (The electron
self-interaction [108] is an artifact of the local density
approximation of the DFT, which appears as a result of a
mismatch between the exact Coulomb and an approximate
exchange interaction.)

Correlation effects caused by the many-electron Coulomb
repulsion are conventionally reduced to the Hubbard inter-
action and a multiplet splitting of the localized 4f levels [109]
(the so-called `Hubbard I' or `LDA�� ' approximation). It is
notable, however, that all correlation effects in that approach
are limited to the 4f states. The band (spd) electrons of cerium
are treated in the one-electron approximation (as an electron
background or so-called `electron thermostat'). This is a
serious approximation by itself. In Ref. [38], it is shown that
by averaging the single-site s±f interactions, we retain only
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even terms for cubic crystals, and thus exclude important odd
electron density fluctuations that appear in the exchange
between s- and f-electrons (octupole interactions in terms of
the multipole expansion).

5.2 Dynamic mean-field theory (DMFT)
Over the last decade, methods of the dynamic mean-field
theory [104, 105] have been used for describing the peculia-
rities of the g! a phase transition [96±102]. The DMFT is an
approximation to the electronic problem in a crystal lattice
when the electron problem with many degrees of freedom is
reduced to a single-impurity problem with essentially fewer
degrees of freedom. The approximation becomes exact in the
hypothetical limit z!1, where z is the number of nearest
neighbors (in practice, z / 2ÿ12). The nearest neighbors are
thus replaced with a one-electron `thermostat'. It is believed
that the DMFT gives a better description than the Mott-like
and Kondo models.

The DMFT accounts for the hybridization between
localized f-electron states and also between the delocalized
spd- and localized f-electrons. The problem is first solved in
an effective one-electron approximation, which gives com-
puted electron bands formed by the spdf states. Then the
Coulomb interaction in the form of the Hubbard repulsion
U � 6 eV is introduced and a certain realization of the
DMFT is applied. As a DMFT solver, the noncrossing

approximation (NCA) [96] or the quantum Monte Carlo
(QMC) method and Hubbard-I approximation [98] can be
used. The main finding is that at zero temperature, the energy
minimum corresponds to a-Ce, but as the temperature is
increased to 0.14 eV, the minimum is shifted to a larger
volume, which is interpreted as the g phase of Ce.

Therefore, theDMFToffers the following scenario for the
g! a phase transition. In a large unit cell volume (g-Ce), the
f-electron spectrum is split by the Hubbard repulsion, which
results in the appearance of local magnetic moments at
cerium sites. As the volume decreases, a quasiparticle at the
Fermi energy is formed (the Abrikosov±Saule resonance),
which leads to the disappearance of themagneticmoment and
a decrease in entropy. The temperature evolution of the
quasiparticle peak can be explained by the difference
between the Kondo temperatures, which in the a-phase
(TK;a) is much larger than in the g-phase (TK; g). In Ref. [96],
TK;a�1000 K and TK; g�30 K; in Ref. [98], TK; a�2100 K
and TK; g < 650 K; estimations of the Kondo temperature
from experimental data are TK; a�945 K, TK; g�95 K
(electron spectroscopy [110]) and TK; a � 1800 ± 2000 K,
TK; g�60 K (neutron spectroscopy [111]). Although the
Kondo temperature in g-Ce is very small, the DMFT still
considers g-Ce as a strongly correlated solid. Some differences
in the parameters and results in Refs [96, 98] are explained by
different methods of solving the single-impurity problem.

Table 6. Electronic structure of g-Ce and a-Ce in various band structure models.

Ref. Authors Year Main approximations Calculated characteristics

[90] Gl�otzel D 1978 Spin-polarized
mufén-tin LMTO (DFTëLDA)

Equilibrium lattice constants, bulk modu-
lus, magnetic susceptibility of g-Ce, La, Th

[61] Pickett W E, Freeman A J,
Koelling D D

1981 Non-mufén-tin LAPW (DFTëLDA) Magnetic susceptibility, occupation
of 4f states in cerium

[41] Eriksson O, Brooks M S S,
Johansson B

1990 Spin and orbital polarization
in LMTO (DFT-LDA), simulation
of Hund rules

Equilibrium volumes in g-Ce and a-Ce

[92] Svane A 1994 Self-interaction correction for
4f states, spin-polarization in DFTëLDA

Equilibrium volumes in g-Ce and a-Ce

[93] Szotek Z,
Temmerman WM,
Winter H

1994 Self-interaction correction
for 4f states, spin-polarization
in DFTëLDA

Equilibrium volumes and magnetic
moments in g-Ce and a-Ce

[64] Johansson B et al. 1995 Mott-like transition in DFTëLDA g! a phase diagram, critical point,
free energy contributions

[91] S�oderlind P et al. 1995 Generalized gradient approximation
(GGA), spin-polarization in DFTëLDA,
full potential

Equilibrium volume, bulk modulus,
equation of state for a-Ce

[95] Laegsgaard J, Svane A 1999 Self-interaction correction for
4f states, magnetic impurity
in DFTëLDA

Equilibrium volumes and magnetic mo-
ments in g-Ce and a-Ce, temperature effects

[96] Z�olê M B et al. 2001 Dynamic mean-éeld theory (DMFT)
with DFTëLDA

Equilibrium volumes, photoemission
spectra of g-Ce and a-Ce, etc.

[97] Held K,
McMahan A K,
Scalettar R T

2001 Dynamic mean-éeld theory (DMFT)
with DFTëLDA, quantum Monte Carlo

Equilibrium volumes and magnetic
moments in g-Ce and a-Ce

[99] Haule K et al. 2005 Dynamic mean-éeld theory (DMFT)
with DFTëLDA

Optical conductivity for g-Ce and a-Ce
and comparison with experiment [47]

[89] Amadon B et al. 2006 Dynamic mean-éeld theory (DMFT)
with DFTëLDA for LMTO

Entropy change at the g! a transition,
equilibrium volumes, photoemission spectra
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Interestingly, the authors of Ref. [97] found some similarity
between the DMFT and the Mott-like approach.

Like any other method, the DMFT is not without its
assumptions. One of them is the one-electron thermostat
serving as a background for 4f-electron correlations. This
implies that the 4f states are artificially singled out from the
other electron states. Also, the one-electron functions used
are obtained within the DFT±LDA, which is known to be an
uncontrolled approximation. The other group of approxima-
tions is related to the parameter 1=z, which is supposed to be
small. This parameter formally prevents the DMFT from
being applied to molecules, but it would be very instructive to
study how this approximation works for well-known test
molecules (for example, in the case of the cerium dimer [34]).
In comparison with other `classic' many-electron methods
[32, 33] well known in quantum chemistry, the DMFT is a
novel approach and therefore its errors and drawbacks are
virtually unknown. Such particularities could be revealed
very clearly if the DMFT is compared with the classic
quantum chemical approach.

5.3 Attempts to explain lattice anomalies
in the c! a transition
As we already discussed in Section 4, it was shown in [27] that
the cerium lattice plays a significant role in the g! a phase
transition: the bulk modulus of g-Ce softens (Fig. 7) as the
pressure approaches the phase transition point [78, 79], and
the estimated vibrational entropy change is about half the
total entropy change [27].

Before study [27], the role of the cerium lattice in
theoretical models was considered insignificant and was
often ignored. In recent studies [70] and [89], attempts were
made to understand the role of the lattice [27] in the respective
frameworks of the empirical Kondo model and the DMFT.
In Ref. [89], it was even claimed that the a! g phase
transformation is driven by entropy change.

Within the empirical Kondo approach [70], the large
entropy lattice contribution is explained by invoking the
volume dependence (in the vicinity of the a! g transition,
i.e., 28.1±32.5 A

� 3
/atom) of the ``thermodynamic'' Gruneisen

parameter

g � V

�
qP
qE

�
V

:

For the Gruneisen parameter, two contributionsÐelectronic
and lattice (glat)Ðwere considered. Two very different
behaviors of glat were then found. The first was obtained
from the fit of the Kondo expression of the free energy
F�V;T � to the low-temperature isothermal experimental
data (with the accuracy of 0.08 GPa). The lattice Gruneisen
parameter glat�V � was assumed to be a function of only the
volumeV. In the range of transitional volumes (28.1±32.5 A

�
),

glat�V � crossed the zero value at V � 30 A
� 3
, and hence the

average value of glat was close to zero, and the lattice entropy
change was only 2% of the total, which contradicts the
experimental estimation in Ref. [27]. However, having
postulated a nonlinear dependence (in the spirit of the
empirical Kondo approach) of the Debye temperature
Y�V;T � on the volume and pressure and rejecting the fits of
the isotherms p�V � for the transition, the authors were able to
obtain a completely different dependence for the Gruneisen
parameter: glat had a maximum of 2.7 at V � 31:7 A

� 3,
remaining positive, but the quality of the fit decreased to

0.09 GPa. By integrating over the 28.1±32.5 A
� 3

volume
region, the authors obtained a large value of DS gÿa

vib that is in
agreement with the experimental data in Ref. [27].

We note that in contrast to the theories of structural phase
transitions, elastic anomalies are not intrinsic to the Kondo
scenario (see Section 6). In addition, it was recently found in
[80] that theGruneisen parameters gq for a number of phonon
modes become negative at the X point of the Brillouin zone.

6. c! a transformation as a hidden structural
phase transition

In Refs [73±75, 37], a distinctive approach is presented that
considers the g! a phase transition as a hidden structural
transformation. We note that its intrinsic feature is the
softening of the bulk modulus and elastic anomalies [27, 78]
(Section 4). Recently, this was for the first time supported by
experiments [28, 29] using the method of time-differential
perturbed angular gg correlations of the 111Cd probe nuclei
(Section 7).

6.1 Thermodynamic analysis of Eliashberg
and Capellmann
The first doubts about the isostructural nature of the g! a
phase transitions were expressed in the work of Eliashberg
and Capellmann [73]. Their main idea is that in cerium,
instead of the critical point between the g and a phases, a
`critical point of second-order transitions' (the definition of
Landau and Lifshitz, see Ch. 150 [112]) exists, which later was
called the tricritical point. In Ref. [112], it is further noted that
such a tricritical point ``in a sense is analogous to the usual
critical point.''

Its properties follow from the expansion of the Gibbs free
energy (or the chemical potential, m) in terms of the order
parameter amplitude u:

m�P;T; u� � m0�P;T � � A�P;T� u 2 � B�P;T � u 4

� C�P;T � u 6 :

At the tricritical point, we have Ac � 0, Bc � 0, and Cc � 0.
The main property of this point is that the line of first-order
transitions defined by

B < 0 ; 4AC � B 2

continues beyond the tricritical point as a line of second-order
transitions given by

B > 0 ; A � 0 :

The conclusion that the gÿ a phase boundary continues
beyond the tricritical point as a line of second-order
transitions was completely new. Notably, it explains the
minimum of the cerium melting curve, which approximately
lies on a line.

Analyzing further experimental thermodynamic data, the
authors of Ref. [73] were able to reconstruct phase transition
boundaries, the melting curve, the change in compressibility,
and the entropy, which were in good agreement with
experimental values.

Probably the most important conclusion that follows
from the treatment is that the space symmetry of the a phase
should be lower than the symmetry of the g phase. In [73], a
distorted face-centered cubic lattice with at least two non-
equivalent atoms in the primitive unit cell was suggested.
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Eliashberg and Capellmann ascribed the phase instability to
the soft transverse mode at the L point of the Brillouin
zone [76, 77].

The study by Eliashberg and Capellmann was brought to
the attention of experimentalists and prompted updated and
more refined X-ray measurements of the a phase [27,70,113].
But the subsequent X-ray diffraction studies [27, 70, 113] have
not revealed a distorted fcc structure in a-Ce, although a
pronounced softening of the bulk modulus on the suggested
line of second-order transitions has been emphasized in [70]
(Fig. 8).

The idea of a nonisomorphic nature of the g! a
transition was independently formulated in Refs [74, 75, 37],
where a quadrupolar ordering of the electron density in the
a phase was considered as the driving force for the phase
transformation. Although the quadrupolar model can be
regarded as a continuation of the approach of Eliashberg
and Capellmann, already in the first study [74] it was claimed
that there is no distortion of the fcc lattice of cerium nuclei,
and all structural changes are associated with the electronic
density of valence electrons.

6.2 Quadrupolar model of the c! a transition
InRefs [74, 75, 37], the g! a phase transition is considered to
be structural, albeit with a very special space symmetry
lowering. The main peculiarity is that the suggested symme-
try change concerns the electron density but conserves the fcc
lattice of cerium nuclei in the a phase. We recall that it is
usually the lattice distortion which indicates crystal symmetry
lowering. Its absence, according to the authors, explains why
the structural nature of the g! a phase transformation has
not been revealed earlier. We can therefore speak of a very
specific, or rather a hidden, space symmetry lowering.

The quadrupolar model can be considered in the broad
and the narrow sense. In the most general sense, it implies a

specific symmetry change that masks the structural phase
transition. In the narrow sense, the quadrupolar model is a
physical model that takes only some important interactions
into account. In that sense, themodel is not complete, because
it neglects other interactions. In Ref. [74], the intersite
Coulomb interaction between f-electrons was considered;
in Ref. [75], the intersite Coulomb repulsion of s-, d-, and
f-electron densities was introduced; and in Ref. [37], two-
electron (f and d) intrasite and intersite repulsions were
accounted for. In the last case, the model includes correlation
effects, which are omitted in the standard band structure
calculations.

The simplest description is in the model of interacting
f-electrons. As discussed in Section 2, the low-lying energy
spectrum of the cerium dimer is caused by 4f-electron
interactions, with the Coulomb repulsion as the most
important contribution. The Coulomb repulsion between
f-electrons belonging to different sites is the weakest among
the others (see Fig. 4), but that is why the interaction is
responsible for the lowest excitations of the many electron
spectrum (see [49]). It can therefore be assumed that the
driving force of phase transitions is the Coulomb repulsion of
the 4f electrons localized at cerium sites, because a change in
their electron density costs little energy. This scenario has
been studied in Ref. [74]. The Coulomb interaction between
the 4f electrons can be written in terms of the double
multipole expansion,

Uff � 1

2

X
n; n 0

0X
L;L 0

rF
L �n� nL;L 0 �nÿ n 0� rF

L 0 �n 0� ; �3�

where L stands for (l, t), with l being the angular index of the
multipole expansion and t � �G; k�, where G refers to an
irreducible representation of the cubic point group and l
labels rows of G [114]. The quantity rF

L �n� is the operator of
the multipole electron density at the cerium site n and
nL;L 0 �nÿ n 0� is the multipole interaction matrix. Then the
authors retain two important groups of terms in Eqn (3): the
quadrupole interaction (Uff

QQ, l � l 0 � 2) and the crystal field
contribution (l � 4, l 0 � 0). After the Fourier transformation,
Uff

QQ can be rewritten in terms of Fourier transforms rF
Q�q�

and nQt;Qt 0 �q� (t � 1ÿ5). The 5� 5 quadrupole matrix
nQt;Qt 0 �q� has negative eigenvalues at some points of the
Brillouin zone, which implies an effective attraction between
4f electrons. In particular, a large negative value (ÿlX) has
been found at the X point of the Brillouin zone
�qX � 2p=a�1; 0; 0��. It has two degenerate eigenvectors,
which can be expressed through two components of the T2g

symmetry [74]. This effective attraction leads to a phase
instability at 86 K, which results in the appearance of the
quadrupole electron density and concomitant symmetry
lowering. Because the space group of qX involves three rays,
2p=a�1; 0; 0�, 2p=a�0; 1; 0�, and 2p=a�0; 0; 1�, its electronic
mode has six components. Condensation of three out of six
density components at qX enables the Fm�3m! Pa�3 struc-
tural phase transition [114±116]. Thus, g-Ce is identified as
the disordered phase (with the order parameter amplitude
r � 0) with the Fm�3m space symmetry, whereas a-Ce is the
quadrupolar ordered phase of cubic symmetry but with a
different space group, Pa�3.

Condensation of a single component of one ray (for
example at qx

X) implies that this component changes sign in
real space in going from one crystallographic plane (perpen-
dicular to the x axis) to another. Condensation of all three
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components means that the sign changes in going from one
plane to another along the x, y, and z axes. Such structures are
called triple-q-antiferroquadrupolar or 3-q-AFQ. A close
examination shows that the Pa�3 structure is described by
four different sublattices of the simple cubic lattice (Fig. 9).
The cerium atoms belonging to the same sublattice are
completely equivalent, while cerium atoms of different
sublattices are not. The four sublattices np contain the
following sites (which were completely equivalent in the
g phase): (0, 0, 0), (a=2)(0, 1, 1), (a=2)(1, 0, 1), and (a=2)(1, 1,
0). The symmetry lowering implies that in the ordered phase,
at each cerium site, there is only one three-fold symmetry axis
(C3), which simultaneously is a main cube diagonal. If the
[111] direction is taken as the new z 0 axis, then the angular
component of the quadrupolar density is described by the
function S�111��y 0;j 0� � Y m�0

`�2 �y 0;j 0�, which is aligned along
the z 0 axis. In the x, y, z coordinate system, the angular
function is given by

S�111��y;j� � 1���
3
p ÿ

Y 1; s
2 �y;j� � Y 1; c

2 �y;j� � Y 2; s
2 �y;j�

�
:

We recall that in the fcc structure, there are four three-fold
symmetry axes (the four main cube diagonals) �r1; r2; r3�:
[111], [�1�11], [1�1�1], and [�11�1]. Hence, in the ordered (a-Ce) phase,
only one out of these four axes remains for each of the four
sublattices (see Fig. 9). The angular quadrupolar function at any
site can be expressed in the form

S�y;j� � r
n
exp

�
iqXy R�n��Y 1; s

2 �y;j�

�exp �iqXz R�n��Y 1; c
2 �y;j��exp

�
iqXx R�n��Y 2; s

2 �y;j�
o
;

where Y 1; s
2 �y;j�, Y 1;c

2 �y;j�, and Y 2; s
2 �y;j� (proportional to

yz, zx, and xy) are real spherical harmonics [114] and R�n� is
the radius vector of the site n. The quadrupole order involves
all nonspherical states (i.e., p, d, and f), and therefore, in
general, we are speaking of the local quadrupole density
component of all four valence cerium electrons [37, 75]. This
component is noticeably weaker than the spherically sym-
metric electronic density present in both g and a phases and
formed by all 58 cerium electrons.

6.3 Volume change and bulk modulus softening
in the quadrupolar model
The quadrupolar model was considered for a deformable
crystal lattice [74]. The lattice adjusts to the change in electron

density caused by the appearance of quadrupole components,
which is a secondary effect. Without going into the details, we
note that taking derivatives of Coulomb interactions into
account allows obtaining an additional (quadrupole±quadru-
pole±translation) contributionUQQT to the Hamiltonian of a
deformable crystal lattice, which is bilinear in the order
parameter amplitude r (quadrupole) and linear in lattice
displacements un�q� (translation) [74]. This contribution is
analogous to the well-known rotation±rotation±translation
term URRT, which has been thoroughly studied in the theory
of phase transitions of molecular crystals [117, 118]. For
example, the compression of the fullerite lattice (in the C60

crystal) at the Fm�3m! Pa�3 phase transition [119, 120] was
considered in Ref. [117]. In the quadrupolar model, the
situation in cerium is then quite analogous to the model
in [117].

As discussed in Section 6.2, the phase transition itself
is driven by the condensation of the order parameter at
theXpoint of the Brillouin zone, qX. For a deformable lattice,
the condensation leads to the contribution to the free energy
(per atom) given by

F QQT � r; e� � ÿ2aLr 2�exx � eyy � ezz� ; �4�

where enn are longitudinal strains, r is the quadrupolar order
parameter amplitude (see Section 6.2), a is the lattice
constant, and L is a parameter related to derivatives of the
Coulomb interaction between quadrupole density compo-
nents. We note that the special role of phonon modes at the
X point of the Brillouin zone was emphasized in recent
inelastic X-ray scattering experiments [80]. Combining
F QQT � r; e� with the elastic lattice contribution F TT �e�,
quadratic in enn, and with the free energy [74], and minimizing
the resultant expression with respect to the strain tensor
components, we obtain

exx � eyy � ezz � 8aÿ2LkLr 2 < 0 ; �5�

where kL � �c 011 � 2c 012�ÿ1 is the bare lattice compressibility,
and c 011 and c 012 are elastic constants. Because L < 0, Eqn (7)
results in a homogeneous lattice contraction in the ordered
a phase and a concomitant discontinuous decrease in the
cubic lattice constant. If only f-electrons are considered, the
change in the lattice constant is small (Da � ÿ0:002 A

�
). It

increases by 4.4 if s- and d-electrons are included into the
model [75], but the estimation does not take the bulkmodulus
softening into account (see Section 6.5).

It is also well known [85, 86, 121] that the URRT

interaction leads to a softening of the elastic constant:

c11 � c 011
1� n 2w=c 011

:

Here, c 011 is the bare elastic constant in the absence of
interaction (4), n is the corresponding interaction constant,
and w is the static susceptibility, which is proportional to
the quadrupole specific heat. In fact, this is a quadrupole
analog of the compressible Ising model [85, 86, 121].
We note that this mechanism was indicated in [27] as the
most probable one in the g! a transition. Thus, the
softening of the bulk modulus [27, 70] and the longitudinal
speed of sound [78] at the g! a transition reflects the
specific heat increase (in analogy with the deformable Ising
lattice [85, 86]).

a b

Figure 9. (a) The triple-q-antiferroquadrupolar structure (3-q-AFQ)

proposed for a-Ce in Ref. [74]. The quadrupolar (l � 2) functions

represent the electron density component of the four (4f+5d6s2) valence

electrons. (b) The view along one of the main cube diagonals [111]

demonstrating the trigonal point site symmetry (S6). (Figure from

Ref. [28].)
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Finally, we note that in Ref. [117], the Clausius±
Clapeyron equation was derived and the transition tempera-
ture T1 was shown to be a linear function of the external
pressure P with a positive coefficient of proportionality. The
corresponding expression for cerium is

dT1

dP1
� 4aÿ2LkLx �2� ;

where x �2� is the one-particle expectation value. This expres-
sion accounts for the linear dependence of the g=a boundary
in the PÿT diagram of cerium [2].

Thus, the quadrupolar model of the gÿa transition is able
to explain many nontrivial effects qualitatively: the volume
decrease, the softening of the bulk modulus, and the linear
pressure increase of the g=a boundary in the PÿT diagram,
although the quantitative agreement is not so good.

6.4 Does the nuclear subsystem of a-Ce preserve the fcc
lattice in the quadrupolar model?
The conclusion that the fcc symmetry of a nuclear subsystem
is preserved at the g! a transition was formulated in
Refs [37, 74, 75]. An alternative opinion on this problem
presented in referee reports by Yu AUspenski to this review1

is based on the following arguments: ``Consider the electron
density of the a phase in the form of r�r� � r0�r� � drQ�r�,
where r0�r� is a part of the electron density having the same
symmetry as in the g phase, while drQ�r� is a perturbation of
the density, lowering the symmetry of the electron subsystem.
The Coulomb potential (Hartree's potential) associated with
the electrons in the a phase will be V�r� � V0�r� � dVQ�r�,
where the potentials r0 and dVQ are due to r0 and drQ,
respectively. The potential perturbation dVQ�r� should have
the same low symmetry as drQ�r�. The electric field associated
with dVQ�r� will act on all charges in the system, including
electrons and nuclei. Under the action of this field, the nuclei
will be displaced from the equilibrium positions and their
symmetry will be lowered. Therefore, the symmetry of the
electronic and nuclear subsystems should be the same.'' ``The
nuclear displacements can be small and difficult for experi-
mental determination but principally nonzero.'' 2

To examine the situation, we consider the full potential in
the form of a multipole expansion. (The detailed multipole
expressions for nonspherical crystal potentials are discussed
in Refs [122, 123]). We consider the cerium nucleus at the
origin of coordinates and a main cube diagonal as the z axis.
According to the quadrupolar model, the full potential V�r�
in a-Ce then has quadrupole (l � 2) and monopole (l � 0)
contributions. The monopole component is also present in
g-Ce. From the equilibrium condition for g-Ce (a nucleus is at
the potential minimum), we obtain

V0�r� � V0�r; y;j� � ÿC0r
2 �C0 > 0� : �6�

In a-Ce, there is also the quadrupole density contribution

drQ�r; y;j� � rQ�r�Ym�0
`�2 �y;j� ;

where rQ�r� is the radial function. The potential correspond-
ing to this density contribution can be found by the multipole
expansion [75, 122, 123]:

dVQ�r� � dVQ�r; y;j�

� 4p
5

�
q2�r�
r 3
� r 2q 02�r�

�
Y m�0
`�2 �y;j� ; �7�

where

q2�r��
�r
0

rQ�r 0� r 04 dr 0 and q 02�r��
�R
r

rQ�r 0� r 0ÿ1 dr 0: �8�

Here, q2�r� describes a quadrupole charge located inside a
sphere of radius r and q 02�r� is an effective quadrupole
potential due to the electron density outside the sphere. We
note that there are no divergencies at r � 0 because the
quadrupole component can be formed by p-, d-, and
f-electrons (l � 1, 2, 3), whose wave function in the vicinity of
zero behaves as r l, and the density behaves as r 2l. Therefore,
in the region r � 0, the first term can be omitted (because it
gives a small dependence of the r 4 type). The function q 02�r� at
r � 0 can be estimated from above: q 02�r� � q 02�r � 0� � q 02.
For potential (7), we then obtain

dVQ�r; y;j� � C2r
2Y m�0

`�2 �y;j� ; �9�

where C2 � �4p=5� q 02. It follows from the multipole expan-
sion that the contribution from the distant crystal region (the
whole crystal except the cerium unit cell at the origin) also
has the same functional form (9). Therefore, this contribu-
tion can be accounted for by changing the parameter C2

accordingly.
In a-Ce, the full potential is V�r� � V0�r� � dV�r�, from

which we infer that the minimum at r � 0 is preserved if the
condition

C0 > jC2jmax
��Y m�0

`�2 �y;j�
�� � jC2j 1

2

���
5

p

r
is satisfied. This condition holds because the quadrupole
component formed by four valence electrons is appreciably
smaller than the monopole component formed by all the
58 electrons, i.e, C0 4 jC2j. Therefore, our opinion is that the
fcc lattice of cerium nuclei is preserved in the a phase.

In connection with this discussion, it is worth noting
experimental results on NpO2 [132], where the situation is
somewhat analogous to the g! a transition in cerium (see
Sections 6.5 and 6.6.1 for more details). In the low-
temperature ordered phase, a quadrupole component of the
electron density appears on the neptunium atoms forming an
fcc sublattice, whose symmetry (3-q-AFQ) is very close to the
one predicted by the quadrupole model. The quadrupole
ordering in NpO2, however, does not lead to an experimen-
tally observable deformation of the fcc sublattice of neptu-
nium [18, 132].

6.5 Discussion of the quadrupolar model
The quadrupolar model does predict a volume change in the
g! a transition; however, if only the 4f-electron repulsion is
included [74], the numerical estimation is an order of
magnitude smaller than the experimental value. But we
should take the following into account. First, as discussed in
Sections 4.1 and 4.2, on approaching the g! a phase

1 The name of the referee is given with his permission.
2 These arguments were expressed to the authors in the discussion of their

work at a seminar of the Tamm Division of Theoretical Physics, Lebedev

Physical Institute. We also note that according to the symmetry principle

formulated by P Curie in 1894, a crystal under an external perturbation

(cause) changes its point symmetry such that only the symmetry opera-

tions common with the symmetry operations of the cause are preserved.
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boundary, softening of certain phonon modes and a sub-
stantial decrease (see Figs 7 and 8) in the bulkmodulus [27, 70,
76±78] are observed. Such a strong softening inevitably leads
to a corresponding increase in lattice compression. Also, as
discussed in Section 2 (see Fig. 4), the phase transition affects
the conduction electrons, which are responsible for metallic
bonding. We note that the interaction between the 4f
electrons should be regarded rather as a precursor [75, 37],
which prompts a chain of electron reconstructions of 5d and
6s states responsible for the metallic bond in cerium (see
Section 2). We should also keep in mind that a large volume
change occurs only in a limited area of the phase diagram of
cerium, specifically in the region of low temperatures and
pressures, where the influence of metallic 5d and 6s states is
probablymore pronounced, while in the vicinity of the critical
point and below it, a negligible change in volume is observed.
It is conceivable that only f-states are effective in that area.

We also note that according to Eliashberg and Capell-
mann [73] (see Section 5.1), there is no true critical point.
Because the symmetries of two phases differ, the interphase
boundary continues up to the melting curve (see Fig. 1). The
experimental information on the phase transition in this area
(i.e., above the tricritical point and below the melting curve
minimum) is dubious. Indeed, in Fig. 8 (Ref. [70]), the bulk
modulus demonstrates a characteristic V-shaped dependence
on pressure, which implies a pronounced softening at the
curve minimum even at a temperature of 775 K and pressure
of 2.5 GPa, although this point (Fig. 1) is situated far from
the tricritical point and close to the melting curve minimum.
Therefore, the dashed line can be an interphase boundary
of second-order transitions (as assumed in Ref. [73]) or
first-order transitions with small order parameter disconti-
nuities [74].

The quadrupolar model can describe the crystal field, the
phase transition, symmetry lowering, and lattice displace-
ments on equal footing. However, in the mean-field approx-
imation [74], the magnetic susceptibility of a single 4f electron
localized at a cerium site is bound to follow the Curie (or
Curie±Weiss) law. In practice, as discussed in Section 2, the
4f electron always interacts with 5d and 6s electrons at the
same site through themultipole Coulomb repulsion (so-called
Hund interaction) [37, 38], and hence 4f, 5d, and 6s states are
correlated even in the g-phase (see Table 4). Taking this effect
into account allows explaining the change in the magnetic
moment of the ground state [37, 38, 124]. To calculate this
effect with confidence is next to impossible, because it
requires the computation of the many-electron energy
spectrum with a very high accuracy.

Of course, the disappearance of magnetic moments at the
g! a phase transition can be described by Kondo-type
models [107]. But the symmetry lowering considered in the
quadrupolar model in principle allows obtaining this effect
solely from the group-symmetry arguments [29, 37, 38, 124].
This mechanism is possible if, as a result of symmetry
lowering, the magnetic state of g-Ce splits into several
sublevels and the lowest nonmagnetic sublevel (singlet) then
becomes the ground state of the a phase [38,124].

We have already emphasized that although the g! a
phase transition is structural with the (Fm�3m! Pa�3)
symmetry lowering according to the quadrupolar model, it
looks different experimentally. Themain reason is that before
and after the phase transformation, the cerium nuclei form an
fcc lattice, which hinders experimental identification of the
true symmetry change. On the other hand, the Pa�3 space

symmetry is often found inmolecular crystals. For example, a
phase of this symmetry is observed in molecular orthohydro-
gen [125], in the C60 fullerite [126, 127], and in molecular
nitrogen (a phase) [128]. In fact, the quadrupolar model [74]
was inspired by the theory [129, 130] of the Fm�3m! Pa�3
phase transition in the C60 fullerite. However, in all molecular
solids, the transformation to the Pa�3-structure implies an
ordering of nuclei, and it can therefore be identified relatively
easy. This is not so in metals with cubic lattices, and the
recognition of the 3-q-AFQ structure becomes a nontrivial
experimental problem. Nevertheless, hidden structural phase
transitions directly related to the quadrupole density ordering
have been found in some rare earth compounds (see
Section 6.5.1). Among them, the most remarkable example
is perhaps NpO2 [19, 131, 132]. For a long time, NpO2 had
been thought to undergo an isostructural phase transition at
25.5 K. But when the oxide was studied by resonant X-ray
spectroscopy, it was found that the low-temperature phase
has a hidden order related with the quadrupole ordering of
the electron density [132]. It turned out that the phase
transition in NpO2 is of the Fm�3m! Pn�3m type, and the
symmetry of the ordered phase (Pn�3m) is very close [133] to
Pa�3 as suggested by the quadrupolar model [74] (Fig. 10 and
Section 7). Thus, in NpO2, an effect was observed that was
expected to occur in pristine crystalline cerium. In principle,
additional reflections from the cerium electron density could
be found similarly in X-ray diffraction experiments with a
synchrotron radiation source, especially because a new
resonant X-ray scattering techniqueÐRXSÐhas been
developed recently [134±136]. However, recent experimental
data in support of the quadrupole order in a-Ce have been
obtained differently by the nuclear method of perturbed
angular correlations [28, 29] (Section 7).

Finally, we would remark on the relation between
quadrupolar and orbital ordering [137]. If there is only one
valence electron at a site, the quadrupolar ordering is
equivalent to the orbital one. But if there are two or more
electrons per site, it is impossible to extract only one orbital,
because various orbitals of different electrons are mixed (e.g.,
as in adding two angular momenta). We believe that the
concept of quadrupolar ordering is more correct, because,
first, unlike the orbital, the electron density is an observable
quantity and, second, it is the density which is usually
identified with the order parameter in the Landau theory of
phase transitions [112].
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Figure 10. Quadrupolar structures Pn�3m (NpO2) and Pa�3 (from [133]). In

both structures, the point site symmetry of the rhombohedral (trigonal)

system is S6 � C3 � i. The structures differ by the distribution of the

quadrupole functions among four crystal sublattices. The Pn�3m space

group has three mirror planes, one of which is explicitly shown.
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6.6 Phase transitions with the quadrupolar ordering
of electron density
6.6.1 Hidden structural phase transition in NpO2. Already in
1953, specific heat capacity measurements in NpO2 at the
temperature TQ � 25:5 Ä K revealed a phase transition of an
unknown nature [19], which became the subject of theoretical
and experimental study [138±140]. Because no visible struc-
tural distortion was found [139], for many years the phase
change in NpO2 was considered isostructural, like the g! a
transition in pristine cerium. The disappearance of the
localized magnetic moments in the low-temperature
(ordered) phase further strengthened the analogy. To
account for the magnetic effect, Santini and Amoretti
introduced an octupole magnetic order parameter [140]. The
puzzle was solved in 2002, when the phase transition was
studied by resonant X-ray scattering experiments per-
formed at the Np MIV and MV edges [132]. It turned out
that superlattice peaks indicative of a long-range order of
neptunium quadrupoles appear in NpO2 below TQ. The
symmetry of the quadrupolar phase Pn�3m is very close to
Pa�3 (see Fig. 10). (We recall that the Fm�3m! Pa�3 symmetry
lowering was previously suggested in Ref. [74] for the
description of the g! aphase transition in cerium.) Figure 10
illustrates that both space symmetries belong to the 3-q-AFQ
family and differ only by the correspondence among four
quadrupolar components and four cubic sublattices [133]
(Fig. 10). (The scheme of condensation to the Pn�3m-
symmetry is given in Ref. [133].) The NpO2 story demon-
strates that the structural transition scenario for the g! a
transition in cerium is very probable.

6.6.2 Quadrupole transitions in CeB6, DyB2C2, UPd3, TmTe,
and other compounds. Cerium hexaboride CeB6 is a well-
known example of a cubic compound (the Pm�3m space
symmetry) where the quadrupole transition occurs at a
temperature T < TQ � 3:3 K (in a zero magnetic field) (see
the review of recent work in Ref. [131]). With increasing the
magnetic field, TQ also increases, reaching 10 K at 30 T.
Recently, the phase transition was studied by means of the
novel technique of resonant X-ray spectroscopy [134]. With
it, the appearance of the (1/2, 1/2, 1/2) superlattice
diffraction peak in CeB6 [141] and the (h=2, h=2, h=2)
reflections (h is odd) in Ce0:7La0:3B6 [142, 143] were
detected (in the absence of a magnetic field).

There is also a strong indication that the magnetic field
can suppress the g! a phase transition in pristine cerium. At
least, this effect (the complete suppression of the transition in
the 56 magnetic field) was recently found in Ce0:8La0:1Th0:1,
where the g! a transition is shifted to T � 47 K [144].

Quadrupole transitions have been observed in the
compounds RB2C2 (R � Dy, Ho, Tb), UPd3, and others
[131]. The most popular among them is DyB2C2 with the
quadrupolar ordering temperature TQ � 24:7 K (the
P42=mnm space symmetry). As temperature decreases below
TQ, the superlattice peaks (h=2, k=2, 9=2) of the reciprocal
lattice develop in DyB2C2 [145] and the (1,0,3) reflection in
UPd3 [146].

An antiferro-quadrupolar ordering (TQ�1:8 K) was
found in TmTe [147]. Thulium, with one localized 4f hole at
each Tm site, is a relatively simple electron system [148]. The
peculiarities of the quadrupolar ordering in an external
magnetic field were studied by neutron spectroscopy, which
registered the (1=2, 1=2, 1=2) Bragg reflection of the reciprocal
lattice [149].

We note that the appearance of superlattice peaks in all
these compounds is in fact an indication of crystal symmetry
lowering. The quadrupolar ordering is nothing but a low-
temperature phase transition. A change in structure and
symmetry of the local environment of a magnetic atom (with
an open electron shell) can result in magnetic effects and
magnetic ordering. Indeed, the quadrupole phase transition is
very often followed by magnetic ordering at a certain
temperature TM that is lower than TQ. In CeB6 and DyB2C2,
that is the antiferromagnetic ordering. The fact thatTM < TQ

implies that the quadrupole order parameter is primary. The
scenario where the magnetic order is induced by a change
in the crystal structure seems crucial and is quite general
in this situation. Another illustration of this observation is
the well-known fullerene compound TDAE-C60 (the only
organic compound displaying magnetic order below 16 K).
In TDAE-C60, two stable phasesÐ a and a 0Ðwere found
that differ by the orientation of the C60 fullerene molecule.
While the a phase is ferromagnetic with the critical
temperature TM � 16 K, its counterpart a 0 is found to be
nonmagnetic [150].

Experimental aspects of quadrupolar order in TmCu,
PrPb3, TbP, DySb, ErAl2, TmGa3, CeMg, and CeZn and
related phenomena are discussed in reviews [151, 152].
According to the authors of [152], interactions of the quadru-
pole electronic density and induced magnetic moments with
the crystal lattice (magnetoelastic interactions) can lead to
nonlinear magnetization effects or so-called metamagnetic
transitions.

7. Evolution of the electric field gradients
on probe 111Cd nuclei in the cerium lattice

Quadrupolar ordering in a number of compounds (NpO2

[132], CeB6, DyB2C2, UPd3 and others [131]) has been
detected experimentally by resonant X-ray diffraction using
synchrotron radiation. Nevertheless, the experimental identi-
fication of the g! a transformation in cerium as a structural
phase transition with symmetry lowering is a formidable task.

First of all, we note the weak scattering intensity expected
from the quadrupole electron density components of cerium
and the unusual domain pattern (8 types of domains for Pa�3)
imitating the fcc structure. Unfortunately, there are also other
technical challenges. It is quite difficult to carry out X-ray
scattering under pressure. If, instead of applying external
pressure, a cerium sample is cooled, then the g! a transition
overlaps with other phase transformations (g! b and
b! a). The intermediate b-phase (dhcp) is noncubic and
obtained by glide motion of some (111)-planes (see the details
of this martensitic transition in Section 8). Afterwards, it is
not possible to eliminate the b phase, and at low temperatures
the sample is a mixture of b-Ce and a-Ce. Another complica-
tion is related to the large volume change at the g! a
transition. If the sample is a single crystal, numerous cracks
appearing as a result of volume change can simply destroy it.
In Refs [2, 44], the following approach was used: first, a-Ce
was reached by compressing the sample to 1 GPa at room
temperature, then it was cooled to liquid-nitrogen tempera-
ture, and finally the pressure was released. In other experi-
mental works [63, 111, 135], to eliminate the parasitic b phase,
the cerium sample was doped by 7 and even 10 at.% Sc [62].

Notwithstanding all these complications, the 3-q-AFQ
quadrupolar order can be probed practically directly by
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another experimental method [28, 29], the time-differential
perturbed angular correlation (TDPAC) technique [153, 154].
TDPAC belongs to the methods of nuclear spectroscopy
where the electric field gradient (EFG) is measured at nuclear
probes introduced at the crystal lattice sites [155]. The
111In= 111Cd nuclei were used as probes. Measuring the
electric field gradient through hyperfine quadrupolar inter-
actions in 111In= 111Cd nuclei as a function of temperature and
pressure [153±155] yields information about the physical
properties of rare earth crystals [156, 157]. Hyperfine quadru-
pole interactions are used in many nuclear methods of solid
state physics, for example, in nuclear quadrupole resonance
spectroscopy (NQR) and in M�ossbauer spectroscopy [155].
TDPAC spectroscopy, in particular, has the following
advantages: (1) a small amount of impurity nuclei suffices
for the measurements, and (2) in contract to NQR, it is not
limited to low temperatures. In the best cases, TDPAC
approaches the accuracy of NQR.

In studies [28, 29], the 171±245 keV energy cascade in the
111Cd nucleus was used, which occurs after the electron
capture decay of the 111In nucleus. In turn, the radioactive
111In isotope (2.8 day half-life) is produced as a result of the
109Ag ÿ!a; 2n 111In reaction by irradiating a silver foil by a
32MeV a-beam. Nuclear 111In probes were introduced in the
cerium lattice by melting irradiated silver foil (about 0.1 mg)
with cerium powder (500 mg) in a special chamber under a
pressure of 8 GPa. The main feature of the TDPAC setup is
that it allows carrying out measurements under external
pressure. To the best of our knowledge, it is currently the
only working TDPAC setup with that option. Other experi-
mental details are given in Refs [158±160].

Measurements were performed on polycrystalline samples
of cerium metal (99.98% purity) at room temperature under
the pressure ranging from the atmospheric value up to 8GPa.
In this range of pressures, the cerium sample consecutively
transforms into the following phases: g, a, a 00, a 0. The last
phase (a-U-type a 0 [6]) appears because the sample was
subjected to heat treatment under pressure in the process of
melting with a piece of radioactive silver foil [8].

We note that before studies [28, 29], the TDPAC study of
cerium was limited to the b phase [161]. The main reason for
this is that in the field of the cubic point symmetry (for
example, at any site of the fcc lattice), there is no quadrupole
component in the electric crystal field expansion and therefore
no EFG. Indeed, it is well known that the first nontrivial
angular component in the fcc lattice is given by the cubic
spherical harmonic K`�4�y;j� with the multipole index ` � 4
(see, e.g., Ref. [114]). This implies that all components with
` � 1, 2, 3 are zero. Because theEFG tensorVi j is described by
the multipole index ` � 2, it follows that Vi j � 0, and the
TDPACmethod is ineffective, because it gives no information
on the cubic crystal field.

The disappearance of the electric field gradient in the fcc
lattice can be observed experimentally. Such data (at the
111Cd probe nuclei in the thallium lattice) are reported in
[162]. At atmospheric pressure, the thallium lattice has the
hexagonal close-packed structure (the P63=mmc space
group), in which the cadmium probes register an electric
field gradient of 8.0(4) MHz [162]. With increasing pressure,
the quadrupole frequency nQ (or EFG) slowly and mono-
tonically decreases to 6.1(5) MHz (at P � 3:5 GPa), but at a
slightly increased pressure (P � 3:7 GPa), a structural phase
transition to the fcc structure occurs and the EFG drops to
zero (0.0(4) MHz) [162].

This effect offers a unique way to check the isostructural
feature of the g! a phase transition in cerium. If the g! a
transformation is truly isostructual, that is, if the g and
a phases are characterized by the same cubic point group,
then the gradient should be zero, Vi j � 0, in both phases (in
practice, Vi j � 0). However, it has turned out that Vi j � 0
only in the g phase, whereas Vi j 6� 0 in the a phase [28, 29].
This implies the appearance of a quadrupole component of
the electron density at the 111Cd probe sites and an effective
crystal symmetry lowering of the cerium sample. Below, we
discuss the results of the experiments in [28, 29] in more
detail.

In the g phase at atmospheric pressure, nQ�g� � 3 MHz
[28, 161]. This is practically the background level (Fig. 11 and
Table 7). The value is relatively large, andwe discuss it in what
follows. From general considerations, we can expect approxi-
mately the same frequency (EFG) in a-Ce, whereas it has been
found that nQ�a� � 11 MHz, which is 3.7 times higher. EFG
measured under pressures from the atmospheric value to
8 GPa [28] is reproduced in Fig. 11 and Table 7. We note
that the EFG in a-Ce is comparable to the EFG in other
noncubic phases (b and a 00) that border a-Ce in the PÿT
phase diagram. Thus, the quadrupole electron density
component in a-Ce is approximately the same as in other
noncubic phases. This experimental finding unambiguously
indicates that the g! a transition in cerium is not isostruc-
tural, and the symmetry of the a phase differs from that of the
g phase (Fm�3m). Previously, a 3-q-AFQ order was predicted
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right axis) at 111Cd probe nuclei in cerium lattice crystal sites. The results
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Table 7. The electric field gradientVzz (the quadrupolar frequency nQ) and
the asymmetry parameter Z at the probe 111Cd nuclei in the cerium lattice
at room temperature under pressure (P). (Data from Refs [28, 29].)

P, GPa nQ, MHz Z Vzz, 1021 V mÿ2

0
1.8
3.1
3.9
4.4
5.3
6.2
7.8

3.0(5)
11(1)
10.9(6)
10.9(9)
9.8(9)
15(1)
15.8(6)
21.6(5)

0
0
0
0
0
0
0
0.52(5)

0.15(3)
0.55(5)
0.54(3)
0.54(4)
0.49(4)
0.75(5)
0.79(3)
1.08(3)

July 2012 The puzzle of the g!a and other phase transitions in cerium 673



in the quadrupole model [74, 75]. Unfortunately, TDPAC
spectroscopy cannot determine the exact space group for the
a phase. Possible candidates here are Pa�3 and Pn�3m.

Figure 11 indicates that in addition to the g! a
transformation, there are two other jumps of the EFG at
pressures 5 and 7.5 GPa. They correspond to two other phase
changes, a! a 00 and a 00 ! a 0 (see Section 9). In the case of
a 0-Ce, a nonzero asymmetry parameter of the EFG, Z � 0:52,
was found (Table 7), which is characteristic of a-U structures.
(In particular, Z � 1 in the a phase of uranium [163].)

In the course of publication of [28], the referee pointed
out that almost all TDPAC spectra R�t� were obtained
during the observation time t < T, where T is the period of
TDPAC oscillations, which reduces the accuracy of mea-
surements. This was certainly true; furthermore, some
additional technical difficulties were caused by applying
external pressure [160,164]. However, the same situation
(t < T � was observed for the 111Cd nuclei in thallium, but
the hcp! fcc transition was clearly detected there [162].
The t < T relation is caused by a low quadrupole frequency:
6±8 MHz in Tl [162] and 10 MHz in Ce [28, 161]. As pointed
out in Ref. [28], in the case of cerium, measurements were
carried out with several samples. The EFG jumps were
observed both with increasing pressure (g! a) and with
decreasing it (a! g), and hence it certainly follows from
our TDPAC experience that the effect of quadrupole
ordering does occur in a-Ce.

There was also concern caused by the relatively large value
of the EFG in the g phase (3 MHz). This is not a simple
question. It should be noted that a small nonzero gradient at
111Cd probes is detected for all cubic crystals, but in cerium it
is somewhat larger than the typical value. However, the
3 MHz gradient and the TDPAC spectrum of g-Ce in
Ref. [28] practically coincide with the spectrum and nQ
found in [161]. On the other hand, in a number of cerium
samples in Ref. [28], a smaller value of nQ�g� was detected,
which shows that nQ�g� depends on the sample quality and
prehistory. We mention the factors that could produce a
nonzero value: (1) the structure of domains and polycrystalite
grains, (2) other phase nucleations (for example, b-Ce), and
(3) small local strains caused by the replacement of Ce with
Cd. Such replacements induce small electric quadrupole
moments, which can cause their local freezing [165]. The last
factor is inherent in the experimental method and cannot be
excluded.

Summarizing, nQ�g� should be considered as the back-
ground level, which we have to subtract from the EFG of
other phases. In any case, the almost fourfold increase in nQ at
the g! a phase transition cannot be explained within the
isostructural paradigm.

8. Peculiarities of the electronic structure
of b -Ce and d-Ce

8.1 b -Ce (double hexagonal close-packed structure, dhcp)
The transformation of the fcc structure of g-cerium to the
dhcp structure of b-cerium is martensitic. It depends on the
purity and the grain size, proceeds very slowly, and never fully
finishes. The amount of the b phase in a sample depends on (1)
the cooling rate, (2) the temperature to which the sample is
cooled, and (3) the number of cooling±heating cycles. The
start of the transformation on cooling (i.e., g! b) is in the
temperature range 240±290 K, and on heating (b! g), at
373±451 K [2]. A 20-year study by Gschneidner et al. puts the
low boundary of the transformation at 283 K [166]. Interest-
ingly, the g! b transition is accompanied by a small volume
increase (1.2%). As a result, the specific volume of b-Ce is
slightly larger than the volume of the d phase (0.2%) and is the
largest among all cerium allotropies (see Table 2). In b-Ce, the
closest distances between cerium atoms belonging to neigh-
boring hexagonal planes slightly decrease (0.05%), while
distances within the planes increase (0.88%) in comparison
with the closest distances in g-Ce (see Table 2). (The lattice
constants are taken from Ref. [16].) More details about the
transformation can be found in review [2].

A dislocation model for the mechanism of the g! b
transformation in cerium was proposed in [167]. It is well
known that in the fcc lattice, the close-packed (111) planes
(perpendicular to the [111] vector) form the layering
...ABCABC... sequence (Fig. 12). According to McHargue
and Yakel's mechanism [167], two of these planes, e.g., C and
A, transform as a result of two glide motions into respective
planes A and C. The next two planes, which are A and B,
remain in their positions (see Fig. 12). The next two planes, C
and A, again undergo glide displacements and become A and
C, and so on. The resultant packing sequence changes to
...ABACABAC..., which corresponds to the dhcp layering
(see Fig. 12). We note that there are two nonequivalent
cerium sites in the dhcp structure, and hence the transforma-
tion certainly involves a symmetry lowering. It is often said
that the sites of A-type planes are in the `cubic' (i.e., CAB)
environment, because the neighboring planes are C- and
B-type, while the cerium sites in C- and B-planes (ACA or
ABA) are in the hexagonal environment. We must keep in
mind, however, that because the b-phase ratio c=2a � 1:611
differs from the cubic one (c=a � ��������

8=3
p � 1:633), the exact

point symmetry there is not cubic. In particular, there is only
one three-fold symmetry axis at the A sites. We also note that
the planes C and B can be considered mirror-symmetry
planes, and the dhcp structure can be viewed as an ideal

aB

CA

bB

CA

. . . A B C A B C A B C c

. . . A B A B C A B C A

. . . A B A C A B C A B

. . . A B A C A B A B C

. . . A B A C A B A C A

Figure 12. The formation of the double hexagonal structure (dhcp, b-Ce) from the face centered cubic lattice (fcc, g-Ce). (a) the sequence of the (111)-
layers in the fcc lattice (ABCABC); (b) the sequence of the (111)-layers in the dhcp lattice (ABACABAC); (c) glide planes transforming the fcc sequence

(top) to the dhcp sequence (bottom).
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twinned crystal. The martensitic character of the transforma-
tion is supported by the observation that in the range 196±
500 K, plastic deformations assist the g! b transformation.
Obviously, the appearance of numerous glide motions leads
to appreciable microdeformations in the crystal grains.

Although the rate of the g! b change is very low, the
transformation cannot be avoided, even on fast cooling
(quenching). This hinders the study of another phase
transition, g-Ce (fcc)! a-Ce (cubic), which is of fundamen-
tal interest. From the standpoint of the g! a transition, the
phase transformation to the b phase at low temperatures is a
parasitic process that should be completely suppressed. As a
solution to this problem, in a number of studies [62, 63, 111,
135] cerium samples were doped with scandium: Ce1ÿxScx,
where x � 0:07 [63, 111, 135] or x � 0:1 [62]. Atoms of
trivalent scandium have a smaller metallic radius (1.62 A

�
),

which results in a smaller lattice constant of the Ce1ÿxScx fcc
crystal. This is equivalent to an effective external pressure Peff

applied to shift the g! a transition to a phase diagram
region where the intermediate b phase is absent. However,
the scandium amount is not negligible, and these samples
cannot be regarded as pristine cerium. Such cerium±scandium
compounds Ce1ÿxScx are not always suitable for studies of
subtle effects.

Recently, refined data on b-Ce and g-Ce have been
reported [166, 168±170]. The electron specific heat (g) is
�7:0� 0:1� � 10ÿ3 J moleÿ1 Kÿ2 for b-Ce and �6:2� 0:8��
10ÿ3 J moleÿ1 Kÿ2 for g-Ce. Thus, earlier values [2]
decreased. In Ref. [166], the entropy change DSbÿg � 0:05kB
per cerium atom was obtained from the latent heat of
the b! g transformation at 420 K. There are two contribu-
tions to the entropy change, one from the lattice, DSbÿg

vib �
� �0:09� 0:05� kB, and the other electronic, DSbÿg

el �
ÿ�0:04� 0:05� kB [169]. The result shows that the lattice
term causing the softening of the phonon spectrum in g-Ce
is the leading, while the electronic contribution acts in the
opposite direction [169], destabilizing the b! g transition.

Another anomaly of the b phase that we have mentioned
above is that its volume is larger than the volume of any
other cerium phase (Table 2). This is an indication that the
very existence of the b phase is related to its intermediate
role in the g! a transition. b-Ce is stabilized by poly-
crystalline grains, interphase boundaries, twinings, and
other defects. Indeed, in a single crystal, the volume change
at the g! a transition accompanied by considerable strains
cleaves the crystal. In polycrystals, the same elastic strains
between grains and domains of the a phase move some of
the (111) planes to the intermediate b-structure. It then
follows that any defects, for example in the area between
domains and other phases, are partially compensated and
softened by the growth of grains in the b phase with a large
volume per atom. This observation explains the well-known
fact that the amount of b-Ce on cooling from g-Ce to a-Ce
is 20±30% [2], and can be increased by multiple g-Ce!
a-Ce! g-Ce cycling.

Because of the nature of the b phase, the growth of a b-Ce
single crystal seems impossible.Nevertheless, it has turned out
that a single-crystal b phase can be obtained by the molecular
epitaxy method on an Nd surface, which stabilizes it down to
low temperatures (T � 2 K) [171]. In Ref. [171], such an
epitaxial b phase containing 60 layers of Ce30=Nd10 was
studied in detail. The lattice parameters are a�3:664�3� A�
and c�2:970�3�A� (in niobium, c�2:949�3� A� ), implying a
small compression within the hexagonal planes (0.5%) and a

small expansion between the planes (0.2%) in comparison
with the bulk b phase [16]. Unlike the bulk phase, the epitaxial
b phase (e-b-Ce) does not transform to a-Ce. Moreover, the
epitaxial g-Ce does not undergo the transition to e-b-Ce
on cooling. Instead, at T � 120 K, e-g-Ce (Ce30=Nd10)
transforms into a phase with the samarium structure, which
is very typical of 5dmetals [172]. This is another indication of
the very important relation between b-Ce and the g! a
transition in a polycrystalline sample, underlining the
decisive role of elastic strains for the stabilization of the
b phase.

Neutron diffraction measurements of the magnetic order
in e-b-Ce (at T � 7 K [173]) confirmed the results reported
previously for the CexY1ÿx compounds [174,175]. The
antiferromagnetism is related to the transverse order (along
one of the a directions of the hexagonal lattice) of the 0:1mB
magnetic moments. (In CexY1ÿx, the magnetic moments are
larger [174, 175].) The sign alternation vector (the [1=2, 0, 0]
point of the Brillouin zone) is perpendicular to the magnetic
moments (Fig. 13). The antiferromagnetic ground state of
b-Ce (with 1:1mB magnetic moments) is reproduced by band
structure calculations only in the LDA+U approximation,
while the standard density functional calculations (LDA or
GGA approximation) predict the ferromagnetic ground
state [175].

8.2 d-Ce (body-centered cubic structure, bcc)
In contrast to close-packed fcc and dhcp phases, the body-
centered cubic (bcc) lattice is an open structure with large
volume in the interstitial region. Bcc structures are character-
istic of high-temperature phases of transitional elements with
a partially filled d-shell. On cooling, the phases typically
transforms to close-packed structures, but this instability
rapidly disappears with increasing the d-shell occupation.
Bcc phases are also found in rare earth elements, but there
they exist in a narrow temperature range of about 10 K. In
cerium, this temperature range is much larger (69 K), which
also characterizes it as a d-element. (The important contribu-
tion of d-electrons to the metal bond of cerium is discussed in
detail in Section 2.) Thus, on cooling from the cerium melt,
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Figure 13. Antiferromagnetic transverse ordering in b-Ce. (Data for the

epitaxial phase of b-Ce, Ref. [171], and Ce0:75Y0:25, Ref. [173].)
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the sample undergoes the following transformations: Ce
(melt)±(1068 K)! d-Ce±(999 K)! g-Ce. Although the dÿg
transition is well defined (unlike the gÿb change), the cooling
procedure nevertheless leads to sample contamination by
other phases (b, a). To avoid this, in [82], a single crystal of
d-Ce was grown in situ (on cooling below 999 K) in an argon
atmosphere and its phonon spectrum was then measured
by inelastic neutron scattering at T � 1036 K. The dispersal
curves of d-Ce were then fitted according to the standard
Born±von K�arman force model with five nearest shells
(Table 8). As a result, the elastic constants c11 � 2:20�7�,
c12 � 1:71�8�, and c44 � 1:47�3� (in 1010 N mÿ2 or
1011 dyne cmÿ2) were obtained from the direct fitting of the
phonon spectrum, or alternatively c11 � 2:23, c12 � 1:73, and
c44 � 1:62 (in 1010 N mÿ2, or 1011 dyne cmÿ2) from the force
constants.

The important feature of the phonon spectrum of d-Ce is a
pronounced minimum of longitudinal vibrations at x � 2=3
(or L2=3) along the [x, x, x] direction, and also low-lying
transverse vibrations along T1�x; x; 0� and T2�x; x; 2x�. These
anomalies are an indication of the instability toward closed-
packed structures (fcc, hcp, and dhcp). In addition, the
phonon spectrum is considerably damped, especially at the
Brillouin zone boundaries, where its halfwidth is of the same
order as the phonon frequency.The large ratioA�c44=c

0 �5:6
of two shear constants [see Section 4.1 and Eqn (1)], which is
only 2.8 for g-Ce, implies a large anisotropy of the crystal
potential and its instability to tetragonal distortions. The
estimated Debye temperature is 95.2 K, and the mean square
displacement of a cerium atom is 0.119 A

� 2
. In general, the

phonon spectrum of d-Ce is noticeably softer than in g-Ce,
especially in the frequency range n < 1 Hz, which causes an
excess of 0:45kB of lattice entropy per atom. (The total
entropy change at the g! d transition, including the
electronic contribution, is 0:35kB.) Therefore, in contrast to
the fcc structure of g-Ce, the bcc structure of d-Ce is stabilized
by the lattice entropy contribution.

We note that lattice properties and the phonon spectrum
of d-Ce are very similar to those of the homologue bcc phases
of b-Sc and g-La. Like d-Ce, both b-Sc and g-La transform
into close-packed structures (b-Sc to hcp and g-La to fcc). As
in cerium, the metallic bond in Sc and La is formed by one
d- and two s-electrons (see Section 2). This is a further
indication that the 4f electrons of cerium do not participate
directly in chemical bonding [82] (Section 2).

9. High-pressure phases of cerium (a 00, a 0, and e )

9.1 Identification of a 00-Ce and a 0-Ce
At room temperature and the pressure P � 5:0ÿ5:5 GPa,
a-Ce transforms into an allotropic modification called
a 0-Ce. The identification of the a 0 crystal structure became
``one of the most controversial subjects concerning high-
pressure phases'' [176]. First, a 0-Ce was considered an fcc
structure with a lattice constant that is 4% smaller than in
a-Ce [177]. Then, an hcp structure [178] and finally a
C-centered orthorhombic [10] (a-U) structure (Fig. 14) were
reported for a 0-Ce. In a series of X-ray diffraction studies,
Zachariasen and Ellinger excluded fcc and hcp as erroneous,
but simultaneously found a new cerium phase, which they
called a 00 [10]. This monoclinic a 00-phase has the I2=m space
symmetry (with the lattice constants a � 4:762, b � 3:170,
c � 3:169 A

�
, and b � 91:73�), which can be viewed as a

distorted fcc structure. It was first described as a metastable
phase: upon pressure release, it transforms into a-Ce, while on
increasing pressure, it becomes a 0-Ce. Next, another mono-
clinic phase of the C2=m space symmetry was reported [7].
Thus, two a 00 phases appear, a 00-Ce(I) and a 00-Ce(II). Later,
however, it was demonstrated that both phases are identical
and have the same C2=m space symmetry [8]. It has four
atoms in the primitive unit cell and can be considered a
superstructure formed by doubling the I2=m structure with
two atoms in its unit cell (Fig. 15). The problems with the
phase identification arose because X-ray patterns were
strongly affected by the sample orientation [8].

Thus, it has been established that the sequence of phase
transformations in cerium under pressure is as follows:

g-Ce �fcc� ! a-Ce �cubic�
! a 0-Ce �a-U � or a 00-Ce �C2=m� ! e-Ce �bct� : �10�

However, it is not clear in this sequence which phase, a 0-Ce
(a-U) or a 00-Ce (C2=m), is stable and which is metastable
under pressures from 5 to 12 GPa. This question has been
debated for a long time and apparently was closed by the
study of McMahon and Nelmes [8]. a 0-Ce is slightly denser
(0.11(8)%) and the nearest distance between cerium atoms
there is 0.1 A

�
smaller than in a 00-Ce. This indicates that the

Table 8. Force constants Fab�Rn (in n mÿ1 or 103 dynes cmÿ1) of d-Ce in
the Born±von K�arman model with five nearest coordination shells
obtained by fitting the phonon spectrum at 1036 [82]. N is the number of
atoms in a shell, a�b� � x; y; z.

Rn N Fab�Rn�

1 a�1=2; 1=2; 1=2� 8 Fxx � 2:945, Fxy � 3:563

2 a�1; 0; 0� 6 Fxx � 2:313, Fyy � ÿ0:856

3 a�1; 1; 0� 12 Fxx � 0:048, Fzz � 0:171,
Fxy � 0:346

4 a�3=2; 1=2; 1=2� 24 Fxx � ÿ0:021, Fyy � 0:187,
Fxy � ÿ0:018, Fyz � ÿ0:193

5 a�1; 1; 1� 8 Fxx � ÿ0:262, Fxy � ÿ0:120

z

x

y

2yb

b

a

c

Figure 14. The base-centered (C) orthorhombic primitive unit cell (a 0-Ce,
the Cmcm space group, the a-U structure). It becomes an fcc structure if

a � b � c and y � 0:25.
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a-U structure should be more favorable energetically than
C2=m. However, the a-U structure is hexagonal-like, the
transition to which invokes relatively large displacements
accompanied by additional energy losses, whereas the
transformation to the monoclinic phase causes only small
atomic displacements from the cubic positions. InRef. [8], the
following experiment is described. Starting at room tempera-
ture, from almost pure a 0-Ce (a-U) at P � 7 GPa, the
pressure was reduced to 2.5 GPa. When the transformation
to the cubic a phase was complete, the pressure was increased
to the initial value (7 GPa). It was then found that the sample
was almost entirely in the a 00 phase (C2=m).

Glide motions of planes are responsible for other peculia-
rities of the transformation to a 0-Ce (a-U). It turned out that
the a-Ce (cubic) ! a 0-Ce (a-U) transition proceeds from very
few centers of the a phase, and therefore the phase change
apparently depends on grain size. It is also possible that the
a! a 0 transformation requires a minimum critical size of
grains. The authors of Ref. [8] pointed out that this observa-
tion can explain different branches of the phase sequence, that
is, which path, a-Ce! a 0-Ce (a-U) or a-Ce! a 00-Ce (C2=m),
is realized in a ceriumsample dependson themethodof sample
preparation. In `cold-worked' samples, which were not
annealed at high temperature and pressure, the a-Ce!
a 00-Ce (C2=m) transition occurs. But if the sample is pre-
liminary heated, it supposedly contains nuclei of the a 0 phase
(a-U) and transforms into that phase. Interestingly, to some
extent, the trend is opposite to that in the g! b transition,
which is enhanced with as the temperature decreases.
McMahon and Nelmes [8] gave convincing arguments that it
is a 00-Ce which is thermodynamically stable. The opposite
standpoint is represented by the authors of Refs [35, 25]. They
argue that if these two phases (a 0 and a 00 ) coexist at a pressure
of 5 GPa, then the a 00-Ce fraction disappears at pressures
above 7 GPa, while a 0-Ce is present up to 13 GPa. Other
arguments in favor of the metastability of a 00-Ce can be found
in [25].

The last transformation in (10) occurs when P > 12 GPa
(starting at P � 12:5 GPa and ending at P � 17:7 GPa). The
structure and symmetry of e-Ce are well established: it is the
body-centered tetragonal lattice [9] with the lattice para-
meters given in Table 1. However, various phases (a, a 0, a 00,
and e) can be present in a cerium sample in this range of
pressures and temperatures, and therefore several phase
transformations with a large hysteresis effect are often
detected [25]. The complex behavior of such a phase mixture
was studied in Ref. [25], with the conclusion that the phase
composition depends not only on temperature and pressure
but also on the trajectory in the PÿT plane leading to a

chosen point of the PÿT diagram (the region of phase
ambiguity in Fig. 1). Arched phase (a, a 0, a 00, and e)
boundaries were first mentioned in [23].

We also note that based on resistance measurements, the
authors of [25] reported the direct transformation from e-Ce
to a-Ce [25]. The transition in the direction a! e was
established by X-ray diffraction [26]. The slope of the
transition boundary between a-Ce and e-Ce is positive
(Fig. 1), but its values in [25] and [26] are quite different.

9.2 Condensation schemes of symmetry lowering
in high-pressure phases
From the group-theoretical approach, the symmetry lowering
from fcc (g-Ce) to monoclinic a 00-Ce (C2=m) is driven by the
condensation of the order parameter at the L point of the
Brillouin zone [179]. The corresponding wave vector qL (k 9 in
Kovalev's notation [116]) has four rays q i

L (i � 1ÿ4), where
each ray is invariant under all symmetry operations of the
small group �3m�D3d�, with the three-fold axis being the main
symmetry element. From the basis of the two-dimensional
(Eg) representation of the small group (with the basis density
functions r i

1 and r i
2), we obtain 8 basis functions of the

irreducible representation L�3 (k 9) [115, 116]. As shown in
Ref. [148], the condensation of the first function (r i

1) of a ray
leads to the C2=c space symmetry, while the condensation of
the second (r i

1) leads to C2=m. Therefore, we obtain the
following scheme of condensation to a 00-Ce:

Fm�3m : L�3
�
r2�q 1

L� � r
�! C2=m :

In general, there are 12 domains of C2=m.
The transformation to a 0-Ce (a-U) with the Cmcm

symmetry involves the irreducible representation X�5 [115]
(k10 in Kovalev's notation [116]) at the X point of the
Brillouin zone. In this case, there are three rays ( j � 1ÿ 3),
and the small group is �4m�D4d�. Taking the density compo-
nents r j

1 and r j
2 as basis functions of the two-dimensional

representation (Eg), we obtain the six-dimensional irreducible
representation X�5 . Condensation of three out of its six
components gives a cubic symmetry (Pn�3m or Pa�3), which is
most likely realized in a-Ce [74] (see Section 6). But if the
condensation involves only one component (r j

1 or r
j
2) of one

ray, the symmetry lowers to Cmcm (the a-U structure [5, 6]),
which is realized in a 0-Ce:

Fm�3m : X�5
�
r1�q 1

X� � r
�! Cmcm :

This symmetry change results in six different domains.
Condensation schemes for cerium phases are summarized in
Table 9.

An interesting group-theoretical relation between the
space symmetries a 00-Ce (C2=m) and a 0-Ce (Cmcm) is
presented in Ref. [180]. The authors propose considering the
bcc as a parent structure from which all other phases can be
deduced via displacive mechanisms and symmetry lowering.
The displacive transformations are divided into two groups:
(1) variants of the Burgers mechanism transforming bcc to
hcp, dhcp, and 9R structures [181], and (2) variants of the
Bain deformations transforming bcc to fcc or bct [182]. The
transformation from bcc to the orthorhombic a 0 phase (a-U,
or Cmcm) is described by a condensation of one out of six
components at theNb (2p=a)(1/2, 1/2, 0) point of the Brillouin
zone of the bcc lattice. The condensation can occur via any
component; each of the variants corresponds to one of the six

z

x

y

Figure 15. The relation between the monoclinic primitive unit cell (a 00-Ce,
the C2=m space symmetry) and the fcc lattice (g-Ce). (Refs [8, 148].)
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domains. If a Bain deformation is now applied transforming
bcc to fcc, then the six formerly equivalent domains become
nonequivalent. Some of the domains still correspond to a 0-Ce
(with the N point becoming the X point of the Brillouin zone
of the fcc lattice), while other domains correspond to the
monoclinic a 00-phase (with the N point becoming the L point
of the Brillouin zone of the fcc lattice). This mechanism gives
a nontrivial group-theoretical relation between a 0-Ce and
a 00-Ce and explains the low energy barrier between the two
phases.

10. Conclusions

We have reviewed phase transitions in metallic cerium, taking
recent experimental data, including high-pressure measure-
ments, into account [8, 25, 26].Much attention has been given
to the g! a phase transformation with a considerable lattice
contribution to the entropy change [27, 80], and novel
experimental results [28, 29] (TDPAC spectroscopy) that
have revealed a quadrupole electron density component
in a-Ce. This is an unambiguous indication that the g! a
transition is a hidden structural transition with space
symmetry lowering [73±75].

Experimental data on the epitaxial b phase of Ce grown on
niobium surface are also of much interest [171]. On cooling,
instead of transforming into a-Ce, this epitaxial b phase
undergoes a transition to a samarium-type crystal structure
characteristic of 5d metals. These and other observations
suggest that the appearance of the bulk b phase in the PÿT
region between g-Ce and a-Ce is caused by specific effects like
the large volume change in the g! a transition.

We have also critically discussed recent computational
methods and calculations of the g! a phase transition and
considered in detail the quadrupole model [74, 37], the
peculiarities of the electron structure of atomic cerium, and
the simplest chemical bond in the cerium dimer.

We are most grateful to K H Michel, S M Stishov,
V V Brazhkin, and other colleges for the valuable suggestions
and fruitful discussions.

The work was financially supported by the RFBR grant
11-02-00029.
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