
Abstract. This methodological note introduces the concept of
and calculates percolation transition characteristics for a Sier-
pinski carpet with hybrid (finite±infinite) ramification. Recur-
rence formulas for calculating the force fields of Sierpinski
prefractals of an arbitrary generation are obtained. The possi-
bility of using the obtained results in the model of oscillatory
interacting different-scale inner boundaries of a heterogeneous
material is discussed.

1. Introduction

Being a two-dimensional analog of the Cantor ternary set, a
Sierpinski carpet, as is well known [1], can be constructed
following a simple algorithm: each side of a square of a unit
area is divided into three equal segments; the lines drawn
through the ends of the segments parallel to the sides form
nine small squares, the middle of which is removed. The
procedure is repeated ad infinitum on each of the eight
remaining squares [1, 2]. The set obtained represents a
regular fractal with the self-similarity dimension
D � ln 8= ln 3 � 1:892789:::.

Small squares (cells) obtained at any arbitrary step of this
iterative procedure are considered to be connected if they
share a common edge segment; in other words, the Sierpinski
carpet is infinitely ramified, i.e., the problem of dividing it
into parts can be performed by removing an infinite

(countable) set of points. (We note that from the topological
standpoint, the Sierpinski carpet is a one-dimensional object
with a continual ramification index at each of its points.)

The specific value of ramification is not important, but
``certain properties of fractals with finite and infinite ramifica-
tion are essentially different'' [2]. ``For us, the most interesting
property of such fractal lattices is that they allow a true
percolation transition in contrast to lattices with finite ramifica-
tion, on which the percolation path is destroyed if a finite
number of nodes is removed'' [2]. Parameters of the percolation
transition on the Sierpinski carpet are studied in Ref. [3].

The proposed modification of the Sierpinski carpet
consists in assuming that the cells having a common edge or
vertex are connected. We refer to this analog of the known
fractal as a Sierpinski carpet with hybrid ramification.
Apparently, the modification of rules defining the connected-
ness leads to a change in percolation parameters of an infinite
cluster of carpet cells.

2. Percolation on a hybrid ramified
Sierpinski carpet

Following the algorithm described above, we divide any cell
of the Sierpinski carpet at an arbitrary iteration step into nine
squares and remove the middle one. We determine the
probability p 0 that a cell belongs to a percolation cluster on
the carpet, i.e., the probability that there is a `flow' through
the squares composing it, each belonging to an infinite cluster
with the probability p. Since the renormalization group
transformation [4] should in our case reflect the connected-
ness, the number of suitable combinations in the arrangement
of squares in the cell is less than the combinatoric one.
Therefore, the renormalization-group transformation for a
carpet with hybrid ramification takes the form

p 0 � R� p� � p 8 � 8p 7�1ÿ p� � 27p 6�1ÿ p�2

� 44p 5�1ÿ p�3 � 38p 4�1ÿ p�4 � 8p 3�1ÿ p�5 ;
with a nontrivial stationary point pc � 0:5093, which defines
the percolation threshold.

The index of the correlation length of the percolation
system can be found from the relation n � ln b= ln l � 1:801,
where b � 3 is the number of squares along the cell side and
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l � �dR=dp�j p�pc . The critical exponent of the order para-
meter b is determined from the equality D � dÿ b=n, where
the dimension D of the percolation cluster can be approxi-
mated by that of the Sierpinski carpet; for the spatial
dimension d � 2, b � 0:193. (To verify the values obtained,
we note that in the case of the standard Sierpinski carpet,
n � 2:194 and b � 0:234, according to our data, while
n � 2:13 and b � 0:27, according to the results in Ref. [3].)

Other critical exponents can be found from the system of
equalities for the two-exponent scaling [2]: the index of mean
length of a finite cluster is g � ndÿ 2b � 3:216, the critical
exponent for the analog of specific heat is a � 2ÿ nd �
ÿ1:602, and the index related to the largest size of finite
clusters is D�ndÿ b � 1:809.

3. Model of the force field
of the Sierpinski square

We consider a `wire' model of the Sierpinski carpet. Let the
initial square frame be divided by four wires into nine equal
squares. The procedure is repeated many times on each of the
8m frames that are constructed in the subsequent step (the
central ones are removed). We also assume that on each side
of frames of an arbitrary `generation', there are point sources
distributed with a line density l and generating a field with the
strengthE � 1=r 2.We find the analytic form of the force field
generated by the multiscale network of the internal edges of
the Sierpinski square of an arbitrary subdivision step m.

To simplify the expressions, we place the origin at the
point where the field strength is sought, with axes aligned
parallel to the square sides. We assume that the origin does
not lie on any line containing edges of cells of the carpet of the
mth generation. Let the carpet center be at the point (x; Z).

We set

Ex � Xm�x; Z�; Ey � Ym�x; Z� ;
x�n; p� � x� �ÿ1�np ; Z�n; p� � Z� �ÿ1�np ;
h � H

3m
; m 2 N ;

A�u; n� � kl����������������
u 2 � n 2
p ; B�u; n� � kln

u
����������������
u 2 � n 2
p ;

where k is a coefficient depending on the selected set of units.
Then,
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For physical applications, it seems natural to place the
origin at the center of the Sierpinski carpet and compute the
field strength at an arbitrary point with coordinates (x; y).
Formally, for such a parallel translation it suffices to
substitute ÿx and ÿy for x and Z in functions Xm and Ym.

4. Conclusions

A possible application of the results obtained is the descrip-
tion of oscillatory interaction for multiscale internal bound-
aries in a heterogeneous material. The statistical self-
similarity in the arrangement of the material internal
boundaries leads to the formation of energy conditions
favoring the emergence of larger-scale boundaries. In turn,
the deformation fields associated with these boundaries act
on smaller-scale heterogeneities and induce their further
growth. This happens synchronously across all scales [5±7].
The simplest model analogs of such networks of internal
boundaries can be the fractals like the Sierpinski carpet or the
Menger sponge, modified with the help of an affine map.

A formal stochastic model for the interaction of structure
heterogeneities of various scale levels was explored in [7, 8].
The structure of the material was modeled by an open
dynamical system with three interacting scale levels of
heterogeneities, and its evolution was described by the
system of bilinear iterative equations

xn�1 � xn ÿ kxy px
2
n � kyx qy

2
n � xin ;

yn�1 � yn � kxy px
2
n ÿ �kyx � kyz� qy 2

n � kzyrz
2
n ;

zn�1 � zn � kyz qy
2
n ÿ �kzy � kout� rz 2n ;

8><>:
where x, y, z are the dynamical variables defining the
potential energy of the level, and xin defines the energy of
external action. The coefficients ki j describe the fraction of
energy transferred between heterogeneities of different scales,
the coefficients p, q, and r describe its fraction spent to
restructuring, fki jg and fp; q; rg 2 �0; 1�, and fx; y; zg 2 R�.

The character of the evolution of this system as a function
of energy supply was studied in Refs [8, 9]. It is shown there
that for small values of the parameter xin the system has a
stationary state, while as in xin increases, two variants of the
system evolution become possible: the first one follows the
Feigenbaum scenario, and in the second one, a situation
analogous to the Hopf bifurcation occurs after a periodic
behavior. The further increase in xin leads to a bifurcation
that leads to a chaotic behavior.

The coefficients in the above system of equations should
characterize specific features of the material structure. The
estimation of their numerical values in Refs [8, 9] relies on
maximally general assumptions stemming from the analysis
of the physical situation. Their more precise definition can
presumably be found by using information on the structure
and properties of internal boundaries.
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