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Abstract. The modern semiclassical method developed over the
past few decades and used for describing the properties of the
electronic subsystems of matter is reviewed, and its application
to quantum physics problems is illustrated. The method involves
the Thomas —Fermi statistical model and allows an extension
by including additive corrections that take the shell structure of
the electronic spectrum and other physical effects into account.
Applying the method to the study of matter and finite systems
allowed the following, inter alia: (1) an analysis of the total
electron energy oscillations as a function of the number of
particles in a 1D quantum dot; (2) a description of spatial
oscillations of the electron density in atoms and atomic clus-
ters; (3) a description of the stepwise temperature dependence of
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the ionicity and ionization energy in a Boltzmann plasma; (4) an
evaluation of free ion ionization potentials; (5) an interpretation
and evaluation of the difference in the patterns of oscillations in
the mass spectra of metal clusters.

To the memory
of David Abramovich Kirzhnits

1. Introduction

More than 35 years have elapsed since the publication of
review [1] describing the application of the semiclassical
method based on the statistical Thomas—Fermi (TF) model
for calculating the characteristics of many-electron systems.
This method has been improved since then, and its field of
applications has been extended, in particular, to include
nanoobjects. Finite systems like clusters, quantum dots,
nanoconductors, fullerenes, and similar electron—ion com-
plexes are convenient for semiclassical physical studies
because they contain a sufficiently large number of particles
and reveal quantum properties.

The aim of this review is to present the modern
semiclassical method and a number of problems solved
using this method. A semiclassical method for describing the
local and integral characteristics of atoms and ions, metal
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clusters, and quantum dots is considered, the efficiency of the
method for calculating the equation of state of plasma is
demonstrated, and a qualitative and quantitative semiclassi-
cal analysis of results obtained by more complicated quantum
mechanical methods is performed.

The review content does not overlap, in fact, with that of
well-known monograph [2], in which a somewhat different
approach was used and the problems of nuclear and
mesoscopic physics were mainly addressed.

The density functional method [3] in the Kohn—Sham
representation, being the most efficient method for studying
the properties of a system of interacting fermions in an
external field, requires the solution of Hartree-type equa-
tions for the wave functions and the spectrum of quasiparticle
states. As the number N, of particles in the system increases,
the difficulties encountered in solving this problem consider-
ably increase, whereas the conditions of applicability of the
TF model improve. This model, as was already shown by
Dirac [4], corresponds to the leading term in the expansion of
the characteristics of the system in the semiclassical behavior
parameter

dA

dr

1 Vp
&= A 4
PE

=— l. 1.1
2n < (L.1)

:h‘

Here, /(r) is the particle wavelength, p(r) is the characteristic
momentum of the particle, and r is its radius vector. In the
one-dimensional case, the semiclassical behavior parameter is
inversely proportional to the number of particles (¢ oc Ny 1);
in the two-dimensional case, it is inversely proportional to the
. -1/2 .
square root of the number of particles (¢ « Ne '), and in the
three-dimensional case, to the cubic root (& N 3). Hence,
the larger the number of particles in the system is, the more
justified the use of the semiclassical approximation, i.e., the
smaller the corrections to the TF model characterizing the
difference between its results and quantum mechanical
results.

The TF model was initially proposed to describe a many-
electron system at zero [5, 6] and finite [7] temperatures,
assuming the local validity of expressions for the ideal gas of
fermions in an external field. In this case, the Poisson
equation with the corresponding boundary conditions closes
the ideal-gas relation between the density n. and potential V7

AV(x) = dnne(r), ne(r) = V2 T3/21]/2(“_7TV“)>7 (1.2)

n2

leading to the TF equation for the self-consistent potential
V(r). Here, I;(x) is the Fermi-Dirac function (see Appen-
dix A), u is the chemical potential, and T is the temperature.
This model allows calculating various characteristics of free
atoms and ions [8—18]; it is widely used in problems of the
physics of matter at high energy densities and in problems of
solid-state (see, e.g., [19-21]), nuclear, and molecular physics.

The TF model is very simple and physically transparent;
however, it neglects many important physical effects: correla-
tion (corr), exchange (ex), gradient (qu), shell (sh), and
oscillation (osc). The presence of a small parameter ¢ in a
many-particle system (N, > 1) allows a physically reasonable
improvement of the model by adding independent corrections
caused by the effects listed above, which leads to the
expression

(1.3)

ne >~ NTF + 6ncorr + 6nex + 6nqu + 6nsh + 6nosc

for the number density of particles in the semiclassical
approximation.

Another important expression derived in [1] gives a
relation between small corrections to the density and the
free energy of a system of particles: !

HtE
AF:—J d,u/[Sne(r,,u’;T)dr. (1.4)
Jooo .

Thus, calculations in the consistent semiclassical approx-
imation are reduced to the determination of corrections to the
density in the right-hand side of (1.3). Based on the TF model,
with the expression for the density correction caused by one
effect or another and using expression (1.4), we can construct
the semiclassical thermodynamics of a system of fermions,
taking all important physical effects into account. In many
cases, semiclassical results obtained by this method are
virtually identical to the results obtained with the help of
more complicated models and provide a clear interpretation
of the observed dependences. The efficiency of the semiclassi-
cal approach for solving problems in quantum physics is
demonstrated in this review.

Correlation effects are not a subject of our special
investigation. We note, however, that the semiclassical study
[24] of nonlocality sources showed that the use of the local
density approximation for the correlation correction can be
substantiated at zero temperature only for high densities, and
this approximation is certainly inapplicable at high tempera-
tures. In practice, the dependence of the correlation energy on
the density in inhomogeneous systems is obtained by
approximating the results of numerical calculations, these
dependences being different in different ranges of parameters
(see, e.g., [25-33])).

Exchange effects describe the influence of the Pauli
principle on the interaction of particles. They reduce the
Coulomb repulsion and do not violate the concept of the
independence of particles, which is inherent in the self-
consistent field approximation. The corresponding free-
energy correction can be written in form (1.4),

Iz ne 2
Ach:—nJ du’Jdr<l> .
o ou'

Hereafter, p = upp. The lower, second-order quantum
gradient correction

(1.5)

One
ou

T

AFg, = —— Jnc dr (1.6)

6
has the same order of smallness in the semiclassical behavior
parameter as the exchange correction has [34]. Their
combined contribution is taken into account in the TF
model with quantum and exchange corrections (TFCs)
[1, 35-37], which is widely used in the physics of matter with
high energy densities [38]. The disadvantages of the TFC
model, such as its inconsistency with the perturbation theory
in the high-compression and high-temperature limits and the
divergence of gradient corrections to energies at the localiza-
tion sites of nuclei, can be eliminated by accurately taking the
vicinity of nuclei into account [39-43]. This leads to a
modified form of the known Scott correction [44-47].

We recall that semiclassical physics involves the charac-
teristics of the classical motion of a particle in the correspond-

It is shown in the density functional theory [22, 23] (see Section 5.2) that
this relation has a more general character.
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ing potential. In particular, the semiclassical Green’s function
G(r,r’,¢), which is equal to the distribution function of
particles in the phase space at coinciding points, is the sum
of the contributions of possible trajectories of the classical
motion of a particle with energy ¢ between pointsr and r’. The
leading contribution, the Thomas—Fermi term, is given by the
shortest trajectory connecting points r and r’ [1, 48].
Trajectories with reflection from turning points with an
incomplete cycle are responsible for spatial density oscilla-
tions— oscillation (interference) effects, while completely
cyclic closed trajectories are responsible for shell effects (due
to the discreteness of the spectrum of bound states).

The shell structure of one-particle spectra of atoms and
ions is manifested, for example, in the nonmonotonic
dependence of the properties of elements on the atomic
number in the periodic table, in oscillations in the radial
electron density distribution in atoms, and in stepwise
temperature dependences of the ionization degree and
ionization energy of plasma. Traditional statistical models
give regular monotonic functions of the parameters, reflect-
ing only their average behavior. This disadvantage of the
statistical approach seemed insurmountable, and it was
asserted repeatedly in the literature that these irregularities
can be described only in the framework of an exact quantum
mechanical treatment.

However, it was already shown in [48, 49] (see also [1]) that
the shell and oscillation effects can be described by separating
the leading terms in the semiclassical behavior parameter in
the derived nonanalytic dependences of physical quantities.
The development of this idea for studying shell effects in the
thermodynamics of matter with high energy concentration
resulted in the generalization of the theory of shell effects to
the case of finite temperatures. The dependence of the shell
correction on the compression ratio of matter was also
considered in [50-53] and, in particular, the prediction in
[49] (see also [1]) of the increasing role of shell effects during
cold compression, which attracted great interest at that time,
was explained theoretically.

Shell effects have been considered by different methods in
a number of papers [12, 13, 54, 55] for free atoms.

The theory of oscillation effects and a semiclassical
description of the spatial distribution of the electron density
in electron—ion systems was developed in [56—58] based on the
principles proposed in [48].

The semiclassical studies of many-electron systems are
often performed in the central symmetry approximation,
which amounts to considering matter in the Wigner—Seitz
spherical cell approximation [59], free atoms and ions, and
spherical clusters and nuclei. It turns out that the central self-
consistent attraction potential V(r) in these systems can
belong to one of two types: (i) the cluster (nuclear) potential
finite at the center or (ii) the atomic (ion) potential having a
Coulomb singularity at the center. The description of the
gradient, shell, and oscillation effects essentially depends on
the type of the potential in the problem under study. Notably,
the application of the semiclassical approximation to pro-
blems with a Coulomb singularity involves additional
difficulties due to violation of the semiclassical behavior at
the system center [39-43]. Also, considerable differences exist
in the shape of one-particle spectra [60] and possible classical
mechanical trajectories [61, 62].

Semiclassical methods, as pointed out above, have been
also successfully used to describe the properties of finite
systems [63]: nuclei, clusters, nanoconductors, and quantum

dots. Of great interest are atomic (in particular, metal)
clusters representing complexes containing from a few to
several tens of thousands atoms [64, 65]. The study of such
clusters allows investigating the evolution of matter in passing
from atomic scales to the solid-state scale. Shell effects in
nuclei and clusters and their relation to classical periodic
trajectories were studied, for example, in [58, 61-70].

One of the problems of the physics of atomic clusters is
how to explain oscillations observed in experimental mass
spectra: the dependence of the number of N-atomic clusters
on N. More specifically, it is known that the characteristic
feature of the mass spectrum of sodium clusters is the existence
of ‘magic’ numbers: the number of clusters with such numbers
noticeably exceeds the number of neighboring clusters. As N
increases, the amplitudes of these deviations decrease, then
they increase again, and so on, i.e., oscillations with beats
occur. These effects decay with increasing the temperature.
The mass spectra of metal aluminum clusters look quite
different. These differences have been described quantita-
tively and explained by semiclassical methods [23, 61, 62].

We note that along with the consistent semiclassical
additive approach in (1.3) and (1.4), another semiclassical
model, the so-called extended TF (ETF) model, is used in the
literature. In this model, for example, the kinetic energy K[n]
in the energy functional at zero temperature,

Eln] :K[n]+J [Vext(r) +% Vint(r) | n(r) dr + Exc[n], (1.7)

Jn(r) dr=N,, (1.8)

for a system of N, electrons with the interaction potential
Vine(r) in the external field Ve (r) is described by an
expression that in addition to the ideal-gas term includes the
lower, second-order gradient correction, and sometimes the
next, fourth-order correction. In this case, the exchange and
correlation (xc) terms can also be included in the total energy
functional. An extremum of the functional then gives the
equation for the density in which gradient, exchange, and
correlation corrections are self-consistently taken into
account.

Although the ETF model cannot be substantiated
theoretically, it describes the density distribution better than
the TF model does, and is widely used for calculating the
smooth, averaged behavior of various characteristics of
fermion systems in nuclear physics [71] and the physics of
metal clusters [66], as well as for describing the properties of
compressed [72] and heated [25] matter. Shell and oscillation
effects are neglected in this model.

The review has the following structure:

In Section 2, a consistent semiclassical method [58] with
the use of additive corrections (1.3) and (1.4) is demonstrated
with the example of describing the properties of a one-
dimensional quantum dot.

In Section 3, different semiclassical models are used for
calculating averaged local and integral characteristics of free
atoms and ions, and bulk and hollow atomic clusters.

In Section 4, the features of one-particle spectra are
analyzed for the two types of central potentials typical for
atom—ion and nuclear—cluster systems. A semiclassical
method is proposed for describing spatial density oscillations
in these two systems.

In Section 5, the use of the TF model and different
corrections to it for calculating the equation of state for the



432 G V Shpatakovskaya

Physics— Uspekhi 55 (5)

electron component of the Boltzmann plasma is discussed
and the form of gradient corrections in systems of different
dimensions is considered.

In Section 6, the semiclassical model of the equation of
state taking shell effects into account is generalized to the case
of degenerate matter, and a self-similar wide-range equation
of state for the electron component of matter with high energy
density is proposed.

Section 7 is devoted to the semiclassical description of
shell effects in characteristics of metal clusters.

In what follows, unless stated otherwise, atomic units are
used: /i = me = e = 1, mass [m] = 9.11 x 10~2 g length [L] =
ap = 5.29 x 107 cm, density [1] = 6.75 x 10** em~3, mass
density [p]=11.2 g cm~3, pressure [P] = 294.18 Mbar, energy
and temperature [E] = [T] = 27.21 eV.

2. Semiclassical model
of a one-dimensional quantum dot

In this section, the application of the semiclassical additive
correction method is demonstrated in a simple one-dimen-
sional case. Expressions for gradient, shell, and oscillation
corrections to the density and energy are obtained using an
expansion in the semiclassical behavior parameter, and it is
also shown that the TF model with these corrections not only
gives the results coinciding with those obtained by the more
complicated and time-consuming density functional method
but also allows separating the contribution from each
physical effect and analyzing its dependence on the para-
meters of the problem.

The one-dimensional example is taken from [73]. A system
of charged particles (one-dimensional quantum dot) is
considered. The motion of particles is restricted from two
sides along the x axis by an external confining potential
Vext(x) and is homogeneous in transverse directions y and z.

A physical example of such a system in a rough
approximation is the system of mobile electrons in gra-
phene, where the free motion of electrons is possible only in
two dimensions, while motion in the perpendicular direction
is quantized [74-76].

In [73], a one-dimensional quantum dot is described by
three different methods: the Thomas—Fermi, Strutinsky [2,
77], and density functional method in the Kohn-Sham
approximation. The method for calculating corrections to
the local and integral characteristics of this system in the TF
model (see Sections 2.2 and 2.3) and a comparison with the
results of the density functional method (Section 2.4) are
considered in more detail in our paper [58].

2.1 One-dimensional quantum dot

in the Thomas—Fermi model

The distribution function in the phase space in the one-
dimensional TF model has the form f(x, p) = G(pj(x) -p?).
Its integration over p (followed by division by the volume
2w of one state) gives the relation between the density and
Fermi momentum n¢(x) = p,(x)/m, neglecting the spin. Here,
Pu(x)=+/2(p — V(x)), V(x)="Vin(x) + Vex(x) is the self-
consistent potential, Viy(x) is the interaction potential of
particles, satisfying the Poisson equation ¥V} (x)=
—4me’n(x), the Fermi energy u is determined from the
condition of normalization to the number of particles
N, and the interaction parameter e used in Section 2
is measured in electron charge units. It then follows that
the electron density distribution n.(x) satisfies the equa-

tion [73]
2

(x)=0. (2.1

T
5 [n2(x)]" — dne’ne(x) + V2,
The kinetic energy density in the same approximation is
determined by the integral of (p2/2) f(x, p) over the momen-
tum p, and the total electron energy is
o0 n’n(x 1
Erp = J ”le(x) |:_ e( ) + Vext(x) +5 Vint(x) dx.
o 6 2
(2.2)

The authors of [73] studied a particular system with
the confining potential Vex(x) = gx* (assuming in calcula-
tions that g =0.5) and boundary conditions n/(0) =0,
ne(x = +00) = 0. It can be shown that Eqn (2.1) with such a
biquadratic potential has a similarity property with respect to
the number of electrons N, [58]:

XN, = xlNc]/37 ”c(Né)(xNe) = ”c(l)(xl)chﬂ’

Hy, = l«llN:/}v Ey, = ElNem- (23)

It follows from the solution of TF equation (2.1) with
Ne =1 and e = 1 that the self-consistent potential V(x) has
the form of a symmetric double well separated by a barrier,
the Fermi energy u being located near the ‘hump’ of this
barrier (Fig. 1). In the conduction theory of a quantum dot
[78], a change in the total electron energy under the addition
of one electron to the system, i.e., the chemical potential, and
also the derivative of this quantity with respect to the number
of particles, play an important role. At zero temperature, the
chemical potential coincides with the Fermi energy u, and
similarity property (2.3) allows performing the corresponding
differentiation analytically:

0En, 7

= EN3
N, 3 ElVes XN,

a,U,N 4 1
=N _ 2 N3
oN, 3ttt

Hn, (2.4)

Relations (2.3) and (2.4) give the corresponding dependences
for the total electron energy E and y in the TF model:

Ey =3 /7, 11 = 4, /3.

=5

Vv

0 1 2
x

Figure 1. Self-consistent potential V(x) = V(—x) in a one-dimensional
quantum dot with Vey (x) = x*/2. Calculation by the TF model for the
charge ¢ = 1 and the number of electrons N, = 1 (solid curve). Dotted
straight lines are the Fermi energy u and the energy level &; X, X7, and X,
are the corresponding turning points.
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2.2 Density corrections

To obtain corrections (1.3) to the TF density, we express the
electron density in terms of one-particle wave functions as
ne(x) =3, [, (x)]* (the spin is neglected, as in [73]). To
determine the spectrum of one-particle energies ¢(n), we use
the quantization condition 2

S? = JXJ dxp.(x) = h(nn + o +af), (2.5)

X!
while for the wave functions, we use the semiclassical
approximation, taking the next terms of the expansion in the
semiclassical behavior parameter into account [79, 80]. In
(2.5), X! and XT are the left and right turning points and o/
and of are phases upon reflection from these turning points,
which depend on the potential behavior in their vicinity (for
the linear behavior, o = 1t/4).

Using the Poisson formula to pass from the sum to an
integral,

b el b+e
Elﬂ:§:J+dewM%m%eua<l>0@

s=—o0 Jad—€

expressing the quantum number # in terms of the action
according to quantization condition (2.5), and retaining,
along with the leading TF term, a few next-order terms in
the semiclassical behavior parameter, we obtain

u
[ de cos <2SE(X) - 2ocl>
Jvix) Pe(X) h
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257 mode
X COS |§ —H—2al—2ar)} —2h2[ G s,x}
h Vix) Pe(X) 3(6 )
= NTF (x) + Ongp (x) + Onose (Y) + 62nqu(x), (2.7)
oSy
03(¢,X) = —— (2.8)

8p3() T 16p8(x) °

The first term in curly brackets in (2.7) is equal to the density
in the TF model, the second term describes the influence of the
discreteness of the electron spectrum resulting in shell effects,
the third term reflects the wave properties of electrons leading
to oscillation effects, and the fourth term, representing the
second-order quantum gradient correction, describes the
contribution due to the inhomogeneity of the potential.

Direct integration with respect to energy in the fourth
term gives the gradient correction to the density [80]:

1
Sofiqu(¥) = —=—

s (V) #3700V

: (2.9)

Using similarity property (2.3) and separating the dependence
on the number of particles in (2.9),

ongu(x; N ) = Ne_4/362nqu(x; 1),

21In (2.5), asin (2.7) below, the dependence on 7 and, correspondingly, on
the semiclassical behavior parameter ¢ is manifest.

we see that the gradient correction has the second order of
smallness (£2 N, ?) compared to the density in the TF
model.

By integrating the third term in (2.7) by parts, we retain
the leading term in the semiclassical behavior parameter
outside the integral and take into account that Sl? /Th = N,
is an integer. As a result, we obtain the oscillation correction
to the density:

cos [25,,(x)]

Snose(x) ~ — 2p,(x) 10 sin (rt,(x)/10)

, (2.10)

where u = prg, t,(x) = dS,(x)/du is the classical time of the
electron motion with the energy ¢ = u from the left turning
point X! = —X,, to the point x, and 0 = 7,(X,,), where X, is
the right turning point (Fig. 1). The range of applicability of
the obtained expression excludes the vicinities of the turning
points.

Although the dependence of the oscillation correction on
the number of particles is more complicated, it can also be
calculated using similarity property (2.3). Considering the
amplitude (4) and phase (¢) factors separately,

Bnose (x; Ne) = A(x; Ne) cos [¢(x; Ne)]

A(x;Ne) = A( 1) NS, o Ne) = d(x; 1) Ne

we see that the oscillation effects have the first order of
smallness in & compared to the result obtained in the TF
model, and their contribution to the density is greater than
that of gradient effects.

2.3 Quantization condition and energy corrections

To calculate the shell correction, it is necessary to have the
quantization condition valid in the entire spectral region, in
particular, near the hump of the barrier. This condition
differs from standard Bohr—Sommerfeld expression (2.5)
with o! = o' = n/4. The correct result

SP=@n+ 1)+, S=S(-X,, X,)=25,(0,X,),

(2.11)
d? |d?| 1 +id?
pE e [ el %
Ve 2(1 In 2>+arg1"( 3 )

2
+ B—karctan <tanh%>] ,

is obtained by using the known exact solution of the
Schrodinger equation with a potential near the hump in the
form

[V (0)]

V(x) = V(0) - ——

5 x2, V"(0) = —4me’n(0).

In quantization condition (2.11), S? is the classical action for
electron motion with the energy ¢ above the hump between
the two turning points — X, and +X,, and the quantity

p2(0)
4me?n(0)

d* =

&

(2.12)

characterizes the closeness of the energy ¢ to the hump of the
potential ¥(0) (¢ = u in Fig. 1). The sign of d2, which
coincides with the sign of the squared momentum p?(0), can
be respectively positive or negative in the regions of classically
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y*/m dy*/d(d?)

Figure 2. Phases v,v“i /m from quantization condition (2.11) (solid curves)
and their derivatives d*,'j /d (d?) (dashed curves) as functions of para-
meter d?.

allowed or forbidden motion of the particle. Above, we
considered the case of classically allowed motion, where the
energy level is located above the top of the potential hump:
¢ > V(0), d*> > 0. In the case ¢ < V(0), d*> < 0, which is also
shown in Fig. 1, the action in (2.11) has the form
SO =28, (XL xn).

The phases y* depend on the energy via the parameter o>
in (2.12) (Fig. 2). It is because of this dependence that
quantization condition (2.11) continuously connects the two
limit cases: a transparent barrier in which the particle moves
high above the hump (d> — oo, 7%/n — £1/2) and an
impenetrable barrier in which the particle is confined in one
of the two lower wells (d> — —oo, y* — 0); in the latter case,
a doubly degenerate level exists. The number of states in the
TF model with the shell correction turns out to be a step-like
function of the chemical potential

0 00 K

N =2t Ly ED

T T s

s=1

{Sin [S(SI? - /:)]

+sin [s(S0 — y;)]} . (2.13)
This reflects the fact that when the chemical potential
intersects an energy level, the number of states changes
discretely by unity.

To study the contribution of the effects under considera-
tion to the energy, we use expression (1.4) at zero tempera-
ture. Due to the averaging via double integration, the role of
oscillation effects is negligible, and the gradient and shell
terms are dominant.

The expression for the gradient correction to the energy is
obtained by the direct integration of (2.9) over the energy p’.
Replacing the momentum by the density and using Thomas—
Fermi equation (2.1) and similarity relations (2.3), we obtain

1 n
82Equ(Ne) = —E n +n dx
[ (% x2dx 2 ,
- —Ze%X,| =8 Eu(1)N3 . (2.14
2nH0 ) 3¢ } N (21

The shell correction to the energy

1 &

_ =1
0L = o Z 52

s=1
cos [s(S? —y.F)
“ 2 ai%/ai]
w = O

cos [s(Sy —7,)]

}; (2.15)

is obtained by integrating the second term in (2.13) by parts
over energy and keeping the leading nonintegral term.
The phases y ui in (2.11) and their derivatives

O om
ou 4me?n(0)
1 +id? |d?| T
R T N P AL, 5
X{ e‘l’( 2 ) "2 ™ cosh (nd2/2) (2.16)

determine the result of interference in the addition of the two
sums in (2.15). In (2.16), ¥ (z) = dInI'(z)/dz is the Euler psi
function. The logarithmic divergence of derivatives (2.16) at
di =0, as shown in Section 2.4, strongly affects the amplitude
of shell oscillations.

2.4 Calculation results

We use the approach considered above for calculating the
characteristics of a 1D quantum dot with N, >4 by
comparing our results with calculations performed in [73],
where, apart from the TF model, the Kohn—Sham density
functional method [3] and Strutinsky method [2, 77] were
used.

Figure 3a presents the results of calculations of the
electron density in the TF model, taking oscillation correc-
tion (2.10) into account or neglecting it for the number of
electrons N, = 5 and 20, in comparison with calculations in

0.5

SE
04

5Equ + ESEsh

03

02

1 2 3 4
0 0 0 N, 0

Figure 3. (a) Distribution of the electron density n#(x) in a one-dimensional
quantum dot. Calculations with the TF model with the oscillation
correction (2.10) neglected (dashed curves) and taken into account (solid
curves) are compared with the calculations in [73] by the density functional
method (dotted curves). The interaction parameter is ¢ = 1, the number of
electronsis N = 5(lower curves) and N, = 20 (upper curves). (b) Quantum
correction 8Eg, (2.14) to the total electron energy (thick curve) and its
sum with shell correction 8Eg, (2.15) (thin curve) as a function of the
number N, of electrons in a one-dimensional quantum dot with the
interaction parameter e = 1. Black dots show the difference between the
total electron energy calculated by the density functional method and by
the TF model [73].
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the Kohn—Sham model. The TF model gives the smooth
component of the density distribution, while considering the
oscillation correction allows describing spatial density oscilla-
tions quite accurately. Analytic expressions that we obtained
for a quantum dot with the number of particles N, > 10 only
very weakly deviate from the results of the density functional
method [73] everywhere except a small vicinity of turning
points; this deviation is indiscernible in Fig. 3a.

The quantum gradient correction to the total electron
energy calculated by expression (2.14) in the range
4 < N, < 40is presented in Fig. 3b. Figure 3b also shows the
sum of gradient and shell (2.15) corrections compared with the
difference between the exact total energy calculated in the
Kohn-Sham model and in the TF model, taken from [73]. This
difference coincides with the principal Strutinsky correction
calculated in [73] by solving the Schrodinger equation.

Below, based on the analysis of shell correction (2.15), we
explain the dependence of the period and amplitude of
oscillations on the interaction parameter e obtained for the
Strutinsky correction in calculations [73] for e < 1.5.

Figure 4 shows shell correction (2.15) calculated as a
function of the number of electrons in a quantum dot for
several values of the charge e. The dependences dﬁ(Ne) are
also presented in this figure. We can see that as the interaction
parameter of particles e increases, the amplitude of energy
oscillations increases and remains constant for increasing N..
The same increase in the oscillation amplitude and its
constant value in the range N. =2-20 were obtained in
numerical calculations [73] by the density functional method
for the charge e = 1.5. The semiclassical method can explain
this behavior. It follows from (2.15) that it is determined by
the phases 7 in (2.11) and their derivatives dy;/d(d?)in
(2.16), which depend on the value of dlf in (2.12), characteriz-
ing the closeness of the Fermi energy of the system to the
central maximum of the self-consistent potential J/(0) (Fig. 1).
As eincreases, di(e) rapidly tends to zero, i.e., to the region of

0.1 H d;
$ 0 s
2=}

—0.1 H

SEq,

—0.1

6Esh

10 20 30 40 50 60 70
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Figure 4. Shell correction S Ey, (2.15) (solid curves) and parameter dﬁ (2.12)
(dotted straight lines) as functions of the number of electrons N, in the
quantum dot for different electron charges e.

the logarithmic singularity of derivatives (2.16) (Fig. 2), which
causes a considerable change in the form of shell oscillations
upon increasing the parameter e.

Thus, the semiclassical additive correction method gave
results coinciding with those obtained by the density func-
tional method and allowed analyzing the relative contribu-
tions of gradient and shell effects and explaining the
dependence of the oscillating part of the total energy on the
number of particles and the interaction parameter.

3. Averaged description of spherically symmetric
electron systems

In this section, spherically symmetric electron systems are
considered mainly at zero temperature. The use of the TF
model and its different modifications with the quantum,
exchange, and correlation corrections taken into account
additively (TFC) and self-consistently (ETF) allows describ-
ing the averaged behavior of the local and integral character-
istics in atoms, ions, and bulk and hollow clusters quite
accurately.

3.1 Free ion in the Thomas—Fermi model.

Ionization potentials and partition functions

The composition and thermodynamic properties of plasma
are often calculated using the chemical model [81], which
leads to Saha equations for the concentration of particles
(electrons, atoms, and ions with different charges). The
parameters of these equations are the ionization potentials
and partition functions of ions, which can be calculated if the
excitation spectra of the corresponding ions are known. The
ionization potentials and excitation energies of ions are
usually determined from experimental spectroscopic data or,
if these data are not available, from quantum mechanical
calculations (see, e.g., [82] and [83]). We show that the TF
model can be used for this purpose.

The problem of describing a free positive ion with a charge
z=Z7— N, =0 (where Z is the nucleus charge) in the TF
model was consider by Sommerfeld in 1933 [§, 9, 79]. In this
case, the electron density distribution 7, (r) is described by
relations

—1 3/2
ne(}”) = (3T52) [2(/1: - Vz(r))] ’ (31)
_ Zo.(x)
He = VZ(I’) - sz )
where the function ¢ (x) satisfies the TF equation
VEQ! () =402 (), 9.(0) = 1, 9.(1)=0. 9l(1) =~

Here, x = r/R., R. is the ion radius, 4 = 8/2ZR}/3m, u. =
—z/R. is the Fermi energy (chemical potential), and V.(r) is
the potential energy of an electron in the self-consistent field.
At distances exceeding the ion radius (r>=R;), the electron
density is zero and V.(r)=—z/r.

The ionization energy E. of an ion in the TF model [8, 9]
and the quantum-exchange correction to it [14-16] are
expressed in terms of the function ¢_(x) as

ETF _ 8V2R: 75/2 Jl 0 (x) d
' on U (3.2)

44R. !
SEI = ——= ZzJ @2(x)dx,
0

9n? :
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Figure 5. Ionization potentials of free aluminum (a) and iron (b) ions
calculated by the TF (solid curves) and TFC (dashed curves) models
compared with the experimental data in [82] (triangles).

and the ionization potentials are calculated as differences
between the ionization energies of neighboring ions:
I.=E.— E..1,z >0 ([, is the ionization potential of the z
ion).

Figure 5 shows the ionization potentials of aluminum and
iron ions calculated in the TF and TFC models in comparison
with empirical data [82]. We can see that the TF model,
especially with the quantum-exchange correction, describes
the averaged behavior of ionization potentials well (the larger
Z, the better), but does not describe shell effects.

In [14-16], the ionization potentials of ions calculated in
the TFC model were approximated by analytic expressions,
which allows readily estimating the ionization potential of
any ion for any element. The corresponding approximations
were obtained using the relation between the ionization and
chemical potentials of an ion:

L =I(N,) = —M(Ne —%) = —,u(z—i—%) .

We present these dependences of the chemical potential of the
ion on its charge z and the degree of ionization

(3.3)

o=z/Z=1—N,/Z:
HrEC = BTF T Oftqu_cx 5

prp(0 < o < 0.12) = —0.1103 z43[1 — 0.91020.7/3 7"
o=05(73-7),

0.2438 z4/3

prp(0.12 <0< 1) = -2
TF( ) (1—0()2/3

x {1 +0.56510 — 0.1059 (1 — o)

72 1/3
SHgu_ex = —0.2153 < = a)

0.3444 (1 — o)?
1 +2.78070

The TF model of a free ion described above can also be
used, as was shown in [17, 18], to estimate the partition
functions of ions, which are also required for calculations of
the plasma composition in the chemical model [81]. The
partition function of an ion in plasma at a temperature 7T
can be written as

2 02097 (1 — a)’
142.82850 |’

X [1 + 0.33980 —

0-=g,"+23 21+ 1)exp [— 8’”;"-’] e — 1) (en)
(3.4)

where the excitation levels ¢,; are referenced to the Fermi
energy (., n and [/ are the principal and orbital quantum
numbers, w(e) is the cut-off form factor that allows restricting
the number of excitation levels included in the sum based on
one consideration or another, and gé:) is the statistical weight
of the ground state.

Using characteristics obtained in the TF model, we can
perform analytic summation in expression (3.4) with the
mean-radius cut-off criterion. The mean radius R is deter-
mined from the plasma density p = 11.2(M/v) g cm™ as
R = (3v/4n) I3 where M is the atomic mass of the clement. In
[18], different cut-off methods are also considered: a cut-off
with respect to the plasma temperature 7 and the Planck—
Brillouin—Larkin approximation.

Figure 6, schematically showing the characteristics of a
free ion with charge z and plasma parameters 7 and R,
explains the corresponding algorithm. In the case of the
mean-radius cut-off criterion, the spectrum of bound excited
states is restricted by the value —z/ R (for the temperature cut-
off criterion, by —7') from above and by u. from below.
Obviously, the mean radius should then exceed the ion radius,
R > R, (for the temperature cut-off criterion, Ry = R.);
otherwise, the ions cannot be treated as free ions and the
free-ion TF model described above cannot be used for them.

We determine the excitation spectrum ¢, by using the
Bohr—Sommerfeld quantization condition and take the
simplest step function w(e,;) = 0(—z/R — &) as the cut-off
function. Replacing sums in (3.4) with integrals over the
energy and orbital momentum, we obtain a semiclassical
expression for the partition function (see the details in [17]):

R ~ o2 V2 3/2 U — B
Q_,( )(uT)_gO - T/ L drexp (—T )
(3.5)

(7 ex0 () [0 ) ~ @)+ — v exp (),
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V(r)

Figure 6. Characteristics of a free zth ion in the TF model (the potential
electron energy V(r) in a self-consistent field, the ion radius R., and the
Fermi energy p.) and plasma parameters (the temperature 7 and the mean
atomic radius R). Ry is the ‘temperature’ radius.
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Figure 7. Dependence of the mean excitation energy of an ion on its charge
z in aluminum plasma in the case of the average-radius cut-off criterion.
The plasma density is p = 1072 g cm™> and the temperature is 7 = 5 eV
(solid curve and triangles) and 7= 10 eV (dashed curve and dots). The
curves are calculated by (3.6), symbols are calculated from empirical
data [81].

:azi Vl(r)
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—z/R—V,
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where @(x) is the probability integral.
The low-density and low-temperature limits of function
(3.5) have the respective forms

o] 3/2 Hz
N3\/§(2R) exp(T ,

g 4\F
0.(R,T—0) =gl +

0.(R— 00,T)

1
TR3? L dxx32\/op_(x).

The expression for partition function (3.5) can be analytically
differentiated with respect to the thermodynamic parameters
vand T. The corresponding derivatives are

0Q® V2T - - +z/R
""ov T 3@ R xp( T > L drvie.

T2 AT

oT
= f ;;f J dr exp < ;ﬁ;) <? U-(r) exp (u1)

< [PV ~ O] e+ VI exp ()

(R) _ @
+<% T—uz) & & (R>g0 .
o

(3.6)

It can be easily verified that the mean excitation energy

x 1 2oz :
(e5%) = Fzg&)(sﬁ — &)
z S

M of — 2 _¢0
T R

in this case exactly coincides with (3.6)

X exp { (3.7)

Figure 7 presents mean excitation energies (3.7) for all
aluminum ions in dense plasma at two temperatures calcu-
lated by expression (3.6) and compared with calculations [81]
based on empirical data. Figure 8 shows the partition
functions of ions calculated by expression (3.5) with géz> =2
for aluminum and iron plasmas with various densities and
temperatures compared with the calculations in [81] from
empirical excitation spectra. We can see that theoretical
expressions (3.5) and (3.6) correctly describe the averaged
dependences of the partition functions of ions on the plasma
temperature and density, but do not describe the dependence
of shell oscillations on the ion charge z.

3.2 Extended Thomas—Fermi model

The disadvantage of the TF model for free atoms and ions is
the incorrect behavior of the electron density at small
distances from the nucleus and at the periphery because the
semiclassical approximation is valid at distances 1/Z < r < 1
[79]. In this section, we consider a more complicated
alternative semiclassical EFT model in which these disadvan-
tages are absent.

The ETF model has been widely used [25, 34, 6, 72, 84,
85] to describe the averaged characteristics of a variety of
many-electron systems, despite the theoretical invalidity of
simultaneously taking the leading and correction semiclassi-
cal terms into account. In particular, in a variant of this
model that we used in [86, 87], expression (1.7) for the total
electron energy, along with the principal ideal-gas (Tho-
mas—Fermi) term, contains quantum, exchange, and corre-
lation corrections, which were obtained assuming the
smallness of the corresponding effects (in this section,

n = ne(r)):

Eln] :J dr{k(n)—l—n {Vex[(r) + % Vine(r) |+ €ex(n) —s—gcorr(n)}.
(3.8)

Here, k(n) is the kinetic energy density in which the second-
order quantum correction to the TF model is taken into
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Figure 8. Partition functions of ions in (a) aluminum and (b) iron plasma
for the mean-radius cut-offcriterion. Aluminum: 7=25 eV; p=10"2 gm™3
(solid curve and triangles), p=10"3 g cm > (dashed curve and dots). Iron:
p=10"gem™3; T =5 eV (solid curve and triangles), T = 10 eV (dashed
curve and black dots), 7= 25 eV (dash-and-dot curve and rhombs). The
curves are calculated by TF model (18), symbols are calculated from
empirical data [81].

account [1],

- _ 3 a5 L (V)
k(n)—kTp(n)+62k(n)—10 (3n°)""n Ty

(3.9)

Vine(r) = [ dr’n(r’)/|r — r’| is the Coulomb electron interac-
tion potential,

373\ 13 3\ 13
Eex(”):_z<g> 1/14/3, Vex:_(g) n1/3>

écorr(n):—0,033n[(l+X3) 1n(1+X")+5— 3

Veorr = —0.033 In (1 + X1)

are the exchange and correlation [26] energy densities and
corresponding potentials, X=rs/11.4, and rS:(3/4nn)l/3 is
the electron radius.

The extremum of functional (3.8) with normalization
condition (1.8) gives an equation for the density in the ETF
model

1 1 /va\> 1A
5 G+ o <7") — 2 V) —u=0, (3.10)

with the total potential

V(l') = Vinl(r) =+ Vext(r) =+ Vex(r) + Vcorr(r)

including the interaction, external, exchange, and correlation
potentials. Elimination of all the correction terms from (3.8)
leads to a relation between the density and the potential in the
TF model.

We use Eqn (3.10) to calculate the electron density
distributions in atoms and various atomic clusters [86, 87].
For spherically symmetric systems considered here, only the
form of the external potential Vey(r) changes in Eqn (3.10).
These potentials for an atom and a bulk atomic cluster are

, z
Vel ===,
[ (3)]
—=13-(=)1|, r<Rr,
vl =4 2R R (3.11)
N,
—fe, r>R.

Here, the so-called jelly cluster model is used, in which ions
are assumed to be homogeneously distributed within a
volume with the radius R = rsNel/ 3, where rg is the electron
Wigner—Seitz radius of the condensed phase of the element,
N. = wN; is the number of electrons, N; is the number of ions
(atoms) in the cluster, and w is the valence of atoms. For a
hollow cluster in which the ion charge is homogeneously
distributed over a spherical shell with the radius R and an
atom with a valence wy is located at the center of the cavity,
the external potential produced by the ions has the form

Ne — wy
holcl) Wo R ’
Pl P = 20
S

r<R

)

, r>R.

P

In this case, wy valence electrons of the central atom are
included in the number N, of electrons. The value wy =0
corresponds to an ‘empty” hollow cluster. Such clusters were
used in the literature for simulating Cgp and LaCgy full-
erenes [88].

Taking the spherical symmetry into account and passing
from the radius to the dimensionless variable x = r/L (Lis the
characteristic size of the system) and from the density to the
function v(x) = xy/n, we obtain a nonlinear integro-differ-
ential equation for this function and the chemical potential,
which was solved in [86, 87] by the Newton method using
finite differences.

We first consider the results of such calculations for
atoms. Figure 9a shows the distributions of the radial
electron density D(r) = 4nrn.(r) in neon (Z = 10) and
mercury (Z = 80) atoms calculated in the ETF model. To
compare these results with those obtained in the TF model,
the reduced quantities D(r) Z~*/> and VrZ1/3 are plotted on
the axes. The corresponding dependence in the TF model is
universal and independent of Z. We can see from the figure
that the results of the ETF model in the middle part of the
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Figure 9. (a) Distribution of the radial electron density D(r) = 4nr2ne(r) in
a free atom. The curve corresponds to the TF model, symbols correspond
to the ETF model: Z = 10 (dots), and Z = 80 (triangles). (b) Distributions
of the radial electron density in two hollow clusters with the number of
ions in the shell &; = 60 for equilibrium radii. ‘Empty’ cluster with wy = 0
(solid curve), cluster with the central valence atom wy = 3 (dotted curve).

atom approach this universal curve upon increasing the
atomic number Z; the results of taking the corrections into
account additively and self-consistently coincide where these
corrections are small. This illustrates well the condition Z > 1
of the applicability of the semiclassical description of an
atom.

Another condition, r > 1/Z, is related to the inapplic-
ability of the semiclassical approximation in the region of
small distances from the Coulomb center, where correc-
tions are not small, and therefore, notably, the density at
zero in the TF model diverges: nrp(r) ~ /> and hence
the radial density has the dependence Drg(r — 0) ~ \/F.
This region requires a special study, which is performed in
Section 6.2.

In the ETF model, as in the quantum statistical model [72],
the electron density at zero is constant and the radial density
depends on the radius quadratically: Dgrr(r — 0) ~ r2. At
the periphery of an atom, a difference also exists between the
exponentially decreasing dependence of the radial density in
the ETF model and the slowly decreasing power-like
dependence on the radius in the TF model. Our analysis
thus shows that the advantage of taking the corrections into
account self-consistently rather than additively is related to a
new class of solutions obtained for the density, which are
finite at zero for systems with a Coulomb singularity and
behave more correctly at the periphery of the system.

We now consider the results of our calculations for hollow
clusters that simulate fullerenes Cgp and LaCgy. Figure 9b
shows the radial electron-density distributions for two hollow
clusters with the number of ions in the shell N; = 60

calculated in the ETF model for the corresponding equili-
brium values of the cluster radius Ry. The ‘empty’ hollow
cluster (wy = 0) simulates Cg, while the hollow cluster with a
trivalent atom at the center (wy = 3) simulates LaCgy.

To determine the equilibrium radius Ry, the dependence
of the total energy E = E. + E; of the cluster on its radius is
studied to find its minimum. In the jelly model used here, the
energy of ions uniformly distributed over the sphere is
E; = 0.5N2/R. This gives a root dependence of the calcu-
lated equilibrium radius on the number of particles,
Ry = aN./%, with the coefficient o = 3.743 [86]. The use of
this expression for fullerenes gives too large a value Ry = 29,
which is explained by a strong overstating of the ion energy in
replacing the real arrangement of ions by a spherical shell. If
the ion energy E; = 0.4311 N2/R is used, which corresponds
to the real arrangement of the C¢y molecule ions at the vertices
of a truncated icosahedron with the radius R, then a much
smaller equilibrium radius RP =5 is obtained, which is closer
to the experimental radius ROeXp) = 6.75 for the Cg fullerene.

We note that a hollow cluster in the TF model, as shown in
[88], does not give a finite equilibrium radius R, at all when
the ion energy is described by the expression of the jelly
model, whereas the use of the ion energy corresponding to the
real arrangement of ions gives the radius Ry = 7.36.

The ETF model, like the TF model, can be a basis for the
calculation of the contribution of oscillation and shell effects
not taken into account in it. The corresponding theorem is
formulated within the density functional theory in Section 5.2,
while spatial density oscillations in an atom and a bulk atomic
cluster are calculated in the ETF model with the oscillation
correction in Section 4.3 (Figs 13 and 14).

4. Dependence of the system properties
on the potential type

In spherically symmetric many-electron systems, two types of
self-consistent potentials should be distinguished: potentials
with the Coulomb singularity and potentials finite at the
center. Many properties of the electron system, in particular,
the form of one-particle spectra and spatial oscillations of the
electron density, substantially differ for these two types of
potentials.

4.1 Potentials in spherically symmetric many-electron
systems
Self-consistent attraction potentials in the electron systems
under study can belong to two types, depending on the form
of the external potential. The interacting electrons in an atom,
ion, and atomic cell are located in the external field of the
nucleus, which has a Coulomb singularity at zero (Fig. 6).

Valence electrons in a metal cluster are often considered to
be located in the external field of the ion core. The ion lattice
can be replaced in some range of parameters by a uniformly
distributed positive charge. Such a replacement leads to the
jelly model, which describes many properties of clusters well,
although it oversimplifies the real system. The corresponding
self-consistent potential at zero is finite and has the zero
derivative, being similar to the model potential used in
nuclear physics (schematically shown in Fig. 10). Of course,
such a potential is not a first-principle potential like the
Coulomb potential.

In considering quantum effects, it is important to
distinguish these two types of potentials, because they
determine some features of the properties of the correspond-
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Figure 10. Qualitative spatial dependences of the potential fermion energy
in a nucleus and a metal cluster according to different models: a harmonic
oscillator (1), the Woods—Saxon potential (2), and a rectangular well (3).

ing systems. The presence of these features casts some doubt
on the validity of using pseudopotentials in some cases where
a Coulomb singularity of the potential is replaced by a ‘ledge’,
i.e., a passage to a different type of potential is performed.

In this section, we demonstrate these differences with the
example of a semiclassical analysis of one-particle spectra. It
turns out that some conclusions about their structure can be
made based only on the type of the self-consistent potential.

Energy levels in a central potential depend on two
quantum numbers: the orbital number / and the principal
number 7 (or the radial number #;), and are determined in the
semiclassical approximation from the Bohr-Sommerfeld
quantization condition

R:; 1
Ssl = J d”[’a),(") = Tc<nr + *> 5
R, 2

where S,; and p,;(r) = \/p2(r) — /lZ/r2 are the radial action

and the radial momentum of an electron with the energy ¢ and
orbital momentum A = /+ 1/2, p2(r) = 2[¢ — V(r)], the inte-
gration region is restricted by turning points R,; and R/,, and
n, is the number of nodes of the radial wave function.

We introduce the function v.(1) related to the radial
action by the expression

(4.1

Ry

Sei dr pao(r) .

V};(;L«):? for 1> 0, vg(O):lJ

T Jo

As a function of the continuous argument A, v;(4) mono-
tonically decreases from v.(0) to v.(4,) =0, where A, is the
maximum orbital momentum for the energy ¢. Figures 11 and
12 show the corresponding functions and their derivatives for
atoms and metal clusters for the energy equal to the Fermi
energy. In the (v, 2) plane, all the intersections of coordinates v
and A with half-integer values located below the curve v,(4)
correspond to occupied states at zero temperature, as follows
from Bohr—Sommerfeld quantization condition (4.1).
The study of the dependence of v,(4) on A for small 1,

1o(0) +v/(0) 2+ 207 (0) A% + ...

: (4.2)

ve(A) =

(the prime denotes differentiation with respect to 1), shows
that in the spherical harmonic oscillator, with V(r) =
—Vo+ ®?r?/2, and in a Coulomb field, with V(r) = —Z/r,
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Figure 11. Dependences v, () (a) and v, () (b) for sodium clusters (rigid
potential) for different numbers of particles calculated using the Woods—
Saxon potential [23].

v¢(4) is linear in A:

ve(A) = v,(0) +v/(0) A, v/(0)=—-. (4.3)

Here, y = 1 and 2 respectively for the Coulomb potential and
harmonic oscillator.

Using relation (4.3) and quantization condition (4.1), we
can easily calculate energy levels in these ‘main’ potentials.
Quantization condition (4.1) for a harmonic oscillator with
! = 0 has the form

1
2v,(0) =n' + =,
v:(0) =n"+3

because a particle can pass through the center in this case. For
[ # 0, according to (4.3) and (4.1), we have

(4.4)

, A 1
ve(4) = v(0) —3=Mm —1—5 ,

Substituting v,(0) from expression (4.4) and introducing the
notation n’ = n + 1, we obtain the relation

n=0,1,2,....

n—lin
2 - T

which gives the condition that the principal,n (n =0,1,...),
and orbital, /, quantum numbers have the same parity, as well
as the equality 2v,(0) = n + 3/2. Calculating the integral of
v.(0) = (Vo — |¢]) /2w, we obtain the known expression
em = — Vo + o(n + 3/2) for the spectrum.

Quantization condition (4.1) for the Coulomb potential,
with (4.3) taken into account, becomes v,(1)=v,(0)—
I—1/2=n,+1/2, n,=0,1,2,..., where v,(0)=2Z/+/2]e|.
This gives &y = —Z2/2(n: + 1+ 1)2 =—Z2/2n%, where n =
m+l+1=12,...

We have shown in [48] that for monotonic attraction
potentials that are finite at zero, the derivative v/(0) in (4.2) is
equal to —1/2, as in the case of an oscillator. We combine
such potentials into the group of ‘harmonic’-type potentials.

(4.5)
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Figure 12. Dependences v,(4) (a) and v;(4) (b) for atoms with different
atomic numbers calculated in the ETF model [86, 87].

The examples of harmonic-type potentials are self-consistent
potentials in metal clusters in the jelly model and their analogs
used in nuclear physics.

Similarly, we can distinguish a group of Coulomb-type
potentials in which screened potentials have a Coulomb
singularity at zero, V(r) — —Z/r as r — 0, and for which, as
is shown in [48], v/(0) = —1. In particular, this group includes
intra-atomic potentials.’

The value of the second derivative v/(0) in (4.2)
characterizes the degree of influence of anharmonicity or
screening and leads to the lift of the degeneracy in the orbital
momentum /, which is present in the spectra of the main
potentials.

In the case of an anharmonic potential, the s-level ¢, is
also determined from a quantization condition of type (4.4).
We estimate the deviation of a level with a nonzero / from the
s-level. In the expansion of v.(4) in the left-hand side of

3 An example from the second group, a potential in a free atom in the TF
model, was analyzed in detail in [12, 13], where the exceptional case ¢ = 0
was identified, for which the value of the derivative v/(0) also depends on
the rate of the potential decrease at infinity.

quantization condition (4.1) in the energy and orbital
momentum near this level,

l NG
2 o

vo(A) 2 vy, (0) + v/ (0) 4+

&no

t,
(0)z2+f (6 — &),

the notation 7, = 0S,/0¢ for the classical time and expression
(4.2) are used. With relation (4.5), the right-hand side of
quantization condition (4.1) can be rewritten as
n/2 + 3/4 — A/2, which gives the relation

&nl = €n0 — Agn % v/ (0) /12 ) (47)

&n0

where, in the semiclassical approximation, Ag, = nt/1,,, is the
mean difference between the energies of s-levels for shells with
quantum numbers 7 and n & 1.

Similar calculations for ‘Coulomb’-type potentials lead to
the same result. Expression (4.7) yields a quantitative
criterion of the lift of degeneracy in the anharmonic or
screened potential and shows that the corresponding split-
ting quadratically depends on the orbital momentum, with
the sign of the deviation from the s-level dependent on the sign
of the derivative v;’ (0). For the positive sign, the energy levels
decrease with increasing /, while for the negative sign, they
increase. In atoms, the latter case is realized, while in metal
clusters both variants are possible.*

4.2 One-particle spectra of atoms and ions

We find the range of energies and orbital momenta where
quadratic dependence (4.7) in one-particle spectra of atomic
and ion systems occurs (the specific features of spectra of
atomic metal clusters are considered in Section 7).

The screening of the Coulomb potential in atoms and ions
leads to a shift of the deepest energy levels by a constant
corresponding to the potential of the electron cloud at zero,
and v/(0) = 0 in this energy region; the spectrum is therefore
similar to the Coulomb spectrum up to a shift in this constant.
For shell levels with higher n, the screening becomes more
substantial, which is quantitatively reflected by the value
v/ (0) < 0.

An analysis of the energy levels calculated in the
nonrelativistic Hartree-Fock model for mercury and radon
atoms [89] confirms a dependence close to (4.7) even for not
small orbital momentum values / = 1,2, 3.> The coefficients
an = — (& — €n0) /(1 + 1/2)2 presented in Table 1 are almost
constant for shells with different » under study. This means
that quadratic dependence (4.2) (and, correspondingly, a
linear dependence for the derivative v/(0)) is valid in a broad
range of values of ¢ and 4, i.e., the equality

1o(2) = 1o(0) — 4+ % y7(0) 22

5 (4.8)

is satisfied with good accuracy for internal energy levels in an
atom. Figure 12b confirms the linear dependence of the

4 Figure 11 shows only one of the possible variants: the calculation for
sodium clusters with a ‘rigid’ potential (see Sections 7.3 and 7.4 below).

3 For such heavy elements, relativistic effects are substantial and should be
taken into account using the relativistic correction to one-particle energies
Aeyy=—(Z2a2/2n3)[1/(j+ 1/2)—3/4n], where Z,=Z-2n°/3—n/3,
o=1/137,and j =/+1/2[90].
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Table 1. The coefficients a,y = — (e, — €n0)/(/ + 1/2) in mercury (Z = 80)
and radon (Z = 88) atoms calculated from the one-particle energy level
spectrum in the nonrelativistic Hartree—-Fock model [91].

nl —ay (Hg) —ay (Ra)
3p 3911 4.489
3d 4.000 4.592
4p 1.733 2.044
4d 1.760 2.096
af 1.682 2.033

derivative v, (4) in a rather broad range of 2 > 0, even for the
energy equal to the Fermi energy.

We note that the function v,(4) and its derivatives for a
free atom were studied in detail in the TF model in [12, 13].
The expansion in 4 was performed in these papers in the

vicinity of another limit 2 = A,:

() = V)~ 20) 45 v GG = )P (49)
It was shown that the derivative v,_, (4 Z~'73) in a free atom
at the Fermi energy is independent of the atomic number and
changes from v/(0) = —1 to v/ (4,) = —1.93768.°

To proceed, it is necessary to compare the smoothness of
the dependences of one-particle spectra of atoms and ions on
the quantum numbers # and /. It follows from spectroscopic
data (see, e.g., [82]) that for inner occupied shells and the
outer shell with regular filling (elements of main groups), the
dependence on / is smooth enough inside each nth shell,
whereas these shells with different » do not overlap and are
separated by sufficiently large energy gaps. Such a picture is
well demonstrated by the empirical curves of ionization
potentials of aluminum and iron ions (Fig. 5). In the case of
intermediate and heavy elements, this is also true for deep
occupied shells. We use spectra of this shape in this energy
region in Section 5.4 in calculations of the ‘high-temperature’
shell correction.

4.3 Spatial density oscillations in an atom

and a metal cluster

As is shown in Section 3, the TF model and its TFC and ETF
modifications describe the averaged electron density distribu-
tion well but do not reflect its spatial oscillations. To describe
these oscillations by the additive semiclassical method, it is
necessary to introduce the oscillation correction into the
model. This correction is derived using the general formula
for the electron density ne(r) in a spherically symmetric
system in the ground state— the equation for the semiclassi-
cal radial wave function R,,(r),

(1) = o 3 204 )[R 0) OG0 ).
n (4.10)
|2 _ 1 Ogy 1+ sin [ZS,,/(}‘)]
T noon r2pu(r)

Bohr—Sommerfeld quantization condition (4.1), and Poisson
formula (2.6) for passing from sums over quantum numbers
to integrals (see the details in [57, 87]). As a result, the

|% sc)

nl ’

¢ The value of the derivative at v/(2) at the boundary point 4, can be
expressed in terms of derivatives of the self-consistent potential at the
pomt ro of the max1mum of the function p, (r) r[12]: v, (4,) = —V2y org,

[1’ (ryr ] l —I’u(lo)ro

oscillation correction is obtained in the form

S0 (1) 1 J# ; Jﬁf(f)"z 42
Nosc (1) = =—— e
* 2122 Juey o
! sin [28,(r) + 2kSY, + 2msi]
% -1 k+s E4 [ 4.11
>0 . (4.11)

Here, the prime on the sum means the absence of the term
with kK = s = 0, equal to the TF density, while the superscript
0, as above, indicates the total integral between turning
points.

The energy integral can be estimated using the complete-
ness property [80], taking into account that integration by
parts’ allows separating the term at the upper limit ¢ = y; this
is the leading term in the parameter of semiclassical behavior.
After the change of variables y = p,;(r)/pu(r), we obtain

r 1 / _1\k+s
St (1) ~ _pulr) JO dy Z (=D

2n2 — 1y (r) + ki,

X €08 [28,,(r) + 2kS), + 2msp,(r) /1 — 2],

where t,,,(r) = 0S,,(r) /O is the classical time. The oscillation
correction has the same form (4.12) if the ‘additional’
quantities Sy, (r) = S, — S,,(r) and 7,,(r) = 19 — —1,,(r)
are used instead of S, (r) and 7,,(r). Such a representation
should be used for atoms.

After simple calculations, we obtain the following expres-
sions for the oscillation correction 8D s (r) =4mr>8nys. (1) to
the radial density:

(1) For an atom (and an electron system with a Coulomb-
type potential),

(4.12)

5D (1) = SMA2Sul) FE[(2n + ) x — 28]}
osc\l) = p#(r) [B SH(V) sin (TC&) )

(4.13)

where

2ulr) :Jo :‘1_’]2 {pu(lr’) _\/%/l’] B %

In the case of a free atom in the TF model, the radius R, is
infinite, tl? = 00, and Eqn (4.13) coincides with the expression
obtained in [48].

(i1) For a metal cluster (and an electron system with a
harmonic-type potential),

sin [28,,(r) + a(nn — 28))]

8Dosc(r) = - Zp,u(r) [géﬂ(r) sin (OSTCO() '

(4.14)

7 In the semiclassical approximation, only the rapidly changing function
sin [...] should be differentiated and integrated.
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where
128! 1 1,(r)
__<_"< _ A
"TRS TR Sty T
Ry dl’l
S = ——
=]

and integrals over r' in the expressions for S, (r) and ¢, (r) are
also taken from r to the right turning point R, Sg = S,(0),
19 = 1,(0).

The range of applicability of expressions (4.13) and (4.14)
is determined by the validity of the assumptions made in their
derivation. Integration by parts and restriction to the term
outside the integral gives a correct estimate of the integral if
the derivative of the argument of the oscillating function with
respect to y in (4.12) is sufficiently large. In our case, this
derivative at the upper limit is a product proportional to
pﬁ(r) 0,(r). The points where each of the factors vanishes
determine the regions in which the estimate described above is
invalid.

For an atom, two such points exist: r= R, and
r=r; (0,(r1) =0). For r =r; < Ry, the point 2 =0 in the
integral over 4 in the term with k = 0 and s = 1is a stationary-
phase point, and therefore the method used above cannot be
applied and the vicinity of this point must be considered
separately.® The corresponding integral can be calculated by
the saddle-point method [39].

Figure 13 shows the electron density at the middle part of
the mercury atom calculated in the ETF model (without the
exchange and correlation terms) with oscillation correction
(4.13) and without it, in comparison with the quantum
mechanical Hartree calculation [91]. In the range of its
applicability, the oscillation correction well describes oscilla-
tions related to the electrons grouped in the K, L, and M
shells.

Analyzing the range of applicability of expression (4.14),
we see that the vicinity of the turning point r = R, is excluded
for a cluster. Figure 14 shows that expression (4.14) based on
the ETF potential describes the electron density oscillations in
an atomic cluster quite accurately.

140
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Figure 13. Distribution of the radial electron density D(r) = 4nr? ne(r) in
the middle part of the mercury atom calculated by neglecting exchange-
correlation terms. Dashed curve: the ETF model, thick curve: the Hartree
model [91], thin curve: the ETF model with oscillation correction (4.13).

8 To estimate rq, we note that in the case of a free atom, the analytic Tietz
approximation [92] V(r) = —Z/r(1 +r/r)* for the potential in the TF
model contains precisely this quantity, r; = (4.5/Z)l/34

ne(r)/ni

Figure 14. Relative distribution of the electron density 7 (r)/n; in an Nasg
cluster. Dashed curve: the ETF model, solid curve: the ETF model with
oscillation correction (4.14), triangles: the Kohn—-Sham method (data
from review [64]; the dotted line is the ion distribution.

4.4 FElectron density distribution in the atomic cell

of compressed matter

We use the semiclassical approximation to describe the
electron density distribution in the volume v of a compressed
atomic cell, in particular, near the nucleus for different
degrees of cold compression [39, 56].

We note that the knowledge of the electron density at the
nucleus localization site is important in and of itself because it
is used, for example, in nuclear physics for calculating the
excitation probability of a nucleus in the K-electron capture
[93]. Many properties of atoms also depend on the behavior of
the electron density near the nucleus. These include the fine
and hyperfine structures of atomic levels and the isotope shift
of energy levels [79]. These properties are of interest not only
at normal temperatures and pressures but also under extremal
conditions occurring in stellar matter, where the temperature
and compression are high. Under such conditions, the mean
atomic characteristics are described well by the TF model.

We first estimate the electron density at the center of an
atom. Because of the dependence R, (r ~ 0) o r! for exact
wave functions, only the s-states make a contribution [see
(4.10)]. At distances r < rg ~ 1/Z, the exact solution of the
radial equation with the Coulomb potential at /=10 is
expressed in terms of the Whittaker functions:

ag

R =% M GV, R(0) = 26, V2R
(4.15)

A comparison of the asymptotic form of (4.15) for large r with
the corresponding semiclassical function gives the quantiza-
tion condition for s-states Sy = mn and the normalization
coefficient |a,;”|2 expressed in terms of the semiclassical
normalization factor |¢,|* = 2/t = 2n~' de/dn. As a result,
Eqn (4.10) becomes

1
ne(0,0) =5 SRl =2 el

& < 1 & <

27 de,

=— ' dn H[u(v) - s,,].

(4.16)

We assume that compression affects only energy levels
&n > &y, and therefore g,(v) — u(v) = &,(00) — p(oo) at
n < np. We divide the sum over # into two parts with n < ng
and n > ny, supplement the first part with the sum with
n > ny, in which summation is performed over the levels of a
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free atom, and subtract the same sum. Then the supplemented
sum gives the electron density 7. (0, co) at zero for a free atom,
and we can pass from summation over # to integration in the
other two sums. As a result, the difference of the electron
densities at zero for a compressed cell of a volume v and a free
atom is expressed through the difference of the corresponding
Fermi energies:

2Z

ne(0,v) — ne(0,00) = -

[1(v) = p(o0)] - (4.17)
To calculate the electron density at the center of a free atom,
we use the TF model with the Fermi energy u(co)=0,
Vie(r)=—Zo(x)/r, x=5brZ'?, b=0.885 and ¢'(0) =
—1.588 [79]. The quantization condition for the s-states and
expression (4.16) give two relations:

Z'36(ey) = mn, ne(0,00)=227" Z‘E*l(en), en= e, 2%
n

(4.18)

containing the universal, Z-independent functions

X
a(e) =735, = \/%J dx @75,

0
b3/ JX[ dx

(€) =Ztyy = —= . W

V2
Eliminating ¢ from the dependences a(¢) and 7(¢), we obtain
the function 7 ~!(¢) shown in Fig. 15.

Thus, the algorithm for calculating 7(0, o) is as follows:
first, the value of ¢, is determined for each n from the first
expression in (4.18), then t~'(s,) is found, and summation
over n is performed according to the second expression in
(4.18). The results of calculations performed by this method
for argon and mercury are presented in Table 2 and compared
with calculations by the Hartree method [91].

The last column in Table 2 presents the electron density at
zero calculated by the simple formula

2362

e (0,00) = = (1.125 — 1.7942 %),

(4.19)

103

10-6 1 1 1 | |
0 1 2 3

g

Figure 15. The function t ~! () for a free hydrogen atom (Z = 1) in the TF
model.

Table 2. The electron density 7,(0) at zero for free argon (Z = 18) and
mercury (Z = 80) atoms in the Hartree model [91] and calculated by
classical formulas (4.18) and (4.19).

ne Hartree [91] (4.18) (4.19)

z

18 3.83 x 103 3.83 x 103 3.79 x 103
80 3.72 % 10° 3.69 x 10° 3.95 x 10°

which is obtained assuming that an electron in the s-state
moves in the effective potential V,—o(r) = V(r) + 1/(8r?) with
the centrifugal repulsive part. Then the region near the
nucleus is classically forbidden, and the semiclassical wave
function to the left of the left turning point decreases
exponentially. Its square at zero is expressed through the
semiclassical normalization factor as [R5 (0)* = Ze?|c,|*.

This gives the result
& S | de
+ n
n=1 ; dl’l )

(o)) — 2¢” Qe
nf0) =25 ( -
for the density, which is e?/2r = 1.18 times larger than that
following from (4.16). We replace the sum in (4.20) by an
integral, assuming that energy levels with n=1,2 are
hydrogen-like, i.e., &, = —Z2/2n> — Z*3¢’(0)/b. The sub-
stitution of the values of all quantities in the TF model leads
to expression (4.19). For argon and mercury, this expression
gives the respective error of the density calculation at zero
equal to 1% and 6%.

Analysis shows that for r < 1/Z, we can approximately
calculate the density by the expression

(4.20)

ne(r) = ne(sc) (0) exp (—2Zr), (4.21)
while for distances r > 1/Z, the expressions in the TF model
with oscillation correction (4.13) are valid. Figure 16 shows
the radial electron densities at zero for compressed
aluminum calculated in the TF model and by the method
described above [39]. Figure 16 also presents the electron
density distribution in a compressed aluminum crystal
calculated in the model of attached plane waves
(APWs) [94]. We can see from the figure that the results of
our TF calculations of the electron density in the region of
small distances r < 1/Z and for r > 1/Z smoothly join and
agree well with precise APW calculations for a compressed
aluminum crystal.

5. Thermodynamics of the electron component
of plasma in the semiclassical approximation

In this section, we demonstrate the use of the TF model with
the exchange, gradient, and shell corrections taken into
account additively for calculating thermodynamic character-
istics of a high-temperature plasma. The results of the TF
model with these corrections for a weakly nonideal Boltz-
mann plasma agree well with the results of the Saha—Reiser
model describing the plasma composition in the average-ion
approximation. This agreement allows estimating the ioniza-
tion potentials of ions theoretically, taking shell effects into
account.

We preliminarily discuss the general form of corrections
to the free energy using the density functional theory and
present expressions for gradient corrections of different
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Figure 16. Distribution of the radial electron density in an aluminum atom
calculated using various models for different compression degrees. The
radii of atomic cells from bottom up are R = 3, 1.8,0.6,0.3,and 0.18. Solid
curves: the APW model [94], dashed-dotted curves: the TF model, dashed
curves: the TF model with oscillation correction (4.13), triangles: expres-
sion (4.21).

orders for the density and energy in systems with different
dimensions at zero and finite temperatures.

5.1 Semiclassical equation of state of the plasma

in the Thomas—Fermi model

The semiclassical TF model of the equation of state of
electrons, which is commonly used in the cell approximation
[59], accounts for the spatial inhomogeneity, the interaction
of electrons with the nucleus and between electrons, and the
exchange, correlation, and degeneracy effects within a
spherical Wigner—Seitz cell. The volume v and radius R of
the cell in atomic units are determined from the mean density
of matter: v=4nR3/3 =11.2M/p [g cm~3]. Because all
matter is represented by a set of identical, independent,
electrically neutral cells, which do not interact with each
other, the calculation of thermodynamic properties of the
electron component of matter reduces to the calculation of
electron properties in the cell. The contribution of ions to the
equation of state is taken into account separately.

We present a set of formulas of the TF model for electrons
in a neutral, spherical Wigner—Seitz cell with the nucleus
charge Z = N.. The free energy, internal energy, and pressure
are described by the respective expressions

2
Frp = \n/—; TS/ZU[213/2 [n(1)]

+J:{3n@01uzbﬂxﬂ-—SJyZM(@]}xzdx} (5.1)

Ly [n(x)} x?2 dx},

(5.2)

Err = ;/—3 T5/2v[213/2 [’1(1)} -3 L

242
Prp = s 75/2[3/2 [n(1)],

where the function

,1<XZL> i) :u—Twr) :RgTq)Sc)

satisfies the Poisson equation with the boundary conditions at
the cell center and the boundary R:

Aﬁ(r) = 4\{_[2—7; 11/2 [17](}’)] ) rf’(r)|r:0 = Za
da(r)|  _ _
| =0 VMRI=0,

while the electron density distribution inside the cell is
described by expression (1.2).°

The TF model has the similarity property with respect to
the atomic number Z. For example, the temperature, volume,
chemical potential, pressure, and energy in the TF model have
the following dependences on Z:

7@ — Z4/3T(1)7 0@ = Z_lv(l), ,u(Z) — Z4/3,u(l),

PP = z10BpM) g2 = ZTBED, (5.3)

The semiclassical behavior condition is satisfied for
matter with a high energy concentration, which provides the
theoretically substantiated possibility of using the TF model
in conjunction with the cell model for describing the
thermodynamics of condensed matter at high pressures,
P > 1. This model has always been used in the wide-range
equations of state to describe the region of cold, strongly
compressed matter [96, 97].

The semiclassical behavior parameter is also small at high
temperatures 7 > 1 corresponding to the binding energy of
outer-shell electrons and realized in a weakly nonideal
Boltzmann plasma. However, the validity of the TF model
for calculating the thermodynamic characteristics of high-
temperature plasma [98] was critically evaluated in [99]. First,
a comparison with the reference Saha model showed the
absence of the correct high-temperature ideal-gas limit of the
plasma ionization energy and noticeable deviations of the
oscillating character in the degree of ionization and ionization
energy. Second, the use of the cell approximation restricts the
correlation radius by a half of the mean distance between
ions, which does not allow obtaining the results in the Debye
approximation for pressure in the case of a weakly nonideal
plasma.

We show in Section 5.4 that the first group of these
disadvantages is removed by introducing the shell and Scott
(Sc) corrections. This also provides the correct ideal-gas limit
for the ionization energy of the system, which is equal to the
total electron binding energy in an atom, allowing the use of
the improved TF model in the cell approximation for
calculating the composition and equation of state of the
ideal, not fully ionized plasma [52].

The passage to the non-cell modification of the TF model
[100] gives the correct Debye asymptotic expressions, i.e.,
removes the second disadvantage pointed out above; how-
ever, this modification considerably complicates the model,
and we therefore restrict ourselves here to the cell approxima-
tion. We note that the Debye asymptotic form can also be

9 A method for calculating the second derivatives of the free energy in the
TF model was recently presented in [95].
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obtained in the cell approximation, but with the ion Debye
radius D; = (vT/4nzezrr)1/2. Asis shown in paper [101], the ion
Debye asymptotic form can be obtained by including the
average-charge (zefr) ion contribution to the free energy of the
cell in the one-component plasma model, for example, in the
approximation [102]

MT\? 22
F=-TIl —— 9 Teff
n[ev( 275) }+09R

2 p-1/p
20, (10R 10
It ipr g (28 =,
3{1+(27 P

5.2 Density and thermodynamic corrections

We generalize expression (1.4) for the correction to the free
energy at a small change in the density for a many-particle
system of fermions in the density functional theory.

We consider a system of N, interacting electrons in an
external field Ve (r) at temperature 7. According to the
Hohenberg—Kohn—Mermin [3] theory, the electron density
functional n(r) of the form

Fln] = K[n] +Jn(r) Vext(r) dr +% J

!
A(r) n(r’) drdr’+Fy[n],
r—r’|

(5.5)

where K[n] and Fy.[n] are the kinetic and exchange-correlation
energy functionals, reaches a minimum, equal to the free
energy F. of the system, when its functional argument n(r)
coincides with the real equilibrium electron density 7,(r) in
the chosen external field Ve (r). The extremum condition for
the functional F[n] for a fixed number of particles leads to the
Euler-Lagrange equation

0K B n(r’) ,  OF
oy = 1= VO, V) = Vo) + [+ 20
(5.6)

where u is a Lagrange multiplier — the chemical potential of
the system.

Because the exact form of the functionals K[n] and Fyc[n] is
not known, various approximations are used. In this connec-
tion, the following is useful.

We assume that we know the solution ny(r), gy, Vo(r) of
problems (5.5) and (5.6) with the approximate functional
Fy[n] and the small correction on(r,u,T) to the electron
density caused by some effect neglected in Fy[n]. Then, up to
the terms quadratic in dn(r, u, T'), the corresponding correc-
tion AF to the free energy Fy[n| has a form [22, 23] similar to
(1.4):10

Ho
AF = j

—00

d,u[éin(nu,T)dr:fjuo AN(, T)dg. (5.7)

—00

The separation of the explicit temperature dependence
allows expressing the free-energy correction in terms of
corrections to the energy and the number of states at zero

10 The Strutinsky energy correction [71, 77, 103] describing the shell effect
in a nucleus at zero temperature has a similar form in the treatment in [2].
But expression (5.7) can be used for calculating not only shell corrections
but also any small corrections due to effects neglected in the original
model.

temperature:
Apzfj MAE(mO)d,u
oo ou
Ho TCkAu
= - ———— AN(p,0)dp. 5.8
Jfoo sinh (nk),) (1,0) du 58

Here, the operator lé,l = —170/0u is used and AN and AE are
corrections to the number of states and energy due to the
effect under study, neglecting the explicit temperature
dependence, which are expressed in terms of the correction
dg(u) to the level density:

n
AN(1,0) = me(r,u,m dr = j Se(u')du’,

” (5.9)
AH%@=IﬁW—MWﬁMNM~

The temperature dependence in (5.8) enters implicitly through
the potential Vy(r), from which the corrections AE, dn, and 8g
are calculated.

We also discuss the procedure of a thermodynamically
consistent derivation of expressions for pressure and internal
energy corrections in the cell TF model based on (1.4) (see the
detailsin [39, 51]), i.e., in the case where the density correction
can be expressed only in terms of the characteristics obtained
in the TF model.

The volume derivative of (5.7) is given by

_ O0AF Qg
AP__E_ » JSn(r,,uTF)dr
HTF 00 ! HtE
+J d;/J#dHJ n(R, ') dp’. (5.10)

We use in calculations that the correction én(r, ') depends on
the volume only through the potential Vrp(r), which every-
where enters in the combination p’ — Vrg(r), and that the
total change in the density dm(r) satisfies the normalization
condition

Sty (1) = onte(r)

Oprr

(8 — 8V (r)]+8n(r), JSnlot(r) dr=0.
(5.11)

Also using the Poisson equation and boundary conditions for
the potential correction and differentiating the normalization
condition in the TF model, we obtain the pressure correction

HrE
AP = ntg(R) du + J dn(R,u')du'. (5.12)
The expression for the internal energy correction
AE = AF — TaA—F =AF
or
3 ontg(r
—&—J {— nre(r) — e (r) (g —Vre(r)) |(8p — 8V(r)) dr
2 Opre
(5.13)

is derived similarly using the explicit and implicit (through the
potential Vrgr(r)) temperature dependences of nre(r) and
dn(r,u’), the Poisson equation for the potential in the TF
model and for the potential correction, and the Green’s
formula and the independence of the normalization condi-
tion from temperature.



May 2012

Semiclassical model of the structure of matter 447

5.3 Gradient corrections to the Thomas—Fermi model

in systems of various dimensions

We consider the form of quantum gradient corrections in one-
dimensional, two-dimensional, and three-dimensional sys-
tems and discuss the possibility of their use for semiclassical
calculations of the density and total energy of fermions.

Expressions for gradient corrections to the density can be
obtained in the general case by the operator method [35,
104],"! and in the case of separable variables, also from
quantum corrections to the wave function [80].

The operator method is based on the first terms in the
expansion of the distribution function [1], which give a
second-order correction to the density and contain deriva-
tives of the delta function:

1 .
Sir,p) = 0(p; = p?) +5 [Apg +2ipVpg] 8" (pf = p?)

1
+3 (V) =209) ] 0" (pt = p?)
(VY

5 6"’([)5—])2)—&—....

(5.14)
Table 3 presents second-order corrections to the spatial
distribution density of fermions, d7.(r), and to their total
energy density, d,¢(r), for systems of dimension D, obtained
from expressions (5.14), (5.7), and ne(r) = 2 [ f(r, p) )d?p, with
d?p = dp/(2n)”.

We can see from the table that the dependences of the
correction on the density (Fermi momentum) in the one-
dimensional and three-dimensional cases are similar, but have
different numerical coefficients. The terms with the Laplacian
transform after spatial integration into surface integrals that
are equal to zero for neutral systems, but they cause a
divergence of the correction at zero in systems with a
Coulomb singularity (see Section 6.2).

The second- and fourth-order gradient corrections to the
kinetic energy density at finite temperatures for D =3,
expressed in terms of the electron density, are given by

V2 d[lfll/z(Y)]

d0Ks(ne, T) = — AT d (Vne)? (5.15)
and [106]
VAT 3
a0, T) = = v 00| (73 -2 ) (7

+% (J§ - % J5) (Vy)* + <J2J3 - % J4> (Vy)sz} - (5.16)

The relation of y to the density 7, in expressmns (5.15) and
(5. 16)1an \/—T3/211/2(y)/7t2 In(5.16),J; = 1l Ny N/ ),
where I 2 y)and ] 1( /2)( ) are the first and kth derlvatlves of the
Fermlf II'dC function 7y 5 ().

At zero temperature [35, 104],

1/3
ne/

540(3m2)%/?
1/ Vne 9 Vn, 2Ane An, 2
L) s C) e ()] o

I The fourth-order gradient correction at zero temperature was obtained
in these papers, long before paper [105] cited in [2].

6K4(ne, 0) = -

Table 3. Second-order gradient corrections to the distribution density
Syne(r) and to the total electron energy density 8,e(r) in systems of
dimension D at zero temperature.

D 871c(r) 8,¢(r)
1 4 242 (Vn)*  An
2 02Ap2
1 1617:p [V p# ~ 30 7] T 12n 6
1 2 1 2257 2 n(Vn)? An
2 T AP0 (p 2+ 3a (VP 9 (py) —=5 =
3 B [(Vp2)* —4p2Ap?] (Vn)* _ An
96nZpy B K e 2n 12

For the two-dimensional system, as follows from Table 3,
gradient corrections of all orders to the electron density are
identically zero everywhere except at the system boundary.
This is explained by the fact that in integrating distribution
function (5.14) over momenta, the integrands are products of
power-like functions and derivatives of delta functions, with
the order of the derivatives always greater than the integer
power.

The absence of quantum corrections of the standard form
in the two-dimensional system, similar to corrections in the
cases D = 1,3, does not allow theoretical substantiation of
taking them into account in a number of papers, for example,
[107, 108]. The correct description of averaged characteristics
obtained in these papers is probably explained by the
inclusion of higher-order derivatives into the density equa-
tion: the higher their order is, the smoother the solution turns
out to be. This also explains the successful inclusion of the
fourth-order correction in [66, 69, 84], although this cannot be
theoretically substantiated either, because accounting for this
correction requires the simultaneous consideration of quan-
tum corrections to the exchange energy, while this problem
has not yet been solved.

5.4 Shell corrections at high temperatures

We use the TF model in the cell approximation to describe the
thermodynamic properties of a Boltzmann plasma and show
how shell effects can be taken into account based on this
model [39, 40, 50, 51]. We emphasize that these effects are
related to the temperature (thermal) ionization of bound
electrons. We call the corresponding shell corrections the
temperature corrections. The decay of temperature shell
effects under compression and the effects caused by the
redistribution of electrons under cold compression formu-
lated in [1, 49] are considered separately in Section 6.

It was shown in Section 5.2 that the final result for
corrections to pressure (5.12) and energy (5.13) contains
corrections du and 8V/(r) to the chemical and self-consistent
potentials, and they can be determined by solving the
corresponding Poisson equations. Such a solution for shell
corrections at high temperatures showed that the main role of
shell effects amounts to a shift of the chemical potential [39];
in other words, the integral contribution of terms with the
correction 8¥/(r) is much smaller than that of terms with the
correction ou. In addition, the second term in expression
(5.12) for the shell correction to pressure and the first term in
expression (5.13) for the energy correction are negligibly
small at high temperatures. As a result, all the shell
corrections to pressure and internal energy can be approxi-
mately expressed in terms of the correction to the chemical
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potential, which is calculated from the characteristics of the
TF model,

3 onrte(r
AEg = {5 Z - J Z}Z( ) (pre = V() dr:|8:ush7
(5.18)
APy, = ntr(R) dp, ,
onre(r -
6:ush = _ANsh(;uTF){ [ ng];(,) dl’} . (519)

The correction ANy, (i, T') to the number of states must
therefore be calculated. Because this requires knowing the
spectrum of one-particle states, we use the results obtained
in Section 4.1, where the features of energy spectra were
considered for the two types of central attraction poten-
tials [60].

In the semiclassical approximation, the one-particle
energy levels g, in the self-consistent central potential
Vre(r) of an atomic cell are determined from quantization
condition (4.1) with n, = n — [ — 1. The leading contribution
to the number of states with y < upg for a Boltzmann plasma
(pre <0, | urp|/T > 1) gives the discrete spectrum

N(u,T) :22(2l+1)f<y). (5.20)
n,l

The difference between (5.20) and the number of states in the
TF model,

AN(u, T) = N(p, T) — Nrp(u, T) | (5.21)

must contain the shell correction, but can also include other
corrections, as we show below.

To pass from sums over quantum numbers # and / in
(5.20) to integrals, we use Poisson formula (2.6) and change
the variables n — ¢ in the obtained integral over n:

J ...dn:J ...6’1(871) de.
1—¢ s e

€10

We consider the lower limit in the integral over energy e.
Obviously, the exact value of the lowest energy level forn = 1
1S &9 = —22/2+ C, where C =const. A value e¢< 1,
required to avoid the restriction on the integration interval
of the delta function in the Poisson formula, shifts this energy
down to &9, while still preserving its finite value. We rewrite
(5.20), adding and subtracting the integration region from
—00 to &9 in the energy integral,

N(wT) _2;“1—[00 }f(s;ﬂ>(...)ds.(5.22)

Here and hereafter, we use the notation

(.)= J, @+ %i’l) cos [2n(kn(e, ) + s1)] dI.

Separating the term in the sum with k =5 =0 in the first
integral in the right-hand side of (5.22) and differentiating
quantization condition (4.1) to determine the derivative
On(e, A)/0e, we can easily see that this term is exactly equal
to the number of states in the TF model. Hence, the sought
correction (5.21) isequal to (5.22) without this term, and is the

sum of two integrals

AN(g, T) :2{ Jm Z—Jm ;}f<8T“>(...)dg

X ks
(5.23)

= ANg, + ANs. .

The energy spectrum of one-particle states in the TF model
extends from —oo to 4oo; therefore, the first integral
describes the difference between the TF model and the
model taking the discreteness of the spectrum of bound
states in this energy range into account. We take it as the
definition of the shell correction to the number of states.

To elucidate the nature of the second integral, we
substitute the total correction (5.23) in expression (5.7) for
the correction to the free energy and obtain two terms:

ORI

—00 X ks X ks

!
xf(g T“ )(...)dsdu’ — AFy + Ese. (5.24)

The first term is equal to the shell correction to the free energy
in our definition, while the second term is the so-called Scott
correction Es. = Z2/2 [44-47]. This correction is calculated
by returning to the variable n, converting the sums of cosines
into delta functions, and taking the Coulomb type of the
spectrum in this energy region into account, g, =
—Z?/2n? 4 C. The principal quantum number n = 0 corre-
sponds to the energy ¢, = —oo. Hence, the Scott correction
compensates for the partially accounted for nonphysical state
with n = 0 in expressions for the free energy in the TF model
and for the shell correction to it.

In the high-temperature case considered above, the Scott
correction is a constant, independent of temperature and
density. In Section 6.2, we present a more general derivation
of the expression for this correction and show that it depends
on the density in the limit of strongly compressed cold matter,
while its physical meaning is related to the problem of the
inapplicability of the semiclassical approximation near the
nucleus (the Coulomb center).

We return to the discussion of the ‘high-temperature’ shell
correction. To calculate it, we integrate the energy integral in
the first term in (5.23) by parts. The term outside the integral
is zero, and we therefore have

ANG(1,T) =3 (;IIC)S Jio df ((e ;;‘)/T)

k,s

5
x J sin [2n(kn; + s4)] dA* de.
0

(5.25)

Taking the dependence of the derivative of the function
f((e—p)/T) into account, we can see that the leading
contribution to the energy integral is made by the vicinity of
the point ¢ = u < pupp. For high temperatures and low
densities, this corresponds to the energy region of deep
shells. The spectra of these shells were considered in Section 4.2
(also see Fig. 5). In this case, the sum over / can be replaced by
the integral, resulting in the consideration of only the term
with s = 0in the sum over s. The discreteness of n is taken into
account via the sum over k # 0.

In a more general case, for energies in the spectrum at
which the occupation of a new nth shell begins when the
(n — 1)th shell is incomplete, the quantum numbers n and / are
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equivalent, and this situation can be successfully described
only if the corresponding interference is taken into account,
i.e., both sums in (5.25) are completely preserved. Such an
approach was used, for example, to calculate the shell
correction to the electron binding energy in a free atom [12,
13]. However, in the general case, the problem of separating
the oscillating dependence from a double infinite sum of the
obtained Fresnel integrals is rather complicated, and the
approach loses the simplicity inherent in the TF method.
Instead of (5.25), we can then write the simplified expression

svatu)=- 332 [ Sl

ch de

/11
X J sin (2nk[v,; + 2]) dA* de, (5.26)

0
where the quantization condition S.; = mv,, = nn,; — 4] is
used for Coulomb potentials.

Another variant of the derivation of similar relations is
based on the form of the squared modulus of the radial wave
function in the lowest semiclassical approximation and the
corresponding electron density (4.10). Applying the Poisson
formula and restricting ourselves to the term s = 0 in the sum
over s, we use (4.10) to obtain the shell correction to the

density
27:21 2 Z J_ f( H)

. J"' sl ) 1,
0 Psxl(r)

Integrating by parts in the energy integral and taking into
account that cos (2nk[v;; + 4]) is a rapidly oscillating func-
tion, we can segregate the leading term in the semiclassical
behavior parameter, containing, as in (5.25), the derivative of
f(¢) in the integrand.

It was shown in Section 4.2 that the dependence of v(e, 1)
on Ais quadratic in a rather broad spectral range and is linear
down to the deepest energy levels. If the quadratic depen-
dence of v(g, 1) on A is valid in the entire range 0 < 1 < 4,
then the equality

Ansh

(5.27)

Su="y+> 5# 2, 00 =

—nvli’(O) (5.28)
must be satisfied, which relates the action S, at the zero
momentum to the maximum orbital momentum /4,,.

Figure 17 demonstrates the temperature range where the
linear dependence is applicable and shows the region of
applicability of quadratic formulas (4.8) and (5.28). In the
linear dependence range, where the potential coincides with
the Coulomb potential up to a constant, it follows from (5.26)
that

sin (2kS,)

AN; 4)» t,T
(kT ’ Zsmh (2mkt,T)

(5.29)

Integrating (5.27) over the cell volume, we obtain the
expression

R > i
- ) rrdr] S S CKS,)
ANsh(H, T) = 8T[J0 p#(’)r d’:| Z sinh (21‘[kl‘ﬂT) ’

k=1
(5.30)
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Figure 17. Radial action S|, (solid curve) of an electron with energy equal
to the chemical potential in comparison with the linear 4, (dashed curve)
and quadratic n, +0.5 ()SA“ (dashed-dotted curve) functions of the
orbital moment 4, at different temperatures in iron plasma with density

p=10"* gem™3

which differs in its form from (5.29). However, the relations

S - n/ ; 7%7 nZ

STy R TR T e (5.31)
o(mA

Ty = Sy s %:tﬂ

are valid for the Coulomb potential, and it can be easily
shown that expressions (5.29) and (5.30) are identical.

We analyze the high-temperature asymptotic form of the
shell correction. The sum )", [sin(ak)/sinh(bk)] in (5.29) and
(5.30) can be calculated analytically under the conditions
a < 1.6m, a/b > 10 by replacing it with an integral using the
Euler formula. In this case of very high temperatures, the shell
correction to the number of states is given by

S 28 z?
AN; T)=A2(tanh £ 221 ) =
sn(4,T) M(an 26,T w > 2)ul’

(D))

It follows from (5.32) that the shell correction in the high-
temperature limit has the first order in the semiclassical
behavior parameter [see (5.3)]: ANg,/Z ~ Z~'/3, similarly to
the Scott correction.

The inclusion of both these corrections (shell and Scott) in
the TFC model not only leads to the correct value of the
ionization energy limit for Boltzmann plasma at very high
temperatures but also describes the step-like temperature
dependences of the degree of ionization and ionization
energy for the ideal plasma. This is illustrated well in Fig. 18,
which presents the results of calculations of the thermal and
caloric equations of states for high-temperature iron plasma
in the TF model, with or without the shell and Scott
corrections, in comparison with calculations using the
semiempirical Saha—Reiser model [109]. The good agreement
between semiclassical results and the results obtained in this

(5.32)



450 G V Shpatakovskaya

Physics— Uspekhi 55 (5)

8]

L I I
5 6 7

g T[K]

Figure 18. High-temperature part of the dependence of (a) the number of
ionized electrons z and (b) the ionization energy Q = E — 3Pv/2 on
temperature in iron plasma with the ion density ; = 10'® ¢cm™=3 calculated
using different models: curve / with white dots: the TFC model, curve 2:
the Saha—Raizer model [109], curve 3 with crosses: the TFC model [109]
taking the shell and Scott corrections into account, tringles are calcula-
tions by the modified Hartree—Fock—Slater model [110].

model underlies the ‘hot’ method for estimating ionization
potentials of free ions, which is considered in Section 5.5.

Expression (5.26) can also be integrated analytically in a
more general case of not very high temperatures, at which
quadratic dependences (4.8) and (5.28) are valid. As a result,
the compact expression

2 & kX;

ANg(u, T) = — — 24 cos (2nki
h(:u’ ) 1'[53 ; |:Slnh (kX}L) COS( T H)
kXs 1
_ B o5 (2kS,) | — .

Sinh (kXs) cos (2kS, )} e (5.33)

Xs =m0, T, X, = 2n T p
ou

is obtained, which contains only the characteristics of electron
motion with the energy equal to the chemical potential u of
the system with zero (the s-state) and maximal orbital
moments 4, corresponding to linear trajectories (with
reflection from the center) and circular trajectories. As
52 — 0, expression (5.33) transforms into (5.29).

Shell correction (5.33) depends on the semiclassical
behavior parameter nonanalytically, as cos(a/¢&), and the
oscillation amplitude at low temperatures has the same order
¢% as the quantum-exchange correction. At very high
temperatures, the shell correction, as shown above, becomes
a first-order correction (~ ¢&).

5.5 ‘Hot’ method for estimating
the ionization potentials of ions
The number of ionized electrons in a statistical model is
determined in terms of the electron density at the boundary of
an atomic cell and, in view of the asymptotic form of the
Fermi—Dirac function for the Boltzmann plasma, is given by

T3/2 m
z=n.(R)v= \/Z_n_gexp (7,> v.

(5.34)

A comparison of this expression with the corresponding
formula in the Saha—Reiser model [109] for the classical
plasma in the average-ion approximation gives the relation

w,=—1I., (5.35)
between the chemical and ionization potentials. We note that
the values = ./, shifted by 1/2 in z should be used in
(5.34), which agrees with similar relations for ions with
different charges at zero temperature (see Section 3.1).

The calculation of the chemical potential in the refined TF
(RTF) model

BrTE(T) = prp + Stgy_ex + Oltsh

and of the corresponding quantity zrte(7') via (5.34), after
elimination of the temperature dependence, allows deter-
mining the function pprp(zrrr). Using relation (5.35)
between potentials and taking the shift into account, we
can then calculate the corresponding ionization potentials.
The results of such calculations are presented in Fig. 19 for
aluminum and uranium ions. We can see from this figure
that the introduction of the shell correction into the
statistical model allows reproducing shell oscillations in the
dependence of the ionization potentials of ions on their
charge quite accurately.

The above method for calculating ionization potentials in
terms of the chemical potential is called the ‘hot” method, in
contrast to the known ‘cold’ method for calculating the
ionization potentials of ions in the TF [8, 9] and TFC [14—
16] models, which was considered in Section 3.1.

6. Wide-range equation of state of matter

In this section, the semiclassical equation of state for the
electron component of matter is generalized to the case of
degenerate matter. A consistent quantum mechanical correc-
tion of the statistical TF model in the vicinity of nuclei gives
an everywhere finite expression for the lowest quantum
correction to the free energy and an expression for the
modified Scott correction. In an limit of strongly compressed
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Figure 19. Ionization potentials of free (a) aluminum and (b) uranium ions
as functions of the charge in the ‘hot” semiclassical model (solid curve).
Symbols are empirical data [82] for aluminum and quantum mechanical
calculations for uranium.

matter, these corrections provide an agreement between the
results of the statistical model and the perturbation theory.

The refined TF model obtained by incorporating the
corrections described above retains the self-similarity prop-
erty. Hence, the data tabulated for hydrogen allow calculat-
ing the thermodynamic characteristics of matter with high
energy density in the applicability range of the ionization
equilibrium model and the TFC model, as well as in the
intermediate range between them.

6.1 Generalized quantization condition

It was shown in Section 5 that to calculate the shell correction,
it is necessary to know the classical characteristics (momen-
tum, action, time, and the maximal orbital momentum) of an
electron with the energy equal to the chemical potential yp in
the self-consistent potential Vyg(r).

The chemical potential of electrons in the Boltzmann
plasma is negative (the potential at the boundary of an
atomic cell is set equal to zero, Vrr(R) = 0) and the electron
energy is located in the region of the discrete spectrum of
strongly bound states and is determined by Bohr—Sommer-

feld quantization condition (4.1). As the temperature of the
electron system decreases or its density in