
Abstract. The basic principles of electrohydrodynamics (EHD)
are reviewed, including governing equations and boundary con-
ditions, the applicability of EHD models, and averaged equa-
tions in alternating external fields. Dimensionless criteria for
key aspects of electric and EHD processes are given. Experi-
mental data on and theoretical treatments of basic EHD phe-
nomena, such as transient processes, sound waves in an electric
field, EHD instabilities, EHD flows, and EHD heat exchange,
are discussed.

1. Introduction

Electrohydrodynamics (EHD) constitutes an interdisciplin-
ary science encompassing such tightly entangled branches as
hydrodynamics, electrostatics, electrochemistry, and thermo-
physics. The object of EHD research is weakly-conducting
fluids (liquid dielectrics, hydrocarbon oils and fuels, etc.)
having as low a conductivity as s4 10ÿ7ÿ10ÿ12 Oÿ1 cmÿ1.
Nevertheless, it is the electric conduction that underlies a

number of remarkable phenomena, such as EHD flows and
the stabilization and destabilization of jets and droplets.

Although EHD flows have been known since Faraday's
times, the intensive development of EHD began only in the
1960s, both in theUSA (Melcher's group [1, 2]) and in Europe
(French, Spanish [3±6], and other [7, 8] research centers). In
the USSR, EHD developments were based at the Institute of
Mechanics, Moscow State University [9], and Kharkov State
University [10]; they were focused on theoretical aspects of
EHD from the standpoint of mechanics. Extensive EHD
studies using methods of applied physics were conducted at
the Institute of Applied Physics, Moldavian Academy of
Sciences [11], and by G A Ostroumov's scientific school at
Leningrad State University [12]. At present, these investiga-
tions are being successfully continued in the Research and
Educational Center, Saint Petersburg State University [13].
Certain EHD issues concerning the stability of nonuniformly
heated low-conducting fluids and retention of bubbles and
droplets by an electric field were investigated at Perm State
University [14±16]. Specialists interested in breakdown
phenomena have done a large amount of work on electro-
physical processes induced in dielectric fluids by high-voltage
fields [17±21]. Results of EHD research for the period from
1960 to 2000 are summarized in several books [22, 23] and
reviews [24±26].

Electrostatic technologies are currently well known and
found wide application in such areas as fabrication of thin
filaments and capillaries [27, 28], electrostatic painting [1] and
dust catching [29], and inkjet printing [30]. Attempts to create
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EHD pumps [11, 13, 22] and EHD thermostatic technologies
[8, 11] have good prospects of success.

Nevertheless, many electrophysical and elelectrohydro-
dynamic effects remain unanticipated and unexplained to this
day. For example, the free surface in a cylindrical capacitor is
attracted to the central electrode in the low-field region, and
repulsed from it in the high-field region [31]. Persistent
dimple-like deformations are formed on an initially flat
charged surface [32] that, therefore, deflects in the opposite
direction to the surface force action. Disperse particles near
an electrode imbedded in a liquid dielectric execute peculiar
oscillatory motion, being attracted to and repulsed from it
[12]. An unexpected observation is the clustering of charged
disperse particles (glass spheres) in low-temperature low-
pressure plasma [33]. The physical mechanism of such
clustering remains to be elucidated and an analysis of cluster
stability is needed, which might be analogous to the known
Earnshaw theorem on the instability of equilibrium state of a
system of charges [34]. In biology, the role of an electric
discharge in the initiation of egg division for cloning remains
enigmatic [35]. The standard explanation that a micro-
discharge is an equivalent to the process of egg penetration
by a sperm is unconvincing, because the physicochemical
processes underlying the two phenomena are different. One
cannot help mentioning the phenomenon of ball lightning
that is always in the focus of attention [36]. This list can be
continued, but the above examples seem to be enough to
illustrate the poor knowledge of electrophysical and electro-
hydrodynamic effects and the necessity of their further
investigation. It should be noted that the unpredictability of
many EHD effects is due to the complicated nonlinear
character of physicochemical processes, making it difficult
to study them.

The present review is designed to draw up a picture of
development of EHD effects in liquid dielectrics within a wide
range of electric field strengths based on the classical concepts
of physicochemical processes in a bulk and at the liquid±
electrode or liquid±gas interface. The review extends the cycle
of previous publications [24, 25] concerning electrophysical
and electrohydrodynamic properties of liquid dielectrics and
the development of relevant applications.

2. System of electrohydrodynamic equations
and boundary conditions

2.1 Electrohydrodynamic (EHD) approximation.
Basic system of EHD equations
In the EHD approximation, radiation emitted by moving
charges is neglected and the electric field energy is assumed to
be much higher than the magnetic field energy. For practical
purposes, the conditions of nonrelativistic approximation
V5 c and medium density l5L (V is the velocity, l is the
mean free path, L is the characteristic overall size) should be
supplemented by the EHD approximation conveniently
written down in the form of inequalities

eoL
c

5 1 ;
sL
ec

5 1 ; �1�

where e is the relative permittivity, s is the medium
conductivity, o is the external electric field frequency, and c
is the speed of light. The first inequality is referred to as the
electrostatic approximation condition, while the second one
defines the smallness of the magnetic energy compared with

the electric one (i.e., currents in the medium are so weak that
the magnetic field they induce may be disregarded).

The system of EHD equations can be written out in
different forms. The application of the apparatus of irrever-
sible thermodynamics [37, 38] leads to a rather cumbersome
set of equations taking account of small additional terms
describing thermo- and barodiffusion, the electrocaloric
effect, etc. In the case of low-conducting media, such as
liquid dielectrics and weakly ionized dense gases, the basic
set of equations is usually written in the (SI system) form [1±
12]

r
�
qVi

qt
� Vk

qVi

qxk

�
� q

qxk
�pik � Tik� � r fi ;

qr
qt
� qrVi

qxi
� 0;

�2�
qee0Ei

qxi
� q ; Ei � ÿ qj

qxi
;

qq
qt
� qji
qxi
� 0 : �3�

Here, r is the medium mass density, Vi are the velocity
components, fi is the mass density of external forces, pik and
Tik are the components of mechanical and Maxwell stress
tensors, Ei and j are the electric field strength and potential,
q is the volume charge density, ji denotes components of the
total electric current density j, e0 is the electric constant, and i,
k � 1, 2, 3.

Equations (2) are mechanical ones: the first equation
defines the balance of momenta at an arbitrary point of
the medium, while the second is the continuity equation.
Relations (3) are electrostatic equations.

The system of equations (2), (3) is closing with the help of
usual relations

pik � ÿpdik � tik ; Tik � ÿ
�
1

2
ee0E 2 ÿ pstr

�
dik � ee0EiEk ;

pstr � e0
2
r
qe
qr

E 2 ;
�4�

j � j � � qV ; �5�

where p is the mechanic pressure, tik denotes components of a
viscous stress tensor, pstr is the striction pressure, j � is the
migration current, and qV is the convective current.

2.2 Thermodynamics of liquid dielectrics.
Internal energy balance
In the case of a nonuniformly heated fluid, the equation for
internal energy balance is needed. It is recognized, when
defining the thermodynamic system as a medium� field
system, that the energy balance of the small system element
in terms of specific quantities is written out in the form [38, 39]

r du 0 � rT dsÿ rp 0 d
�
1

r

�
� E dD : �6�

Here, D is the electric induction vector, T is the medium
temperature, u 0 and s are the internal energy and entropy per
unit mass of the thermodynamic system, p 0 is the sought after
parameter having the dimension of pressure [see formulas (8)
and (10)].

In a multicomponent medium, relation (6) is conveniently
represented in the form

r du � rT dsÿ r~p d

�
1

r

�
� EdP� r

Xk
i�1

mici dci ; �7�
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where u � u 0 ÿ e0E 2=2r, ~p � p 0 � e0E 2=2, P is the polariza-
tion vector, mi is the chemical potential per unit mass of the
medium, ci is the concentration of the ith component
(ci � ri=r, ri is the mass density of the ith component), and
k is the number of components (index i � k refers to the
carrier fluid).

In relation (7), by u and s are meant the specific internal
energy and entropy, respectively, of the medium alone,
excluding the field. The introduction of free energy density
F � F�r;T;E; c1; c2; . . . ; ckÿ1� � uÿ EP=rÿ Ts into for-
mula (7) yields

dF � ÿs dTÿ rp� d
�
1

r

�
ÿ P dE

r
�
Xkÿ1
i�1

zici dci ; �8�

where zi � mi ÿ mk, and p� � ~p� EP.
Integration of Eqn (8) leads to F�F0� FE, u�u0� uE,

p� � p� pE, s � s0 � sE, and zi � z0i � zEi, where the terms
u0, s0, and z0i are field-independent. Dielectric constant in
liquids normally depends on density and temperature alone; it
is described, for example, by the Lorentz±Lorenz formula [34]
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4p
3

X
i
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where b0 and m are the polarizability and mass of the carrier
fluid molecules, and bi is the ion polarizability of the ith
component. In this case, one obtains
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2
:

The internal energy balance can be found using the
entropy balance equation. To this effect, the energy balance
equation for the whole thermodynamic system (medium�
field) is postulated. The system being closed, the energy
balance equation must have a divergent form; based on
physical reasoning, it can be written out in the form [38]
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Here, q, S � E�H are the heat flux density and electro-
magnetic energy density vectors, ui and Ii are internal energy
mass density and mass flux density of the ith component, ei
denotes Cartesian unit vectors, and pE is the polarization
pressure. Further on, using the kinetic energy balance
equation
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and the identity
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we obtain from equation (11) the internal energy balance
equation that is transformed, after simple rearrangements, to

the standard form [37]
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Here, d=dt � q=qt� VH is the total derivative, _xT is the Joule
and viscous heat release, and _xP is the heat release due to
medium repolarization. It should be noted that frequency
limitation (1) holds up to 109 Hz; however, the assumption of
instantaneous relaxation of polarization is invalid in the
frequency range of 103 Hz. This results in medium heating
due to dipole rotation. Then, dielectric loss is written as

_xP � 0:5oee0E 2 tanj ; �13�

where tanj is the tangent of the dielectric loss angle [17, 18].
Combining Eqns (7) and (12) leads to the entropy balance

equation coinciding with the one in monograph [37] that
provides a basis for the derivation of closing relations for
thermodynamic fluxes q, Ii, pi j by standard methods of
irreversible thermodynamics. Finally, equation (12), on the
assumption of u0 � u0�T �, q � ÿlHT, becomes the form of a
heat conduction equation taking into account the dielectro-
caloric effect [the term r d�TsE�=dt] and heat release due to
medium compressibility and various physicochemical pro-
cesses.

For multicomponent media, such as liquid dielectrics, one
has u0 �

Pk
i�1 ui 0ci, where u0i is the internal energy of the ith

component. Further on, using the ion component balance
equation [37, 40]

r
dci
dt
� ÿdiv i �i � _xi ; �14�

where i �i stands for partial densities of particle fluxes (see
Section 2.3), and taking account of ck � 1, ci 5 1,
i � 1; . . . ; kÿ 1 and the thermodynamic relation
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divV� _xT � _xP � _xx ; �15�

_xx � ÿ
Xk
i�1

ui 0 _xi ; �16�

where _xx is the heat release due to chemical reactions, and cv is
the specific heat at a constant volume. In particular, for a
monomolecular reaction of ion pair decomposition (see
Section 3.2), one obtains

_xx � ÿh0 _x ; h0 � u10 � u20 ÿ u30 ; �17�

where h0, _x are the thermal effect and the decomposition
rate, respectively, u30 is the internal energy of ion pairs, and
u10 and u20 are the internal energies of monoions (reaction
products).
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2.3 Contact processes. Problem of boundary conditions
In order to describe electrical conduction of multicomponent
media, partial densities of ith component fluxes are intro-
duced, i �i , such that j � �Pi ei i

�
i (hereinafter, the symbol

P
i

denotes summation over all ionic components). The fluxes i �i
are given by the following kinetic relations

i �i � ÿDiHni � �sign ei� biniE ; �18�

where Di and bi are the coefficients of ion diffusion and
mobility, respectively, and ei and ni are the charge and the
concentration of the ith sort of ions.

The balance equations for concentrations ni of ion
components are determined by continuity equations with _xi
sources (see, for instance, books [37, 40]):

qni
qt
� div �i �i � niV� � _xi ; �19�

where _xi depends on chemical reactions between the charged
components (see Section 4.2).

Determination of boundary conditions for equations (19)
is one of the most difficult problems in electrophysics.
Formulation of universal boundary conditions in EHD is
impossible due to the interference of various physical and
chemical processes that may occur in the high-voltage field
region, depending on the properties of the electrode surface
and the fluid. From the mathematical standpoint, there are
two approaches, with partial currents i �i in one of them and
concentrations of the injected ionic components in the other
specified at the boundaries. The choice of the boundary
conditions requires a thorough investigation of contact
processes, which accounts for the aforementioned difficulty.
Let us consider certain generally accepted models of injection
processes.

2.3.1 Electron emission. Strong electric fields initiate two types
of electron emission from the surface of metallic electrodes
[41, 42].

Emission of the first type is related to lowering the
potential barrier at the metal boundary by DUE; this quantity
is calculated in the following way. Let r0 be the characteristic
atomic size. The potential energy of an electron at distance
x4 r0 is found taking account of the image force potential as
[41] P � U0 ÿ DUE�x�, where DUE�x� � e 2=16pee0x� eEx,
with x being the coordinate directed from the metal surface to
the interior of the liquid. Function DUE�x� passes through a
minimum at x� �

���������������������
e=16pee0E

p
. Hence, DUE � DUE�x�� �

e
�������������������
eE=4pee0

p � FE, and field-amplified electron injection is
governed by the Schottky law

j � j0�T � exp FE

kBT
; FE � e

������������
eE

4pee0

r
; �20�

where j0�T � is the thermionic current governed by the
Richardson±Dushman expression

j0�T � � AT 2 exp

�
ÿ Fm

kBT

�
:

Here, A � A0�1ÿ �r�, where �r is the coefficient of electron
reflection from the metal±vacuum interface averaged over
energies,A0 � 120:4A cmÿ2 Kÿ2, andFm is the electronwork
function of a metal. The value of coefficient A, essentially
dependent on surface characteristics (the presence of oxide

films, adsorbed ions, defects, pores, etc.), lies in a range of
15ÿ350 A cmÿ2 Kÿ2 [41]. The metal work function varies
from 2.2 to 4.5 eV, with the lowest values in alkali metals
(LiÐ2.5 eV, NaÐ2.3 eV, KÐ2.2 eV) and the highest ones
in typical metals (Cu, AgÐ4.5 eV, AuÐ4.9 eV, AlÐ4.2 eV,
FeÐ 4.4 eV, WÐ 4.5 eV). At room temperature,
kBT � 1=40 eV.

Because factor exp �ÿFm=kBT � takes extremely low
values [on the order of exp �ÿ80� � 10ÿ35], the thermionic
currents are practically absent at room temperature. A
decrease in potential for nonpolar dielectrics �e � 2:2� is
only FE � 0:08 eV, even at breakdown voltages of
E � 107 V mÿ1.

This means that Schottky injection into a liquid dielectric
plays an important role only in the case of extremely lowwork
functions, e.g., in the presence of adsorbed layers or
metallized oxide films [41]. As a matter of practice, the
surfaces of metallic electrodes are almost always coated with
oxide films. Oxides of themost widespreadmetals have rather
high work functions (copper oxidesÐ1.8±5.15 eV, ironÐ
3.4±3.8 eV, titaniumÐ3.0±6.2 eV, zincÐ3.9±5.0 eV, AlÐ
3.8±4.7 eV [32]). Therefore, it can be concluded that in the
absence of charged adsorbed layers the Schottky injection
from the cathode to a liquid dielectric in pre-breakdown
electric fields is insignificant. This inference is confirmed by
the data on volt±ampere characteristics (VACs) that, as a
rule, show quadratic dependence [13, 24] under conditions of
fully developed electroconvection.

The second type of electron emission observed in strong
fields (E > 103 kV cmÿ1) covers cold electron emission from
the cathode, the currents of which are described by the
Fowler±Nordheim law

j � AE 2 exp

�
ÿB

E

�
: �21�

In electrohydrodynamics, the cold electron emission has
influence only in the case of very sharp-pointed negative
electrodes regarded in applied EHD as inefficient injectors
unable to maintain fairly well-developed electroconvection.

2.3.2 Ion injection.Once physically adsorbed ions are retained
at the metal surface by image forces, ion injection in strong
fields is feasible from both the cathode and anode [43].
Generally, the surface ions may be generated in reversible
redox reactions, e.g., X� eÿ $ Xÿ at the cathode. Here, X is
the electron acceptor that is, as a rule, the chemically active
part of a molecule (iodine and bromine atoms in hydrogen
halides like iodobenzene and bromobenzene, respectively) or
I2 molecules in nonpolar hydrocarbon dielectric solutions
[44±46]. The direct and reverse reactions are characterized by
rate constants kX1 and kX2, respectively. Their calculation in
the general case is an extremely difficult task due to, first, the
lack of information on the real surface structure (the presence
of defects, roughness, films, etc.) and, second, the necessity of
taking into account effects of the double electric (diffusion)
layer, the structure of which is generally unknown.

The following line of reasoning is based on general
theoretical concepts and models. There are two different
reaction channels. In the absence of an external field (or in
weak fields), electron transitions are due to the overlap of
electron orbitals [47]. Such cases are usually associated with
strong chemosorption of Xÿ ions. In strong fields, electrons
are `pulled out' from the conduction band to form two-

468 A I Zhakin Physics ±Uspekhi 55 (5)



dimensional electron clouds [48±51] with a surface concentra-
tion nse. In this case, the rate of direct reaction X� eÿ ! Xÿ

is expressed as _x � hVeseinsecX [52], where cX is the
concentration of neutral atoms X, and Ve and se are the
electron capture rate and cross section (angle brackets denote
averaging over electron velocities). Hence, rate constant kX1

has the form

kX1 � hVeseinse : �22�

In both cases, electrode surface concentrations ni of the
charges being injected can be specified as functions of the
electric field strength at the electrode. By way of example, for
reaction X� eÿ $ Xÿ one has [23, 53]

ni � nc�E � � kX1cX
biEloc � kX2G�Eloc� ; �23�

G�Eloc� � eEloc

kBT

�1
r0

g�x�
g�r0� dx ; g�x� � exp

P�x�
kBT

;

P�x� � ÿeEloc �Pi�x� ; Pi�x� � ÿ e 2

16pee0x
:

Here, bi and r0 are the mobility and the effective size of Xÿ

ions, Pi�x� is the image force potential, Eloc is the local field
strength on the electrode surface that may be essentially
different from the mean surface field E [25]. For instance, it
may be assumed in the case of rough electrodes that the
electric field initiates injection processes at spikes of micro-
inhomogeneities. In this case, it is claimed that Eloc � bsE,
where bs is the field amplification factor having the order of
10ÿ103 [54].

Relation (23) actually describes two processes, namely,
electronic transition to the adsorbed electron acceptor X, and
the subsequent activation transition of an Xÿ ion from the
physical adsorption zone on the electrode surface to the bulk
of the liquid under the action of the external electric field.
Assuming that biEloc 5 kX2G�Eloc�, formula (23) yields the
injection function of physically adsorbed charges on themetal
surface [55]:

ni � n0
G�Eloc� ; �24�

where n0 � kX1cX=kX2 is the constant concentration of the
adsorbed ions.

It is worth noting that function G�Eloc� for point ions
�r0 ! 0� is transformed to the modified zero-order Bessel
function: G�Eloc� ! I0�Eloc�, having exponential asymptotics
analogous to Schottky injection (20) in the strong field region.

It is commonly supposed [41] that relations (20), (21),
similar to (23), (24), hold true in idealized cases where the
electrode surface is flat and free of defects. In real situations,
even thoroughly polished electrodes have roughnesses [56]
and defects that serve as adsorption centers making injection
processes possible (Fig. 1). Formation of the injection centers
is complicated by the presence of active components capable
of electrochemical transformations. For instance, peculiar
spiral EHD movements spreading out from fixed centers are
known to occur in thin layers of ferromagnetic colloid
stabilized by oleinic acid [57, 58] (Fig. 2). We believe the
geometric centers of these structures to be sites of electro-
chemical injection of the charges that induce either EHD
movements or autowave chemical reactions [59]. It is
noteworthy that the formation of injection centers on

electrode surfaces is typical of surface electron processes, as
evidenced, for example, by the results of electron emission
microscopy [41]. Also, it is worth mentioning that the
impurity adsorption on the electrodes strongly depends on
the electrode material, electric field strength, and current
passage time. For example, the ampere±time characteristics
of transformer oil solutions containing iodine in a flat
capacitor suggest that conductivity in the case of copper
electrodes at a mean field strength ofE � U=d � 7:3 kV cmÿ1

decreases more than tenfold for 4 hours. In the case of
titanium electrodes, it does not change during the same time
[60].

Although formulas (20), (21), (24) have been derived for
idealized conditions, they are in satisfactory agreement with
experimental evidences. In such a way, as shown in Ref. [25],
the surface electron concentration nse induced by a high-
voltage field is proportional to the local strength squared,
nse � E 2

loc, in agreement with both quadratic VACs and EHD
flow velocities. In this case, the so-called linear injection law
follows from expression (24) at the low reverse reaction rate
[25, 53]:

ni � ZcE ; �25�

where Zc is the injection coefficient at the cathode.
There is one more, very specific, type of ion injection from

ionite membranes into polar fluids. Such injection is realized
when dielectric constant of the fluid is so high that ions are
`pulled out' of the membrane into the bulk of the liquid
dielectric. In this case, the concentration of the ions being
injected is assumed to be constant at the membrane, and the
injection itself is called autonomous [3±5].

3. Free surface in an electric field

In studies of surface effects, the finite surface conductivity is
normally disregarded and in addition the surface tension

26 nm
0

2 mm
2 mm

Figure 1.Atomic-forcemicroscopy (AFM) image of a thoroughly polished

copper surface (roughness size is not more than 20 nm) [56].

5 mm

Figure 2. Pictures of pulsed EHD movements in the thin layer of a

ferromagnetic fluid: the scale and shapes of spiral structures (taken from

Refs [57, 58]).
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coefficient is assumed to be independent of the electric field.
In what follows, we consider justification of these assump-
tions and discuss discrepancies in the formulation of surface
charge balance on a free surface (see, for instance, Refs [1, 2,
23, 38, 61]).

3.1 Charge balance on the free surface.
Surface conductivity
The balance equation for the concentration nsi of surface
charges of the ith component is derived by a standard method
[62]. First, the balance of the number of charges is written
down in the integral form for a material volume DW
encompassing a small part of the surface DG in the local
system of coordinates (Fig. 3):

d

dt

�
DG

nsi dS � ÿ
�
DL

i �sint dlÿ
�
DS

i �i n dS�
�
DG

_xsi dS ; �26�

where DL is the contour encircling DG, nt is the surface
external normal to DL, DS is the DW volume boundary, n is
the external normal toDS, i �si and i

�
i are migration surface and

bulk fluxes, and _xsi is the source of surface charge generation.
Then, using the formula for the derivative of the material
volume [63±65], namely

d

dt

�
DG

nsi dS �
�
DG

�
qnsi
qt
� divs �nsiVt� ÿ 2HnsiVn

�
dS ;

and the Gauss±Ostrogradsky formula�
DL

i �sint dl �
�
DG

divs i
�
si dS ;

after shrinking the volume DW to a point, we obtain from
formula (26) the following balance equation for the surface
charge concentration:

qnsi
qt
� divs �i �si � nsiVt� ÿ 2HnsiVn � ÿ�i �in� � _xsi : �27�

Here,Vt is the tangential velocity component at the surface,H
is the mean surface curvature, and Vn and iin are the normal
components of vectors V and ii.

The question arises as to the determination of surface
fluxes i �si and sources _xsi for each ion type. In the case of ion
activation motion, the surface flux is found in analogy to
relation (18):

i �i � ÿDsiHsnsi � �sign ei�bsinsiEt ; �28�

where Dsi and bsi are surface diffusion and mobility coeffi-
cients, respectively, Et is the tangential field component, and
Hs is the surface gradient [63, 64].

Sources _xsi can be determined by introducing surface ion
pairs and dissociation±recombination interactions. However,
there are important peculiarities in the determination of
sources xsi, which are related to the catalytic activity of the
surface [66]. Specifically, the surface may be the site of
chemical and adsorption±desorption processes involving
bulk matter. For this reason, determination of _xsi sources is
an important and, generally speaking, rather difficult task of
physical chemistry.

Defining the total surface charge qs �
P

i einsi, current
j �s �

P
i ei i

�
si, and source

_xs �
P

i ei
_xsi leads to the total charge

balance equation derived from Eqn (27):

qqs
qt
� divs � j �s � qsVt� ÿ 2HqsVn � ÿ� j �n � � _xs : �29�

This equation was assayed without considering the terms
2HqsVn, _xs in numerous examinations of EHD effects on
charged free surfaces (see, for instance, Refs [2, 61]). Clearly,
the curvature term can be disregarded in the case of flat
surfaces. However, the surface curvature may be a crucial
factor in the case of curved surfaces (jets, droplets, etc.),
especially in studies of nonlinear effects or vibrational
perturbations.

Assuming the surface diffusion coefficients of each
component to be identical and taking account of formula
(28), we arrive at an analog of Ohm's law for the surface
current:

j �s � ÿDsHs qs � ssEt ; ss �
X
i

eibsinsi : �30�

Generally, the surface conductivity ss is not a physical
constant. The constancy of ss, similar to that of bulk
conduction, is ensured on condition that surface ions are
tightly bound, e.g., as a result of a dissociation±recombina-
tion reaction. If surface ions do not undergo hemosorption,
i.e., they are localized in the transient layer inside the liquid
(see Section 3.2), there is every reason to believe that their
surface and bulk mobilities coincide: bsi � bi.

3.2 Ionic structure of the free surface
When studying the ionic structure of the free surface, we
shall assume that the liquid possesses dissociation conduc-
tion due to decomposition of A�Bÿ ion pairs in the
reversible reaction

A�Bÿ$
a11

kd
A� � Bÿ ; �31�

where kd is the decomposition rate constant of A�Bÿ ion
pairs, and a11 is the pair recombination coefficient of A�, Bÿ

monoions. Equilibrium ion concentrations n1�A�� and
n2�Bÿ� are equal: n1 � n2 � n0 �

�����������������
kdN=a11

p
, where N is the

ion pair concentration.
Ion concentrations change near the surface: ni � ni�x�,

where x is the normal coordinate having the origin on the
surface and directed into the depth of the liquid. In the
approximation of mean forces Fi, concentrations ni�x� are
given by the first equations of Bogoliubov's chain:
kBTHni � niFi � 0 �i � 1; 2�. Introducing mean force poten-
tials, Fi � ÿHPi, leads to

ni � n0 exp

�
ÿ Pi

kBT

�
; i � 1; 2 : �32�
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n

nt

n

DL
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Figure 3. The choice of reference volume DW.
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The potentialPi consists of two items: the potential of short-
range forces Ps�x�:

Ps�x� � b
x
; b � e 2

16pee0

eÿ 1

e� 1
; �33�

and the potential eij of charge±field interaction formed by
the ions and the external electric field:

Pi � Ps � eij ; i � 1; 2 : �34�

For single-charged ions, e1 � e, e2 � ÿe, which will hence-
forth be borne in mind. The distribution of the electric field
potential is described by the Poisson equation

Dj � �n2 ÿ n1�e
ee0

� g exp
�
ÿ rd

x

�
sinh

j
j0

;

�35�
rd � b

kBT
; g � 2en0

ee0
; j0 �

kBT

e
:

The boundary conditions for equation (35) have the form

En � ÿe dj
dx

at x � 0 ; j <1 as x!1 ; �36�

whereEn is the normal component of the external electric field
strength.

For the analysis of set (35), (36), we shall introduce
dimensionless variables F � j=j0, and s � x=rD, where
rD �

����������������������������
ee0kBT=2e 2n0

p
is the Debye radius. With the new

variables, one obtains

DF � exp

�
ÿ p

s

�
sinhF; s � 0 :

dF
ds
� ÿZ ; F�1� <1 ;

p � rd
rD

; Z � En

ED
; ED � ej0

rD
:

�37�

At typical values of s � 10ÿ12 Oÿ1 cmÿ1, e � 2:2, and
mobilities b1 � b2 � b � 10ÿ8 m2 Vÿ1 sÿ1, one finds n0 �
s=�2eb� � 3� 1016 mÿ3, rd � 7� 10ÿ9 m, rD � 7:3� 10ÿ5 m,
j0 � 0:025 V, ED � 7:5 Vmÿ1, and parameter p4 10ÿ4. Due
to this, factor exp �ÿp=s� in formulas (37) can be omitted. In
this situation, one arrives at

F � ln
�
2u 2 ÿ 1�

������������������������������
�2u 2 ÿ 1�2 ÿ 1

q �
; �38�

u � 1� a exp �ÿ2s�
1ÿ a exp �ÿ2s� ; a � u0 ÿ 1

u0 � 1
;

u0 � cosh
F�0�
2

; coshF�0� � 1� Z 2

2
:

For avoidance of misunderstanding, it should be pointed out
that the general solution of equation (37) at p � 0, presented
in the classical monograph [66], contains an error.

In strong fields �Z4 1�, it follows from formulas (38) that

u � Z
�
1� exp �ÿ2s��

Zÿ �Zÿ 4� exp �ÿ2s� ; s � x

rD
: �39�

This equation, together with the expression forF in Eqn (38),
describes the field distribution in the flat surface case.
Expression (38) shows that the thickness of an ion layer
depends on the Debye radius rD, so that rD � 73 mm in
nonpolar weakly conducting media, and rD � 10 mm in

polar ones (such as nitrobenzene, aromatic hydrocarbons,
etc.). This means that the concept of ohmic conduction for
charged hydrocarbon droplets and thin jets of micrometer
size is invalid, since the charge is redistributed over the entire
bulky liquid. Even for tapwater at e � 81,s �10ÿ7 Oÿ1 cmÿ1,
one finds rD � 1 mm, and the surface charge concept holds
true for sizes above 10 mm.

3.3 Surface tension in an electric field
Investigations into the influence of impurities on surface
tension are carried out applying the thermodynamic and
statistical methods [64±66]. Mathematical calculations are
usually so cumbersome that a variety of assumptions are
needed, which are based on a combination of thermodynamic
and statistical approaches. This leads to discrepancies among
the computed results (up to 30%) [67]. Therefore, such
approaches are, as a rule, of a qualitative character. The
results of studies on the effects of an electric field using the
Gibbs isotherm method are reported below.

In the presence of impurities, a change in the surface
tension coefficient a is described by the Gibbs isotherm [67±
69]:

da � ÿ
X
i

Gi dmi ; Gi �
�1
ÿ1

ÿ
ni�x� ÿ n 1; 2

i

�
dx ; �40�

where mi is the chemical potential per molecule (ion) of the ith
component, Gi denotes the adsorption parameters, ni�x� are
the single-particle distribution functions, and n 1; 2

i are con-
stant phase-1 (2) bulk concentrations. The ith component
exhibits positive adsorption for Gi > 0, and negative adsorp-
tion for Gi < 0, with surface tension decreasing in the former
case and increasing in the latter.

Adsorption isotherm (40) is an exact relation; in other
words, it is derived both from quasithermodynamics and by
statistical methods [67, 68]. Therefore, the problem reduces to
the calculation of ni�x�. In the framework of the bi-ion
dissociation conduction model (31) in the mean force
approximation, these functions are defined according to
formulas (34), (35). Then, the chemical potential needs to be
found. For example, in the case of electrocapillary effect on a
mercury surface bordering a strong electrolyte, it is assumed
that [39]

mi � m0i � kBT ln ni � eiji ;

where ji is the electric field potential on the mercury surface
�i � 1� and at the outer boundary of the double electric layer
(DEL) �i � 2�. In the calculation of surface tension in an
electrolyte±gas system, it is the custom that [67]

mi � m0i � kBT ln ni � ei~ji ;

where ei~ji is the energy of interaction of an ion having charge
ei with the ionic shell. Finally, representation
mi � m0i � kBT ln n0i is also used, where n0i is the ion
concentration in a bulky liquid [67, 68].

We believe that such representations associated with
different methods of approximate calculations are poorly
substantiated. Therefore, we shall proceed from physical
considerations. To begin with, we note that the thermody-
namic functions in Eqn (40) are averaged characteristics.
Indeed, Gi is the mean number of ith particles per unit
surface area, meaning that the chemical potential mi must
correspond to the mean particle energy in the transition layer.
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Because ni�x� varies in the transition layer, the particle's
chemical potential m 0i in this layer is likewise a variable
function, m 0i �x�. Ion interaction with the ionic shell in low-
conducting media is insignificant; therefore, it is claimed
that m 0i � m0i � kBT ln ni�x�. Then, mi � m0i � kBT hln ni�x�i,
where angle brackets denote averaging over the transition
layer. The use of relation (32) leads to hln ni�x�i �
ln n0 ÿUi=kBT, where Ui � hPi�x�i is the averaged poten-
tial. Thus, kBT qmi=qn0 � kBT=n0 ÿ qUi=qn0 and Gibbs rela-
tion (40) is written out as

qa
qn0
� ÿkBT

X
i

Gi

�
1

n0
ÿ 1

kBT

qUi

qn0

�
: �41�

In the case of weakly conducting fluids, the DEL may be
macroscopic in size, which makes the use of relation (40) for
calculating Gi incorrect. Therefore, we assume the thickness
of the transition layer to be ds, which is, first, much smaller
than the external characteristic size (jet or droplet radius,
perturbation wavelength, etc.) and, second, not smaller than
the thickness of the transition layer (a fewmolecular layers) in
a pure fluid [66]. Under these circumstances, one obtains

Gi � n0

� ds

r0

�
exp

�
ÿPi�x�

kBT

�
ÿ 1

�
dx ; �42�

where r0 is the effective size of a fluid molecule (ion).
Integrating Eqn (41) yields the final expression for a:

a � a0 � da ; �43�

da � kBT
X2
i�1

� n0

0

Fi�n0�
�
1ÿ n0

kBT

qUi

qn0

�
dn0 ;

Fi�n0� �
� ds

r0

�
1ÿ exp

�
ÿPi�x�

kBT

��
dx ;

where a0 is the surface tension coefficient of pure liquid.
Thus, the question of the influence of impurities and

external fields on surface tension reduced to the computation
of mean force potentialPi�x�. Generally speaking, parameter
ds remains undetermined. It follows from physical considera-
tions that ds 4 r0. For dilute electrolyte solutions, ds is
assumed to be the Debye radius: ds � rD [69]. In the case of
weakly conducting media, ds may be a function of the
perturbation wavelength l. Thus, the value of ds for l4 rD
depends on the transition layer thickness in a pure liquid, and
then the electric field does not influence surface tension. For
l4 rD, it should be supposed that ds � rD; the electric field
then has a strong effect on surface tension. The calculations
are carried out in terms of the bi-ion conduction model (31) in
the approximation of l4 rD. Then, the averaged potentials
Ui are unrelated to n0, and the following expressions hold for
da:

da � ÿa�F�Z� ; a� � 2kBT rDn0 ; �44�

F�Z� � I1�Z� � I2�Z� ; I1�Z� �
�1
0

ÿ
expF�s� ÿ 1

�
ds ;

I2�Z� �
�1
0

�
exp

ÿÿF�s��ÿ 1
�
ds :

Because F�Z� is a positive monotonically growing function, it
follows from formulas (44) that the electric field reduces

surface tension. When Z4 1, the following asymptotics
takes place: F�Z� � 2Z; therefore, in strong electric fields [70]

da � ÿ2Za� ; �45�

i.e., surface tension decreases in a linear fashion. This effect
can be attributed to the fact that the electric field `pulls out'
ions to the surface, which results in positive adsorption and,
therefore, in reduced surface tension. Notice that this result
has an obvious limitation, because the ions were assumed to
be structureless and the short-range forces conditioned only
by the polarization interaction (33). In the general case, it is
necessary to take account of dispersion forces, hydrogen
bonding, etc. For example, hydrogen bonds are responsible
for concentrating the alcohol molecules in the form of
adsorption layers on the water surface in aqueous alcoholic
solutions, where they are oriented so that the OH group is
directed to the water interior [66].

In conclusion, let us provide estimates. In nonpolar
liquid dielectrics at the above typical values and room
temperatures, one has a� � 1:8� 10ÿ8 N mÿ1. In strong
electric fields (En � 1 MV cmÿ1), Z � 1:3� 105 and da �
ÿ4:8� 10ÿ3 N mÿ1. Since typical a values for nonpolar
dielectrics are on the order of 2� 10ÿ2 N mÿ1 (e.g.,
a � 0:029 N mÿ1 for benzene), it can be concluded that the
influence of an electric field on surface tension at room
temperature is insignificant. Because a decreases with
increasing temperature as a � a0�1ÿ T=Tc�, an electric
field may have an appreciable effect in the range of critical
temperatures Tc.

4. Main types of EHD models

The ohmic model of electrical conduction was most com-
monly employed in early research on EHD effects [1, 2, 17,
18]. It still remains popular. The revision of this approach
dates to the work of Felici's group [3±6]; it has been continued
by many other researchers (see Refs [12, 13, 22±26]). These
studies gave grounds to believe that the development of EHD
flows is promoted by dissociation±injection conduction under
nonequilibrium conditions of electrochemical reactions. It
appears appropriate to discuss criteria for the applicability of
the ohmic conduction model and to consider the most
adequate models of dissociation±injection conduction.

4.1 Ohmic conduction model
Introducing volume charge density q �Pi eini and neglecting
diffusion, fromEqn (19) follows (with account of

P
i ei

_xi � 0)
the total current balance equation

qq
qt
� div �j � � qV� � 0 ; j � � sE ; s � e

X
i

bini : �46�

These relations define the ohmic conduction law. Evidently,
the ohmic conduction coefficient is a variable function given
by equations (19). s is a function of temperature and the
electric field strength only in the case of equilibrium of
dissociation±recombination reactions [24]:

s � s�T;E � � s0
���������
F�p�

p
; p � e 2

kBT

�
E

4pee0e

�1=2

; �47�

where s0 is the field-independent conductivity in a linear
section of VAC, and F�p� is the Onsager factor [24].
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In studies of EHDmotion in weakly nonuniform fields (in
plane or spherical geometry; see Section 7) at small tempera-
ture gradients and medium field strengths of 1±10 kV cmÿ1, it
is possible to expand expression (47) into a series, confining
oneself only to linear terms:

s � s0
�
1� bs�Tÿ T0� � bE E

�
; �48�

where T0 is the initial (e.g., ambient) temperature, and
coefficient bE � e 3=�16pee0�kBT �2�.

A rise in conductivity with increasing temperature and
field strength is due to the activation mechanisms of ion
motion and enhanced dissociation of ion pairs. Coefficient bs
decreases with decreasing conductivity; for nonpolar liquids,
bs � 5� 10ÿ2 Kÿ1 (Table 1). In nonpolar liquids �e � 2� at
room temperature (T � 300 K), bE takes the estimated value
2:4� 10ÿ7 m Vÿ1.

For weak temperature inhomogeneity, dielectric constant
can be represented in the form of linear dependence:

e � e�0�
�
1ÿ be�Tÿ T0�

�
; �49�

where e�0� � e�T0�. be values are much lower than those of bs:
be � 5� 10ÿ3 Kÿ1. By way of example, for hexane C6H14,
nitrobenzene C6H5NO2, and ethanol C2H5OH at 25 �C,
be � 8:2� 10ÿ4 Kÿ1, be � 2:25� 10ÿ3 Kÿ1, and be �
6:2� 10ÿ3 Kÿ1, respectively [72].

The applicability criterion of the ohmic conductionmodel
can be formulated in the following way. Experimental [71, 73]
and theoretical [23±25, 53, 74±76] studies demonstrated the
formation of near-electrode nonequilibrium dissociation±
recombination reaction zones, the thickness of which is
given by the relation [25, 76]

xd � f �ni� ee0 E0
b1 � b2

s
; �50�

where s is the ohmic conduction coefficient [47], and f �ni�
is a monotonically growing factor depending on the
concentration of the injected ions at the electrode, such
that in the absence of injection �ni � 0� it takes the value
of f �0� � 1. In electric fields E0 � 105 V mÿ1, when
f �ni� � 1, for nonpolar dielectrics �e � 2� with typical
conductivity s � 10ÿ11 Oÿ1 mÿ1 and ion mobility b1 � b2 �
10ÿ8 m2 Vÿ1 sÿ1, one obtains xd � 0:2 mm. This estimate
suggests that the size of the nonequilibrium zones is
commensurate with the electrode spacing d, which implies
the following criterion: the ohmic conductionmodel (46), (47)
is valid for

xd 5 d ; �51�
while the dissociation±injection model for xd 5 d.

The ohmic conduction model is usually realized in flat
capacitors at a rather large electrode spacing d (d5 1 cm) and
a relatively low field strength E � 1 kV cmÿ1. Under these
conditions, the results of theoretical studies [e.g., on thermo-
electrohydrodynamic (TEHD) instability of an inhomogen-

eously heated liquid dielectric layer] [61, 77±79] fairly well
describe experimental data [78, 79]. However, at small (a few
millimeters) d, when the near-electrode layers begin to
influence bulk processes, the TEHD-instability picture
changes sharply. For example, the critical field voltage U�
may be independent of the electrode spacing [71]. In this case,
the EHD flow may be related to the development of
perturbations (electrothermics) in the near-electrode layers.

In strongly nonuniform high-voltage fields arising in
systems with tapered electrodes (needles, blades, etc.),
characteristic xd values compare with electrode spacings.
Thus, EHD flows in these cases practically always develop
under conditions of dissociation±injection conduction.

4.2 Multiion dissociation±injection models
In the presence of injection of similarly charged ions from an
electrode, and taking account of bi-ion impurity conduction,
EHD processes are described by a multiion model con-
structed in the following way. The impurity conduction
shows its worth due to decomposition of ion pairs and
recombination of impurity ions, for instance, according to
reactions (31). In a three-ion conduction model, the injection
process occurs at a single electrode, e.g., a cathode, as a result
of a reduction reaction X� eÿ $ Xÿ, with Xÿ ions being
injected recombining with impurity A� ions in accordance
with the reaction

Xÿ �A� !a1 XÿA� ! X�A ; �52�

where a1 is the pair recombination coefficient of A� and Xÿ

ions. In this case, one has a three-ion model in which sources
_xi are defined as

_x1 � _x2 � _x4 ; _x2 � kdNÿ a11n1n2 ; _x4 � ÿa1n1n4 ; �53�

where n1, n2, and n4 are the concentrations of A
�, Bÿ, andXÿ

ions, respectively, and N is the concentration of A�Bÿ ion
pairs. Such a model can describe, for instance, EHD flows in
nonpolar liquid dielectric solutions with an electron acceptor,
such as molecular iodine I2 [80, 81].

Molecules of polar dielectrics always containing an
electronegative atom or a group are denoted as RÿX, where
R is the radical (e.g., a benzene ring in hydrogen halides), and
X is the electron acceptor [44, 45]. In this case, the liquid may
undergo ionization by virtue of thermal autodissociation:

RÿX$ XÿR� �RÿXÿ : �54�

Such liquids are exemplified by hydrogen halides (chloro-
benzene, bromobenzene, iodobenzene), alcohols, nitroben-
zene, and some others. It should be noted that, unlike the
conductivity of nonpolar dielectrics, which can be lowered by
ultrapurification to s � 10ÿ19 Oÿ1 cmÿ1 [19], that of polar
liquid dielectrics drops only to s � 10ÿ13 Oÿ1 cmÿ1 and
increases with time thereafter due to autodissociation to
s � �10ÿ10 ÿ 10ÿ11� Oÿ1 cmÿ1 [3, 5]. In strong electric fields,
polar molecules participate in electrochemical redox reac-
tions according, for instance, to the following schemes [45,
46]:

RÿX� eÿ�M� $ RÿXÿ at the cathode ; �55�
RÿX$ RÿX� � eÿ�M� at the anode ; �56�

where eÿ�M� is an electron in the metal.

Table 1. Values of bs for typical nonpolar dielectrics [71].

Liquid s0 � 1012 Oÿ1 cmÿ1 bs, K
ÿ1 T0, �C

Transformer oil 430
21

0.22
0.076

25

Capacitor oil 3.9
0.5
0.03

0.088
0.075
0.022

25
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The presence of (55), (56) type reactions is easy to verify by
the streamline fixation method in EHD flows [77] (Fig. 4). In
polar dielectrics, cathode injection proceeds normally more
intense than the anode one. It is evidenced not only by the
EHD flow data (Fig. 5) but also by the measurements of
electric field strength distributions using the Kerr effect [82,
83].

Multiion conduction models with an arbitrary number of
ions can be constructed in a similar way, although even a
three-ion model allows all characteristic patterns of electro-
chemical processes to be elucidated. For example, the
seemingly `threshold' nature of the development of EHD
flows in an asymmetric electrode system, when equilibrium
conditions are not satisfied, can be accounted for by the
switch-over of the dissociation conduction mode to the
injection one [53]. Moreover, this model takes account of the
influence of technical (uncontrollable) impurities (like iodine,
butyl alcohol, etc.) on the injection conduction. Further
development of the three-ion model entails an in-depth
study of injection processes responsible for the intensity of
EHD flows and the enhancement of EHD-system perfor-
mance resources.

4.3 EHD equations in alternating external fields
In order to balance electrical conduction effects, it is possible
to apply alternating external fields of a sufficiently high
frequency (the high-frequency EHD approximation). As
shown in Ref. [84], EHD flows in liquid dielectrics with
conductivity s � 10ÿ12 Oÿ1 cmÿ1 damp out at frequencies
o5 1 kHz, even for spiked electrodes. The order of frequency
at which an EHD flow ceases can be determined in the
following way.

Suppose that an EHD flow develops as a result of charge
injection. The size of the near-electrode region di, where the
bulk charge accumulates, depends on the migration displace-
ment of ions during the oscillation half-period, i.e.,

di � biE=2o, where bi is the mobility of the ions being
injected. At typical values of bi � 10ÿ8 m2 Vÿ1 sÿ1 in the
case of spiked electrodes (E � 107 V mÿ1) and frequencies
o � 50 sÿ1, one finds di � 1 mm. This means that the
migration motion of ions at industrial frequencies charges
only a narrow near-electrode region. The ion displacement dh
due to the EHD flow is expressed in a similar way:
dh � V=2o, where the developing flow rate is found from
the momentum equation r qV=qt � qE, i.e., over the course
of half-period: V � qE=2ro. Assuming q � eni at the typical
values of ni � 1011 cmÿ3, E � 105 V cmÿ1, r � 1 g cmÿ3, and
o � 50 sÿ1, we obtainV � 1:6 m sÿ1, i.e., dh � 1:6 cm. Hence
it follows that at industrial frequencies the liquid in a large
part of the interelectrode region is charged due to EHD
convection, and only for o5 1 kHz it is charged in the
narrow near-electrode region, thus accounting for the
damping of the EHD flow.

Certainly, this is only a rough estimate, but the rate
V � 1 m sÿ1 is typical of EHD flows in the system of spike
electrodes [11±13, 85]. Therefore, the condition of the absence
of an EHD flow during charge injection can be written down
as

max �di; dh�5 d ; di � biE

2o
; dh � qE

4ro2
: �57�

The high-frequency region is dominated by polarization
forces, especially in the case of thermal inhomogeneity. This
effect is utilized to model atmosphere dynamics in a
laboratory setup consisting of embedded spheres rotating
relative to each other [86]. At sufficiently small interelectrode
gaps in the medium field region (1±10 kV cmÿ1), the ohmic
conduction model (46), (47) can be used as a basis, which
poses a number of questions pertaining to the choice of the
frequency. Indeed, at high enough frequencies dielectric loss
shows its worth, while a frequency drop gives rise to pulsation
forces associated with the ohmic conduction gradient; hence,
the necessity of deriving averaged EHD equations in high-
frequency fields.

The averaged equations are convenient to derive in
dimensionless variables by the method described in well-
known monograph [87]. Let us assume that the Boussinesq
approximation is fulfilled [88], while medium electrical
conduction and polarization are given by linear relations
(48), (49). Let us further choose the following quantities as
measurement units: �t� � 1=o,

�jrj� � d,
�jVj� � V0 � Z=rd,

� p� � rV 2
0 , �F� � U, �q� � e�0�e0E0=d �E0 � U=d �, and

�T � � dT, where d is the interelectrode gap, U is the voltage
across the electrodes, and dT � jT2 ÿ T1j is the temperature
difference between the electrodes. In dimensionless variables,
the system of EHD equations is written out in the form

St
qV
qt
� �VH�V � ÿHp� DVÿ GqHF

ÿ 0:5Gb �e e�0�jHFj2HT� RTez ; �58�

divV � 0 ; St
qq
qt
� div �ÿPe~sHF� qV� � 0 ; �59�

div �~eHF� � ÿq ;

St
qT
qt
� VHT � PDT� Id~ejHFj2 ; �60�

e�0� � e�T1� ; ~s � 1� b �EjHFj � b �sT ; ~e � 1ÿ b �e T :

Figure 5. The four-cell structure of an EHD flow in polar liquids

(bromobenzene, chlorobenzene, etc.) in a system of two parallel wires

[82]. Bigger vortices form near the negative electrode.

Â b

Figure 4. EHD flows in symmetric systems of electrodes imbedded in

iodine-containing transformer oil solutions [80, 81]: (a) a system of two

parallel wires, and (b) a blade±blade electrode system. In either case, the

flow is directed from the negative electrode.
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The dimensionless parameters are given by the expressions

St � od
V0

; G � e�0�e0E 2
0

r0V
2
0

; R � b �rgd

V 2
0

;

Id �
oe�0�e0E 2

0 d

2r0cp dTV0
tanj ; P � l

cpZ
; Pe � d

teV0
;

te �
e�0�e0
s0

; b �E � bEE0 ; b �s � bs dT ;

b �e � be dT ; b �r � br dT :

They take into account dielectric losses (13); br is the thermal
expansion coefficient for the fluid:

r � r0
�
1ÿ br�Tÿ T1�

�
;

l is the thermal conductivity coefficient, cp is the heat capacity
per unit mass, Z is the coefficient of dynamic viscosity, and ez
is the unit vector directed against gravity.

The boundary conditions in dimensionless variables
acquire the form

S1 �anode� : F � cos t ; V � 0 ; T � 1; �61�
S2 �cathode� : F � 0 ; V � 0 ; T � 0 :

The high-frequency approximation is defined by the
condition St4 1. By introducing the small parameter
m � 1=St, the solution is sought in the form

V � u� V 0 ; p � pc � p 0 ; �62�
F � F0 cos t� F 0; T � Y� T 0;

where u � u�t; r�, Y � Y�t; r� are the mean velocity and
temperature, the prime denotes pulsation functions of order
m, and t � mt is the slow time. The averaging operation is
defined as

u � hVi � 1

St

� St

0

V�t; r� dt ; St4 1 :

In what follows, calculations are made for the case of low
dielectric heating, Id 5 1, and weak temperature differential
dT, interesting in terms of applications. These assumptions
imply the smallness of parameters b �r , b �e , b �s and the
finiteness of frequencies:

o5o2 � 2r0cp dTV0

e�0�e0E 2
0 d tanj

: �63�

By way of example, for transformer oil [89] under simulation
conditions [86] at

T0 � 20 �C ; r0 � 880 kg mÿ3; l � 0:111 W mÿ3 Kÿ1;

cp � 1:7 kJ kgÿ1 Kÿ1; Z � 0:021 N s mÿ2; dT � 5 �C;

d � 5 cm ; e�0� � 2:2; tanj � 0:02; E0 � 10 kV cmÿ1;
�64�

it was found that o2 � 34 kHz, and for o4 1 kHz the
inequality Id 5 1 is fulfilled.

In the framework of the above assumptions, temperature
pulsations may be disregarded. Substituting formulas (62)
into Eqns (58)±(60) and averaging them yield the following
averaged equations

qu
qt
� �uH�u � ÿHpc � Du� fp ÿ m2fo � RTez ; div u � 0 ;

�65�
qT
qt
� uHT � PDT ; �66�

where fp and m2fo are the polarization and pulsation forces
defined in the b �e 5 b �s 5 1 approximation as

fp � 0:5Gb �e e�0�E
2
0HT ; �67�

fo � 0:5Peb
�
s

�
Gq�2�E0 � 2Pe�E0E�2��HT

�
:

Here, E0 � ÿHF0, E�2� � ÿHF�2�, q�2� � E0HTÿ H�E0HT �u,
and potentialsF0,F�2� are given by equations div �~eHF0� � 0,
div �~eHF�2�� � q�2� at the boundary conditions S1 Ð F0 � 1,
F�2� � 0, and S2 Ð F0 � F�2� � 0.

Let us estimate the parameters at which polarization
forces predominate. For highly purified fluids with
s0 � 10ÿ14 Oÿ1 cmÿ1 at the parameters specified in Eqn (64)
and typical values of bs � 0:02 Kÿ1, be � 0:001 Kÿ1, polar-
ization forces dominate for m2P 2

e bs 5 e�0�be, or

o4o1 � 1

te

������������
bs

e�0�be

s
; te �

e�0�e0
s0

: �68�

For the above values, one has o1 � 25 Hz. These estimates
indicate that in highly purified fluids (s0 4 10ÿ14 Oÿ1 cmÿ1)
conductivity effects are readily eliminated, even at relatively
low frequencies: o1 � 200 Hz. However, at high conductiv-
ities, e.g., for aqueous solutions with s0 � 10ÿ7 Oÿ1 cmÿ1, the
charge relaxation time is small: te � 10ÿ6 s; therefore,
conductivity effects manifest themselves in aqueous solu-
tions even at high frequencies: o1 � 10 kHz.

5. Dimensionless criteria. EHD approximations

The multiion dissociation±injection EHD model is a many-
parameter one and has a high degree of generality. Thismodel
is able to transform into different variants, the so-called EHD
approximations, depending on the electric field strength,
conductivity, and electrode geometry. In order to estimate
the applicability of a given approximation, it is necessary to
introduce dimensionless parameters (criteria) determining
approximation errors.

It will suffice to derive the EHD criteria based on a three-
ion model: A�, Bÿ impurity ions, according to reaction (31),
and Xÿ ions being injected that are generated in the reaction
X� eÿ $ Xÿ and interact with the impurity ions, in
accordance with reaction (52).

Let us choose the following characteristic quantities as
measurement units: interelectrode gap d for the length,
voltage U across the electrodes for the potential, positive ion
migration rateV1 � b1E0,E0 � U=d for the velocity, d=V1 for
time, with the equilibrium concentration n0 determined in the
case of impurity ions according to formula (47) at E0 � 0 for
the concentration, the value of the injection function nc�E0�
defined according to formula (23) or (25) for the ions being
injected, and rV 2

1 for the pressure. This brings up the
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following set of equations in dimensionless variables that
remain denoted as before:

qV
qt
� �VH�V � ÿHp 0 � 1

Re
DV� CMqE ; divV � 0; �69�

divE � Cq ; E � ÿHF ; q � n1 ÿ n2 ÿ scn4; �70�
qnj
qt
� div

��ÿ1� jÿ1bj nj E� njV
� � C _xj ; j � 1; 2; �71�

qn4
qt
� div

�ÿb4 n4E� n4V
� � C _x4 ; �72�

_x2 � �1� b2�
�
F�p� ÿ n1n2

�
; _x1 � _x2 ÿ scn1n4�1� b4� ;

_x4 � ÿn1n4�1� b4� ; Re � b1U

n
; n � Z

r
; M � ee0

rb 2
1

;

sc � nc�E0�
n0

; bi �
bi
b1
; i � 1; 2; 4 ; C � d

xd
;

xd �
ee0E0

q0
; q0 � en0 � s0

b1 � b2
:

For liquids, parameter M � 100 (e.g., M � 185 for
transformer oil at room temperature), the mobility ratio
bi � bi=b1 4 1, whereas parameters Re, C, sc may vary over
broad ranges depending on voltage U, electrode spacing d,
and conductivity s0. Parameter Re plays the role of the
Reynolds number. Parameter sc determines electrical con-
duction modes: for sc 5 1, the ion injection is weak and
conductivity depends on impurity ions alone, while for sc 4 1
the ions being injected predominate (injection conduction
mode), and at sc � 1 mixed dissociation±injection conduc-
tion is realized. Parameter C determines the strength of ion
interaction: specifically, for C5 1 the ion concentration or
the cell size d is so small that both the ion±ion interaction and
the electric field they inducemay be neglected. Conversely, for
C4 1 the ions are strongly bound, and the ohmic conduction
mode comes into play.

Let us consider a scenario for the development of EHD
flows by the example of a flat capacitor with a large enough
interelectrode gap (d5 1 cm). In low-voltage fields
(E0 4 1 kV cmÿ1), one has C4 1. In such a case, the ion±
ion interaction has a nonequilibrium character only in narrow
near-electrode layers of the thickness given by formula (50).
Outside the nonequilibrium layers, conductivity is a function
of impurity ions strongly involved in dissociation±recombi-
nation reactions. In this region, electrohydrodynamics is
described by the ohmic conduction model.

Mechanisms of bulk charge formation in near-electrode
layers were described in Refs [25, 70]. Given the injection level
is low, sc 5 1, the sign of the charge of near-electrode layers is
opposite to electrode polarity (such a case is described as
heterocharge formation near an electrode), and the electric
field strength in the vicinity of the electrodes increases
(Fig. 6a). The thickness x of the near-electrode nonequili-
brium layer also increases with the growing field due to
enlargement of the nonequilibrium reaction region (31) and
enhancement of ion injection. Two cases can be realized
depending on the degree of ion mobility. First, a bipolar
charge structure forms at low mobility and a homocharge
emerges at the electrode surface (Fig. 6b). As the electric field
grows further, bipolar structures disappear and the near-
electrode region becomes homocharged, while the electric
field near the electrode decreases in strength (Fig. 6c). As the
field increases still further, the near-electrode layers lose
stability, which promotes the development of EHD flows
(Fig. 7). In this field strength region, the EHD flows are
described by the multiion dissociation±injection model.

6. Nonstationary and transient processes

We shall call an arrangement of two electrodes with a liquid
dielectric in the gap between them an EHD cell. The switch-
ing-on of a high-voltage field gives rise to transient processes
in the EHD cell, viz. the formation of ion waves and near-
electrode ionic structures, development of EHD flows, etc.
The transient processes associated with the passage of a
current are divided into fast and slow. Analysis of the former
was undertaken in review [25]. In the case of instantaneous
switching-on of the high-voltage field, ion waves form in the
cell for C5 1, and near-electrode layers for C4 1. The
characteristic time of these processes is less than 1 second.

E0

E

q

xd

a

q

xd

b

E0

E

q

xd

c

Figure 6. Formation of ionic structures in near-cathode layers: (a) weak injection, sc 5 1; (b) moderate injection, sc � 1, and low mobility of the ions

being injected: b4 5 b1; (c) intense injection, sc 4 1.

Figure 7. The development of electroconvection in a system of two parallel

copper wires 1 mm in diameter [81]. The fluid is an iodine-containing

transformer oil solution. The dashed line shows the border between

equilibrium and nonequilibrium regions.
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Slow transient processes frequently referred to as electropur-
ification [19] take a few hours and even days to complete; they
are accompanied by precipitation of ionic impurities on the
electrodes.

A change of conduction modes associated with variations
of the electric field strength is regarded as an atemporal
transient process, with the key parameter being the sc �
nc�E0�=n0 ratio, where nc�E0� is the concentration of the ions
being injected and specified by the injection function, and n0 is
the concentration of impurity ions. Because nc�E0� is a
monotonically growing function of the field strength, it
turns out that sc 5 1 in low fields and conductivity is
determined by impurity ions; for sc 4 1 it depends on
injection ions.

When the injection of charges predominates, the crucial
role in the development of EHD flows is played by nonlinear
ion waves, which will be considered in greater detail in
Section 6.1.

6.1 Nonlinear ion waves
Usually, charges are either injected into a fluid from the
outside or generated inside it under the effect of ionizing
radiation. As a rule, they are distributed in the process
nonuniformly, which, in turn, brings into existence EHD
instability of the liquid and, as a consequence, may result in
large inaccuracies in the measurement of bi [90]. EHD
instability of ion waves affects not only the structure of
EHD flows but also discharge formation pattern associated
with an electric breakdown in the fluid [23]. This poses the
problem of investigation into the motion of a unipolarly
charged ion cloud in the nonlinear formulation and its
stability. These issues are dealt with in the following order:
first, the problem of ion motion in a quiescent fluid is solved,
and then EHD instability is analyzed.

The motion of a cloud of positive charges in a quiescent
fluid of infinite extent is described by the following boundary
value problem:

ee0 divE � q ; qt � b div �qE� � 0; �73�
t � 0 : q � q0 ; E � E�0�; jrj ! 1 : E! E0 � Ei : �74�

From here on, subscript t denotes the partial time derivative,
q0 is the initial volume charge distribution, and E�0� is the
initial strength of the field formed by external field E0 and
charge q0-induced field Ei.

Principal motion patterns of the charge cloud can be
illustrated by the example of a 2d-thick flat layer at
q0 � const and an external field oriented normally to it. In
this case, it is possible to rely on the approximation Ei �
q0d=ee0 5E0, t5 te � ee0=bq0 for finding the exact solution
[25, 91], which is not presented here. We shall study EHD
instability of an ion layer in this approximation (q0 is the
mean charge density) at an arbitrary, in general, distribution
of the unperturbed charge within the layer, q�0� � q�0��x�,
where the origin of the x coordinate lies in the middle of the
layer, and the x-axis is directed across it. In this event, the
equations for small perturbations in a system of coordinates
traveling with the layer are written down in the form

rVt � ÿHp� ZDV� qE0 ; divV � 0 ; �75�
qt � ÿq 00Vx ; q 00 �

dq�0�
dx

;

where Vx is the x-component of the velocity.

The boundary conditions are given by the continuity of
the velocity and the viscous stress tensor at the borders of the
layer and by the damping of perturbations at infinity.

We use Lyapunov's first method to study instability,
assuming V � V�r� exp �lt�, where l is the spectral para-
meter to be determined. The motion of the ion cloud is
unstable for Re l > 0, and stable as Re l4 0 for any initial
perturbations. The quantity dr � Re l is called the perturba-
tion buildup decrement. An arbitrary perturbation being the
superposition of normal modes, suffice it to study stability
relative to a single mode: V�r� � V�x� exp �i�kyy� kzz��,
where y, z are the Cartesian coordinates orthogonal to the
x-axis. Elementary transformations with respect to compo-
nent V � Vx lead to the following problem on eigenvalues of
l:

l�ZL̂ 2Vÿ rlL̂V � � ÿE0q
0
0k

2V; �76�
x � �d : hV i � hV 0i � hV 00i � hV 000i � 0 ; �77�
jxj ! 1 : V! 0 ;

where L̂ � d2=dx 2 ÿ k 2, k 2 � k 2
y � k 2

z , and E0 is the projec-
tion of E0 onto the x-axis.

Multiplying Eqn (76) by the complex conjugate function
V � and integrating from x � ÿ1 to x � �1with account of
boundary conditions (77) lead to the conclusion that
instability develops for q 00 > 0, suggesting that the ion cloud
is unstable when the charge gradient decreases along the
direction of charge motion, Hq0 "#E0, and stable in the
opposite case, Hq0 ""E0 [91].

Problem (76), (77) may be studied in the analytical form at
q 00� const. Introducing dimensionless parameters p � ld 2=n,
n � Z=r, B � ÿq 00E0d

4=nZ, and k � kd, we find that the
spectral parameter p is defined by the following equations:

jr4j tan jr4j � r3 tanh r3 � 0 ; jr4j cot jr4j � r3 coth r3 � 0 ;

r3 �
 
k 2 � p

2
�

��������������������
k 2B

p
� p 2

4

s !1=2

;

�78�

jr4j �
 ��������������������

k 2B

p
� p 2

4

s
ÿ k 2 ÿ p

2

!1=2

:

The first and second equations correspond to symmetric and
asymmetric perturbations, respectively. The analysis of
equations (78) indicates that the parameter p is bounded
from above: p < p� �

�������������������
k4=4� B

p ÿ k 2=2. Using this
inequality, it is possible to prove that in high-viscous media
or small charge density and field gradients �B5 1�, instability
takes place only in the case of asymmetric perturbations, with
the spectral parameter l for 4B5 k 4 being expressed as

l � ÿ0:08q 00
E0l

2

Z
; B5 1 ; �79�

where l � 2p=k is the perturbation wavelength. This means
that long-wave perturbations grow especially fast.

In the limiting case of low-viscousmedia or high fields and
large volume charge gradients �B4 1� for k 2 5B 1=2, the
sought spectral parameter is given by

l �
�������������������ÿq 00E0=r

p
k 2

k 2 � z
; B4 1 ; �80�
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where the parameter z � 1. This estimate holds true for both
symmetric and asymmetric perturbations, and in this case the
fastest growing perturbations are those for which l ��������������������ÿq 00E0=r
p

.
The validity of relationships (79), (80) is confirmed by

numerous experimental data. Here are three of the most
characteristic examples illustrating the role of instability of
ion clouds in the development of EHDmovements of fluids at
the initial stages of unipolar charge injection.

(1) In the study of a breakdown in a spiked±plane
electrode system, the charges injected from the spike drift
away from the electrode in the form of an ion cloud. Its
diffusion smearing at the front boundary satisfies condition
Hq0 "#E0, i.e., the instability condition. It was shown in
experiment [23] that on small time intervals (4 3 ms), short-
wave perturbations develop in low-viscous fluids (Fig. 8a),
and long-wave ones in high-viscous fluids (Fig. 8b).

(2) Strong unipolar injection of charges from the ionite
membrane to nitrobenzene gives rise to EHD instability of the
charge plane front, which accounts for the small-scale
turbulent motion in the charged region of the fluid, while
the uncharged region remains quiescent [23] (Fig. 9).

(3) In an iodine-containing transformer oil solution and a
system of coaxial cylindrical electrodes with a small radius of
the central electrode, the switching-on of high voltage triggers
a vortical EHD flow, with the number of vortices always
exceeding four [92] (Fig. 10a), in contrast to exactly four in the
stationary case (Fig. 10b).

This effect is attributed to instability of the cloud of
negative charges injected from the central electrode (cathode).

6.2 Alternation of conduction modes
In previous Section 6.1, we dealt with the development of
transient processes in time. Variation of parameter s0
determining impurity conductivity gives rise to a transient
process responsible for a change in the conduction mode. The

main features of this process are readily apparent in a flat
capacitor under the conditions of the inductionless approx-
imation and weak ion injection: C � d=xd 5 1, Ci � scC �
encd=�ee0E0�5 1. Then, the equilibrium field and charge
distributions in the linear approximation in small parameters
C and Ci in a steady state are described by the equations

�ÿ1� jÿ1bjHnj1E0 � �1� b1�F0 ; j � 1; 2 ; �81�
ÿ Hn41E0 � 1 ;

where E0 is the external electric field, and F0 � F�p� at
E � E0.

Boundary conditions at the electrodes take the form

n11 � 0 at the anode; and n21 � n41 � 0 at the cathode :

�82�

The boundary condition for the negative charges being
injected from the cathode is fulfilled in the zero approxima-
tion, while the boundary conditions for impurity ions are the
consequences of the absence of the current of positive
(negative) charges entering the anode (cathode).

The dimensionless volume charge is defined as

q0 � C�n11 ÿ n21� ÿ sc�1� Cin41� ;
F0 � F�p� at E � E0 :

The solution of problem (81), (82) for a flat capacitor
(x � 0Ð cathode, x � dÐanode, xÐdimensional vari-
able) assumes the form

q0 � q�

�
F0

b1 � b2
b1

�
1ÿ b1 � b2

b2

x

d

�
� n 2

c

n 2
0

x

d

�
ÿ enc ;

�83�
q� � e 2n 2

0 d

ee0E0
; E0 � U

d
;

and in the case of a cylindrical capacitor (r � R1 for a
cathode, r � R2 for an anode, r is the radial coordinate with
the origin in the center of symmetry) one obtains

q0 � q�

�
b1 � b2

R 2
1 b2

�
b2
b1

� R2

r

F0r drÿ
� r

R1

F0r dr

�
ÿ n 2

c

2n 2
0

�
1ÿ r 2

R 2
1

��
ÿ enc ; �84�

q� � e 2n 2
0R1

ee0E0
;

where E0 � U=�R1 ln h
ÿ1�, and h � R1=R2.

Â b

Figure 9. Shadow pictures of the development of EHD instability of ion

clouds for strong unipolar charge injection [23]. The dashed line shows the

border between charged (left) and uncharged regions. Interelectrode gap is

5.6 mm, U � 18 kV, t � 0:95 ms (a), and t � 2:9 ms (b).

a b

Figure 10. Flow patterns in an iodine-containing transformer oil solution

[92]: (a) at the onset, and (b) in the steady state.

3 ms,
B4 1

7 ms,
B5 1

0 0.3 mm 0 0.3 mm

a b

Figure 8. Shadow pictures illustrating the development of EHD instability

of ion clouds in a DC-200 silicone fluid [23] near the spiked electrode:

(a) low-viscous fluid, Z � 0:02 St, U � 11:5 kV, and (b) viscous fluid,

Z � 10 St.
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Equations (83), (84) suggest that the predominance of
impurity conduction, n0 4 nc, is associated with the forma-
tion of a near-electrode volume charge with the sign opposite
to electrode polarity (heterocharge). Such a distribution of
the volume charge stabilizes the fluid; in other words, the
electric field suppresses small velocity perturbations. In
contrast, a homocharge forms near the electrodes under-
going intense injection, nc 4 n0, eventually leading to emer-
ging instability of the equilibrium liquid state and the
development of EHD flows.

6.3 Acoustic waves
The interplay between acoustic and ion waves is of impor-
tance for studying solution properties by the ultrasonic
method [93]. For example, the frequency dependence of
absorption coefficients is used to determine chemical reac-
tion rate constants [44, 93]; the electric field induced by an
ultrasonic wave contains information about ion masses [94]
or micelle charges in a colloid solution [95].

Let us assume that acoustic probing occurs on a small time
interval, such that injection charges have no effect on the bulk
processes. Then, the bi-ion conduction model, in which
dissociation of A�Bÿ ion pairs yields free A� and Bÿ ions,
is acceptable. Let us further assume that the acoustic
oscillation period is much longer than the time ti of a charge
random walk: oÿ1 5 ti, where o is the acoustic wave
frequency, and the inertia of ion motion can be neglected.
Acoustic waves are considered against the background of a
homogeneous quiescent state r0, V0 � 0, T0; in addition,
E0 � E0ex, and n10 � n20 � n0 �

�����������������
kdN=a11

p
, where coeffi-

cients kd, a11 are taken at the T0, E0 values, with ex being the
unit vector in the direction of the x-axis along the electric
field.Weak effects, such as the dielectrocaloric effect and e�T �
dependence, are neglected.

Seeking a solution in the form of traveling waves
�V; r;T;F; ni� � exp �i�otÿ kr��, we obtain the following
expression for the complex frequency [91]:

o2 � a 2k 2 � ig ; a 2 � c 2s � a 2
E ;

a 2
E � r0

�
e 2r
e
cos2 yÿ 0:5r0err

�
e0E 2

0 ;

where cs and a are the isentropic and total speeds of sound, y is
the angle between the direction of plane wave propagation
and the external field strength vector (the angle between k and
E0), er and err are derivatives with respect to r, g �
g0 � gch � gJ is the damping decrement defined by the sum
of decrements of viscous �g0�, Joule �gJ�, and chemical �gch�
dissipations. In other words, the damping coefficient
a � g=�2ao� consists of the above three terms.

The simple estimation suggests that the field effect on the
speed of sound does not exceed fractions of a percent, even in
strong enough fields (E � 100 kV cmÿ1). Of special interest,
in my opinion, is the influence of the field on the acoustic
wave energy, attributable to the dissociation±recombination
reaction:

ach � cvh0
c 2s
2a 3

�
1

cv
ÿ 1

cp

�� _xT
r0cv

ÿ er
e

_xEE0 cos
2 y
�

o2

o2 � 4o2
e

;

oe � 2a11n0 ;

where h0 is defined by formula (17). This suggests that if the
wave propagates along the field �y � 0�, the energy of strong

enough electric fields, _xEE0er=e > _xT=�r0cv�, transfers into
the acoustic wave energy, and the amplitude of this wave
increases along the direction of its propagation and passes
through a maximum in the high-frequency region �o4oe�.
This effect occurs only in the strong-field region, where the
dissociation of ion pairs by the electric field is especially
pronounced. Strong pulsed fields are usually used to exclude
Joule heating and breakdown in aqueous solutions and polar
fluids [93].

7. EHD instability and development
of EHD flows for symmetric electrodes

Flat, cylindrical, and spherical capacitors exemplify sym-
metric electrode systems. The hydrostatic equilibrium
condition fulfilled in such systems is arrived at in the
following way. From the momentum balance equation (2)
at V � 0, the equation ÿHp 0 � qE � 0 is derived. Applying
the rot operation to this equation, we find that the
equilibrium state is possible at Hq� E � 0, i.e., when
vectors Hq and E are collinear. Obviously, this condition is
fulfilled in symmetric electrode systems. Next, as follows
from Rayleigh's principle [88], the equilibrium state is stable
when vectors Hq and E �Hq""E� are unidirectional; when
they are in the opposite direction �Hq"#E�, instability may
develop. By way of example, it follows from formulas (83),
(84) for flat and cylindrical capacitors in the inductionless
approximation that instability emerges at a high enough
level of injection:

nc > n0

��������������������������
F0�b1 � b2�2

b1b2

s
: �85�

Of interest in EHD instability research is not only the fact of
development of a flow in itself, but also the calculation of
threshold voltages U�, whose exceeding results in forming an
EHD flow, and the detection of critical perturbations
determining its structure. These observations provide an
insight into mechanisms of fluid conductivity and informa-
tion on the distribution of ionic components without direct
(e.g., probing) measurements. It is in this order that these
issues will be considered below.

7.1 EHD instability in a flat capacitor
Let us begin by considering EHD instability in a flat
capacitor, where the inductionless approximation conditions
are fulfilled:

C � d

xd
5 1 ; Ci � scC � encd

ee0E0
5 1 :

Calculations are made in dimensionless variables using the
system of equations (69)±(72). In this case, equilibrium charge
distributions are defined by the relations

n10 � Ca1�1ÿ x� ; n20 � Ca2x ; n40 � 1ÿ Cix ;

a1 � �1� b2�F0 ; a2 �
�
1� 1

b2

�
F0 :

�86�

In what follows the solution is presented as the sum of
equilibrium distributions and small perturbations, the
dependences of which on time t and longitudinal coordi-
nate y are determined by plane normal perturbations in
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the form

V�t; x; y� � u�x� exp �ltÿ iky� ;
nj�t; x; y� � CNj�x� exp �ltÿ iky� ; j � 1; 2 ;

n4�t; x; y� � CiNj�x� exp �ltÿ iky� ;
~p�t; x; y� � P�x� exp �ltÿ iky� :

For small-perturbation amplitudes, the following problem is
staged:

lu � ÿ
�
ex

d

dx
ÿ ikey

�
P� Rÿ1e L̂uÿ CMqex ; div u � 0 ;

�87�
lN1 ÿ b1

dN1

dx
� ÿa1ux ; lN2 � dN2

dx
� ÿa2ux ;

�88�
lN4 � b4

dN4

dx
� ux;

q � C�N1 ÿN2� ÿ scCiN4 ; L̂ � d2

dx 2
ÿ k 2 ;

with boundary conditions

x � 0 : u � 0 ; N2 � N4 � 0; x � 1 : u � 0 ; N1 � 0 : �89�

System (87)±(89) represents the boundary problem for the
eigenvalues of l. Since the problem is not self-conjugate, the
spectrum of lmay be either real-valued (monotonic perturba-
tions) or complex (vibrational perturbations). Experimental
studies [4, 23, 92] showed that isothermal EHD instability
normally develops in the presence of monotonic perturba-
tions. Then, the critical voltage U� is found from the
condition l � 0. After a few transformations, the following
spectral problemwith respect to parameterB is obtained from
Eqns (35)±(37):

L̂ 2u � k 2B

�� x

0

u dxÿ a

� 1

x

u dx

�
; u � ux ;

x � 0 ; x � 1 : u � du

dx
� 0; �90�

B � ReC
2M

�
s 2
c

b4
ÿ a2

�
; a � a1

b1�s 2
c =b4 ÿ a2� :

It can be seen using explicit expressions for dimensionless
parameters [see formulas (69) ± (72)] that monotonic EHD
instability will develop only in the injection conductionmode,
when s 2

c > b4a2, in agreement with condition (85). The
Bubnov±Galerkin method was applied to numerically solve
problem (90) by expanding the solutions in basis functions
un � xn�1ÿ x�2 [96]. Parameter awas fixed andwave number

k varied so that function B�k� acquired a minimal value. The
results of the calculation of minimal B��k�� values and the
corresponding k� at several a are listed in Table 2.

The value of a � 0 corresponds to the case of unipolar ion
injection, with its growth reflecting the enhancement of
impurity conduction. It follows from the above data that a
rise in impurity conductivity leads to an increase in the critical
perturbation wavelength l� � 2pd=k�, so that equalization of
impurity and injection conductivities, when a!1, results in
k� ! 0, l� ! 1, i.e., electroconvective (EC) cells are smeared
over the entire interelectrode space. The shape of the EC cells
is conveniently described by the ratio of their side lengths,
d : �l�=2�� k�=p. Numerical data indicate that in the course
of unipolar injection the EC cells are elongated in a transverse
direction �d : �l�=2� � 1:4� (Fig. 11a); they become stretched
longitudinally with the growth in impurity conduction
(Fig. 11b).

Increased impurity conductivity is responsible not only
for a change in EC cell geometry, but also for the rise in the
critical value of threshold voltages U�. Therefore, the
impurity conduction essentially hampers the observation of
isothermal electroconvection in a flat capacitor. A stable EC
motion in the flat capacitor is observed during unipolar
injection from ionite membranes into polar liquids, such as
nitrobenzene or pyroline [32, 33]. It should be noted that flat
perturbations are unstable, as in the case of thermal
instability in the gravitational field, and EC cells acquire a
hexagonal shape resembling Benard cells (Fig. 11c).

For weak unipolar injection �Ci 5 1�, the injection law
can be determined from the threshold voltage U� at the
electrodes. Then, B� � ReC

2Ms 2
c =b4 � 221 and one arrives

at

B� � e 2d 3

ee0b4Z
n 2
c �E��
E�

� 221 ; E� � U�
d
: �91�

Relation (91) constitutes an equation inU�. Because function
nc�E�� does not show an explicit dependence on d, this
relation can be used in determining the injection law by
measuring E� at various d. Certainly, the experimental
realization of this method requires high-quality measure-
ments and the employment of precision instruments.

Relation (91) leads to an important conclusion regarding
the so-called autonomous injection level, on which calcula-

a b

c

Figure 11. The shapes of EC cells: (a) for unipolar injection, and (b) for injection and impurity conductivity; (c) shadow picture of EC cells in a flat

capacitor for unipolar injection in pyraline-1460 [23]. Interelectrode gap measures 0.6 mm, and U � 60 V.

Table 2

a 0 0.1 0.2

k� 4.5 4.3 3.8

B� 221 270 374
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tions were based [4, 23]. If nc � const, it follows from formula
(91) that condition B < B� is fulfilled for U > U�, implying
the absence of electroconvection, contrary to available
experimental data. We believe that the postulate of injection
autonomy needs to be more thoroughly substantiated; as it is,
it is incorrect to apply this hypothesis in calculations.

To conclude, we note that in the case of high-level
injection �Ci 4 1�, the stability criterion can be written out
in the form [4, 23]

T� � U�
U0
� 161 ; U0 � Zb

ee0
; �92�

where b is the mobility of the ions being injected.
Relations (92) indicate that the threshold field strength at

a high injection level depends neither on the injection law nor
on the electrode spacing d. The independence from d has been
reported in many experiments [4, 23, 71, 92]. However,
caution is needed when applying relations (92) to the
explanation of this effect, because the instantaneous switch-
ing-on of high voltage may trigger an EHD flow due to d-
independent instability of the ion cloud front (see Section 6).

7.2 EHD instability in a cylindrical capacitor
EHD instability in a cylindrical capacitor is interesting first
and foremost due to electroconvection, readily apparent even
at weak injection and the presence of impurity conduction.
The stability of EHD flows can be accounted for by a
markedly enhanced field strength on the electrode surface
for small radii of the central electrode. This eventually leads
to the dominance of injection conduction, and thereby
maintains flow stability.

In the present case, flat perturbations correspond to
dependences f �t; r;j� � f �r� exp �ltÿ inj�, where r, j are
the radial and angular coordinates of the cylindrical system of
coordinates, n � 1; 2; 3; . . . . Calculations analogous to those
for a flat capacitor indicate that in the inductionless
approximation the critical voltage is specified by the follow-
ing spectral problem with respect to parameter B:

L̂ 2u � n 2B

�� s

1

us dsÿ a1

�H

s

F0us dsÿ a2

� s

1

F0us ds

�
; �93�

s � 1; s � 1

h
� R2

R1
: u � du

ds
� 0;

L̂ � 1

s

d

ds

�
s
d

ds

�
ÿ n 2

s 2
; s � r

R1
; u � sur ;

B � ReC
2M

s 2
c

b4
; a1 � a1b4

b1s 2
c

; a2 � a2b4
s 2
c

;

where the dimensionless parameters have the same sense as in
the set of equations (69)±(72) at R1 � d, and E0 �
U=�R1 ln hÿ1�.

Problem (93) was solved by the Bubnov±Galerkin
method [96], and the calculation accuracy was verified by
another method, i.e. the transformation of the differential
equation into an integral one, with its minimal eigenvalue
found by iterations according to algorithm described in
Ref. [65]. The results of computations of B� � B�n��, where
n� is the value of n at which B�n� is minimal, are presented
in Table 3 for different ratios of electrode radii, h � R1=R2,
under conditions of unipolar injection from the central
electrode.

The critical field strength at the central electrode, E�, or
the voltage at electrodes, U�, are given by the relations

B��h� � e 2R 3
1

ee0b4Z
n 2
c �E��
E�

; E� � U�
R1 ln hÿ1

; �94�

where the value of B��h� ensues from the above numerical
data.

It follows from the data presented that the number of
EC cells equals 4 at a small electrode radii ratio, h4 0:05; as
h increases, two more cells appear successively. These
conclusions are in excellent agreement with the experimen-
tal data on electroconvection in technical grade transformer
oil having conductivity � 10ÿ13 Oÿ1 cmÿ1 [97] (Fig. 12).
Measured VACs and threshold voltage measurements [98]
suggest that electroconvection develops in a mixed dissocia-
tion±injection conduction mode, with the electric field-
induced increase in dissociation playing an important role.
This accounts for the discrepancy between experimentally
found threshold voltages and theoretical estimates based on
formula (94), from which it is possible to determine the
injection law, i.e., the functional dependence nc�E �, in a
wider range of field strengths than in a flat capacitor.
Relations (94) were utilized in calculating critical para-
meters for arbitrary-level unipolar injection from the
central electrode [96], assuming the linear injection law
nc�E � � ZcE. In this case, instability was characterized by

a b c d

Figure 12.EHD flow streamlines of transformer oil in a cylindrical capacitor [97]. Stationary patterns of streamlines at different diametersR1 of the inner

electrode: (a) h � 0:027, R1 � 0:025 cm; (b) h � 0:09, R1 � 0:1 cm; (c) h � 0:15, R1 � 0:25 cm. The number of EHD cells grows, remaining even, as R1

increases. (d) The shadow picture of an EHD flow.

Table 3

h 0.05 0.1 0.2 0.3 0.4 0.5

B� 0.00496 0.0825 1.55 10.1 44.7 617

n� 2 3 3 4 5 7
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three parameters

Ci � eZcR1

ee0
; B � e 2R 3

1

ee0bZ
n 2
c �E0�
E0

; E0 � U

R1 ln hÿ1
:

The results of calculating B� � B�n�; h� for various injection
levels Ci and different h are collated in Table 4 (values in
round brackets correspond to n�).

These numerical data suggest asymptotics B � TC 2
i ,

where T � U=U0, U0 � Zb=�ee0 ln hÿ1�, at high injection
levels �Ci 4 1�. In other words, the threshold voltage does
not depend on the injection law, as in the flat capacitor case,
but does depend on the electrode radii ratio.

8. Asymmetric electrode systems

In needle±plane, blade±plane, and other types of asymmetric
electrode systems, the equilibrium condition Hq� E � 0 is
not fulfilled. Nevertheless, the threshold nature of the
development of EHD flows persists [12, 13]. This fact has
for a long time remained enigmatic. However, the use of an
approach based on the dissociation±injection model [53]
showed that this phenomenon is attributable to the substitu-
tion of the injection conduction mode for the dissociation
one. Due to this, EHD flows for asymmetric electrodes, as a
rule, develop in a mixed dissociation±injection conduction
mode, especially at the initial stages, making their study
somewhat difficult due to both the robustness of the system
of equations and particularly their nonlinearity.

The main patterns of EHD flows in the system of
asymmetric electrodes are considered below based on con-
crete examples with the employment of both the analytical
and numerical methods. The choice of a particular model will
be based on available experimental data.

8.1 Peculiarities of EHD flows for asymmetric electrodes
Efficacious visualization of EHD flows is performed with the
aid of air bubbles blown out of a polyvinyl chloride tube
� 50 mm in diameter [13] and a stroboscopic illumination
system; the bubble velocityÐand therefore the rate of fluid
movementÐ is evaluated from the track length. Notice that
the bubbles do not conduct electric current and have a small
virtual mass; therefore, their influence on the EHD flow
should be negligible. However, they can acquire a charge,
which suggests the possibility of initiating EHD movements
by bubbles or disperse particles. To this effect, experiments on
the fixation of EHD flows were carried out by the shadow
method [92].

The results of research in a needle±plane electrode system
are presented in Fig. 13, showing that EHD motion develops
in the absence of bubbles, too; in other words, charge
injection from the needle takes place. The EHD movements
were detected both at the initial stage immediately after the
high voltage was instantaneously switched on (Fig. 13a) and

at the stage of well-developed motion (Fig. 13b). Figure 13a
shows that at the onset of an EHD flow the charge is injected
from the entire needle surface, and not only in the vicinity of
its tip, where the electric field strength has a maximum value.
The presence of the bulk charge contributes to the charging of
the bubbles and the formation of their characteristic helical
tracks.

8.2 EHD flows in a plane-curved electrode system
Unlike the universally accepted notion of `dissociation
conduction', the notion of ion injection from electrodes has
a much shorter history and has not yet provided a popular
method for studying EHD phenomena. A characteristic
example of EHD flows associated with dissociation±injec-
tion conduction is cellular electroconvection in a plane±
curved electrode system [80, 98] (Fig. 14). The existence of
ion injection was proved as described below [80]. The
transformer oil was purified by passing it through glass
filters to reach a conductivity of 10ÿ14 Oÿ1 cmÿ1, and
supplemented with iodine (I2) to obtain a solution conductiv-
ity of 10ÿ12 Oÿ1 cmÿ1. The solution was added into a cell with
plane and curved electrodes. Given that the bent electrode is
negative, the flow rate is high, while the change in polarity
causes electroconvection to damp. A similar dependence
holds for the current. These features are attributable to the
injection of negative charges from the cathode as a result of
occurring the reduction electrochemical reaction involving
iodine. Relevant calculations are consistent with experimen-
tal evidences [80]. Here are the results of calculations for
different limiting cases.

Let us choose a system of coordinates, as shown in
Fig. 14b. The equation for the curved electrode is taken in
the form y�x� � d� a cos �Ox�, whereO denotes the degree of
bending, and a is the amplitude. Analytical computations are
possible in a linear approximation for a small electrode
bending amplitude x � a=d5 1 in the inductionless approx-
imation �C5 1, Ci 5 1�. There are two expressions for the
longitudinal velocity component Vy and they are presented
below.

a b

Figure 13. Shadow pictures of EHD flows in a needle±plane system [92]:

(a) EHD flow upon switching on the high-voltage field, and (b) fully-

developed EHD flow.

Table 4

Ci

h
0:1 1 10 20 100

0.1 0.88(2) 35.6(3) 30:3� 102�3� 30:1� 202�3� 30� 104�3�
0.2 4.48(3) 75.4(3) 57:2� 102�3� 56:21� 202�3� 54� 104�4�
0.3 17.28(4) 167.2(4) 91:4� 102�4� 88� 202�4� 85� 104�5�
0.5 212(7) 763(7) 222� 102�7� 200� 202�7� 185� 104�8�
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In the case of ion injection from a strongly bent electrode
with o � Od4 1, in its neighborhood y � d one finds

V1 � Vy � ed 2E0

Z
x
o2

�
�
ÿn0C

�
1� 1

b2

�
�2Fÿ F 0EE0� � o

dnc
dE0

E0

�
cos �Ox� ;

F � F�E0� ; F 00 �
dF

dE0
; nc � nc�E0� :

�95�

For unipolar conduction and ion injection from the plane
electrode �y � 0�, one obtains

V2 � Vy � ed 2E 2
0

Z
dnc�E0�
dE0

exp �ÿo�
o

�
�
1ÿ

�
1� o

y

d

�
exp

�
ÿo y

d

��
cos �Ox� : �96�

Hence, we reach the following conclusions.
(1) In aweak field region with a predominance of impurity

conduction, 2F > F 0EE0, 2n0C�1� 1=b2�F > o�dnc=dE0�E0,
the fluid flows toward surface convexities of the curved
electrode, with the flow rate being field-independent if
C5 1. As the field strength increases �F 0EE0 > 2F� and
injection remains weak, the flow reverses direction and
travels away from the convexities. The flow rate then grows
exponentially with the field strength.

(2) At a high enough ion injection level from the curved
electrode, viz.o�dnc=dE0�E0 > n0C�1� 1=b2��j2Fÿ F 0EE0j,
the fluid flows from its convexities with a rate determined by
the injection law. For example, the flow rate in the case of
linear injection, nc � ZcE, is quadratic in field strength:

Vy � ed 2

Z
x
o

ZcE
2
0 cos �Ox� : �97�

(3) In strong enough electric fields, when injection
conduction predominates, the flow rate during injection
from the plane electrode is much lower than the electro-
convection rate under ion injection from the curved electrode:
V1 4V2, as confirmed in experiments on EHD flows in
iodine-containing transformer oil solutions with immersed
copper electrodes [80].

The results of calculations [99] indicate that the above
features are common to all asymmetric electrode systems. For
example, in weak-field regions and, consequently, low-level
ion injection from tapered electrodes (needles, blades, etc.),
the fluid travels toward their sharpened edges, i.e., to the field
concentration region. This fact is accounted for by the
formation of a heterocharge near the edges where the
Coulomb force is directed to the electrode. Numerical
calculations demonstrate that such flows are especially slow.
A change of the conduction mode resulting in the predomi-
nance of the ions being injected initiates formation of a
homocharge near the tips. Then, the Coulomb force is
directed away from the tip and the flow becomes reversed.
Such flows are so rapid that they can be seen with the naked
eye, giving an impression of the threshold character of flow
development in asymmetric electrode systems.

8.3 Numerical analysis of EHD flows
Let us consider a blade±plane electrode system (Fig. 15).
Clearly, the ion injection process dominates at the tapered
electrode due to the extremely high field strength at its sharp
end. Therefore, the electroconvection in the blade±plane
electrode system can be described in terms of a three-ion
model in dimensionless variables, i.e., using steady-state
equations (69)±(72).

It can be assumed without loss of generality that the
tapered electrode places the part of the cathode. Due to the
essential nonlinearity of the equations and complicated

x2

L

d

1

2

O

T1

x1

T2

a
b

Figure 15. Electroconvection in a blade±plane electrode system. (a) Photograph of flow streamlines: interelectrode gap is 1.5 cm, and voltageU � 10 kV.

(b) Computational domain geometry in numerical simulation in the form of a rectangleO shaped by electrodes 1 (cathode) and 2 (anode) (solid lines) and

symmetry lines (straight dotted lines); T1 �T2� is the top (bottom) electrode temperature.

a

d

by

x

a

Figure 14. (a) Electroconvection in a plane±curved electrode system [80]; the curved electrode is negative, interelectrode gap� 2 cm, and voltage is 5 kV.

(b) The choice of the coordinate system.
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geometry of the flow region, the comprehensively formulated
problem can only be investigated by numerical methods.With
this in mind, we shall formulate a more complete system of
boundary conditions for ionic components, taking into
account injection of impurity ions due to the participation
of ion pairs in electrochemical reactions at the electrodes, as
well as the finiteness of the ion discharging rate.

As shown in experiments [13], EHD flows in tapered
electrode systems can also develop in a strong enough electric
field in the absence of special activating additions like iodine,
butyl alcohol and some others. This effect may be due to
minor admixtures of water, dissolved oxygen, or other
substances. Therefore, impurity ions can also be injected
from electrodes as a result of electrochemical reactions.
Their formation rate can be described by injection functions
nA�E � for A� ions, and nB�E � for Bÿ ions. Ion injection is
accompanied by discharging of ions with opposite polarity
(counterions) at the electrodes. At a finite discharging rate,
the counterions accumulate in near-surface diffusion layers as
thick as [25]

xD �
j0

Ev
; �98�

where j0 � kBT=e, Ev is the electric field strength at the
DEL±liquid interface. Accumulation of counterions at the
electrodes gives rise to two important effects: (1) reduction in
ion injection due to the altered catalytic activity of the surface,
and (2) shielding of an external field leading to a fall in the
external field strength in the bulky liquid, and thereby to the
decay of electroconvection. Field strength Ev at the DEL
border and local strengthEloc on the surface are related by the
expression Ev � bDEloc, where bD is the amplification
coefficient by the double electrical layer [25]. Shielding of
the external field by the DEL field can be specified in the
boundary conditions by a voltage drop at the electrode:

DU �
� xD

r0

E dx � �Eloc ÿ Ev�xD � �bD ÿ 1�Ev ; �99�

where r0 is the effective ion size.
The boundary conditions for counterions are given by the

relationship between charge concentrations at the electrode,
ni � ni�r0�, and at the DEL border, niv [25]:

ni � Krniv ; Kr � biEv

kr
; �100�

where kr is the counterion discharging rate constant.
It follows from formula (100) that there are no ions

discharging on the electrodes at high discharging rates
(instantaneous discharging), Kr 5 1. In this case, bD � 1 [25]
and there is no voltage drop at the electrode.

Thus, the boundary conditions for dimensionless vari-
ables take the form

at the anode:

V � 0 ; F � 1 ; n1� nA�E �
n0

� fA�E � ;
�101�

at the cathode :

V � 0 ; F � 0 ; n2� nB�E �
n0

� fB�E � ; n4� nc�E �
nc�E0� � fc�E �:

The numerical solution to problem (69) ± (72), (101) was
sought in a plane formulation in accordance with the

algorithm proposed in Ref. [100] and modified in paper
[99]. The computational domain geometry was chosen with
account of the system's symmetry, as illustrated in Fig. 15b.
Such a choice of the electrode system is convenient in that,
first, it widens discharging surface 2 of the ion collector and,
second, it permits considering two processes in a single
calculation, namely EHD flows during injection from
cathode 1 and in the absence of injection from anode 2
whose neighborhood is dominated by dissociation conduc-
tion. The hydraulic medium was an iodine-containing
transformer oil solution in which intense injection of
negative ions occurred from the cathode at relatively low
voltages. Calculations demonstrated that matching of volt±
ampere and hydrodynamic characteristics is feasible only for
the linear injection law, i.e., at fc�E � � E in formula (101),
and low mobility of ions being injected. This inference is
consistent with the conclusion that the ions being injected in
a saturated iodine solution are clusters with effective radii on
the order of 120 nm [24], whose mobility is substantially
lower than that of monoions. Taking together all these facts
and bearing in mind a closeness in the mobilities of positive
and negative impurity monoions [19, 24], the following
parameters were used in calculations: r � 1 g cmÿ3,
b4 � 0:2b1, b1 � b2 � 10ÿ8 m2 Vÿ1 sÿ1, s � 10ÿ11 Oÿ1 mÿ1,
e � 2:1, Z � 0:2 P, l � 0:119 W mÿ1 Kÿ1, and cp �
2� 103 J kgÿ1 Kÿ1. For the linear injection law, the
dimensionless parameters are convenient to write down in
the form

Ci � eZcd
ee0

; sc � CiScRe ; Sc � �1� b2�S ; S � ee0n
s0d 2

:

Parameter Ci defines the injection level of Xÿ ions, while
S and Re specify the influence of impurity conduction
and voltage at the electrodes, respectively. The value of
the injection coefficient was found from the relations
enc�E�� m4E� � j� and nc�E�� � ZcE�, where eZc �
2:4� 10ÿ9 A s Vÿ1 mÿ2 for the pure transformer oil dried
for 4 days (based on the experimental VAC in a flat capacitor
at E � 10 kV cmÿ1). Numerical calculations were carried out
at d � 1 cm at different voltages, from U � 2 kV (onset of
intense EHD flow) toU � 15 kV (fully developed EHD flow).
Here are typical values of dimensionless parameters for pure
transformer oil: Ci � 1:1, S � 0:37, M � 185, and Re � 5
(U � 10 kV). All observations and conclusions concerning
electroconvection in the plane±periodically curved electrode
system were confirmed by our calculations (see Section 4.2).

The development pattern of electroconvection in a weak-
field region is illustrated in Fig. 16. Calculations showed that
forU4 1 kV, i.e., at weak injection, the flow is directed to the
tapered edges of the electrodes, but the flow rate is extremely
low (below 1mm sÿ1). AtU � 2 kV, a small vortex forms near
the injector electrode (Fig. 16a), which rapidly grows as the
field strength increases and spreads over the entire region
between the injector electrode and the counterelectrode
(Fig. 16b). Near the sharpened tip where injection is absent,
the flow retains its direction to the tip. Calculations gave
evidence that matching theoretical and experimental data [13]
by streamlines and flow rate along the symmetry axis from the
injector electrode (central jet) takes place only for high-level
injection and low mobility of the ions being injected.
Independent experimental measurements of flow rate dis-
tributions in dried transformer oil made by A E Kuz'ko
(Fig. 17a) are also in qualitative agreement with our
calculations (Fig. 17b). For example, the jet length l is related
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to the distance d as l � 0:7d. The flow rates are of the same
order of magnitude, too; in particular, in the central jet for
weak and strong injections at U � 5 kV, they are
V1 � 1:5 cm sÿ1 and 5 cm sÿ1, respectively, consistent with
theoretical results (Fig. 17b). However, a more thorough
evaluation of injection parameters and ion discharging
coefficients is needed to reach complete quantitative agree-
ment. It was shown by calculation that the EHD flow rate V1

drops appreciably at the finite ion discharging rate, e.g., by
30% at Kr � 3 and U � 5 kV.

The following conclusions can be drawn from the results
of calculations:

(1) In the absence of ion injection (dissociation conduc-
tion mode), the fluid travels to the blade edge at a very low
rate (less than 1 mm sÿ1). At a high enough voltage, when
injection conduction begins to dominate, the fluid flows away
from the injector electrode (see Fig. 16), and the flow rate
amounts to 10 cm sÿ1. This effect accounts for the apparent
threshold nature of the flow development in an asymmetric
electrode system.

(2) The linear injection law agrees with both the flow field
and VAC.

(3) Experimental and theoretical streamlines coincide
when the mobility of the ions being injected is lower than the
monoion mobility.

(4) The EHD flow rate decreases at a finite ion discharging
rate.

(5) Studies into the EHD flow structure and flow field
distribution coupled with VAC analysis permit elucidating
mechanisms of ion injection from electrodes.

8.4 EHD heat exchange
The enhancement of heat transfer from a heated electrode due
to the formation of boundary EHD layers is a very important
application of EHD flows. In engineering practice, heat
transport is characterized by heat exchange coefficient a,
defined as _Q � aDT, where _Q is the heat flux from the entire
surface per unit time, and DT � T2 ÿ T1 is the temperature
difference �T2 > T1�. In the Boussinesq approximation, the
temperature field distribution in dimensionless variables �y �
�Tÿ T1�=DT � is written out as

PrReVHy � Dy ; �102�
where Pr � n=k is the Prandtl number (k is the thermal
diffusivity). Assuming the bottom electrode to be hot
(Fig. 15b) and disregarding heat transfer through thin
blades, the boundary conditions can be written in the
following form:

top electrode �x1 � 0�: y � 0;

bottom electrode �x1 � L1�: y � 1; �103�
symmetry lines �x2 � 0; x1 � L2�: qy
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Figure 17. (a) Experimental dependence of the flow rate V1 along the jet axis at d � 1:5 cm, andU � 5 kV. (b) Results of calculations of the longitudinal

dimensionless flow rate component along the symmetry axis [coordinates s � �x1 ÿ L�=d (Fig. 15b)] from the injector electrode (central jet) for the strong

injection case, Ci � 2:7: 1ÐU � 5 kV, 2ÐU � 10 kV, and 3ÐU � 15 kV. Instantaneous ion discharging.
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Let us find the heat transfer amplification coefficient as the
ratio of the thermal flux _QE � aEDT, aE � l

� L2

0 qy=qx1 dx2
in an electric field calculated at the bottom electrode to the
thermal flux _Q0 � a0DT, a0 � l�L2=L1� in a quiescent fluid:
ZE � _QE= _Q0. The results of calculations of coefficient ZE
presented in Fig. 18a suggest that heat transfer is effectively
enhanced by an electric field at instantaneous ion discharging:
ZE � 10 and ZE � 20 for weak and strong injections, respec-
tively. The analysis of isotherms (Fig. 18b) shows that heat
transfer largely occurs through boundary layers, and the fluid
temperature at the interface between them is roughly
constant. In experiments, a system of wire electrodes
arranged in a chess-board fashion is usually utilized to
enlarge the injecting surface area and prevent a breakdown
[56, 101] (Fig. 19). The measured heat transfer amplification
coefficient is relatively small; it does not exceed ZE � 4 at
rather high voltages (U � 20 kV). Such small ZE values
appear to be due to the finiteness of the ion discharging rate,
which poses an important problem of identifying a buffer
charge carrier from the injector to the ion collector, i.e.,
searching for an admixture readily ionized on the injector

and rapidly discharged back into the original neutral material
on the collector.

9. Conclusion

Today, electrohydrodynamics has established itself as a self-
contained, rapidly developing scientific discipline. Scientific
conferences are held on a regular basis in Russia (Saint
Petersburg State University and P G Demidov Yaroslavl'
State University), Europe, South-East Asia, and the USA. It
is universally accepted that ionic conduction in the presence
of injection and dissociation±recombination processes plays
the key role in major EHD phenomena. The use of multiion
conduction models made it possible to explain a vast variety
of EHD processes both in the course of their evolution and
under steady-state conditions in electrode systems of different
geometries and at high-voltage field strengths. For all the
apparent paradoxes of electrohydrodynamic phenomena,
nonlinear analysis including numerical calculations in the
framework of the availablemodels provides an explanation of
EHD events based on classical concepts.
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Evidently, EHD effects may find application in various
technologies, such as the use of EHD flows in fluid pumping
(e.g., an EHD pump without moving mechanical parts) or
heat exchange enhancement. EHD-based devices may be of
use in the aerospace industry due to a number of important
advantages (absence of vibrations, noise, etc.). However, the
operational life of EHD systems remains too short, which
poses problems similar to those encountered in due time in the
development of semiconducting materials, like the necessity
of high-grade purification of fluids and selection of injection
impurities (doping of semiconductors) to maintain reversible
redox reactions at the electrodes.We believe it will be possible
to resolve these problems in the near future and thereby give a
new impetus to the development of electrostatic technologies.

This work was supported by the Federal State Program,
`Academic and Teaching Staff of Innovative Russia', 2009±
2013 (state contract P913).
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