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Abstract. The mixed state of type-1I superconductors exhibits
various types of instability (such as the dendrite instability,
macroturbulence, chains of macroscopic flux droplets, and
twister nucleation), resulting in macroscopic-scale spatial mag-
netic structures. Analysis reveals a certain analogy between
remagnetization dynamics in superconductors and ferromag-
nets, thus allowing a deeper insight into the subject.

1. Introduction

The formation of spatial structures is a quite general property
of complex physical systems. The competition of contribu-
tions of various natures to the free energy frequently leads to a
situation where an inhomogeneous state is thermodynami-
cally more favorable than a homogeneous one. In particular,
the formation of spatially inhomogeneous magnetic struc-
tures is characteristic of the majority of magnetically active
media. To exemplify, we can mention domains in ferro-
magnets or intermediate states in type-I superconductors.
The spatial scale of inhomogeneous magnetization can vary
in a wide range, from a few lattice parameters (e.g., in the case
of electron-induced phase separation in manganites) to the
dimensions of macroscopic samples (e.g., in the case of
magnetic domains in ferromagnets). Macroscopic magnetic
structures containing a large number of Abrikosov vortices
are also observed in type-II superconductors (in both high-
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temperature and traditional low-temperature superconduc-
tors). The vortices interact with one another and also with the
sample boundaries and defects. Stray magnetic fields appear
around samples with a demagnetizing factor. All these effects
favor the appearance of inhomogeneous magnetic structures
in superconductors, similarly to how analogous mechanisms
lead to the formation of domains in ferromagnets.

The magnetic structures can move, change their shape and
scale, and transform the sample from one magnetic phase into
another. Such dynamic effects can occur spontaneously or
due to changes in the temperature, magnetic field, or
mechanical stresses. An important role in the dynamics of
magnetic structures belongs to dissipative processes, which
can control not only the relaxation but, frequently, also the
topology of the inhomogeneous state in ferromagnets and
superconductors. The macroscopic dynamic effects in super-
conductors and ferromagnets are an important class of
physical phenomena observed in these systems. Their study
is of great importance from the standpoint of both physics
and various applications. In this review, we present a rather
full description of macroscopic dynamic effects in super-
conductors, and in the last section, we draw an analogy
between the classes of such phenomena in superconductors
and ferromagnets.

One of the most fruitful approaches to studying macro-
scopic magnetic structures is the use of direct visualization
methods, such as magnetic decoration and magnetooptical
imaging. In this review, we frequently use results of
magnetooptical (MO) studies.

The vortex structures in type-II superconductors can
manifest instabilities of various natures. The best known of
them is the thermomagnetic instability, or magnetic-flux
jumps, which were revealed half a century ago. We note that
precisely magnetic-flux jumps restrict the current-carrying
capacity of commercial superconductors. Therefore, the
nature of the flux jumps, the criteria of their appearance,
and the methods for controlling them have been studied in
numerous experimental and theoretical works. But only the
use of high-resolution magnetooptics permitted revealing
other types of macroscopic dynamic phenomena in type-II
superconductors in the mixed state. It has been discovered



640 L S Uspenskaya, A L Rakhmanov

Physics— Uspekhi 55 (7)

that under certain conditions, the thermomagnetic instability
is developed spatially inhomogeneously. The vortex lines
move with a very high velocity inside the spontaneously
forming channels— dendrites. As a result, the magnetic flux
in a superconductor forms a complex fractal structure.
Magnetooptical observations made it possible to reveal the
macroturbulent instability in single crystals of high-T, super-
conductors (HTSCs) and a number of other phenomena that
are described in this review. It has also been found that almost
all these dynamic effects have analogs in the physics of
ferromagnetic domains.

2. Methods for studying magnetic structures

In this section, we briefly consider methods for visualizing
magnetic structures. These methods can be divided into the
following groups: (1) observation of the distribution of stray
fields on the surface of an object under investigation and the
restoration of the distribution of induction in the sample;
(2) observation of the effect of local magnetization on the
polarization of transmitted or reflected beams (of light,
electrons, etc.) and the restoration of the distribution of
induction from the changes in the polarization; (3) observa-
tion of lattice distortions caused by the presence of local
magnetization and the restoration of the magnetic domain
structure.

The first group includes the powder-figure method (Bitter
technique) [1] and high-resolution decoration [2—4], scanning
probe microscopy [5-11] and scanning of the surface using
Hall probes [12, 13] or measurements of the induction
distribution using lattices of Hall probes [14], and magneto-
optical visualization using indicator films deposited [15, 16] or
applied onto the surface [17-21].

The second group includes magnetooptical methods of
observation of magnetic domains based on the dependence of
optical constants on the direction and magnitude of magne-
tization in the medium: the birefringence of polarized light
(Cotton—Mouton effect ) [22-24], the rotation of the plane of
polarization of light upon the transmission of light through a
magnetically active medium (Faraday effect) [25-29], and the
rotation of the plane of polarization of light upon reflection
(Kerr effect) [30-32], as well as Lorentz microscopy [33] and
diffraction of spin-polarized neutrons [34-39].

And, finally, owing to magnetoelastic distortions, the
magnetic domain structure can be restored from X-ray-
topography patterns [40, 41].

Among the above methods, precisely the magnetooptical
methods of visualization [15-32] prove to be most suitable for
studying the kinetics of magnetization reversal and of
dynamic configurations of magnetic fluxes, because they
allow observing both local (with a resolution not worse than
/./2) and macroscopic distributions of magnetization with the
magnetic field sensitivity reaching 1 Oe. In addition, they
exhibit a high time resolution, limited only by the duration of
the illuminating pulse (about 10 ns).

3. Dynamic effects in type-1I superconductors

3.1 Magnetic-flux jumps

Magnetic-flux jumps, or thermomagnetic instabilities, were
historically the first macroscopic dynamic process that was
revealed in type-II superconductors. The nature of this
instability is related to the positive feedback between the

electromagnetic and thermal processes in superconductors.
The density of the superconducting current, which shields the
external magnetic field, decreases with increasing the tem-
perature. If a local region of heating arises in the super-
conductor for some reason, this leads to a decrease in the local
current density. Because of the decrease in the shielding
current, the magnetic flux penetrates deeper into the super-
conductor. The motion of the magnetic flux induces an
electric field and, consequently, the appearance of additional
Joule heat, i.e., further heating, and so on. Under certain
conditions, such a process takes an avalanche-like character,
leading to the transition of a part of the sample (or even of the
entire sample) to the normal state. A detailed description of
the theoretical and experimental studies of magnetic-flux
jumps can be found in reviews [42, 43]. Here, we only briefly
dwell on the basic aspects of the theory of this phenomenon.

The commonly accepted theory of thermomagnetic
instability predicts that magnetic-flux jumps are developed
more or less homogeneously, occupying a significant part of
the sample volume, the front of the propagating magnetic flux
remains smooth, and its shape depends on the shape of the
sample surface and the shape of the region affected by the
‘bare’ (external) perturbation, which is transformed into a
flux jump. In other words, the spatial scale of the most
‘dangerous’ instability is limited only by the size of the
sample, and small-scale perturbations are stabilized due to
heat conductivity and external cooling.

We consider the problem with simple geometry (Fig. 1).
Let the plate of a type-II superconductor be placed in an
external magnetic field H directed along the z axis. The
external field is shielded by the current flowing along the
y axis and the magnetic induction B(x) decreases in moving
further into the sample. The density of the shielding current is
determined by the current—voltage curve (CVC) of the
superconductor, which is written as

. E
J*JS(T:E)E- (1)
Here, for simplicity, we neglect the dependence of the density
of the superconducting current j; on the magnetic field,
because it is known [42, 43] that taking it into account is
unimportant for the description of the physics of thermo-
magnetic instability. The distribution of the magnetic field in
the sample is described by a Maxwell equation with a
boundary condition:

rotB = pj, B|x:0: toH, (2)

Penetrating
H flux

Figure 1. Geometry of the problem.
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which is valid if the field H is mush greater than the first
critical field H,. The temperature of the sample is determined
from the heat conductance equation

or
C—=xAT+jE, (3)
ot
where C and x are respectively the heat capacity and heat
conductivity, and the electric field is found from the Maxwell
equation
oB
tE=—— 4
ro - (4)
The last two equations should be supplemented by appro-
priate boundary conditions. We eliminate the magnetic
induction from the set of equations; instead of Eqns (2) and
(4), we then write

9j
rotrotE = —y, 6Jt (5)

We assume that in the above geometry, all the quantities
depend only on the coordinate x and that the initial state of
the system is stationary, i.e., the temperature T = Ty(x) and
the field £ = Ey(x) are independent of time. Let a weak
perturbation appear in the system:

T=Ty(x)+08T(x,1), E=Ey(x)+3E(x,1). (6)
We assume for simplicity that the initial electric field Ej is
small and neglect this field. Then, substituting (6) in Eqns (3)
and (5), in the approximation linear in the perturbations, we
obtain

2
GES_T:K_a EST—l—jSSE,
ot Ox?2 (7)
OBE ajg OSE ) 08T
ox2 OE ot ' oT ot )’

Following the standard procedure of the stability analysis of
equations, we seek their solutions in the form

3T (x,t) = 8T exp (ikx + Ar), (8)
SE(x,t) = dEexp (ikx + A1) .

Substituting these expressions in the first equation in (7), we
obtain the relation between the temperature and electric field
perturbations: 8E = (AC + k’x) 8T/j;. Using this relation
and formulas (8), from the second equation (7), we obtain a
quadratic equation for the instability-growth increment /,

0
Ho a]g P+ <u

The flux jump is developed if perturbations growing in
time exist, i.e., Eqn (9) has solutions with Re (1) > 0. Because
the differential conductivity of the superconductor in a small
electric field is always positive (6(E) = 9j;/OE > 0), the sign
of the real part of the root of Eqn (9) is determined by the sign
of the coefficient at the first power of 1. Hence, Re (1) > 0if

9Js
oT

Js OJs 0Js

sz K i+ktE—0. (9
carTH et >+ c=0- 0

Js K
1
Ho k C + )

> uyo(E) = (10)

where we took into account that the current density in the
superconductor decreases with temperature (0;/07 < 0).

According to criterion (10), large-scale perturbations of
the largest possible size / ~ 1/k are the most dangerous for
stability. In the chosen geometry, such a size is the thickness
of the region through which the shielding current flows, i.e.,

Il =H /js Condition (10) can then be rewritten as
a]S K
E)—+1. 11
bo ¢ || > 1wolE) G+ (1)

Usually, js/|0js/0T| ~ Tc. The left-hand side of stability
criterion (11) contains the ratio of the characteristic magnetic
energy u,H? to the characteristic thermal energy CT.. The
right-hand side of the stability criterion includes two terms
that are responsible for two stabilization mechanisms. The
first includes the heat conductivity and differential conduc-
tivity. It is obvious that the greater the heat conductivity is,
the more efficient the process of heat removal from the heated
region and the more stable the superconducting state.

The role of differential conductivity can be understood
equally easily. The density of the superconducting current
decreases with heating, and the magnetic flux moves and leads
to the appearance of an electric field. An increase in the
electric field leads to an increase in the current density
(0js/0E > 0), which in turn partly compensates the decrease
in the current caused by heating. This is the so-called dynamic
stabilization mode. If the first term is small compared to
unity, a second (adiabatic) stabilization mechanism inter-
venes. If the ratio of the characteristic magnetic energy
~ UoH? to the characteristic thermal energy ~ CT, is small,
no flux jumps arise.

Using Eqn (9), it can easily be found that near the
instability threshold, the imaginary part of the increment 4
is nonzero. This implies the possibility of the appearance of
strong temperature and electric field fluctuations before the
appearance of a flux jump, and a nonmonotonic character of
the development of perturbations upon the appearance of
instability.

The above theory and its more complex variants allow
describing experimentally observed effects in the develop-
ment of magnetic-flux jumps in superconductors of various
types [43, 44].

3.2 Dendritic instability

The above-described picture of the development of thermo-
magnetic instability correctly describes many experimental
facts, but by no means all of them. Numerous magnetooptical
experiments show that the thermomagnetic instability can
lead to the appearance of a branching (dendritic) structure of
the magnetic-flux distribution [45-54]. Such a phenomenon
develops especially frequently in thin films placed in a
transverse magnetic field. The dendritic instability develops
as follows (Fig. 2). As the external field increases, the
magnetic flux penetrates inside the sample. In small fields,
the front of this magnetic flux is smooth. Then, suddenly,
fingerlike outbreaks of vortices into the bulk of the sample
appear at the front (Fig. 2a), as if ‘grass’ starts to grow near
the edge of the penetrating flux. Next, separate dendrites
(‘trees’) start appearing in a stronger external field (Fig. 2b).
With a further increase in the external field, the number of
dendrites becomes greater and greater (Fig. 2c¢). Gradually,
the entire sample becomes filled by the ‘forest’ of dendrites,
and the distribution of the magnetic field takes a typical
fractal form (Fig. 2d). The dendrites develop quite rapidly.
When using the magnetooptical method for observation, an
impression forms that the dendrite arises instantaneously.
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Figure 2. Magnetooptical images of the development of a dendritic
instability in an NbN film at 7=4 K (the magnetic field is applied
transversely to the film plane). The lighter regions correspond to a greater
magnetic field strength. Only the left-hand side of the sample is shown; its
length is 2.4 mm. In the right-hand corner of each image, the applied
magnetic field strength is indicated [53].

Dendritic instability has been observed at temperatures below
10-15 K in films of low-temperature superconductors (Nb,
Nb3Sn, NbN), in films of magnesium diboride, in films and
single crystals of HTSCs YBa;Cu305, BiSr,CaCu,0s, and in
some other materials.

The above-described behavior seems to contradict the
‘classical’ concepts of the development of thermomagnetic
instability. Indeed, because heat conductivity suppresses the
development of such an instability, the small transverse size of
a dendrite seems to favor the fast removal of heat from its
channel. Consequently, a thermal fluctuation of a large
spatial scale should develop faster than a narrow dendrite.
But a detailed analysis of experimental data unambiguously
indicates the thermal nature of the appearance of a dendritic
structure (see [55] and the references therein). This follows
from the direct measurements of temperature in dendrite
channels using a thermal imager, the fact that such a structure
arises only in the region of low temperatures, where the heat
capacity of the material is small, and a detailed comparison of
experiments with the results of the theory where a dendrite is
treated as a consequence of local thermomagnetic instability
[56, 57]. A dendritic spatial structure arises upon the develop-
ment of a flux jump if the background electric field in a
superconductor produced by an external regular source or by
a random action exceeds some critical value E, which depends
on the geometry of the sample. We note that because of the
effect of the geometrical factor, the value E; for films s less than
for massive samples. Correspondingly, the development of the
dendritic instability is more probable in films.

The physical reason for the development of a dendritic
structure in superconductors can be understood from the
following considerations. If a perturbed region extended in
the direction transverse to the current vector appears in the

z v, 4
HT j, E
{\.
>
S
dj2 S
/ No flux @é\x
W, X

Substrate

Figure 3. Film on a substrate (left-hand edge of the sample). The dark gray
shading corresponds to the region into which the magnetic flux has
penetrated.

sample, then the current cannot bypass this region and flows
through it and heats it up. If the electric field E produced by
an external source is sufficiently large (E > E.), then the
heating of the perturbed region exceeds the heat removal,
leading to the development of a dendrite. The characteristic
thickness of the dendrite Ad ~ (zc/|E6js/8T|)1/2 is deter-
mined by the balance between the heating and the heat
removal. In films, the rate of growth of a dendrite is
determined by electromagnetic processes in the space sur-
rounding the film and can reach giant magnitudes, 103 m s~!
and greater.

Following [56], we find conditions under which a dendritic
structure arises in a film. Let a film of thickness d and width
2w lie on a massive substrate and let the magnetic flux
penetrate into the film to a depth /. The film is located in the
xy plane and the magnetic field is applied perpendicularly to
the film along the z axis (Fig. 3). For the analysis, we use CVC
(1) of the superconductor, Maxwell equations (2), and heat
conductance equation (3). As before, we neglect the depen-
dence of the current density on the magnetic field. The
concrete form of the function ji(£) is unimportant for us. It
is only important that the CVC of the superconductor be very
steep:

OlnE  js
olnj ~ o(E)E

n(E) = >1. (12)

The parameter n(E) generalizes the power-law CVC
(E o< j™), which is frequently used in approximating experi-
mental data. The key dimensionless quantity in the theory is
the ratio of the coefficients of thermal and magnetic diffusion:

toko(E)
=———>. 13

T C (13)
The greater 7 is, the more rapid the propagation of heat and
the slower the motion of the magnetic flux. Consequently, the
smaller 7 is, the less stable the superconducting state and the
more probable the formation of dendrites.

We assume that the film is thin and wide, d < A, <€ Vdw,
where /. is the London penetration depth. Then the magnetic
flux penetrates into a long film to the depth [58—60]

mewH?

= 14
2d2]C2 ( )
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where H is the applied magnetic field. We assume that
AL <<l<w.

The solution of Eqns (2) and (3) is sought in the form of
small perturbations on the background of the stationary state
(T,E, j). We assume that the background temperature is
uniform in the film and the electric field is homogeneous in
the layer into which the magnetic flux has penetrated. The last
assumption is, naturally, approximate. However, a numerical
analysis shows that it leads to only small changes in the final
results [56, 57]. For the current perturbation, using (1), we
obtain,

oE,

0Js E
5j = (a—JT 6T+06Ey) ST (15)

We seek perturbations over the stationary state in the
form

At
8T = T*0exp (j— +ikE + ikyn) ,
0
)
OEy, = Ee.yexp | — +ikeé +ikyn (16)
to

. - At .
6]x.y = Js lx,y €Xp (% + ik &+ 1ky’7> )

where 0, ¢, and i are dimensionless quantities depending on z,

=x/a, n=yla, (=z/a, a=\/CT"/wjé, T"'=
—(@Injs/oT) ", and 1y = pyoa®. The existence of solutions

with a positive real part of the eigenvalue 1 means the
existence of an instability. From Eqn (15), we then obtain

iv=¢, B=0+n""g, (17)
and from Maxwell equation (2) and heat conductance
equation (3), we obtain

k x [ke] = Ani, (18)

2

0 = ‘c( k 9+2C2> + @iy +e)n'.

Because we are interested in solutions of the dendritic form,
for which k, > k., we neglected the heat conductivity along
the dendrite axis.

Because the film is thin, perturbations change only a little
over its thickness. We integrate (17) over the film thickness,
assuming that the temperature of the substrate is equal to 7.
Weset hy = —(0qo/0T + 0qs/0T ), where g5(T ) and go(T) are
the respective heat fluxes into the substrate and into the
cooler. After the integration of the second equation in (18), we
then obtain

_ (I4+nYe
Skt na(k+h)+ 17

(19)

where i = 2hga® /kd. We seek solutions for the perturbations
in the region into which the field has penetrated, 0 < & < //a.
It is obvious that at the external face of the film, & j, = 0 and
hence 8, = 0. In the Meissner state, all the perturbations are
equal to zero, or 8E, = 8T =&, =0 at ¢ =//a. Then the
boundary conditions for the electric field are satisfied only if
ky = (na/2l)(2s+ 1), s=0,1,2,.... Integrating the first

equation in (18), we obtain

i . 2
- lk,v(kxﬁy + lk),-sx) _za e

6= —Aney

(20)

. 2a .
— ky(kyey + ikyey) + = c}' = —nf(ky) ey,

where

l 14+n!

SO ky) = ni—}—n‘c(kf-&-h)—i—l

a‘ n
Using the Biot—Savart equation, we obtain the perturbation
of the magnetic field in a thin film ((d/a)2 < 1) in the form

l/a 00
SBx,y:iuoadL dé’[ Ay GE— &' 0 —n")8jvx
1 (21)

G(&n) = e 12+ (d/za)z]s/z ;

where the integration is also performed over the region of the
Meissner state, but because the function G(&,#) decreases
rapidly as its arguments increase, this contribution gives only
insignificant numerical corrections. From the Maxwell
equation, we obtain the following relation between the
electric and magnetic field perturbations: 3E  /E =
F/ndB, /ugajs. After the Fourier transformation and
algebraic calculations, system (20) can be represented as

(kkp}—i—kz—&—/m 2 ZG kmk;v (k;),

(22)

. p
(k2 + Inf)e, + ikyk e, = 7’:{ 3Gyl kL ky) (kL)
k!

where

Oslhsskc k)N (% 4 (" qer e — e i
(Gy(kx’k;’k.")> Jo éjo ¢'G(E—< k)

sin (k&) sin (k[€")
x (cos (kx€) cos (k’é’))

kaKl[

&2+ (d)2a)? ]
2nl ’

o) = E2 4 (d)2a)

The result of the numerical calculation of the increment of
the perturbation growth Re / for a thin film (o = d/2/ < 1) is
shown in Fig. 4.

0.5
Re 4
0

"7 =0.01

Figure 4. Results of a numerical solution of Eqns (22) for small (0.01) and
large (7) values of the parameter 7, « = 0.001, and n = 20 [56].
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In the first approximation in « < 1, we can also find an
analytic equation for A [56],

AP+ Axh+ A5 =0, (23)
where
Ay = nya, A2:kf(l—i—rAl)—&—nk»f—&—Al(hr—1),

1
Az =kt + nk kT + nk} (hr + Z) +ky(ht—1),

and v is a slowly changing function of k., y ~ 5.

If the instability develops homogeneously (k, = 0), we

find from (23) that Re 4 > 0 if
k2

ht<1 -2
Yo

(24)
If the external field is small, //w < 1, then k, o< 1//is large
and the system is stable. As the field increases, an instability
can occur. However, the instability develops only if the heat
removal from the film is small, it < 1. If it < 1 (adiabatic
conditions), then the instability appears if k2/ya < 1, or, in
dimensional notation, w,j2ld > CT*(n*/2y). Assuming that
the field penetrates into the film over a small depth, / < w, we
can use (14) to rewrite the last inequality in the form H > H,gq,

where
d g

and H2\ is the field corresponding to the development of the
instability in a massive plate (slab) in the field that is parallel
to its surface under adiabatic conditions.

From the results of numerical calculations of Eqns (22)
for 7 < 1 shown in Fig. 4a, it follows that in small fields
(ke > k), the film is stable at any k,. In higher fields
(kx < k), the instability arises in a certain range of k.
Consequently, perturbations with a certain spatial structure
begin to grow. They have the form of ‘fingers,” with
enhanced temperature and electric field, extended perpendi-
cularly to the front of the penetrating magnetic flux. This is
the beginning stage of the development of the dendritic
instability. If 7> 1 (Fig. 4b), the instability develops
homogeneously because thermal processes dominate the
electrodynamic ones.

We estimate the critical values of k7 and k; (see Fig. 4) at
which the instability development begins. The value of k}
determines the magnetic field corresponding to the instability;
k; determines the transverse size of the dendrites. The
equation for k7 and k! has the form max {Re A} = 0. In the
limit o < 1 in (23), it can be assumed that 4; = 0. Then

d CT*
w Y

(25)

k2 — k2
A= (k24 h)t+ 20— . (26)
) k}? + nk?
Hence,
P vn+1—+v/nht
) ny/z ’ (27)
* — [\/nhr+1(\/71+1 —\/nhr—ﬁ—l)}l/z

v N

Because we always have n > 1 in the case of superconductors,
it follows from the above relations that k*/k* > n'/? > 1 if
ht < 1. The inequality k7 > k{ means that upon the develop-
ment of the instability, a longitudinal structure of the
penetrating magnetic flux arises, i.e., ‘fingers’ appear that
are extended along the normal to the sample faces.

At a sufficiently large value of 7, the instability develops
homogeneously. The critical value 7. that corresponds to the
transition from the dendritic instability to a homogeneous
development of a magnetic flux jump can be found from the
condition ReA(ky =k} k, =0)=0. In this case, .=
(1 — k}?/ya)/h. Substituting k* and « in the last relation, we
obtain

Vit (L i) =25 (28)
Using Eqn (28) and the above formulas, we find that if the
external heat removal /i is large (hy > ), then the instability
is developed only in the form of dendrites. The parameter A is
defined in the text after Eqn (18) and

bl 29)
w2 T*2C?
If hy < he, then, depending on the conditions, either a
homogeneous flux jump or a dendritic instability can arise.

It follows from Eqns (12) and (13) that E = jsuyx/nCr.
Using this relation and Eqn (28), we can construct a stability
diagram on the plane (E, H ) for different values of i (Fig. 5).
The thermomagnetic instability develops as a uniform jump
of the magnetic flux if H > Hyyi(ho, E'). The dendrites arise if
H > Hiing(ho, E).

Using Eqns (14), (24), and (25), we obtain

2T ho\ "2
Hyi = 1— .
uni ad < nd]5E> (30)
At ht < 1 and n > 1, it can be easily found that
d? [T\ V2
Hﬁng = <j:tw Tjs> : (31)

110:0

E

Figure 5. Stability diagram on the (E, H) plane at various values of the
heat removal coefficient 4. At a given Ay, the instability arises in fields
lying above the corresponding curve H(E ). To the left of the dashed line,
the instability develops uniformly; to the right, in the form of dendrites.
The inset schematically shows the diagram on a larger scale: region /
corresponds to a stable state; 2, to a homogeneously instable state; and 3,
to a dendritic instability [56].
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If hy < he, then the curves Hfing(E') and Hyyi(E) intersect at
E = E.(ho). If hy = he, then Hing(E) < Hupni(E) atany E and
only the dendritic instability is possible.

We see that the dendritic instability develops in super-
conductors that are in good thermal contact with the external
medium (substrate or cooler) if the electric field induced in the
superconductor by external perturbations is sufficiently large.
The observation of dendrites in films is more probable than in
massive single crystals. At the parameters values character-
istic of low (helium) temperatures (j; =10 A m2,
C=10JK ' 'm3, k=102WK'!'m!, 7" =10 K, and
d=03pum), we obtain E.~4x10* V m~!. Similar
estimates for the electric field E. in the case of a massive
sample yield ES' ~ 0.1 V. m~! [57]. The magnetic field for the
development of the dendritic instability is much lower for a
film than for a massive sample [56, 57]. Such a large difference
in the conditions corresponding to the instability develop-
ment in a film and in a massive sample is primarily due to the
effect of stray magnetic fields on the dynamics of the magnetic
flux. Numerical estimates show that the field corresponding
to the development of the dendritic instability in thin films
ranges from ten to several tens of oersteds, which is indeed
observed in experiments.

The linear analysis describes only the initial stage of the
dendritic instability development. It predicts that a periodic
‘fingerlike’ structure elongated in the direction perpendicular
to the front of the penetrating magnetic flux arises first
(Fig. 2a). The period of this structure can be estimated as
follows. At E = E., ht < 1,and n > 1, we have

n?CT*
b= ST (32)

which for the characteristic values of the parameters and
n = 30 yields d, ~ 100 pm. A numerical simulation shows
that as the field increases, one finger first begins growing,
developing into a branching (‘treelike’) structure. Then the
next dendrite starts growing. The lateral branches at the
‘fingers’ arise for the same physical reasons for which ‘grass’
appears near the film face. The structure observed in
experiment has the transverse size about 20—50 pm, which
agrees well with analytic estimates and numerical calcula-
tions. A thermomagnetic instability, both homogeneous and
dendritic, can develop only in the region of low temperatures,
because the parameter T ~ C(T) ~ T? rapidly increases with
temperature and the quantity st becomes greater than unity.
In experiment, instabilities in films are indeed observed at
temperatures no higher than 10-15 K.

To estimate the conductivity in the regime of the flowing
flux, we take o = 10° Q™! m~!; the characteristic time of the
instability development is then fy ~ 0.1 us. Because the
characteristic length of a dendrite is about several milli-
meters, the dendrite propagation speed is 10-100 km s~ !.
This estimate is confirmed by numerical calculations and by
a more detailed analysis of the penetration of the magnetic
flux into the Meissner phase. In an experiment with a
moderate time resolution, it seems that the dendrites arise
instantaneously. The flux penetration occurs at a high speed
because magnetic field lines are strongly curved near the
film surface and produce an additional tension force, which
pushes the vortices into the sample. In the case of a massive
sample, the time of the instability development is much
higher.

3.3 Macroturbulence

Macroturbulence is one of the most interesting effects that
have been revealed in studying the dynamics of magnetic
fluxes in HTSCs using magnetooptical observations [61, 62].
This effect is observed in YBa,;Cu30, and in other 1-2—3
HTSC systems in an alternating magnetic field, when vortices
with an oppositely directed magnetic fluxes (vortices and
antivortices) appear in the sample. Upon the development of
the instability, a turbulent motion of the magnetic flux near
the interface between the vortices and antivortices arises
(Fig. 6).

Let a magnetic flux be trapped in a superconductor placed
in an external magnetic field. Let then the external field
change sign. The boundary corresponding to the zero
magnetic induction separates regions containing vortices
and antivortices (see Fig. 6). Below, for definiteness, we call
that part of the Abrikosov vortices that were initially trapped
in the superconductor ‘vortices,” and those that entered into
the sample after the external field changed sign ‘antivortices.’
In some range of temperatures and magnetic fields, such a
distribution of the magnetic flux becomes unstable. Near the
zero-induction line, the motion of the magnetic flux becomes
chaotic, resembling turbulence in a conventional liquid. As
this process develops, it is accompanied by the formation of
fingers through which the antivortices penetrate into the
region of vortices. As a result, the front of the magnetization
reversal, at which the annihilation of vortices and antivortices
occurs, takes an intricate shape, and its length increases. The
annihilation process accelerates and is frequently terminated
by the complete disappearance of vortices of one sense. The
characteristic time of the instability development varies from
tenths of a second to tens of minutes; the arising spatial
structures contain a large number of vortices. Unfortunately,
the available photos do not correctly represent the macro-
turbulence. In dynamics, it surprisingly resembles the
turbulence in a conventional liquid.

Attempts to explain macroturbulence in terms of the
thermal instability (by analogy with dendrites) have failed.
The temporal and spatial scales of the process differ
dramatically (by orders of magnitude) from the character-
istic thermal scales and times. The thermal mechanism is also
inconsistent with the fact that the macroturbulence develops

20 K, 1200 Oe

47K, 525 Oe

Figure 6. Patterns of the magnetic flux penetration into a single-crystal
plate of YBa,Cu307 cooled in a magnetic field. The dark lines correspond
to the lines of zero induction that separate flux and antiflux regions. At the
lower temperature, the flux—antiflux front is smooth and its shape remains
unaltered in time (as an example, an image is given that corresponds to the
applied field H = 1200 Oe at 7= 20 K). At a higher temperature, a
macroturbulence instability develops at the magnetization-reversal front:
the vortices and antivortices accumulate near the front (the induction
distribution across the front becomes an inhomogeneous function of the
coordinate [63]); the originally relatively even front of the flux bends; at the
bends, macroscopic droplets of vortices and antivortices are formed,
which jumpwise break the front and annihilate (the image is obtained at
H = 5250e¢ and T =47 K; courtesy of V K Vlasko-Vlasov, 1993).
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at relatively high temperatures (no lower than 15-20 K) and
manifests itself most strongly at 7= 40-60 K. Taking the
contribution of the annihilation of vortices and antivortices
to dissipation into account [64] adds nothing, because this
contribution is quite small [65]. The authors of [66] supposed
that the process of the annihilation of vortices can be
accompanied by the formation of a spatial region free from
vortices (the so-called Meissner hole). The existence of such a
region can cause an instability of the vortex distribution
because of the induction of high-density currents that should
flow around such a Meissner hole. However, the authors of
[66] did not attempt to describe the development of macro-
turbulence in the framework of their hypothesis.

To construct a proper theory of macroturbulence, two
factors must be taken into account. First, this instability
arises only if vortices of different signs exist in the sample.
Second, this instability is observed only in 1—2-—3-type
HTSCs, which are characterized by a noticeable anisotropy
in the crystallographic planes ab (the turbulence arises during
motion in these planes). This anisotropy is especially strong in
crystals with twins, because these are centers of pinning for
the vortices moving transversely to the twins and are channels
for the motion of vortices along the twins [67, 68]. But even in
detwinned 1—2-3 single crystals, the anisotropy of the
critical current in the ab plane reaches 1.5-2.0.

Because of the anisotropy, the vortices move at an angle to
the direction of the Lorentz force. As a result, the vortices and
antivortices also move at an angle to the front of the
magnetization reversal. Then the tangential velocity of the
flux of vortices at this boundary undergoes a discontinuity.
According to the classic Helmholtz theory [71], a stationary
hydrodynamic flux under such conditions becomes unstable,
and turbulence arises. This is why the temperature range in
which macroturbulence is observed is wider in samples with a
higher density of twins [72], and macroturbulence is absent in
those regions of the crystal where the vortices move
perpendicularly to the magnetization-reversal front [73]. We
see in what follows that even a small anisotropy can lead to
the appearance of macroturbulence.

Macroturbulence is usually observed in single-crystal
plates placed in a magnetic field perpendicular to the
ab plane. The penetration of the magnetic flux into a
superconductor has its specificity [74]. But macroturbulence
is also observed in crystals with a small demagnetizing factor
[66, 69]. Therefore, for the description of the physics of the
instability, we consider a sample of a simple geometry: a semi-
infinite plate of thickness 2d in a magnetic field H that is
parallel to the sample surface and is directed along the z axis,
with the x axis perpendicular to the plate and the origin placed
at the center of the sample (Fig. 7). The magnetic field first
increases to a certain value much greater than H., then
decreases, changes sign, and reaches some negative value,
which in the absolute value is also much greater than H;. As
aresult, two groups of vortices of different signs appear in the
bulk, vortices located closer to the sample center and vortices
at the periphery.

The vortices and antivortices are pinned on defects. They
begin moving owing to the Lorentz force and the thermo-
activational creep of the magnetic flux. There is also one more
reason for the motion of vortices. The vortices and anti-
vortices annihilate at the line of zero induction, which leads to
a decrease in the number of vortices in the sample and to an
increase in the number of antivortices, which continue
penetrating into the volume from the boundary of the plate.

0 xo(t,) d «x
U
y

Figure 7. Magnetic flux distribution in a half-plate (0 < x < d). Vortices
with a density N;(x) are located in the center of the plate; antivortices with
a density N>(x) are located at the periphery.

As a result, the magnetization-reversal front moves with time
to the center of the sample. We describe the motion of vortices
in terms of the hydrodynamic approach, assuming that all
spatial scales of the problem are much greater than the lattice
parameter dr of the lattice of vortices.

The densities of the vortices N;(x,y) and antivortices
N, (x,y) are related to the magnetic induction B(x,y) as
Ny(x,y) = s4B(x,»)/ Py, oo =1,2, where s; =1, s, =—1,
and @ is the magnetic flux quantum. The densities N,(x, )
must satisfy the continuity equations

N, .
+div(N,V,) =0,

o (33)

where V,(x, y) are the hydrodynamic velocities of the vortices
and antivortices. The electric field is determined by the
Faraday law (following the original works, the calculations
in this section are performed in the CGSE system):

1
E=—-[VB]. (34)
¢
From Eqns (33) and (34), we obtain
P P
= N"S: V., E = Nasu®o Ve (35)

The calculations can be performed in the general form,
but to avoid too cumbersome formulas, we use a power-law

model CVC:
1 Ey 1/m Ey 1/m
X e S (E()) ) Y N EO

Here, X and Y are the anisotropy axes in the plane of motion
of the vortices, the exponent (with m > 1) is the same for both
directions, and ¢ < 1 is the anisotropy parameter of the CVC.
For simplicity, we also assume that the X' and Y axes are tilted
at 45° to the crystal faces, as in the case in the majority of
experiments. From Eqns (36), using equalities (35) and the
Maxwell equation [VB] = 4nJ/c, we obtain the equations

(36)

ON, N, _4nv2J,| N, Vet V) V/m
Oox oy cPoe | cEy2 ’W e
Noaqv)() :|
X sgn Ve + V)|,
g |:CEO\/§( xo )x) (37)
ON, N, _ 4nv2J5| Ny Vet Vi) 1/m
Ox oy cDoe | cEgV2 “ e

Ny

XS n[ o
s cEoV2

(Vi + Vya)} .
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The critical current J; depends on the magnetic induction.
In the preceding sections, we neglected this dependence, but in
this section, we solve the problem near the magnetization-
reversal front, where the magnetic induction passes through
zero. Near this line, the density of the critical current can
change quite sharply. Because the concrete form of the
dependence Js(B) is insignificant for the further analysis, for
definiteness, we use one of the dependences frequently
encountered at low temperatures, Js o< 1/B, which can
suitably be represented as J, = A/N,.

We must impose boundary conditions on the sample
surface:

]

No(d) = No(—d) &,

(38)

The equation for the interface between vortices of
different signs can be written as x = xo(y, ). For the velocity
of propagation of this surface U(, y), we then obtain

_ axo 1
YOt 14 (Oxo/oy)? (39)
~ 0xp 0x0 /0y

P00 14 (B /Oy)t

In the unperturbed state (prior to the appearance of
turbulence), the magnetization-reversal front is flat,
x = xo(t), and hence U, = 0.

The condition of the magnetic flux conservation means
that the number of annihilating vortices is equal to the
number of antivortices, i.e., the fluxes of vortices of the
opposite sense are compensated at the interface,

Nl(Vl _U)n+N2(V2_U))1:07 (40)
where the subscript  refers to the components of vectors that
are normal to the interface. For the components of the vector
normal to this surface, we have

1 B 0x¢/0y

1+ @vofor? Lt (0xo/or)

Following the approach that is commonly accepted in
kinetics, we assume that the rate of annihilation of the
vortices is proportional to their concentrations and is
determined by some phenomenological constant R:

(41)

Vy =

Ni(Vi =U),=RN|N,. (42)
At the boundary, the magnetic induction passes through zero;
we then have

Ni=N,=Ny. (43)
We note that this condition follows automatically from
Eqns (33) and (40) and from the initial conditions of the
problem. In specifying boundary conditions at the magnetiza-
tion-reversal front, we used two assumptions, which are
confirmed experimentally. The first states that the thickness
of the region in which the annihilation of vortices occurs is
small compared to the other characteristic scales. The second
assumption is that the density of vortices and antivortices in
this region changes almost jumpwise (according to the

estimates and experimental data, ®yN; ~ H.). These
approximations are discussed in [75] in more detail.

The set of equations (33), (37) with boundary conditions
(38), (40), (42), and (43) has a stationary solution:

Ny(x) = Noy/1 +5,C(xo — x)/d , (44)

C_Sm/idA V2 ®oRNZ 1M
— c®gNg | cEo(1+ &™)

and U = 0. In the experiments that are of interest for us, the
density of vortices near the zero-induction surface, N, is
much lower than that at the boundaries of the sample, and
therefore the unity in the radicand in (44) can be neglected.
Taking into account that ¢”™ < 1, we then obtain the
following estimate for the density of vortices at the magneti-
zation-reversal front:

) B H\" cEy 1/2
NofNa(x—XO)N(Fp 202 R)

1/2
Hp _ (8TCdA @0) .

(45)

We are certainly interested in a nonstationary solution of
the above equations. But it can be shown that if the velocity of
the front is much lower than the velocity of vortices in the
sample volume, U < V,, then the above stationary equation is
a first approximation for a nonstationary solution.

We introduce the dimensionless variables

N. t DN
Ny = —= ) T=—, [0 = 0°"0 )
Ny I STAE,
X y c@oNg
==, ==, = , 46
E=7, (=7 e/ A (46)
_ RN§®, Uty

r= ,  u=
V2 cEy L

For normalization, we use the density of vortices at the
uncurved front, Ny = N,(xo(¢)). We suppose that this
quantity changes on time scales that are much greater than
the characteristic time of the instability development. Assum-
ing that the velocity of the magnetization-reversal front is
small, we can linearize the equations with respect to this
quantity. As a result of simple transformations, we obtain

u
n;(x = XO) = —S1p<1 =+ 5y E) s

2u
(1+¢)m(n))" "

2 1/m
__am —
€E=2¢ I p (1 + E) )

where the prime denotes differentiation with respect to the
dimensionless coordinate &.

To investigate the stability of the solution, we represent
the density of vortices in the form of a sum of an unperturbed
solution of the problem with a flat interface 7,(&,7) and a
small perturbation,

ny =ity + [ (& = & (1)) exp (A1 + ik() .

(47)

(48)
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A boundary conditions must be imposed on the perturbed
interface:

¢ =¢&o(C,1) = &olr) + 8¢ exp (ik{ + A1) . (49)
It follows from condition (40) that 8¢ = (f; —f2)/2p. Sub-
stituting (48) in continuity equation (33), we obtain linear
equations for the perturbations f,:

n! m—2
4 2f) k(1= 26) + 2% —
.f(x + foc 1 ( 6)+7~1a umﬁo/{(mfl)ﬁ;i
2 2u 2uik(m — 1)
mﬁ;(mfl)ﬁ;” ﬁol((n172)ﬁ&n+1 mﬁ;(mfl)ﬁ;”
-0 =1
S ik = . (50)
n; Ny

Assuming that the perturbations rapidly decay far from the
interface between the vortices and antivortices, we replace the
functions 7, (&) and 7, (&) with their values at the unperturbed
boundary & = &,. As a result, we obtain

fil&=&) =fiexp [p1(E—&o)],

(51)
fr(&— &) =frexp [Pz(f - fo)] s
where
P1‘2=ipfik+%i91,2> (52)
01— 207+ ikup Ry 1kup(rrzz; u
mr m2r
2 4 _ 1/2
G2t A= DUl 0, 0. (53)
mr m?2r? ’

Now, substituting relations (51)—(53) in boundary conditions
(40) and (42), we obtain a set of two linear homogeneous
algebraic equations for the amplitudes f; and f>. Equating
the determinant of this set of equations to zero, we find the
equation for the instability-growth increment A(k). Neglect-
ing the terms of the order of 2, we write this equation in the
form

mr

i:—(92—4ek2—iku——2p2>,

o
; £ (54)

where Q is the root of the equation

—1 3
—2Q%p? m=—1 40P
m m

Q4+ Q%

o (gam=1 _pm

m+2
m

2m?2r (35)

—4ek2<92+9%p+iku M) -0,
with Re Q > 0.

If m =1, the sample has a purely ohmic conductivity,
which is not characteristic of superconductors. But this case is
interesting from the methodological standpoint. It has been
analyzed in detail in [72]. We give the results of the analysis of
Eqns (54) and (55) at m = 1. These equations have a solution
with ReZ > 0 if ¢ < 1. In this case, £ > 1. The maximum
value of the instability-growth increment /, and the

corresponding value of k,, are

lulr

Relm %88—1/2—

4r? (56)

The existence of solutions with Re 4 > 0 and & > | implies an
instability of the flux that is homogeneous along the flow axis,
a distortion of the magnetization-reversal front, and the
turbulization of the flow [71]. The characteristic spatial scale
of the turbulence, /., at the initial stage of its development is
determined by the most rapidly growing perturbations,
e ~ 1/ky. The instability arises only if the current aniso-
tropy 1/eis large:

U 2
<0.019 1
¢ (2RN0> <

This is a very rigid restriction.

We now consider the case m > 1, which is more suitable
for the description of a real experiment (for HTSCs at
temperatures at which the instability is observed, m is usually
> 10). The parameter ¢ = ¢ in Eqn (55) is then negligibly
small and the equation takes the form

(57)

X4+L+2X372L_1X27i/\’
m m
. -1
+m<’" X2+X+2>:0, (58)
m

Q
X=—, K= k|u\ .

P 2mrp

Ifk>1,
Ry in 1 2 in
The instability-growth increment
. 12

A mrp (IK +2 - —2‘/2m> (60)

has a large imaginary part. This means that the instability
grows on the background of oscillations of the electromag-
netic field perturbations, which is indeed observed experi-
mentally. The most important fact is that at m > 1, the
instability can arise at a relatively low anisotropy. A
numerical analysis of Eqns (54) and (55) shows that for each
set of values of the parameter m and of the ratio u/r, a critical
value of the anisotropy parameter & exists: if ¢ > &, the
magnetization-reversal front is stable; if ¢ < ¢, macroturbu-
lence develops.

We note that in single crystals of 1-2—3 HTSCs, a
significant anisotropy of the critical current exists even
after the crystals are subjected to the twin elimination
procedure [76]. Therefore, it is not surprising that macro-
turbulence can also arise in such single crystals. However, no
turbulence is observed in the presence of crossed twins in the
sample or in melt-textured materials, in which the density of
microcracks and microinclusions is large [63].

3.4 Self-organized dynamic

vortex structures arising on defects

Above, when speaking of HTSCs, we discussed dynamic
vortex structures arising in single crystals. But the extended
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Figure 8. Influence of defects on the magnetic flux penetration into a
superconductor. (a) Twinned structure of the YBCO plate and (b) related
inhomogeneous penetration of the flux (the twin boundaries are indicated
by arrows; it can be seen that the flux penetrates much more deeply along
these boundaries). (c, d) Defects at the edge of the crystal (their positions
are shown by arrows) and their effect on the penetration of the flux:
(c) penetration of a perpendicular magnetic flux into a BSCCO plate at a
temperature 7' < 30 K, H. = 58 Oe; and (d) a tilted field H,, = 432 Oe,
H_ = 77 Oe (the penetration of the flux begins from the defects at the edge
of the sample; the perpendicular field penetrates in the form of inflating
bubbles; the tilted field penetrates in the form of bands).

defects characteristic of these systems can also lead to quite a
peculiar picture of the magnetic flux penetration [77-83].

Figures 8a and 8b illustrate the penetration of the
magnetic flux into a YBCO sample with a developed system
of twins. As can be seen, the magnetic field penetrates into the
sample volume to a much greater depth along twin bound-
aries. Figures 8c and 8d show the penetration of a transverse
magnetic flux into a BSCCO (BiSrCaCuO) single crystal [82].
The vortices penetrate into the sample through defects
located near the edge of the plate. If the sample is placed in a
constant magnetic field oriented in the sample plane (the
ab plane), then the vortices are aligned along the field
direction at low temperatures. At temperatures above 30 K,
temperature fluctuations break the Josephson coupling
between the CuO planes and the in-plane magnetic field
stops affecting the distribution of the magnetic flux compo-
nent directed along the ¢ axis.

Peculiar dynamic effects can also be observed on extended
defects. As an example, we discuss structures in the form of
‘droplets’ (or ‘bubbles’) and rows of such droplets (‘beads’),
which have been observed in a magnetooptical study of the
dynamics of the magnetic flux in single crystals of
Bi,Sr,CaCu,03 (B2212) (Fig. 9). The droplets and beads
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Figure 10. Magnetooptical image of a B2212 single crystal in a constant
transverse magnetic field at 7= 15 K: (a)—(c) correspond to an increasing
magnetic field. The dark regions are occupied by the magnetic flux. The

circles in (a) show the places where bubbles are pumped up in a variable
magnetic field.

arise in certain parts of a sample placed in a low-frequency
transverse magnetic field.

High-quality B2212 single-crystal plates have been
investigated in experiments. If the crystal is placed in a
transverse constant magnetic field H,, then at low tempera-
tures (7 < 30 K), the magnetic flux penetrates into the
sample equally from all faces. At T > 30 K, the interplane
correlation in B2212 is lost, the force of pinning decreases
sharply, and the flux is distributed uniformly over the single
crystal in a few fractions of a second. A more detailed study
of the penetration of a magnetic flux into a sample in low
fields shows that at the initial stage, the vortices move into
the bulk along several characteristic planar defects that are
parallel to the crystallographic ¢ axis. These defects are
invisible optically, but are clearly visible in magnetooptical
images. In Fig. 10, the dark regions are occupied by the
magnetic flux. There are also some points at which a coarse
defect intersects with a finer one, which can be visible only at
larger magnification. These points are circled in Fig. 10.
Precisely at these points, which we call ‘weak’ points for
brevity, dynamic structures of the magnetic flux in the form
of droplets arise.

At T < 30 K, if we increase a constant magnetic field such
that the front of the magnetic flux penetration along the
defect approaches a weak point, we see that the magnetic flux
accumulates near this point with time. Figure 11 shows the
time dependence of the magnetic induction B at a weak point.
It can be seen that B grows (the lower curve), whereas in the

v

-
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Figure 9. Alternating macroscopic magnetic-flux droplets nucleated in
BSCCO on a linear defect upon the cyclic magnetization reversal of the
sample by a variable magnetic field perpendicular to its plane at
temperatures (a) 14 K and (b) 17 K. The dark and light droplets (beads)
correspond to opposite-sense fluxes.
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Figure 11. Time variation of the magnetic induction B(¢) in a constant
magnetic field of 460 Oe applied to a B2212 plateat 7= 13 K near the edge
of the sample (circles) and in the center of a weak point (triangles).
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Figure 12. Alternating macroscopic magnetic flux droplets in a BSCCO
single crystal, which are nucleated at a linear defect near a weak point
when pumped wup by a variable magnetic field (amplitude 250 Oe,
frequency 15 Hz, temperature 18 K) perpendicular to the sample plane:
(a) nucleation of a droplet; (b, c) patterns after many cycles of field
variation; and (d) a planar defect with a weak point (schematic) [81].

planar defect near the face, the magnetic field decreases (the
upper curve). This means that superconductivity at the weak
point is markedly suppressed.

We assume that the external field oscillates with a low
frequency w and small amplitude, H,(¢) = Hycos (wf). Let
the field amplitude be such that the magnetic flux penetrates
into the volume only along the defects and the flux
penetration front is located near a weak point (Fig. 12). At
very low frequencies, the magnetic flux changes sign along
with the external field at all points of the sample. As the field
frequency exceeds 10 Hz, the picture changes noticeably. The
magnetic flux of a certain sign starts pumping near the weak
point (Fig. 12a). The size of the arising macroscopic vortex
bubble grows as the number of cycles of the magnetic field
increases, and the magnetic induction increases in its center.
The bubble ‘breathes,” following changes in the magnetic
field: the size of the bubble and the magnetic induction in it
are greater when the sign of the external field coincides with
the sign of the accumulating magnetic flux. When the size of
the bubble reaches a certain critical value, the bubble breaks
away from the weak point, losing part of the trapped
magnetic flux, and shifts along the linear defect more deeply
into the sample. At the weak point, a bubble with the flux of
the opposite sign starts blowing up; and so on. As a result, a
structure of macroscopic vortex droplets of alternating sign is
aligned along the defect, resembling beads (Figs 12b, 12c).

This effect of self-organization is reproduced and
observed at each weak point localized at a linear defect. The
above-described process of the formation of droplets resem-
bles the effect of generation of domain walls and Bloch lines in
ferromagnets [84-86] and the effect of pumping a magnetic
flux into type-I superconductors [87].

The pumping of bubbles is observed in a limited range of
amplitudes and frequencies of the magnetic field and only in
some range of temperatures. The region in which this
phenomenon exists in the (7, w) plane is shown in Fig. 13.
The region of temperatures in which this effect is observed is
12 < T < 30 K. At higher temperatures, the magnetic flux
penetrates easily into the HTSC bulk rather than moves along
the defect. The region of frequencies in which the bubbles
arise is from 10 to approximately 100-300 Hz (depending on
temperature).

The fact that the droplets are formed in some range of
field amplitudes is rather obvious. Indeed, for a droplet to be
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Figure 13. Region on the (7, ) plane in which the pumping of bubbles is
observed.

formed, the field amplitude must be sufficiently high for the
magnetic flux to approach close to a weak point. But if the
amplitude is too large, a weak point occurs behind the front of
the penetrating magnetic flux. In this case, upon the change in
the sign of the magnetic flux, vortices of opposite signs freely
approach the weak point and annihilate with the vortices
already existing there.

A model for the description of the effect of pumping-up of
bubbles was suggested in [80, 81]. The vortices moving along a
planar defect produce a magnetic field B, which depends on
the coordinate along the defect and on time. Outside the
defect, B, = 0. We assume that in the vicinity of a weak point
located at x = xp, superconductivity is suppressed to zero in
the region xy < x < xy + Ax. The planar defect intersects the
sample face at x = 0. The position of the magnetic flux front
at a given field amplitude is denoted by x;(H,). Let
X1 — Xo < Xp.

After the first half-cycle of the field variation, some
number of vortices fall into the weak point due to the
thermoactivational creep of the magnetic flux (TCMF) and
become trapped there. The TCMF rate is proportional to
exp (—U/kpT), where U is the height of the corresponding
potential barrier and kg is the Boltzmann constant. To move
out from the weak point, the vortices must overcome a higher
barrier U + AU, because the residence of vortices at the weak
point is energetically more favorable. The vortices can
accumulate at a weak point only if the ratio U/kgT is not
too large. If the temperature is too low, the TCMF rate is
small and no accumulation of vortices is observed, at leastin a
reasonable experimental time. On the contrary, for vortices
that accumulate at a weak point, it is necessary that
U+ AU > kgT. It is clear from this consideration why the
pumping of magnetic flux bubbles occurs only in a certain
temperature window.

Upon the change in the sign of the field, the front of the
penetration of opposite-sign vortices (antivortices) also
occurs at the position x;. The antivortices come into the
droplet due to the TCMF; the annihilation of opposite-sign
vortices prevents the growth of the droplet. Consequently, we
have to conclude that the pumping-up of a droplet is possible
only if the potential barrier U; for the introduction of vortices
into a weak point (i.e., for a flux with the same polarization as
in the case of the previously trapped flux) is smaller than the
barrier U, for the antivortices (i.e., for the opposite-polariza-
tion flux).

The barrier U consists of three terms: a contribution from
the pinning forces (U,), a contribution from shielding
currents (Uy), and a contribution from the stray magnetic
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field (Up), which arises due to the nonzero demagnetizing
factor of the sample. The contribution from the pinning is
independent of the mutual polarization of the vortices and
cannot therefore be responsible for the effect of the pumping
up of the droplets. This term grows rapidly with increasing the
distance between the weak point and the front of the flux.
Therefore, the observation of the pumping-up of the droplets
is possible only if the distance xo — x is sufficiently small. The
contribution to the barrier U,, which arises due to the
interaction of vortices with shielding currents, also includes,
in particular, the interaction between the vortices. Vortices of
the same polarization repel one another; vortices with
opposite polarizations are attracted to one another. Conse-
quently, this term stimulates the entering of antivortices into
the droplet and their annihilation. However, the interaction
between the vortices decays exponentially at distances of the
order of the London penetration depth A. For the B2212
HTSC in the ab plane, this distance is about 200 nm. In
experiments, the characteristic scale xo — x; exceeds 4, by
about three orders of magnitude (see Fig. 12). It is obvious
that the role of the quantity U, is insignificant under the
experimental conditions.

The contribution to the barrier from stray fields, Uy,
depends on the mutual orientation of the vortices in the
droplet and in the front of the entering flux (Fig. 14). By
analogy with domains in ferromagnets, the magnitude of
stray fields is smaller if the magnetic fluxes in the droplet and
at the front have opposite signs. Superconductors are
diamagnetic and their magnetic moments decrease when a
magnetic flux enters the sample. Consequently, Uy, is
negative, which leads to a decrease in the barrier. The
entering of fluxes into the droplet leads to a decrease in the
total magnetic moment of the sample; the entering of
antivortices and annihilation lead to a decrease in the
magnetic induction in the droplet and hence to an increase
in the energy of the stray magnetic fields. Therefore, precisely
the energy of stray fields, or the magnetostatic energy, is
responsible for the pumping of droplets.

(L W =N—
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Figure 14. Stray magnetic fields near a weak point (x = x¢) and near the
front of the magnetic flux (x = x;): (a) the directions of the magnetic
induction in the droplet and at the front are coincident; and (b) the
induction directions in the droplet and at the front are opposite.
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To illustrate, we consider the following simplified model.
Let the distributions of the magnetic field for the configura-
tions shown in Figs 14a, 14b be coincident except in some
region near the weak point. We let Hy(x) denote coincident
contributions to the magnetic field. The magnetic flux
trapped at the weak point produces field +Hj, (x), where the
plus sign corresponds to a flux—flux configuration and the
minus sign corresponds to a flux—antiflux configuration. The
Gibbs energy for these two configurations can be written as

B [Ho(x) + Hin(x)]> [Ho(x) + Hin(x)]H,
7= JVdV{ 8 ; 4n } 7

(61)

where the upper signs (pluses) correspond to the flux—flux
case and the lower signs (minuses), to the flux—antiflux case,
H, is the external field, H, = Hyo(x) as x — oo, and the
integration is performed over the entire space.

Let a small number of vortices (a small magnetic flux 6®)
move from a point x, which is close to x, to the weak point. In
this case, the field changes by SHy or H,y in the respective
flux—flux or flux—antiflux cases. The new distributions of the
magnetic fields are Hy + Hj, + 0Hy or Hy — Hj, + 0H,y.
Then the quantities Uy, in the two cases under consideration
are written as

Ui = Fuw(Ho, Hin, 0Hyr) — Frr(Ho, Hin, 0) , (62)
Uit = Far(Ho, Hin, 6Hyr) — Far(Ho, Hip, 0) .

We subtract the second equation from the first and neglect

terms that are quadratically small in 6&. Using (61), we then
obtain

dv

ym _ygm — il

ff af JV In

— (Hy — Ho) (8Hgr — 8Hyy)] -

[Hi (8Hyr + 8Hyy)
(63)

As is easy to see from the comparison of Figs 14a and 14b, the

inequality
dv dv
— OHj, — OHy¢ 64
.[V 4n "> JV 4n o (64
holds. The integral
dv
— (H, — H 65
J v 4n (H, o) (65)

has the order of the total diamagnetic moment of the sample,
which is much greater than the small contribution produced
by the term H;,. Therefore, Uf — U} < 0, which means a
pumping-up of bubbles.

3.5 Twisters

The process of magnetization of type-I superconductors in
crossed fields is quite peculiar because of the appearance of
vortices with different orientations of the magnetic flux. We
here note a nontrivial effect such as the collapse of magnetiza-
tion, or the suppression of the constant magnetic moment of
the superconductor under the effect of a transverse low-
frequency magnetic field [88-91].

In crossed fields, in the YBa,Cu3;O, HTSC, peculiar
dynamic structures are observed that are called ‘twisters’
[92, 93]. This effect has been investigated in much detail
experimentally [94-96)].

Twisters are usually observed in single-crystal samples
with a plate-like shape. At a temperature above T, the sample
is placed in a constant magnetic field Hy. in the plate plane
(the crystallographic ab plane). Then the sample is cooled to a
specified temperature 7' < T, and is placed in a transverse
magnetic field H, < Hg.. The transverse magnetic flux enters
the plate anisotropically: it enters to greater distances along
the in-plane field and to smaller distances across the in-plane
field (Figs 15a, 15b). The extent of the anisotropy depends on
the value of the in-plane field and on temperature. The greater
Hy is, the stronger the asymmetry. When the transverse field
varies between +Hy, and — H,,, a picture arises resembling the
formation of bubbles on defects described in Section 3.4.
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Figure 15. Magneto-optical images of the magnetic induction distribution
in a YBCO single crystal at 7= 36 K: (a) constant transverse magnetic
field Hy, = 1280 Oe; (b) asymmetric pattern of the penetration of a tilted
field; the constant field in the sample plane Hg. = 1250 Oe; the transverse
field Hy, = 250 Oe; along the field lines of the in-line field Hy. (applied
vertically in the figure), the flux penetrates much more deeply than across
the lines; (c,d) flux penetration patterns after several cycles of the
variation of the transverse field (—250 < H; < 250 Oe); (e) after cycling
in Hy, with a frequency of 100 Hz for 10 s. Dark and bright bands along the
longer sides of the sample show the distribution of the alternating
transverse magnetic flux trapped in the plate.

Near the edges of the plate (parallel to the in-plane field), a
gradual accumulation of the transverse magnetic flux occurs
cycle after cycle. After the band with the trapped flux reaches
some critical width, it breaks away from the plate edge and the
pumping of a band with a transverse flux of another sign
starts, and so on. (Figs 15c, 15d). With time, the bands
become numerous. They move to the plate center, where
they annihilate (Fig. 15d). Twisters are formed when the
transverse field amplitude exceeds some threshold value.
With increasing the field amplitude, the process of the
penetration of twisters into the crystal first becomes peri-
odic, but then, at greater amplitudes, becomes stochastic.
Twisters are observed in the temperature range from 20 to 70—
75 K in single crystals of YBa,Cu3;O, with a high and low
density of twins [94-96]. In HTSCs with a higher crystal-
lographic anisotropy (e.g., in BSCCO or YBa,Cus0,), no
twisters have been revealed.

The nature of twisters has not been understood comple-
tely. Supposedly, they are formed by helical Abrikosov
vortices (hence the name ‘twister’) that arise because of the
intersection of vortices lying in the ab plane and vortices
directed transversely to the plate, along the ¢ axis [92]. This
follows from the fact that twisters are absent in BSCCO,
where Josephson vortices lie in the plane and stacks of two-
dimensional vortices (pancakes) are formed in the transverse
direction. It is clear that the mechanism of the self-completion
of this dynamic structure (i.e., the formation of bands with
alternating polarization and their dynamics) should also
include the effects related to stray magnetic fields, as in the
case of bubbles or droplets (see the preceding section). The
construction of a theoretical model of twisters requires
further investigations.

4. Dynamic effects in ferromagnets

Ferromagnets have spontaneous magnetization; magnetic
domains in them arise without the application of an external
magnetic field. The domain structure in ferromagnets can be
equilibrium or metastable. The form of the equilibrium
domain structure can be found by minimizing the free energy
(although such a calculation is quite complicated in many
cases). Itis well known that the period of the domain structure

is determined by the balance of several components: the
exchange energy W., the magnetostatic energy Wi, the
energy of crystallographic anisotropy W,, and the Zeeman
energy Wy [97, 98]. The energy of exchange interaction
determines the mutual orientation of spins of closely spaced
atoms and leads to the appearance of a spontaneous
magnetization M, in macroscopic regions of the ferromag-
net. The energy of the crystallographic anisotropy determines
the direction of the spontaneous magnetization vector M.
The magnetostatic energy is the energy of stray fields.
Precisely the minimization of this energy determines the
partitioning of the magnet into domains. And, finally, in an
external magnetic field, a Zeeman term appears, which
describes the interaction of magnetic moments with the
external magnetic field.

Just as in superconductors, in the dynamics of rapid
magnetization reversal, states can form in ferromagnets that
dramatically differ from those that arise under quasistatic
conditions [99-105]. The appearance of such magnetic
structures changes the macroscopic characteristics of the
material, leading to magnetization jumps, increasing noise,
etc. The dynamic structures in ferromagnets are quite various.
Here, we describe only those that are analogous to some
dynamic magnetic structures in superconductors.

The examples of the transformation of a static domain
structure under the effect of a variable magnetic field are
shown in Fig. 16. As is known [98], a labyrinthine domain
structure (Fig. 16a), whose period is determined by the
material parameters and the thickness of the film, is formed
in films with a perpendicular anisotropy. In a variable field,
such a structure begins ‘breathing’ (its boundaries oscillate
synchronously with the field), and the structure can change its
type under certain conditions [99] (Fig. 16b). In the presence
of macroscopic point defects, spiral-like structures can appear
in ferromagnetic films that are not observed in the case of
quasistatic magnetization reversal [100, 101] (Figs 16c, 16d).
Such types of dynamic structures arise in a limited range of
amplitudes and frequencies of the exciting field, just like
magnetic flux droplets in HTSC:s (see Section 3.4). A detailed
description of the variety of spiral structures in ferromagnetic
films can be found in [100].

A closer analogy to the nucleation of macroscopic
droplets of magnetic flux in HTSCs is provided by the effect
of nonresonance generation of Bloch lines in films and thin
plates of iron garnets [106—110]. Figure 17a shows a Bloch
domain wall separating domains with antiparallel magnetiza-
tion vectors in the plate plane, which are parallel to the
domain wall. Three segments of the wall can be seen (the
directions of the magnetization in the center of the wall are

Figure 16. Transformation of the static domain structure under the effect
of a variable field in ferromagnetic films: (a) labyrinthine magnetic
structure without a field; (b) reorientation of the structure after the
application of a variable magnetic field; (c, d) spiral magnetic domain
structures arising upon the excitation of the films by a variable magnetic
field (borrowed from [100]).
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Figure 17. Variation of the structure of a domain wall under the effect of a
variable magnetic field directed along the easy axis lying in the plate plane:
(a) the wall prior to the switching-on of the field; (b) the wall moving with
the speed ~ 6 m s™'; (c) structure of the wall after a long-term excitation by
a variable field (density of Bloch lines increased severalfold); (d) an
enhanced dark segment of the wall (the arrow shows the position of the
point defect at the wall); (e) nucleation of a new segment of the wall at a
defect (white on black); (f) an overgrown segment of the wall (white).
Variation of the domain structure under the effect of a variable magnetic
field: (g) static structure; (h) after the switching-on of a variable field
perpendicular to the domain walls and to the easy axis; (i) the same region
of the structure after switching-off of the exciting field. The scale in (a)—(c)
is 100 pm; in (d)—(f), 20 pm; in (g)—(i), 200 um. Photos (d)—(f) are courtesy
of V S Gornakov.

opposite in the white and black segments). The application of
a variable magnetic field leads to the excitation in the domain
wall of small-amplitude oscillations of the Bloch lines,
synchronous with the field (shifts of the walls between the
segments, Fig. 17b); near point defects, local oscillations of
the magnetization vector are observed, also synchronous with
the field.

After many cycles of the variation of the external field, a
kink arises at the defect localized on the wall (Figs 17d, 17¢):
the magnetization vector in the domain wall changes sign. A
new segment of the domain wall is formed (Fig. 17f), which
grows with time and reaches some critical size, after which a
new segment of the domain wall is formed on the defect, now
with the other sign. The existing segments of the walls shift
and become denser, with some of them annihilating or leaving
the wall at the plate edge. As a result, a dense chain of
segments with alternating directions of the magnetization
vector is formed on the domain wall (Fig. 17c¢).

This effect is observed in a wide range of frequencies of the
exciting field if its amplitude is greater than some critical value
he. The effect exists at any orientation of the applied magnetic
field relative to the plane of the sample. The orientation
affects only the value of h.. The described process of the
generation of kinks leads to jumps of the magnetic suscept-
ibility and to increasing dissipation [106, 111].

In ferromagnets, a phenomenon similar to twister HTSCs
is also observed. Figure 17g shows a typical regular domain
structure in a plate of iron garnet with an in-plane anisotropy.
With the application of a variable in-plane magnetic field to
the plate, the domain walls and the fine structure of the walls
(Bloch lines) start moving (Fig. 17h). However, in a certain
range of the magnetic field amplitudes and frequencies [85,
109, 110, 112], a process of generation of new walls at the edge
of the plate starts (and at larger amplitudes, also in one or
several weak points of the sample); the formation of new walls
occurs in a time corresponding to many periods of the
oscillations of the exciting field, just as the above-described
generation of new Bloch lines in domain walls or as the
formation of twisters. The generation of walls is excited if the
amplitude of the variable field exceeds some threshold. The
threshold value depends on the frequency of the field and on
its direction; the rate and the regularity of the generation
depend on both the amplitude and the frequency of the field.
The dynamics of the process also resemble the dynamics of
the generation of twisters. The arising new walls push the
already existing walls into the bulk of the plate, and the
number of domains therefore increases (Fig. 17i).

If the amplitude of the variable field is of the order of the
threshold one, the generation of new walls occurs only rarely
and irregularly, and part of the newly formed walls collapse.
With increasing the amplitude, the generation becomes more
frequent and quasiperiodic, and the newly generated domain
walls are irreversibly shifted from the point of generation. A
directional drift of domain walls occurs [109]. With increasing
the field amplitude, new centers of generation of domain walls
arise, and the propagation of walls becomes irregular,
random. And, finally, at even greater amplitudes of the
variable field, the generation first occurs by discrete trains
and then disappears completely. The same picture is observed
upon the generation of twisters in HTSCs.

An analogous effect was also observed in films with
perpendicular anisotropy upon the pumping by a field with
a frequency close to the ferrimagnetic resonance [103]. It has
been shown numerically [113] that the formation of new
domains can be due to local flip-over of magnetic moments
when driven by a resonance field. An analogous process
possibly occurs upon the generation of new domain walls,
although the frequencies of the driving field are far from the
resonance frequencies required for wall motion.

Real crystals always contain defects, which result in
inhomogeneities in the concentration of the local magneto-
static field. On such defects, the process of the flip-over of the
magnetic moment and generation of pairs of walls (or Bloch
lines) can start, and magnetostatic fields then favor their
growth and stimulate the motion of the other walls to favor
the equalization of the domain structure period. As was
already noted, the origin of twisters has not yet been
clarified. The discernible analogy between these effects will
possibly facilitate the solution of this problem.

With a slow magnetization reversal of plates with a
perpendicular anisotropy, the domain walls grow, remaining
straight, but then, as the crystal becomes filled by them, they
undergo a bending instability (Figs 18a—18c); as a result, a
typical labyrinthine domain structure is formed (Fig. 18d).
However, in the case of a rapid switching of the magnetic
field, the wall growth scenario changes: the new magnetic
phase begins growing in the form of branching strips—
dendrites (Fig. 19). As was shown in [114], the dendrite-like
growing-in of domains is observed in films under a suffi-
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Figure 18. Evolution of magnetic domains in a film with perpendicular
anisotropy in the case of a slow decrease in the field from the exciting field
(91 Oe) to a minimum value Hyn: (a)—(d) Hpin = 47.6,35.7,18.5,and 1 Oe,
respectively.

1.0 mm

Figure 20. Domain wall straightened by a gradient field in a Yb3;FesOy;
film with perpendicular anisotropy and the development of a bending
instability as a result of a decrease in the gradient [115].

Figure 19. Domain structure of an iron garnet film with a moderate
anisotropy upon the evolution of the domain structure from the saturated
state: (a) saturation field Hy = 102 Oe; the image was taken in the field
H =23 Oe, the sweep frequency of the field f=25 kHz; (b) after
saturation to Hy = 61 Oe; the image was taken in the field H = 24 Oe,
the sweep frequency of the field f= 6.8 kHz [114].

ciently rapid field variation, when the domain walls grow-in
from an overheated state, i.e., with a significant time delay of
the flip-over of the magnetization with respect to the change
in the sign of the applied magnetic field. In this case, the
hysteresis loops are broadened compared with the quasistatic
loops, and the growing-in manifests itself as a giant jump in
the magnetization. The velocity of the growing-in walls is
close to maximum for a given material. This also suggests a
direct analogy with the dendritic instability in superconduc-
tors: the dendrites in superconductors cut their way only into
the superheated Meissner state and only in the case of a rapid
change in the external conditions (generating a sufficiently
high electric field). The velocity of growing-in of dendrites in
superconductors is also close to the theoretical maximum.

The theory of dendritic instability in superconductors is
well developed (see Section 3.2). It is known that this
instability has a thermal origin. The rapid growing-in of
magnetic domains appears to be also accompanied by
significant local heating, because the rapid magnetization
reversal necessarily causes dissipation. It is possible that the
analogy between the dendritic instability in superconductors
and in ferromagnets will allow understanding the mechanism
of the formation of dendritic structures in the latter.

As was already noted, in films with a perpendicular
anisotropy, the domains form a labyrinthine structure. This
structure arises as a result of the bending instability of domain
walls caused by the interaction of stray fields [98]. The
instability can be temporarily suppressed by either cooling
the sample in an in-plane field [86] or keeping one domain
wall straight in a gradient magnetic field [115]. In the first
case, the curving of the wall occurs upon partial magnetiza-
tion reversal; in the second case (Fig. 20), it occurs when the
gradient of the field becomes lower than the critical one [115,
116].

In our opinion, the bending instability has a certain
analogy to the development of macroturbulence in HTSCs
[61]. To describe the nucleation of a macroturbulence
instability in HTSCs, it suffices to use the hydrodynamic
approach [72]. However, the further development of macro-
turbulence should mainly be controlled by magnetostatic
interactions at the magnetization reversal front, as in ferro-
magnets. This analogy can also be useful for understanding
the dynamics of the developed phase of macroturbulence.

5. Conclusions

We have seen that instabilities of various natures can arise in
type-II superconductors in the mixed state. These instabilities
are consequences of the nonlinear electrodynamics of super-
conductors and of the temperature dependence of the super-
conductor properties. The instabilities of the superconductor
state vary significantly. They lead to the formation of
complex spatial magnetic structures, both stationary and
dynamic. The study of such processes not only is of great
interest from the standpoint of the physics of superconductiv-
ity, but also is of great applied importance. For example, just
the thermomagnetic instability restricts the current-carrying
capacity of commercial superconductors.

The various instabilities of the mixed state have been
studied in numerous experimental and theoretical works. Asa
result, the physical nature of many instabilities has been
studied sufficiently well. This concerns, in particular, the
thermomagnetic instability (magnetic flux jumps) and the
related dendritic instability. The origin of macroturbulence
has been clarified; it has been shown that a significant role in
the formation of spatial magnetic structures in the mixed state
(macroscopic vortex droplets on defects in HTSCs) is played
by stray magnetic fields and the thermoactivational creep of
the magnetic flux. At the same time, a number of dynamic
effects have not yet been given an appropriate physical
explanation. First and foremost, this concerns so-called
twisters (spatial magnetic structures observed in crossed
magnetic fields).

The formation of a spatially inhomogeneous magnetic
structure is characteristic of magnetically active media. The
best-known examples are domains in ferromagnets. Just as in
superconductors, in the process of rapid magnetization
reversal in ferromagnets, states that differ from those
observed in statics arise. Just as in superconductors, an
important role in the dynamics of magnetic structures
belongs to dissipation. Dissipation determines the character-
istic time of magnetization relaxation (velocity of motion of
vortices in superconductors, domain walls in magnets); it
determines the heating of the sample in nonstationary
processes. Both these factors can substantially affect the
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characteristic time of the instability development and the
spatial structure of the arising inhomogeneous states.

In this review, we emphasized the existing similarities
between the dynamic processes that occur under magnetiza-
tion reversal in ferromagnets and superconductors. An
analogy exists between the effects in ferromagnets such as
the formation of a labyrinthine magnetic structure and the
nonresonance generation of Bloch lines in films and thin
plates, on the one hand, and the generation of vortex droplets
on defects in HTSCs, on the other hand.

One more example of such an analogy are phenomena
that occur in crossed magnetic fields— twisters in HTSC
plates and the generation of domain walls in iron—garnet
plates with an in-plane anisotropy. It is possible that a
physical analogy exists between the nature of the dendritic
instability in HTSCs and the effect of the branching
growing-in of domain walls in ferromagnets under rapid
magnetization reversal, which, in contrast to the dendritic
instability, has not yet obtained an appropriate theoretical
description. An analogy is also possible between the well-
studied bending instability of domain walls in ferromagnetic
films with a transverse anisotropy and the development of
macroturbulence in HTSCs after the pumping of vortices at
the magnetization-reversal front, which leads to the subse-
quent relaxation of the unstable state via the breakthrough
of vortices through the front at the bends. These analogies
can be useful for a deeper understanding of the above-
described important (and by no means simple) phenomena
that govern the macroscopic characteristics of magnetoac-
tive media.
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