
Abstract. The modern semiclassical method developed over the
past few decades and used for describing the properties of the
electronic subsystems of matter is reviewed, and its application
to quantum physics problems is illustrated. The method involves
the Thomas ± Fermi statistical model and allows an extension
by including additive corrections that take the shell structure of
the electronic spectrum and other physical effects into account.
Applying the method to the study of matter and finite systems
allowed the following, inter alia: (1) an analysis of the total
electron energy oscillations as a function of the number of
particles in a 1D quantum dot; (2) a description of spatial
oscillations of the electron density in atoms and atomic clus-
ters; (3) a description of the stepwise temperature dependence of

the ionicity and ionization energy in a Boltzmann plasma; (4) an
evaluation of free ion ionization potentials; (5) an interpretation
and evaluation of the difference in the patterns of oscillations in
the mass spectra of metal clusters.

To the memory

of David Abramovich Kirzhnits

1. Introduction

More than 35 years have elapsed since the publication of
review [1] describing the application of the semiclassical
method based on the statistical Thomas±Fermi (TF) model
for calculating the characteristics of many-electron systems.
This method has been improved since then, and its field of
applications has been extended, in particular, to include
nanoobjects. Finite systems like clusters, quantum dots,
nanoconductors, fullerenes, and similar electron±ion com-
plexes are convenient for semiclassical physical studies
because they contain a sufficiently large number of particles
and reveal quantum properties.

The aim of this review is to present the modern
semiclassical method and a number of problems solved
using this method. A semiclassical method for describing the
local and integral characteristics of atoms and ions, metal
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clusters, and quantum dots is considered, the efficiency of the
method for calculating the equation of state of plasma is
demonstrated, and a qualitative and quantitative semiclassi-
cal analysis of results obtained bymore complicated quantum
mechanical methods is performed.

The review content does not overlap, in fact, with that of
well-known monograph [2], in which a somewhat different
approach was used and the problems of nuclear and
mesoscopic physics were mainly addressed.

The density functional method [3] in the Kohn±Sham
representation, being the most efficient method for studying
the properties of a system of interacting fermions in an
external field, requires the solution of Hartree-type equa-
tions for the wave functions and the spectrum of quasiparticle
states. As the number Ne of particles in the system increases,
the difficulties encountered in solving this problem consider-
ably increase, whereas the conditions of applicability of the
TF model improve. This model, as was already shown by
Dirac [4], corresponds to the leading term in the expansion of
the characteristics of the system in the semiclassical behavior
parameter

x � 1

2p

���� dldr
���� � �h

����Hpp 2

����5 1 : �1:1�

Here, l�r� is the particle wavelength, p�r� is the characteristic
momentum of the particle, and r is its radius vector. In the
one-dimensional case, the semiclassical behavior parameter is
inversely proportional to the number of particles (x / Nÿ1e );
in the two-dimensional case, it is inversely proportional to the
square root of the number of particles (x / N

ÿ1=2
e ), and in the

three-dimensional case, to the cubic root (x / N
ÿ1=3
e ). Hence,

the larger the number of particles in the system is, the more
justified the use of the semiclassical approximation, i.e., the
smaller the corrections to the TF model characterizing the
difference between its results and quantum mechanical
results.

The TF model was initially proposed to describe a many-
electron system at zero [5, 6] and finite [7] temperatures,
assuming the local validity of expressions for the ideal gas of
fermions in an external field. In this case, the Poisson
equation with the corresponding boundary conditions closes
the ideal-gas relation between the density ne and potential V:

DV�r� � 4pne�r�; ne�r� �
���
2
p

p 2
T 3=2I1=2

�
mÿ V�r�

T

�
; �1:2�

leading to the TF equation for the self-consistent potential
V�r�. Here, I1=2�x� is the Fermi±Dirac function (see Appen-
dix A), m is the chemical potential, and T is the temperature.
This model allows calculating various characteristics of free
atoms and ions [8ë18]; it is widely used in problems of the
physics of matter at high energy densities and in problems of
solid-state (see, e.g., [19ë21]), nuclear, and molecular physics.

The TF model is very simple and physically transparent;
however, it neglects many important physical effects: correla-
tion (corr), exchange (ex), gradient (qu), shell (sh), and
oscillation (osc). The presence of a small parameter x in a
many-particle system (Ne 4 1) allows a physically reasonable
improvement of themodel by adding independent corrections
caused by the effects listed above, which leads to the
expression

ne ' nTF � dncorr � dnex � dnqu � dnsh � dnosc �1:3�

for the number density of particles in the semiclassical
approximation.

Another important expression derived in [1] gives a
relation between small corrections to the density and the
free energy of a system of particles: 1

DF � ÿ
� mTF

ÿ1
dm 0

�
dne�r; m 0;T � dr : �1:4�

Thus, calculations in the consistent semiclassical approx-
imation are reduced to the determination of corrections to the
density in the right-hand side of (1.3). Based on the TFmodel,
with the expression for the density correction caused by one
effect or another and using expression (1.4), we can construct
the semiclassical thermodynamics of a system of fermions,
taking all important physical effects into account. In many
cases, semiclassical results obtained by this method are
virtually identical to the results obtained with the help of
more complicated models and provide a clear interpretation
of the observed dependences. The efficiency of the semiclassi-
cal approach for solving problems in quantum physics is
demonstrated in this review.

Correlation effects are not a subject of our special
investigation. We note, however, that the semiclassical study
[24] of nonlocality sources showed that the use of the local
density approximation for the correlation correction can be
substantiated at zero temperature only for high densities, and
this approximation is certainly inapplicable at high tempera-
tures. In practice, the dependence of the correlation energy on
the density in inhomogeneous systems is obtained by
approximating the results of numerical calculations, these
dependences being different in different ranges of parameters
(see, e.g., [25±33]).

Exchange effects describe the influence of the Pauli
principle on the interaction of particles. They reduce the
Coulomb repulsion and do not violate the concept of the
independence of particles, which is inherent in the self-
consistent field approximation. The corresponding free-
energy correction can be written in form (1.4),

DFex � ÿp
� m

ÿ1
dm 0

�
dr

�
qne
qm 0

�2

: �1:5�

Hereafter, m � mTF. The lower, second-order quantum
gradient correction

DFqu � ÿ p
6

�
ne

qne
qm

dr �1:6�

has the same order of smallness in the semiclassical behavior
parameter as the exchange correction has [34]. Their
combined contribution is taken into account in the TF
model with quantum and exchange corrections (TFCs)
[1, 35±37], which is widely used in the physics of matter with
high energy densities [38]. The disadvantages of the TFC
model, such as its inconsistency with the perturbation theory
in the high-compression and high-temperature limits and the
divergence of gradient corrections to energies at the localiza-
tion sites of nuclei, can be eliminated by accurately taking the
vicinity of nuclei into account [39±43]. This leads to a
modified form of the known Scott correction [44±47].

We recall that semiclassical physics involves the charac-
teristics of the classical motion of a particle in the correspond-

1 It is shown in the density functional theory [22, 23] (see Section 5.2) that

this relation has a more general character.
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ing potential. In particular, the semiclassical Green's function
G�r; r 0; e�, which is equal to the distribution function of
particles in the phase space at coinciding points, is the sum
of the contributions of possible trajectories of the classical
motion of a particle with energy e between points r and r 0. The
leading contribution, the Thomas±Fermi term, is given by the
shortest trajectory connecting points r and r 0 [1, 48].
Trajectories with reflection from turning points with an
incomplete cycle are responsible for spatial density oscilla-
tionsÐoscillation (interference) effects, while completely
cyclic closed trajectories are responsible for shell effects (due
to the discreteness of the spectrum of bound states).

The shell structure of one-particle spectra of atoms and
ions is manifested, for example, in the nonmonotonic
dependence of the properties of elements on the atomic
number in the periodic table, in oscillations in the radial
electron density distribution in atoms, and in stepwise
temperature dependences of the ionization degree and
ionization energy of plasma. Traditional statistical models
give regular monotonic functions of the parameters, reflect-
ing only their average behavior. This disadvantage of the
statistical approach seemed insurmountable, and it was
asserted repeatedly in the literature that these irregularities
can be described only in the framework of an exact quantum
mechanical treatment.

However, it was already shown in [48, 49] (see also [1]) that
the shell and oscillation effects can be described by separating
the leading terms in the semiclassical behavior parameter in
the derived nonanalytic dependences of physical quantities.
The development of this idea for studying shell effects in the
thermodynamics of matter with high energy concentration
resulted in the generalization of the theory of shell effects to
the case of finite temperatures. The dependence of the shell
correction on the compression ratio of matter was also
considered in [50±53] and, in particular, the prediction in
[49] (see also [1]) of the increasing role of shell effects during
cold compression, which attracted great interest at that time,
was explained theoretically.

Shell effects have been considered by different methods in
a number of papers [12, 13, 54, 55] for free atoms.

The theory of oscillation effects and a semiclassical
description of the spatial distribution of the electron density
in electron±ion systems was developed in [56±58] based on the
principles proposed in [48].

The semiclassical studies of many-electron systems are
often performed in the central symmetry approximation,
which amounts to considering matter in the Wigner±Seitz
spherical cell approximation [59], free atoms and ions, and
spherical clusters and nuclei. It turns out that the central self-
consistent attraction potential V�r� in these systems can
belong to one of two types: (i) the cluster (nuclear) potential
finite at the center or (ii) the atomic (ion) potential having a
Coulomb singularity at the center. The description of the
gradient, shell, and oscillation effects essentially depends on
the type of the potential in the problem under study. Notably,
the application of the semiclassical approximation to pro-
blems with a Coulomb singularity involves additional
difficulties due to violation of the semiclassical behavior at
the system center [39±43]. Also, considerable differences exist
in the shape of one-particle spectra [60] and possible classical
mechanical trajectories [61, 62].

Semiclassical methods, as pointed out above, have been
also successfully used to describe the properties of finite
systems [63]: nuclei, clusters, nanoconductors, and quantum

dots. Of great interest are atomic (in particular, metal)
clusters representing complexes containing from a few to
several tens of thousands atoms [64, 65]. The study of such
clusters allows investigating the evolution ofmatter in passing
from atomic scales to the solid-state scale. Shell effects in
nuclei and clusters and their relation to classical periodic
trajectories were studied, for example, in [58, 61±70].

One of the problems of the physics of atomic clusters is
how to explain oscillations observed in experimental mass
spectra: the dependence of the number of N-atomic clusters
on N. More specifically, it is known that the characteristic
feature of themass spectrumof sodiumclusters is the existence
of `magic' numbers: the number of clusters with such numbers
noticeably exceeds the number of neighboring clusters. As N
increases, the amplitudes of these deviations decrease, then
they increase again, and so on, i.e., oscillations with beats
occur. These effects decay with increasing the temperature.
The mass spectra of metal aluminum clusters look quite
different. These differences have been described quantita-
tively and explained by semiclassical methods [23, 61, 62].

We note that along with the consistent semiclassical
additive approach in (1.3) and (1.4), another semiclassical
model, the so-called extended TF (ETF) model, is used in the
literature. In this model, for example, the kinetic energy K�n�
in the energy functional at zero temperature,

E�n��K�n��
� �

Vext�r� � 1

2
Vint�r�

�
n�r� dr� Exc�n� ; �1:7��

n�r� dr � Ne ; �1:8�

for a system of Ne electrons with the interaction potential
Vint�r� in the external field Vext�r� is described by an
expression that in addition to the ideal-gas term includes the
lower, second-order gradient correction, and sometimes the
next, fourth-order correction. In this case, the exchange and
correlation (xc) terms can also be included in the total energy
functional. An extremum of the functional then gives the
equation for the density in which gradient, exchange, and
correlation corrections are self-consistently taken into
account.

Although the ETF model cannot be substantiated
theoretically, it describes the density distribution better than
the TF model does, and is widely used for calculating the
smooth, averaged behavior of various characteristics of
fermion systems in nuclear physics [71] and the physics of
metal clusters [66], as well as for describing the properties of
compressed [72] and heated [25] matter. Shell and oscillation
effects are neglected in this model.

The review has the following structure:
In Section 2, a consistent semiclassical method [58] with

the use of additive corrections (1.3) and (1.4) is demonstrated
with the example of describing the properties of a one-
dimensional quantum dot.

In Section 3, different semiclassical models are used for
calculating averaged local and integral characteristics of free
atoms and ions, and bulk and hollow atomic clusters.

In Section 4, the features of one-particle spectra are
analyzed for the two types of central potentials typical for
atom±ion and nuclear±cluster systems. A semiclassical
method is proposed for describing spatial density oscillations
in these two systems.

In Section 5, the use of the TF model and different
corrections to it for calculating the equation of state for the
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electron component of the Boltzmann plasma is discussed
and the form of gradient corrections in systems of different
dimensions is considered.

In Section 6, the semiclassical model of the equation of
state taking shell effects into account is generalized to the case
of degenerate matter, and a self-similar wide-range equation
of state for the electron component ofmatter with high energy
density is proposed.

Section 7 is devoted to the semiclassical description of
shell effects in characteristics of metal clusters.

In what follows, unless stated otherwise, atomic units are
used: �h � me � e � 1,mass �m� � 9:11� 10ÿ28 g, length �L� �
a0 � 5:29� 10ÿ9 cm, density �n� � 6:75� 1024 cmÿ3, mass
density � r��11:2 g cmÿ3, pressure �P� � 294:18 Mbar, energy
and temperature �E � � �T � � 27:21 eV.

2. Semiclassical model
of a one-dimensional quantum dot

In this section, the application of the semiclassical additive
correction method is demonstrated in a simple one-dimen-
sional case. Expressions for gradient, shell, and oscillation
corrections to the density and energy are obtained using an
expansion in the semiclassical behavior parameter, and it is
also shown that the TF model with these corrections not only
gives the results coinciding with those obtained by the more
complicated and time-consuming density functional method
but also allows separating the contribution from each
physical effect and analyzing its dependence on the para-
meters of the problem.

The one-dimensional example is taken from [73]. A system
of charged particles (one-dimensional quantum dot) is
considered. The motion of particles is restricted from two
sides along the x axis by an external confining potential
Vext�x� and is homogeneous in transverse directions y and z.

A physical example of such a system in a rough
approximation is the system of mobile electrons in gra-
phene, where the free motion of electrons is possible only in
two dimensions, while motion in the perpendicular direction
is quantized [74±76].

In [73], a one-dimensional quantum dot is described by
three different methods: the Thomas±Fermi, Strutinsky [2,
77], and density functional method in the Kohn±Sham
approximation. The method for calculating corrections to
the local and integral characteristics of this system in the TF
model (see Sections 2.2 and 2.3) and a comparison with the
results of the density functional method (Section 2.4) are
considered in more detail in our paper [58].

2.1 One-dimensional quantum dot
in the Thomas±Fermi model
The distribution function in the phase space in the one-
dimensional TF model has the form f�x; p� � y� p 2

m �x� ÿ p 2�.
Its integration over p (followed by division by the volume
2p of one state) gives the relation between the density and
Fermi momentum ne�x� � pm�x�=p, neglecting the spin. Here,
pm�x��

��������������������������
2� mÿ V�x��p

, V�x��Vint�x� � Vext�x� is the self-
consistent potential, Vint�x� is the interaction potential of
particles, satisfying the Poisson equation V 00int�x� �
ÿ4pe 2ne�x�, the Fermi energy m is determined from the
condition of normalization to the number of particles
Ne, and the interaction parameter e used in Section 2
is measured in electron charge units. It then follows that
the electron density distribution ne�x� satisfies the equa-

tion [73]

p 2

2

�
n2e�x�

� 00 ÿ 4pe 2ne�x� � V 00ext�x� � 0 : �2:1�

The kinetic energy density in the same approximation is
determined by the integral of � p 2=2� f�x; p� over the momen-
tum p, and the total electron energy is

ETF �
�1
ÿ1

ne�x�
�
p 2n 2

e �x�
6

� Vext�x� � 1

2
Vint�x�

�
dx :

�2:2�

The authors of [73] studied a particular system with
the confining potential Vext�x� � gx 4 (assuming in calcula-
tions that g � 0:5) and boundary conditions n 0e�0� � 0,
ne�x � �1� � 0. It can be shown that Eqn (2.1) with such a
biquadratic potential has a similarity property with respect to
the number of electrons Ne [58]:

xNe
� x1N

1=3
e ; n �Ne�

e �xNe
� � n �1�e �x1�N 2=3

e ;

mNe
� m1N

4=3
e ; ENe

� E1N
7=3
e : �2:3�

It follows from the solution of TF equation (2.1) with
Ne � 1 and e � 1 that the self-consistent potential V�x� has
the form of a symmetric double well separated by a barrier,
the Fermi energy m being located near the `hump' of this
barrier (Fig. 1). In the conduction theory of a quantum dot
[78], a change in the total electron energy under the addition
of one electron to the system, i.e., the chemical potential, and
also the derivative of this quantity with respect to the number
of particles, play an important role. At zero temperature, the
chemical potential coincides with the Fermi energy m, and
similarity property (2.3) allows performing the corresponding
differentiation analytically:

mNe
� qENe

qNe
� 7

3
E1N

4=3
e ; wNe

� qmNe

qNe
� 4

3
m1N

1=3
e : �2:4�

Relations (2.3) and (2.4) give the corresponding dependences
for the total electron energy E and w in the TF model:
E1 � 3m1=7, w1 � 4m1=3.

ÿ5

ÿ6

m

X l
e X r

e

Xm

e

V

ÿ7

0 1 2
x

Figure 1. Self-consistent potential V�x� � V�ÿx� in a one-dimensional

quantum dot with Vext�x� � x 4=2. Calculation by the TF model for the

charge e � 1 and the number of electrons Ne � 1 (solid curve). Dotted

straight lines are the Fermi energy m and the energy level e; X l
e , X

r
e , and Xm

are the corresponding turning points.
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2.2 Density corrections
To obtain corrections (1.3) to the TF density, we express the
electron density in terms of one-particle wave functions as
ne�x� �

P
n jcn�x�j2 (the spin is neglected, as in [73]). To

determine the spectrum of one-particle energies e�n�, we use
the quantization condition 2

S0
e �

� X r
e

X l
e

dxpe�x� � �h�pn� a l
e � a r

e � ; �2:5�

while for the wave functions, we use the semiclassical
approximation, taking the next terms of the expansion in the
semiclassical behavior parameter into account [79, 80]. In
(2.5), X l

e and X r
e are the left and right turning points and a l

e
and a r

e are phases upon reflection from these turning points,
which depend on the potential behavior in their vicinity (for
the linear behavior, a � p=4).

Using the Poisson formula to pass from the sum to an
integral,

Xb
n�a

fn �
X1
s�ÿ1

� b�E2

aÿE1
dnf�n� cos �2psn� ; E1 ; E2 < 1 ; �2:6�

expressing the quantum number n in terms of the action
according to quantization condition (2.5), and retaining,
along with the leading TF term, a few next-order terms in
the semiclassical behavior parameter, we obtain

ne�x� � n�x; m� ' 1

p�h

�� m

V�x�

de
pe�x�

� 2
X1
s�1

� m

V�x�

de
pe�x� cos

�
s

�
2S 0

e

�h
ÿ 2a l ÿ 2a r

��
�
X1
s�ÿ1

� m

V�x�

de
pe�x� cos

�
2Se�x�

�h
ÿ 2a l

�
�cos

�
s

�
2S 0

e

�h
ÿ 2a lÿ2a r

��
ÿ2�h 2

� m

V�x�

de
pe�x� s3�e; x�

�
� nTF�x� � dnsh�x� � dnosc�x� � d2nqu�x�; �2:7�

s3�e; x� � V 00

8p 4
e �x�

� 5�V 0�2
16p6e �x�

: �2:8�

The first term in curly brackets in (2.7) is equal to the density
in the TFmodel, the second term describes the influence of the
discreteness of the electron spectrum resulting in shell effects,
the third term reflects the wave properties of electrons leading
to oscillation effects, and the fourth term, representing the
second-order quantum gradient correction, describes the
contribution due to the inhomogeneity of the potential.

Direct integration with respect to energy in the fourth
term gives the gradient correction to the density [80]:

d2nqu�x� � 1

8pp 5
m �x�

�
�V 0�2 � 2

3
p 2
m �x�V 00�x�

�
: �2:9�

Using similarity property (2.3) and separating the dependence
on the number of particles in (2.9),

d2nqu�x;N � � Nÿ4=3e d2nqu�x; 1� ;

we see that the gradient correction has the second order of
smallness (x 2 / Nÿ2e ) compared to the density in the TF
model.

By integrating the third term in (2.7) by parts, we retain
the leading term in the semiclassical behavior parameter
outside the integral and take into account that S 0

m=p�h � Ne

is an integer. As a result, we obtain the oscillation correction
to the density:

dnosc�x� ' ÿ
cos
�
2Sm�x�

�
2pm�x� t 0m sin

ÿ
ptm�x�=t 0m

� ; �2:10�

where m � mTF, tm�x� � dSm�x�=dm is the classical time of the
electron motion with the energy e � m from the left turning
point X l

e � ÿXm to the point x, and t 0m � tm�Xm�, where Xm is
the right turning point (Fig. 1). The range of applicability of
the obtained expression excludes the vicinities of the turning
points.

Although the dependence of the oscillation correction on
the number of particles is more complicated, it can also be
calculated using similarity property (2.3). Considering the
amplitude (A) and phase (f) factors separately,

dnosc�x;Ne� � A�x;Ne� cos
�
f�x;Ne�

�
;

A�x;Ne� � A�x; 1�Nÿ1=3e ; f�x;Ne� � f�x; 1�Ne ;

we see that the oscillation effects have the first order of
smallness in x compared to the result obtained in the TF
model, and their contribution to the density is greater than
that of gradient effects.

2.3 Quantization condition and energy corrections
To calculate the shell correction, it is necessary to have the
quantization condition valid in the entire spectral region, in
particular, near the hump of the barrier. This condition
differs from standard Bohr±Sommerfeld expression (2.5)
with a l � a r � p=4. The correct result

S 0
e ��2n� 1� p� g�e ; S

0
e �Se�ÿXe;Xe��2Se�0;Xe� ;

�2:11�

g�e �
d 2
e

2

�
1ÿ ln

jd 2
e j
2

�
� argG

�
1� id 2

e

2

�
�
�
p
4
� arctan

�
tanh

pd 2
e

4

��
;

is obtained by using the known exact solution of the
Schr�odinger equation with a potential near the hump in the
form

V�x� � V�0� ÿ jV
00�0�j
2

x 2 ; V 00�0� � ÿ4pe 2n�0� :

In quantization condition (2.11), S 0
e is the classical action for

electron motion with the energy e above the hump between
the two turning points ÿXe and �Xe, and the quantity

d 2
e �

p 2
e �0��������������������

4pe 2n�0�p �2:12�

characterizes the closeness of the energy e to the hump of the
potential V�0� (e � m in Fig. 1). The sign of d 2

e , which
coincides with the sign of the squared momentum p2e �0�, can
be respectively positive or negative in the regions of classically

2 In (2.5), as in (2.7) below, the dependence on �h and, correspondingly, on
the semiclassical behavior parameter x is manifest.
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allowed or forbidden motion of the particle. Above, we
considered the case of classically allowed motion, where the
energy level is located above the top of the potential hump:
e > V�0�, d 2

e > 0. In the case e < V�0�, d 2
e < 0, which is also

shown in Fig. 1, the action in (2.11) has the form
S 0
e � 2Se�X l

e ;X
r
e �.

The phases g� depend on the energy via the parameter d 2
e

in (2.12) (Fig. 2). It is because of this dependence that
quantization condition (2.11) continuously connects the two
limit cases: a transparent barrier in which the particle moves
high above the hump (d 2 !1, g�=p! �1=2) and an
impenetrable barrier in which the particle is confined in one
of the two lower wells (d 2 ! ÿ1, g� ! 0); in the latter case,
a doubly degenerate level exists. The number of states in the
TF model with the shell correction turns out to be a step-like
function of the chemical potential

N� m� � S 0
m

p
� 1

p

X1
s�1

�ÿ1�s
s

n
sin
�
s�S 0

m ÿ g�m �
�

� sin
�
s�S 0

m ÿ gÿm �
�o
: �2:13�

This reflects the fact that when the chemical potential
intersects an energy level, the number of states changes
discretely by unity.

To study the contribution of the effects under considera-
tion to the energy, we use expression (1.4) at zero tempera-
ture. Due to the averaging via double integration, the role of
oscillation effects is negligible, and the gradient and shell
terms are dominant.

The expression for the gradient correction to the energy is
obtained by the direct integration of (2.9) over the energy m 0.
Replacing the momentum by the density and using Thomas±
Fermi equation (2.1) and similarity relations (2.3), we obtain

d2Equ�Ne� � ÿ 1

12

� � �n 0�2
2n
� n 00

�
dx

� 1

2p

� � Xm

0

x 2 dx

pm�x� ÿ
2

3
e 2Xm

�
� d2Equ�1�N 1=3

e : �2:14�

The shell correction to the energy

dEsh � 1

p

X1
s�1

�ÿ1�s
s 2

�
�
cos
�
s�S 0

m ÿ g�m �
�

t 0m ÿ qg�m =qm
� cos

�
s�S 0

m ÿ gÿm �
�

t 0m ÿ qgÿm =qm

�
; �2:15�

is obtained by integrating the second term in (2.13) by parts
over energy and keeping the leading nonintegral term.

The phases g�m in (2.11) and their derivatives

qg�m
qm
� m�������������������

4pe 2n�0�p
�
�
Rec

�
1� id 2

m

2

�
ÿ ln

jd 2
m j
2
� p
2cosh �pd 2

m=2�
�
�2:16�

determine the result of interference in the addition of the two
sums in (2.15). In (2.16), c�z�� d lnG�z�=dz is the Euler psi
function. The logarithmic divergence of derivatives (2.16) at
d 2
m �0, as shown in Section 2.4, strongly affects the amplitude

of shell oscillations.

2.4 Calculation results
We use the approach considered above for calculating the
characteristics of a 1D quantum dot with Ne 5 4 by
comparing our results with calculations performed in [73],
where, apart from the TF model, the Kohn±Sham density
functional method [3] and Strutinsky method [2, 77] were
used.

Figure 3a presents the results of calculations of the
electron density in the TF model, taking oscillation correc-
tion (2.10) into account or neglecting it for the number of
electrons Ne � 5 and 20, in comparison with calculations in

1.0
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0

ÿ0.5

g�
=p

,
d
g�
=
d
�d

2
�

ÿ2 ÿ1 0 1 2
d 2

�

�
ÿ

ÿ

Figure 2. Phases g�m =p from quantization condition (2.11) (solid curves)

and their derivatives dg�m =d �d 2� (dashed curves) as functions of para-

meter d 2.

3

2

1

0

0.5

dE

dEqu dEqu � dEsh

n�x�

0.4

0.3

0.2

0.1

0 5
x

Ne

ÿ5

10 20 30 40

a

b

Ne � 20

Ne � 5

Figure 3. (a) Distribution of the electron density n�x� in a one-dimensional
quantum dot. Calculations with the TF model with the oscillation
correction (2.10) neglected (dashed curves) and taken into account (solid
curves) are compared with the calculations in [73] by the density functional
method (dotted curves). The interaction parameter is e � 1, the number of
electrons isNe � 5 (lower curves) andNe � 20 (upper curves). (b)Quantum
correction dEqu (2.14) to the total electron energy (thick curve) and its
sum with shell correction dEsh (2.15) (thin curve) as a function of the
number Ne of electrons in a one-dimensional quantum dot with the
interaction parameter e � 1. Black dots show the difference between the
total electron energy calculated by the density functional method and by
the TF model [73].
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the Kohn±Sham model. The TF model gives the smooth
component of the density distribution, while considering the
oscillation correction allows describing spatial density oscilla-
tions quite accurately. Analytic expressions that we obtained
for a quantum dot with the number of particles Ne 5 10 only
very weakly deviate from the results of the density functional
method [73] everywhere except a small vicinity of turning
points; this deviation is indiscernible in Fig. 3a.

The quantum gradient correction to the total electron
energy calculated by expression (2.14) in the range
44Ne 4 40 is presented in Fig. 3b. Figure 3b also shows the
sumof gradient and shell (2.15) corrections comparedwith the
difference between the exact total energy calculated in the
Kohn±Shammodel and in theTFmodel, taken from [73]. This
difference coincides with the principal Strutinsky correction
calculated in [73] by solving the Schr�odinger equation.

Below, based on the analysis of shell correction (2.15), we
explain the dependence of the period and amplitude of
oscillations on the interaction parameter e obtained for the
Strutinsky correction in calculations [73] for e4 1:5.

Figure 4 shows shell correction (2.15) calculated as a
function of the number of electrons in a quantum dot for
several values of the charge e. The dependences d 2

m �Ne� are
also presented in this figure.We can see that as the interaction
parameter of particles e increases, the amplitude of energy
oscillations increases and remains constant for increasingNe.
The same increase in the oscillation amplitude and its
constant value in the range Ne � 2ÿ20 were obtained in
numerical calculations [73] by the density functional method
for the charge e � 1:5. The semiclassical method can explain
this behavior. It follows from (2.15) that it is determined by
the phases g�m in (2.11) and their derivatives dg�m =d�d 2�in
(2.16), which depend on the value of d 2

m in (2.12), characteriz-
ing the closeness of the Fermi energy of the system to the
centralmaximumof the self-consistent potentialV�0� (Fig. 1).
As e increases, d 2

m �e� rapidly tends to zero, i.e., to the region of

the logarithmic singularity of derivatives (2.16) (Fig. 2), which
causes a considerable change in the form of shell oscillations
upon increasing the parameter e.

Thus, the semiclassical additive correction method gave
results coinciding with those obtained by the density func-
tional method and allowed analyzing the relative contribu-
tions of gradient and shell effects and explaining the
dependence of the oscillating part of the total energy on the
number of particles and the interaction parameter.

3. Averaged description of spherically symmetric
electron systems

In this section, spherically symmetric electron systems are
considered mainly at zero temperature. The use of the TF
model and its different modifications with the quantum,
exchange, and correlation corrections taken into account
additively (TFC) and self-consistently (ETF) allows describ-
ing the averaged behavior of the local and integral character-
istics in atoms, ions, and bulk and hollow clusters quite
accurately.

3.1 Free ion in the Thomas±Fermi model.
Ionization potentials and partition functions
The composition and thermodynamic properties of plasma
are often calculated using the chemical model [81], which
leads to Saha equations for the concentration of particles
(electrons, atoms, and ions with different charges). The
parameters of these equations are the ionization potentials
and partition functions of ions, which can be calculated if the
excitation spectra of the corresponding ions are known. The
ionization potentials and excitation energies of ions are
usually determined from experimental spectroscopic data or,
if these data are not available, from quantum mechanical
calculations (see, e.g., [82] and [83]). We show that the TF
model can be used for this purpose.

The problem of describing a free positive ionwith a charge
z � ZÿNe 5 0 (where Z is the nucleus charge) in the TF
model was consider by Sommerfeld in 1933 [8, 9, 79]. In this
case, the electron density distribution ne�r� is described by
relations

ne�r� � �3p2�ÿ1
�
2
ÿ
mz ÿ Vz�r�

��3=2
; �3:1�

mz ÿ Vz�r� � Zjz�x�
Rzx

;

where the function jz�x� satisfies the TF equation���
x
p

j 00z �x��Aj 3=2
z �x�; jz�0� � 1; jz�1��0; j 0z�1� �

z

Z
:

Here, x � r=Rz, Rz is the ion radius, A � 8
������������
2ZR 3

z

p
=3p, mz �

ÿz=Rz is the Fermi energy (chemical potential), and Vz�r� is
the potential energy of an electron in the self-consistent field.
At distances exceeding the ion radius �r5Rz�, the electron
density is zero and Vz�r��ÿz=r.

The ionization energy Ez of an ion in the TF model [8, 9]
and the quantum-exchange correction to it [14±16] are
expressed in terms of the function jz�x� as

ETF
z � 8

��������
2Rz

p
5p

Z 5=2

�1
0

j 5=2
z �x����

x
p dx ;

�3:2�
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and the ionization potentials are calculated as differences
between the ionization energies of neighboring ions:
Iz � Ez ÿ Ez�1, z5 0 (Iz�1 is the ionization potential of the z
ion).

Figure 5 shows the ionization potentials of aluminum and
iron ions calculated in the TF and TFCmodels in comparison
with empirical data [82]. We can see that the TF model,
especially with the quantum-exchange correction, describes
the averaged behavior of ionization potentials well (the larger
Z, the better), but does not describe shell effects.

In [14±16], the ionization potentials of ions calculated in
the TFC model were approximated by analytic expressions,
which allows readily estimating the ionization potential of
any ion for any element. The corresponding approximations
were obtained using the relation between the ionization and
chemical potentials of an ion:

Iz � I�Ne� � ÿm
�
Ne ÿ 1

2

�
� ÿm

�
z� 1

2

�
: �3:3�

We present these dependences of the chemical potential of the
ion on its charge z and the degree of ionization

a � z=Z � 1ÿNe=Z:

mTFC � mTF � dmquÿex ;

mTF�04a4 0:12� � ÿ0:1103 z 4=3�1ÿ 0:9102as=3�ÿ1 ;
s � 0:5�

�����
73
p

ÿ 7� ;

mTF�0:124a4 1� � ÿ 0:2438 z 4=3

�1ÿ a�2=3

�
�
1� 0:5651aÿ 0:1059 �1ÿ a�2 ÿ 0:2097 �1ÿ a�3

1� 2:8285 a

�
;

dmquÿex � ÿ0:2153
�

z 2

1ÿ a

�1=3

�
�
1� 0:3398aÿ 0:3444 �1ÿ a�2

1� 2:7807a

�
:

The TF model of a free ion described above can also be
used, as was shown in [17, 18], to estimate the partition
functions of ions, which are also required for calculations of
the plasma composition in the chemical model [81]. The
partition function of an ion in plasma at a temperature T
can be written as

Qz�g
�z�
0 �2

X
n; l

�2l� 1� exp
�
ÿ enlÿmz

T

�
y�enl ÿ mz�o�enl�;

�3:4�
where the excitation levels enl are referenced to the Fermi
energy mz, n and l are the principal and orbital quantum
numbers,o�e� is the cut-off form factor that allows restricting
the number of excitation levels included in the sum based on
one consideration or another, and g

�z�
0 is the statistical weight

of the ground state.
Using characteristics obtained in the TF model, we can

perform analytic summation in expression (3.4) with the
mean-radius cut-off criterion. The mean radius R is deter-
mined from the plasma density r � 11:2�M=v� g cmÿ3 as
R � �3v=4p�1=3, whereM is the atomicmass of the element. In
[18], different cut-off methods are also considered: a cut-off
with respect to the plasma temperature T and the Planck±
Brillouin±Larkin approximation.

Figure 6, schematically showing the characteristics of a
free ion with charge z and plasma parameters T and R,
explains the corresponding algorithm. In the case of the
mean-radius cut-off criterion, the spectrum of bound excited
states is restricted by the valueÿz=R (for the temperature cut-
off criterion, by ÿT ) from above and by mz from below.
Obviously, themean radius should then exceed the ion radius,
R5Rz (for the temperature cut-off criterion, RT 5Rz);
otherwise, the ions cannot be treated as free ions and the
free-ion TF model described above cannot be used for them.

We determine the excitation spectrum enl by using the
Bohr±Sommerfeld quantization condition and take the
simplest step function o�enl� � y�ÿz=Rÿ enl� as the cut-off
function. Replacing sums in (3.4) with integrals over the
energy and orbital momentum, we obtain a semiclassical
expression for the partition function (see the details in [17]):
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Figure 5. Ionization potentials of free aluminum (a) and iron (b) ions

calculated by the TF (solid curves) and TFC (dashed curves) models

compared with the experimental data in [82] (triangles).
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du � u1 ÿ u2 ; u1 � ~mz ÿ Vz�r�
T

;

u2 � ÿz=Rÿ Vz�r�
T

; ~mz � max

�
mz;ÿ

z

r

�
;

where F�x� is the probability integral.
The low-density and low-temperature limits of function

(3.5) have the respective forms
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The expression for partition function (3.5) can be analytically
differentiated with respect to the thermodynamic parameters
v and T. The corresponding derivatives are
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It can be easily verified that the mean excitation energy

he exz i �
1

Q
�R�
z

X
s

g �z�s �e �z�s ÿ e �z�0 �

� exp

�
ÿ e �z�s ÿ e �z�0

T

�
y
�
ÿ z

R
ÿ e �z�s

�
�3:7�

in this case exactly coincides with (3.6)

Figure 7 presents mean excitation energies (3.7) for all
aluminum ions in dense plasma at two temperatures calcu-
lated by expression (3.6) and compared with calculations [81]
based on empirical data. Figure 8 shows the partition
functions of ions calculated by expression (3.5) with g

�z�
0 � 2

for aluminum and iron plasmas with various densities and
temperatures compared with the calculations in [81] from
empirical excitation spectra. We can see that theoretical
expressions (3.5) and (3.6) correctly describe the averaged
dependences of the partition functions of ions on the plasma
temperature and density, but do not describe the dependence
of shell oscillations on the ion charge z.

3.2 Extended Thomas±Fermi model
The disadvantage of the TF model for free atoms and ions is
the incorrect behavior of the electron density at small
distances from the nucleus and at the periphery because the
semiclassical approximation is valid at distances 1=Z4 r4 1
[79]. In this section, we consider a more complicated
alternative semiclassical EFTmodel in which these disadvan-
tages are absent.

The ETF model has been widely used [25, 34, 6, 72, 84,
85] to describe the averaged characteristics of a variety of
many-electron systems, despite the theoretical invalidity of
simultaneously taking the leading and correction semiclassi-
cal terms into account. In particular, in a variant of this
model that we used in [86, 87], expression (1.7) for the total
electron energy, along with the principal ideal-gas (Tho-
mas±Fermi) term, contains quantum, exchange, and corre-
lation corrections, which were obtained assuming the
smallness of the corresponding effects (in this section,
n � ne�r�):

E�n��
�
dr

�
k�n��n

�
Vext�r� � 1

2
Vint�r�

�
� Eex�n��Ecorr�n�

�
:

�3:8�

Here, k�n� is the kinetic energy density in which the second-
order quantum correction to the TF model is taken into

ÿz=R

V�r�

ÿT
mz

Rz RT R r

Figure 6. Characteristics of a free zth ion in the TF model (the potential

electron energy V�r� in a self-consistent field, the ion radius Rz, and the

Fermi energy mz) and plasma parameters (the temperatureT and the mean

atomic radius R). RT is the `temperature' radius.
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Figure 7.Dependence of the mean excitation energy of an ion on its charge

z in aluminum plasma in the case of the average-radius cut-off criterion.

The plasma density is r � 10ÿ2 g cmÿ3 and the temperature is T � 5 eV

(solid curve and triangles) and T � 10 eV (dashed curve and dots). The

curves are calculated by (3.6), symbols are calculated from empirical

data [81].
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account [1],

k�n� � kTF�n� � d2k�n� � 3
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�3:9�
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dr 0n�r 0�=jrÿ r 0j is the Coulomb electron interac-

tion potential,
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p
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n 4=3; Vex � ÿ
�
3
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n1=3;

Ecorr�n��ÿ0:033n
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�1� X 3� ln �1� Xÿ1� � X
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�
;
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are the exchange and correlation [26] energy densities and
corresponding potentials, X�rs=11:4, and rs��3=4pn�1=3 is
the electron radius.

The extremum of functional (3.8) with normalization
condition (1.8) gives an equation for the density in the ETF
model

1

2
�3p 2n�2=3 � 1

72

�
Hn
n

�2

ÿ 1

36

Dn
n
� V�r� ÿ m � 0 ; �3:10�

with the total potential

V�r� � Vint�r� � Vext�r� � Vex�r� � Vcorr�r�

including the interaction, external, exchange, and correlation
potentials. Elimination of all the correction terms from (3.8)
leads to a relation between the density and the potential in the
TF model.

We use Eqn (3.10) to calculate the electron density
distributions in atoms and various atomic clusters [86, 87].
For spherically symmetric systems considered here, only the
form of the external potential Vext�r� changes in Eqn (3.10).
These potentials for an atom and a bulk atomic cluster are

V
�at�
ext �r� � ÿ

Z

r
;

V
�cl�
ext �r� �

ÿNe

2R

�
3ÿ

�
r

R

�2 �
; r4R ,

ÿNe

R
; r > R :

8>><>>: �3:11�

Here, the so-called jelly cluster model is used, in which ions
are assumed to be homogeneously distributed within a
volume with the radius R � rsN

1=3
e , where rs is the electron

Wigner±Seitz radius of the condensed phase of the element,
Ne � wNi is the number of electrons,Ni is the number of ions
(atoms) in the cluster, and w is the valence of atoms. For a
hollow cluster in which the ion charge is homogeneously
distributed over a spherical shell with the radius R and an
atom with a valence w0 is located at the center of the cavity,
the external potential produced by the ions has the form

V
�holcl�
ext �r� � ÿw0

r
ÿ

Ne ÿ w0

R
; r4R ;

Ne ÿ w0

r
; r > R :

8><>:
In this case, w0 valence electrons of the central atom are
included in the number Ne of electrons. The value w0 � 0
corresponds to an `empty' hollow cluster. Such clusters were
used in the literature for simulating C60 and LaC60 full-
erenes [88].

Taking the spherical symmetry into account and passing
from the radius to the dimensionless variable x � r=L (L is the
characteristic size of the system) and from the density to the
function n�x� � x

���
n
p

, we obtain a nonlinear integro-differ-
ential equation for this function and the chemical potential,
which was solved in [86, 87] by the Newton method using
finite differences.

We first consider the results of such calculations for
atoms. Figure 9a shows the distributions of the radial
electron density D�r� � 4pr 2ne�r� in neon (Z � 10) and
mercury (Z � 80) atoms calculated in the ETF model. To
compare these results with those obtained in the TF model,
the reduced quantities D�r�Zÿ4=3 and

������������
rZ 1=3
p

are plotted on
the axes. The corresponding dependence in the TF model is
universal and independent of Z. We can see from the figure
that the results of the ETF model in the middle part of the
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atom approach this universal curve upon increasing the
atomic number Z; the results of taking the corrections into
account additively and self-consistently coincide where these
corrections are small. This illustrates well the conditionZ4 1
of the applicability of the semiclassical description of an
atom.

Another condition, r > 1=Z, is related to the inapplic-
ability of the semiclassical approximation in the region of
small distances from the Coulomb center, where correc-
tions are not small, and therefore, notably, the density at
zero in the TF model diverges: nTF�r� � rÿ3=2 and hence
the radial density has the dependence DTF�r! 0� � ��

r
p

.
This region requires a special study, which is performed in
Section 6.2.

In the ETFmodel, as in the quantum statistical model [72],
the electron density at zero is constant and the radial density
depends on the radius quadratically: DETF�r! 0� � r 2. At
the periphery of an atom, a difference also exists between the
exponentially decreasing dependence of the radial density in
the ETF model and the slowly decreasing power-like
dependence on the radius in the TF model. Our analysis
thus shows that the advantage of taking the corrections into
account self-consistently rather than additively is related to a
new class of solutions obtained for the density, which are
finite at zero for systems with a Coulomb singularity and
behave more correctly at the periphery of the system.

We now consider the results of our calculations for hollow
clusters that simulate fullerenes C60 and LaC60. Figure 9b
shows the radial electron-density distributions for two hollow
clusters with the number of ions in the shell Ni � 60

calculated in the ETF model for the corresponding equili-
brium values of the cluster radius R0. The `empty' hollow
cluster (w0 � 0) simulates C60, while the hollow cluster with a
trivalent atom at the center (w0 � 3) simulates LaC60.

To determine the equilibrium radius R0, the dependence
of the total energy E � Ee � Ei of the cluster on its radius is
studied to find its minimum. In the jelly model used here, the
energy of ions uniformly distributed over the sphere is
Ei � 0:5N 2

e =R. This gives a root dependence of the calcu-
lated equilibrium radius on the number of particles,
R0 � aN 1=2

e , with the coefficient a � 3:743 [86]. The use of
this expression for fullerenes gives too large a value R0 � 29,
which is explained by a strong overstating of the ion energy in
replacing the real arrangement of ions by a spherical shell. If
the ion energy Ei � 0:4311N 2

e =R is used, which corresponds
to the real arrangement of the C60 molecule ions at the vertices
of a truncated icosahedron with the radius R, then a much
smaller equilibrium radius R0�5 is obtained, which is closer
to the experimental radius R

�exp�
0 � 6:75 for the C60 fullerene.

We note that a hollow cluster in the TFmodel, as shown in
[88], does not give a finite equilibrium radius R0 at all when
the ion energy is described by the expression of the jelly
model, whereas the use of the ion energy corresponding to the
real arrangement of ions gives the radius R0 � 7:36.

The ETF model, like the TF model, can be a basis for the
calculation of the contribution of oscillation and shell effects
not taken into account in it. The corresponding theorem is
formulatedwithin the density functional theory in Section 5.2,
while spatial density oscillations in an atom and a bulk atomic
cluster are calculated in the ETF model with the oscillation
correction in Section 4.3 (Figs 13 and 14).

4. Dependence of the system properties
on the potential type

In spherically symmetric many-electron systems, two types of
self-consistent potentials should be distinguished: potentials
with the Coulomb singularity and potentials finite at the
center. Many properties of the electron system, in particular,
the form of one-particle spectra and spatial oscillations of the
electron density, substantially differ for these two types of
potentials.

4.1 Potentials in spherically symmetric many-electron
systems
Self-consistent attraction potentials in the electron systems
under study can belong to two types, depending on the form
of the external potential. The interacting electrons in an atom,
ion, and atomic cell are located in the external field of the
nucleus, which has a Coulomb singularity at zero (Fig. 6).

Valence electrons in ametal cluster are often considered to
be located in the external field of the ion core. The ion lattice
can be replaced in some range of parameters by a uniformly
distributed positive charge. Such a replacement leads to the
jelly model, which describes many properties of clusters well,
although it oversimplifies the real system. The corresponding
self-consistent potential at zero is finite and has the zero
derivative, being similar to the model potential used in
nuclear physics (schematically shown in Fig. 10). Of course,
such a potential is not a first-principle potential like the
Coulomb potential.

In considering quantum effects, it is important to
distinguish these two types of potentials, because they
determine some features of the properties of the correspond-
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Figure 9. (a) Distribution of the radial electron densityD�r� � 4pr 2ne�r� in
a free atom. The curve corresponds to the TF model, symbols correspond

to the ETFmodel:Z � 10 (dots), andZ � 80 (triangles). (b) Distributions

of the radial electron density in two hollow clusters with the number of

ions in the shellNi � 60 for equilibrium radii. `Empty' cluster with w0 � 0

(solid curve), cluster with the central valence atom w0 � 3 (dotted curve).
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ing systems. The presence of these features casts some doubt
on the validity of using pseudopotentials in some cases where
a Coulomb singularity of the potential is replaced by a `ledge',
i.e., a passage to a different type of potential is performed.

In this section, we demonstrate these differences with the
example of a semiclassical analysis of one-particle spectra. It
turns out that some conclusions about their structure can be
made based only on the type of the self-consistent potential.

Energy levels in a central potential depend on two
quantum numbers: the orbital number l and the principal
number n (or the radial number nr), and are determined in the
semiclassical approximation from the Bohr±Sommerfeld
quantization condition

Sel �
� Rel

R 0el

dr pel�r� � p
�
nr � 1

2

�
; �4:1�

where Sel and pel�r� �
����������������������������
p 2
e �r� ÿ l 2=r 2

q
are the radial action

and the radial momentum of an electron with the energy e and
orbital momentum l � l� 1=2, p 2

e �r� � 2�eÿ V�r��, the inte-
gration region is restricted by turning points Rel and R 0el, and
nr is the number of nodes of the radial wave function.

We introduce the function ne�l� related to the radial
action by the expression

ne�l� � Sel

p
for l > 0 ; ne�0� � 1

p

� Re0

0

dr pe0�r� :

As a function of the continuous argument l, ne�l� mono-
tonically decreases from ne�0� to ne�le� � 0, where le is the
maximum orbital momentum for the energy e. Figures 11 and
12 show the corresponding functions and their derivatives for
atoms and metal clusters for the energy equal to the Fermi
energy. In the (n, l) plane, all the intersections of coordinates n
and l with half-integer values located below the curve nm�l�
correspond to occupied states at zero temperature, as follows
from Bohr±Sommerfeld quantization condition (4.1).

The study of the dependence of ne�l� on l for small l,

ne�l� � ne�0� � n 0e �0� l�
1

2
n 00e �0� l 2 � . . . �4:2�

(the prime denotes differentiation with respect to l), shows
that in the spherical harmonic oscillator, with V�r� �
ÿV0 � o 2r 2=2, and in a Coulomb field, with V�r� � ÿZ=r,

ne�l� is linear in l:

ne�l� � ne�0� � n 0e �0� l ; n 0e �0� � ÿ
1

g
: �4:3�

Here, g � 1 and 2 respectively for the Coulomb potential and
harmonic oscillator.

Using relation (4.3) and quantization condition (4.1), we
can easily calculate energy levels in these `main' potentials.
Quantization condition (4.1) for a harmonic oscillator with
l � 0 has the form

2ne�0� � n 0 � 1

2
; �4:4�

because a particle can pass through the center in this case. For
l 6� 0, according to (4.3) and (4.1), we have

ne�l� � ne�0� ÿ l
2
� nr � 1

2
; nr � 0; 1; 2; . . . :

Substituting ne�0� from expression (4.4) and introducing the
notation n 0 � n� 1, we obtain the relation

nÿ l

2
� nr ; �4:5�

which gives the condition that the principal, n �n � 0; 1; . . .�,
and orbital, l, quantum numbers have the same parity, as well
as the equality 2ne�0� � n� 3=2. Calculating the integral of
ne�0� � �V0 ÿ jej�=2o, we obtain the known expression
enl � ÿV0 � o�n� 3=2� for the spectrum.

Quantization condition (4.1) for the Coulomb potential,
with (4.3) taken into account, becomes ne�l� � ne�0�ÿ
lÿ 1=2�nr � 1=2, nr�0; 1; 2; . . ., where ne�0��Z=

�������
2jejp

.
This gives enl � ÿZ 2=2�nr � l� 1�2 � ÿZ 2=2n 2, where n �
nr � l� 1 � 1; 2; . . ..

We have shown in [48] that for monotonic attraction
potentials that are finite at zero, the derivative n 0e�0� in (4.2) is
equal to ÿ1=2, as in the case of an oscillator. We combine
such potentials into the group of `harmonic'-type potentials.
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r

Figure 10.Qualitative spatial dependences of the potential fermion energy

in a nucleus and a metal cluster according to different models: a harmonic

oscillator (1), the Woods±Saxon potential (2), and a rectangular well (3).
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The examples of harmonic-type potentials are self-consistent
potentials inmetal clusters in the jellymodel and their analogs
used in nuclear physics.

Similarly, we can distinguish a group of Coulomb-type
potentials in which screened potentials have a Coulomb
singularity at zero, V�r� ! ÿZ=r as r! 0, and for which, as
is shown in [48], n 0e�0� � ÿ1. In particular, this group includes
intra-atomic potentials.3

The value of the second derivative n 00e �0� in (4.2)
characterizes the degree of influence of anharmonicity or
screening and leads to the lift of the degeneracy in the orbital
momentum l, which is present in the spectra of the main
potentials.

In the case of an anharmonic potential, the s-level en0 is
also determined from a quantization condition of type (4.4).
We estimate the deviation of a level with a nonzero l from the
s-level. In the expansion of ne�l� in the left-hand side of

quantization condition (4.1) in the energy and orbital
momentum near this level,

ne�l� � nen0�0� � n 0en0�0� l�
1

2
n 00en0�0� l 2 � ten0

p
�eÿ en0� ;

�4:6�

the notation te � qSe=qe for the classical time and expression
(4.2) are used. With relation (4.5), the right-hand side of
quantization condition (4.1) can be rewritten as
n=2� 3=4ÿ l=2, which gives the relation

enl � en0 ÿ Den
1

2
n 00en0�0� l 2 ; �4:7�

where, in the semiclassical approximation, Den � p=ten0 is the
mean difference between the energies of s-levels for shells with
quantum numbers n and n� 1.

Similar calculations for `Coulomb'-type potentials lead to
the same result. Expression (4.7) yields a quantitative
criterion of the lift of degeneracy in the anharmonic or
screened potential and shows that the corresponding split-
ting quadratically depends on the orbital momentum, with
the sign of the deviation from the s-level dependent on the sign
of the derivative n 00en0�0�. For the positive sign, the energy levels
decrease with increasing l, while for the negative sign, they
increase. In atoms, the latter case is realized, while in metal
clusters both variants are possible.4

4.2 One-particle spectra of atoms and ions
We find the range of energies and orbital momenta where
quadratic dependence (4.7) in one-particle spectra of atomic
and ion systems occurs (the specific features of spectra of
atomic metal clusters are considered in Section 7).

The screening of the Coulomb potential in atoms and ions
leads to a shift of the deepest energy levels by a constant
corresponding to the potential of the electron cloud at zero,
and n 00e �0� � 0 in this energy region; the spectrum is therefore
similar to the Coulomb spectrum up to a shift in this constant.
For shell levels with higher n, the screening becomes more
substantial, which is quantitatively reflected by the value
n 00e �0� < 0.

An analysis of the energy levels calculated in the
nonrelativistic Hartree±Fock model for mercury and radon
atoms [89] confirms a dependence close to (4.7) even for not
small orbital momentum values l � 1; 2; 3.5 The coefficients
anl � ÿ�enl ÿ en0�=�l� 1=2�2 presented in Table 1 are almost
constant for shells with different n under study. This means
that quadratic dependence (4.2) �and, correspondingly, a
linear dependence for the derivative n 0e�0�� is valid in a broad
range of values of e and l, i.e., the equality

ne�l� � ne�0� ÿ l� 1

2
n 00e �0� l 2 �4:8�

is satisfied with good accuracy for internal energy levels in an
atom. Figure 12b confirms the linear dependence of the

3 An example from the second group, a potential in a free atom in the TF

model, was analyzed in detail in [12, 13], where the exceptional case e � 0

was identified, for which the value of the derivative n 0e�0� also depends on

the rate of the potential decrease at infinity.
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Figure 12. Dependences nm�l� (a) and n 0m�l� (b) for atoms with different

atomic numbers calculated in the ETF model [86, 87].

4 Figure 11 shows only one of the possible variants: the calculation for

sodium clusters with a `rigid' potential (see Sections 7.3 and 7.4 below).
5 For such heavy elements, relativistic effects are substantial and should be

taken into account using the relativistic correction to one-particle energies

Denj�ÿ�Z 2
n a

2=2n 3��1=� j� 1=2�ÿ3=4n�, where Zn�Zÿ2n 3=3ÿ n=3,
a�1=137, and j � l� 1=2 [90].
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derivative n 0m�l� in a rather broad range of l5 0, even for the
energy equal to the Fermi energy.

We note that the function ne�l� and its derivatives for a
free atom were studied in detail in the TF model in [12, 13].
The expansion in l was performed in these papers in the
vicinity of another limit l � le:

ne�l� � n 0e�le��lÿ le� � 1

2
n 00e �le��lÿ le�2 : �4:9�

It was shown that the derivative n 0e�m�lZÿ1=3� in a free atom
at the Fermi energy is independent of the atomic number and
changes from n 0m�0� � ÿ1 to n 0m�lm� � ÿ1:93768.6

To proceed, it is necessary to compare the smoothness of
the dependences of one-particle spectra of atoms and ions on
the quantum numbers n and l. It follows from spectroscopic
data (see, e.g., [82]) that for inner occupied shells and the
outer shell with regular filling (elements of main groups), the
dependence on l is smooth enough inside each nth shell,
whereas these shells with different n do not overlap and are
separated by sufficiently large energy gaps. Such a picture is
well demonstrated by the empirical curves of ionization
potentials of aluminum and iron ions (Fig. 5). In the case of
intermediate and heavy elements, this is also true for deep
occupied shells. We use spectra of this shape in this energy
region in Section 5.4 in calculations of the `high-temperature'
shell correction.

4.3 Spatial density oscillations in an atom
and a metal cluster
As is shown in Section 3, the TF model and its TFC and ETF
modifications describe the averaged electron density distribu-
tion well but do not reflect its spatial oscillations. To describe
these oscillations by the additive semiclassical method, it is
necessary to introduce the oscillation correction into the
model. This correction is derived using the general formula
for the electron density ne�r� in a spherically symmetric
system in the ground stateÐ the equation for the semiclassi-
cal radial wave function <nl�r�,

ne�r� � 1

2p

X
n; l

�2l� 1���<nl�r�
��2y�mÿ enl� ;

�4:10���<�sc�nl �r�
��2 � 1

p
qenl
qn

1� sin �2Snl�r��
r 2pnl�r� ;

Bohr±Sommerfeld quantization condition (4.1), and Poisson
formula (2.6) for passing from sums over quantum numbers
to integrals (see the details in [57, 87]). As a result, the

oscillation correction is obtained in the form

dnosc�r� � 1

2p 2r 2

� m

U�r�
de
� p 2

e �r� r 2

0

dl 2

�
X0
k; s

�ÿ1� k�s sin
�
2Sel�r� � 2kS 0

el � 2psl
�

pel�r� : �4:11�

Here, the prime on the sum means the absence of the term
with k � s � 0, equal to the TF density, while the superscript
0, as above, indicates the total integral between turning
points.

The energy integral can be estimated using the complete-
ness property [80], taking into account that integration by
parts7 allows separating the term at the upper limit e � m; this
is the leading term in the parameter of semiclassical behavior.
After the change of variables y � pml�r�=pm�r�, we obtain

dnosc�r� ' ÿ pm�r�
2p 2

�1
0

dy
X0
k; s

�ÿ1�k�s
tmy�r� � kt0my

� cos
�
2Smy�r� � 2kS 0

my � 2pspm�r� r
��������������
1ÿ y 2

p �
; �4:12�

where tmy�r� � qSmy�r�=qm is the classical time. The oscillation
correction has the same form (4.12) if the `additional'
quantities ~Smy�r� � S 0

my ÿ Smy�r� and ~tmy�r� � t 0myÿ ÿtmy�r�
are used instead of Smy�r� and tmy�r�. Such a representation
should be used for atoms.

After simple calculations, we obtain the following expres-
sions for the oscillation correction dDosc�r��4pr 2dnosc�r� to
the radial density:

(i) For an atom (and an electron system with a Coulomb-
type potential),

dDosc�r� '
sin
�
2 ~Sm�r� � ~a

��2n� 1� pÿ 2S 0
m

�	
pm�r� t 0m ~dm�r� sin �p~a� ; �4:13�

where

~Sm�r� �
� r

0

dr 0pm�r 0� ; S 0
m � ~Sm�Rm� ;

n4
S 0
m

p
4 n� 1 ; ~a � ~tm�r�

t 0m
;

~tm�r� �
� r

0

dr 0

pm�r 0� ; t 0m � ~tm�Rm� ;

~dm�r� �
� r

0

dr 0

r 02

�
1

pm�r 0� ÿ
1������������
2Z=r 0

p �
ÿ

������
2

Zr

r
:

In the case of a free atom in the TF model, the radius Rm is
infinite, t 0m � 1, and Eqn (4.13) coincides with the expression
obtained in [48].

(ii) For a metal cluster (and an electron system with a
harmonic-type potential),

dDosc�r� ' ÿ
sin
�
2Sm�r� � a�npÿ 2S 0

m �
�

2pm�r� t 0m dm�r� sin �0:5pa�
; �4:14�

6 The value of the derivative at n 0m�l� at the boundary point lm can be

expressed in terms of derivatives of the self-consistent potential at the

point r0 of themaximumof the function pm�r� r [12]: n 0m�lm� � ÿ
���
2
p

lm=or0,
o 2 � � p 2

m �r� r 2
�00
r0
, lm � pm�r0� r0.

7 In the semiclassical approximation, only the rapidly changing function

sin �:::� should be differentiated and integrated.

Table 1.The coefficients anl � ÿ�enl ÿ en0�=�l� 1=2�2 in mercury (Z � 80)
and radon (Z � 88) atoms calculated from the one-particle energy level
spectrum in the nonrelativistic Hartree±Fock model [91].

nl ÿanl (Hg) ÿanl (Ra)

3p
3d
4p
4d
4f

3.911
4.000
1.733
1.760
1.682

4.489
4.592
2.044
2.096
2.033
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where

nÿ 1

2
4

2S 0
m

p
4 n� 1

2
; a � tm�r�

t 0m
;

dm�r� �
� Rm

r

dr 0

r 02pm�r 0�
and integrals over r 0 in the expressions for Sm�r� and tm�r� are
also taken from r to the right turning point Rm, S

0
m � Sm�0�,

t 0m � tm�0�.
The range of applicability of expressions (4.13) and (4.14)

is determined by the validity of the assumptions made in their
derivation. Integration by parts and restriction to the term
outside the integral gives a correct estimate of the integral if
the derivative of the argument of the oscillating function with
respect to y in (4.12) is sufficiently large. In our case, this
derivative at the upper limit is a product proportional to
p 2
m �r� ~dm�r�. The points where each of the factors vanishes

determine the regions in which the estimate described above is
invalid.

For an atom, two such points exist: r � Rm and
r � r1 �~dm�r1� � 0�. For r � r1 < Rm, the point l � 0 in the
integral over l in the termwith k � 0 and s � 1 is a stationary-
phase point, and therefore the method used above cannot be
applied and the vicinity of this point must be considered
separately.8 The corresponding integral can be calculated by
the saddle-point method [39].

Figure 13 shows the electron density at the middle part of
the mercury atom calculated in the ETF model (without the
exchange and correlation terms) with oscillation correction
(4.13) and without it, in comparison with the quantum
mechanical Hartree calculation [91]. In the range of its
applicability, the oscillation correction well describes oscilla-
tions related to the electrons grouped in the K, L, and M
shells.

Analyzing the range of applicability of expression (4.14),
we see that the vicinity of the turning point r � Rm is excluded
for a cluster. Figure 14 shows that expression (4.14) based on
the ETFpotential describes the electron density oscillations in
an atomic cluster quite accurately.

4.4 Electron density distribution in the atomic cell
of compressed matter
We use the semiclassical approximation to describe the
electron density distribution in the volume v of a compressed
atomic cell, in particular, near the nucleus for different
degrees of cold compression [39, 56].

We note that the knowledge of the electron density at the
nucleus localization site is important in and of itself because it
is used, for example, in nuclear physics for calculating the
excitation probability of a nucleus in the K-electron capture
[93].Many properties of atoms also depend on the behavior of
the electron density near the nucleus. These include the fine
and hyperfine structures of atomic levels and the isotope shift
of energy levels [79]. These properties are of interest not only
at normal temperatures and pressures but also under extremal
conditions occurring in stellar matter, where the temperature
and compression are high. Under such conditions, the mean
atomic characteristics are described well by the TF model.

We first estimate the electron density at the center of an
atom. Because of the dependence <nl�r � 0� / r l for exact
wave functions, only the s-states make a contribution [see
(4.10)]. At distances r4 r0 � 1=Z, the exact solution of the
radial equation with the Coulomb potential at l � 0 is
expressed in terms of the Whittaker functions:

<�r� � ae
r
M

Z=
�����
2jej
p

; 1=2

ÿ
2
�������
2jej

p
r
�
; <�0� � 2ae

�������
2jej

p
:

�4:15�
Acomparison of the asymptotic form of (4.15) for large rwith
the corresponding semiclassical function gives the quantiza-
tion condition for s-states Se0 � pn and the normalization
coefficient jaen j2 expressed in terms of the semiclassical
normalization factor jcnj2 � 2=t 0e � 2pÿ1 de=dn. As a result,
Eqn (4.10) becomes

ne�0; v� � 1

2p

X
en 4m

j<n0j2 � Z
X
en 4m

jcnj2

� 2Z

p

X
n

den
dn

y
�
m�v� ÿ en

�
: �4:16�

We assume that compression affects only energy levels
en > en0 , and therefore en�v� ÿ m�v� � en�1� ÿ m�1� at
n4 n0. We divide the sum over n into two parts with n4 n0
and n > n0, supplement the first part with the sum with
n > n0, in which summation is performed over the levels of a
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Figure 13. Distribution of the radial electron density D�r� � 4pr 2 ne�r� in
the middle part of the mercury atom calculated by neglecting exchange-

correlation terms. Dashed curve: the ETF model, thick curve: the Hartree

model [91], thin curve: the ETF model with oscillation correction (4.13).

8 To estimate r1, we note that in the case of a free atom, the analytic Tietz

approximation [92] V�r� � ÿZ=r�1� r=r1�2 for the potential in the TF

model contains precisely this quantity, r1 � �4:5=Z�1=3.
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free atom, and subtract the same sum. Then the supplemented
sum gives the electron density ne�0;1� at zero for a free atom,
and we can pass from summation over n to integration in the
other two sums. As a result, the difference of the electron
densities at zero for a compressed cell of a volume v and a free
atom is expressed through the difference of the corresponding
Fermi energies:

ne�0; v� ÿ ne�0;1� � 2Z

p

�
m�v� ÿ m�1�� : �4:17�

To calculate the electron density at the center of a free atom,
we use the TF model with the Fermi energy m�1��0,
VTF�r��ÿZj�x�=r, x � brZ 1=3, b � 0:885, and j 0�0� �
ÿ1:588 [79]. The quantization condition for the s-states and
expression (4.16) give two relations:

Z 1=3s�En�� pn ; ne�0;1��2Z 2
X
n

tÿ1�En�; en� EnZ 4=3 ;

�4:18�

containing the universal, Z-independent functions

s�E� � Zÿ1=3Se0 �
�����
2b
p � XE

0

dx

������������������
j�x�
x
ÿ E

r
;

t�E� � Z te0 � b 3=2���
2
p

� XE

0

dx�����������������������
j�x�=xÿ E

p :

Eliminating E from the dependences s�E� and t�E�, we obtain
the function tÿ1�s� shown in Fig. 15.

Thus, the algorithm for calculating ne�0;1� is as follows:
first, the value of sn is determined for each n from the first
expression in (4.18), then tÿ1�sn� is found, and summation
over n is performed according to the second expression in
(4.18). The results of calculations performed by this method
for argon andmercury are presented in Table 2 and compared
with calculations by the Hartree method [91].

The last column in Table 2 presents the electron density at
zero calculated by the simple formula

ne�0;1� � Z 3e 2

p 2
�1:125ÿ 1:794Zÿ2=3� ; �4:19�

which is obtained assuming that an electron in the s-state
moves in the effective potentialVl�0�r� � V�r� � 1=�8r 2�with
the centrifugal repulsive part. Then the region near the
nucleus is classically forbidden, and the semiclassical wave
function to the left of the left turning point decreases
exponentially. Its square at zero is expressed through the
semiclassical normalization factor as j<�sc�n0 �0�j2�Ze 2jcnj2.
This gives the result

n �sc�e �0� �
Ze 2

p 2

 
den
dn

����
n�1
�
Xen 4m

n�2

den
dn

!
�4:20�

for the density, which is e 2=2p � 1:18 times larger than that
following from (4.16). We replace the sum in (4.20) by an
integral, assuming that energy levels with n � 1; 2 are
hydrogen-like, i.e., en � ÿZ 2=2n 2 ÿ Z 4=3j 0�0�=b. The sub-
stitution of the values of all quantities in the TF model leads
to expression (4.19). For argon and mercury, this expression
gives the respective error of the density calculation at zero
equal to 1% and 6%.

Analysis shows that for r4 1=Z, we can approximately
calculate the density by the expression

ne�r� � n �sc�e �0� exp �ÿ2Zr� ; �4:21�

while for distances r > 1=Z, the expressions in the TF model
with oscillation correction (4.13) are valid. Figure 16 shows
the radial electron densities at zero for compressed
aluminum calculated in the TF model and by the method
described above [39]. Figure 16 also presents the electron
density distribution in a compressed aluminum crystal
calculated in the model of attached plane waves
(APWs) [94]. We can see from the figure that the results of
our TF calculations of the electron density in the region of
small distances r4 1=Z and for r5 1=Z smoothly join and
agree well with precise APW calculations for a compressed
aluminum crystal.

5. Thermodynamics of the electron component
of plasma in the semiclassical approximation

In this section, we demonstrate the use of the TF model with
the exchange, gradient, and shell corrections taken into
account additively for calculating thermodynamic character-
istics of a high-temperature plasma. The results of the TF
model with these corrections for a weakly nonideal Boltz-
mann plasma agree well with the results of the Saha±Reiser
model describing the plasma composition in the average-ion
approximation. This agreement allows estimating the ioniza-
tion potentials of ions theoretically, taking shell effects into
account.

We preliminarily discuss the general form of corrections
to the free energy using the density functional theory and
present expressions for gradient corrections of different
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Figure 15. The function tÿ1�s� for a free hydrogen atom (Z � 1) in the TF

model.

Table 2. The electron density ne�0� at zero for free argon (Z � 18) and
mercury (Z � 80) atoms in the Hartree model [91] and calculated by
classical formulas (4.18) and (4.19).

ne
Z

Hartree [91] (4.18) (4.19)

18 3:83� 103 3:83� 103 3:79� 103

80 3:72� 105 3:69� 105 3:95� 105
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orders for the density and energy in systems with different
dimensions at zero and finite temperatures.

5.1 Semiclassical equation of state of the plasma
in the Thomas±Fermi model
The semiclassical TF model of the equation of state of
electrons, which is commonly used in the cell approximation
[59], accounts for the spatial inhomogeneity, the interaction
of electrons with the nucleus and between electrons, and the
exchange, correlation, and degeneracy effects within a
spherical Wigner±Seitz cell. The volume v and radius R of
the cell in atomic units are determined from the mean density
of matter: v � 4pR 3=3 � 11:2M=r [g cmÿ3]. Because all
matter is represented by a set of identical, independent,
electrically neutral cells, which do not interact with each
other, the calculation of thermodynamic properties of the
electron component of matter reduces to the calculation of
electron properties in the cell. The contribution of ions to the
equation of state is taken into account separately.

We present a set of formulas of the TFmodel for electrons
in a neutral, spherical Wigner±Seitz cell with the nucleus
chargeZ � Ne. The free energy, internal energy, and pressure
are described by the respective expressions

FTF �
���
2
p

p 2
T 5=2v

h
2I3=2

�
Z�1��

�
�1
0

n
3Z�x� I1=2

�
Z�x��ÿ 8I3=2

�
Z�x��o x 2 dx

i
; �5:1�

ETF �
���
2
p

p 2
T 5=2v

h
2I3=2

�
Z�1��ÿ 3

�1
0

I3=2
�
Z�x��x 2 dx

i
;

PTF � 2
���
2
p

3p 2
T 5=2I3=2

�
Z�1�� ; �5:2�

where the function

Z
�
x � r

R

�
� ~Z�r� � mÿ V�r�

T
� Z

RT

j�x�
x

satisfies the Poisson equationwith the boundary conditions at
the cell center and the boundary R:

D~Z�r� � 4
������
2T
p

p
I1=2
�
~Z�r�� ; r~Z�r�jr�0 � Z;

d~Z�r�
dr

����
r�R
� 0 ; V�R� � 0 ;

while the electron density distribution inside the cell is
described by expression (1.2). 9

The TF model has the similarity property with respect to
the atomic numberZ. For example, the temperature, volume,
chemical potential, pressure, and energy in the TFmodel have
the following dependences on Z:

T �Z� � Z 4=3T �1�; v �Z� � Zÿ1v �1�; m �Z� � Z 4=3m �1�;

P �Z� � Z 10=3P �1�; E �Z� � Z 7=3E �1�: �5:3�

The semiclassical behavior condition is satisfied for
matter with a high energy concentration, which provides the
theoretically substantiated possibility of using the TF model
in conjunction with the cell model for describing the
thermodynamics of condensed matter at high pressures,
P5 1. This model has always been used in the wide-range
equations of state to describe the region of cold, strongly
compressed matter [96, 97].

The semiclassical behavior parameter is also small at high
temperatures T5 1 corresponding to the binding energy of
outer-shell electrons and realized in a weakly nonideal
Boltzmann plasma. However, the validity of the TF model
for calculating the thermodynamic characteristics of high-
temperature plasma [98] was critically evaluated in [99]. First,
a comparison with the reference Saha model showed the
absence of the correct high-temperature ideal-gas limit of the
plasma ionization energy and noticeable deviations of the
oscillating character in the degree of ionization and ionization
energy. Second, the use of the cell approximation restricts the
correlation radius by a half of the mean distance between
ions, which does not allow obtaining the results in the Debye
approximation for pressure in the case of a weakly nonideal
plasma.

We show in Section 5.4 that the first group of these
disadvantages is removed by introducing the shell and Scott
(Sc) corrections. This also provides the correct ideal-gas limit
for the ionization energy of the system, which is equal to the
total electron binding energy in an atom, allowing the use of
the improved TF model in the cell approximation for
calculating the composition and equation of state of the
ideal, not fully ionized plasma [52].

The passage to the non-cell modification of the TF model
[100] gives the correct Debye asymptotic expressions, i.e.,
removes the second disadvantage pointed out above; how-
ever, this modification considerably complicates the model,
and we therefore restrict ourselves here to the cell approxima-
tion. We note that the Debye asymptotic form can also be

9 A method for calculating the second derivatives of the free energy in the

TF model was recently presented in [95].

2
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ÿ2 ÿ1 0 lg r

D�r�

Figure 16.Distribution of the radial electron density in an aluminum atom

calculated using various models for different compression degrees. The

radii of atomic cells frombottom up areR � 3, 1.8, 0.6, 0.3, and 0.18. Solid

curves: the APWmodel [94], dashed-dotted curves: the TF model, dashed

curves: the TF model with oscillation correction (4.13), triangles: expres-

sion (4.21).
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obtained in the cell approximation, but with the ion Debye
radiusDi � �vT=4pz 2eff�1=2. As is shown in paper [101], the ion
Debye asymptotic form can be obtained by including the
average-charge (zeff) ion contribution to the free energy of the
cell in the one-component plasma model, for example, in the
approximation [102]

Fi � ÿT ln

�
ev

�
MT

2p

�3=2�
� 0:9

z 2eff
R

ÿ z 2eff
3

�
D

p
i �

�
10R

27

�p�ÿ1=p
; p � 10

7
: �5:4�

5.2 Density and thermodynamic corrections
We generalize expression (1.4) for the correction to the free
energy at a small change in the density for a many-particle
system of fermions in the density functional theory.

We consider a system of Ne interacting electrons in an
external field Vext�r� at temperature T. According to the
Hohenberg±Kohn±Mermin [3] theory, the electron density
functional n�r� of the form

F�n� � K�n� �
�
n�r�Vext�r� dr� 1

2

�
n�r� n�r 0�
jrÿ r 0j dr dr 0�Fxc�n� ;

�5:5�

whereK�n� andFxc�n� are the kinetic and exchange-correlation
energy functionals, reaches a minimum, equal to the free
energy Fe of the system, when its functional argument n�r�
coincides with the real equilibrium electron density ne�r� in
the chosen external field Vext�r�. The extremum condition for
the functional F�n� for a fixed number of particles leads to the
Euler±Lagrange equation

dK
dn
� mÿ V�r�; V�r� � Vext�r� �

�
n�r 0�
jrÿ r 0j dr

0 � dFxc

dn
;

�5:6�

where m is a Lagrange multiplierÐ the chemical potential of
the system.

Because the exact form of the functionalsK�n� and Fxc�n� is
not known, various approximations are used. In this connec-
tion, the following is useful.

We assume that we know the solution n0�r�, m0, V0�r� of
problems (5.5) and (5.6) with the approximate functional
F0�n� and the small correction dn�r; m;T � to the electron
density caused by some effect neglected in F0�n�. Then, up to
the terms quadratic in dn�r; m;T �, the corresponding correc-
tion DF to the free energy F0�n� has a form [22, 23] similar to
(1.4):10

DF � ÿ
� m0

ÿ1
dm
�
dn�r; m;T � dr � ÿ

� m0

ÿ1
DN�m;T � dm : �5:7�

The separation of the explicit temperature dependence
allows expressing the free-energy correction in terms of
corrections to the energy and the number of states at zero

temperature:

DF � ÿ
�1
ÿ1

qf
ÿ�mÿ m0�=T

�
qm

DE�m; 0� dm

� ÿ
� m0

ÿ1

pk̂m
sinh �pk̂m�

DN�m; 0� dm : �5:8�

Here, the operator k̂m � ÿiTq=qm is used and DN and DE are
corrections to the number of states and energy due to the
effect under study, neglecting the explicit temperature
dependence, which are expressed in terms of the correction
dg�m� to the level density:

DN�m; 0� �
�
dn�r; m; 0� dr �

�m
ÿ1

dg�m 0� dm 0;

DE�m; 0� �
�m
ÿ1
�mÿ m 0� dg�m 0� dm 0 :

�5:9�

The temperature dependence in (5.8) enters implicitly through
the potentialV0�r�, fromwhich the correctionsDE, dn, and dg
are calculated.

We also discuss the procedure of a thermodynamically
consistent derivation of expressions for pressure and internal
energy corrections in the cell TFmodel based on (1.4) (see the
details in [39, 51]), i.e., in the case where the density correction
can be expressed only in terms of the characteristics obtained
in the TF model.

The volume derivative of (5.7) is given by

DP � ÿ qDF
qv
� qmTF

qv

�
dn�r; mTF� dr

�
� mTF

ÿ1
dm 0

�
qdn�r; m0�

qv
dr�

� mTF

ÿ1
dn�R; m 0� dm 0: �5:10�

Weuse in calculations that the correction dn�r; m 0� depends on
the volume only through the potential VTF�r�, which every-
where enters in the combination m 0 ÿ VTF�r�, and that the
total change in the density dntot�r� satisfies the normalization
condition

dntot�r��qnTF�r�
qmTF

�
dmÿ dV�r���dn�r�; � dntot�r� dr � 0 :

�5:11�
Also using the Poisson equation and boundary conditions for
the potential correction and differentiating the normalization
condition in the TF model, we obtain the pressure correction

DP � nTF�R� dm�
� mTF

ÿ1
dn�R; m 0� dm 0 : �5:12�

The expression for the internal energy correction

DE � DFÿ T
qDF
qT
� DF

�
� �

3

2
nTF�r� ÿ qnTF�r�

qmTF

ÿ
mTFÿVTF�r�

��ÿ
dmÿ dV�r�� dr

�5:13�

is derived similarly using the explicit and implicit �through the
potential VTF�r�� temperature dependences of nTF�r� and
dn�r; m 0�, the Poisson equation for the potential in the TF
model and for the potential correction, and the Green's
formula and the independence of the normalization condi-
tion from temperature.

10 The Strutinsky energy correction [71, 77, 103] describing the shell effect

in a nucleus at zero temperature has a similar form in the treatment in [2].

But expression (5.7) can be used for calculating not only shell corrections

but also any small corrections due to effects neglected in the original

model.
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5.3 Gradient corrections to the Thomas±Fermi model
in systems of various dimensions
We consider the form of quantum gradient corrections in one-
dimensional, two-dimensional, and three-dimensional sys-
tems and discuss the possibility of their use for semiclassical
calculations of the density and total energy of fermions.

Expressions for gradient corrections to the density can be
obtained in the general case by the operator method [35,
104],11 and in the case of separable variables, also from
quantum corrections to the wave function [80].

The operator method is based on the first terms in the
expansion of the distribution function [1], which give a
second-order correction to the density and contain deriva-
tives of the delta function:

f�r; p� � y� p 2
m ÿ p 2� � 1

2
�Dp 2

m � 2ipHp 2
m � d 0� p 2

m ÿ p 2�

� 1

3

��Hp 2
m �2 ÿ 2�pH�2 p 2

m

�
d 00� p 2

m ÿ p 2�

ÿ �pHp
2
m �2

2
d 000� p 2

m ÿ p 2� � . . . : �5:14�

Table 3 presents second-order corrections to the spatial
distribution density of fermions, d2ne�r�, and to their total
energy density, d2E�r�, for systems of dimension D, obtained
from expressions (5.14), (5.7), and ne�r� � 2

�
f�r; p� dDp, with

dDp � dp=�2p�D.
We can see from the table that the dependences of the

correction on the density (Fermi momentum) in the one-
dimensional and three-dimensional cases are similar, but have
different numerical coefficients. The terms with the Laplacian
transform after spatial integration into surface integrals that
are equal to zero for neutral systems, but they cause a
divergence of the correction at zero in systems with a
Coulomb singularity (see Section 6.2).

The second- and fourth-order gradient corrections to the
kinetic energy density at finite temperatures for D � 3,
expressed in terms of the electron density, are given by

dK2�ne;T � � ÿ p 2
���
2
p

24T 3=2

d
�
Iÿ1ÿ1=2�y�

�
dy

�Hne�2 �5:15�

and [106]

dK4�ne;T � � ÿ
������
2T
p

288p 2
I 01=2�y�

��
J 2
2 ÿ

3

5
J3

�
�Dy�2

� 1

4

�
J 2
3 ÿ

1

5
J5

�
�Hy�4 �

�
J2J3 ÿ 2

5
J4

�
�Hy�2Dy

�
: �5:16�

The relation of y to the density ne in expressions (5.15) and
(5.16) isne�

���
2
p

T 3=2I1=2�y�=p 2. In (5.16), Jk � I
�k�
1=2�y�=I 01=2�y�,

where I 01=2�y� and I �k�1=2�y� are the first and kth derivatives of the
Fermi±Dirac function I1=2�y�.

At zero temperature [35, 104],

dK4�ne; 0� � ÿ n
1=3
e

540�3p 2�2=3

�
�
1

3

�
Hne
ne

�4

ÿ 9

8

�
Hne
ne

�2 Dne
ne
�
�
Dne
ne

�2�
: �5:17�

For the two-dimensional system, as follows from Table 3,
gradient corrections of all orders to the electron density are
identically zero everywhere except at the system boundary.
This is explained by the fact that in integrating distribution
function (5.14) over momenta, the integrands are products of
power-like functions and derivatives of delta functions, with
the order of the derivatives always greater than the integer
power.

The absence of quantum corrections of the standard form
in the two-dimensional system, similar to corrections in the
cases D � 1; 3, does not allow theoretical substantiation of
taking them into account in a number of papers, for example,
[107, 108]. The correct description of averaged characteristics
obtained in these papers is probably explained by the
inclusion of higher-order derivatives into the density equa-
tion: the higher their order is, the smoother the solution turns
out to be. This also explains the successful inclusion of the
fourth-order correction in [66, 69, 84], although this cannot be
theoretically substantiated either, because accounting for this
correction requires the simultaneous consideration of quan-
tum corrections to the exchange energy, while this problem
has not yet been solved.

5.4 Shell corrections at high temperatures
We use the TFmodel in the cell approximation to describe the
thermodynamic properties of a Boltzmann plasma and show
how shell effects can be taken into account based on this
model [39, 40, 50, 51]. We emphasize that these effects are
related to the temperature (thermal) ionization of bound
electrons. We call the corresponding shell corrections the
temperature corrections. The decay of temperature shell
effects under compression and the effects caused by the
redistribution of electrons under cold compression formu-
lated in [1, 49] are considered separately in Section 6.

It was shown in Section 5.2 that the final result for
corrections to pressure (5.12) and energy (5.13) contains
corrections dm and dV�r� to the chemical and self-consistent
potentials, and they can be determined by solving the
corresponding Poisson equations. Such a solution for shell
corrections at high temperatures showed that the main role of
shell effects amounts to a shift of the chemical potential [39];
in other words, the integral contribution of terms with the
correction dV�r� is much smaller than that of terms with the
correction dm. In addition, the second term in expression
(5.12) for the shell correction to pressure and the first term in
expression (5.13) for the energy correction are negligibly
small at high temperatures. As a result, all the shell
corrections to pressure and internal energy can be approxi-
mately expressed in terms of the correction to the chemical

11 The fourth-order gradient correction at zero temperature was obtained

in these papers, long before paper [105] cited in [2].

Table 3. Second-order gradient corrections to the distribution density
d2ne�r� and to the total electron energy density d2E�r� in systems of
dimension D at zero temperature.

D d2ne�r� d2E�r�
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16pp 5
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potential, which is calculated from the characteristics of the
TF model,

DEsh �
�
3

2
Zÿ

�
qnTF�r�

qm

ÿ
mTF ÿ VTF�r�

�
dr

�
dmsh;

DPsh � nTF�R� dmsh ;
�5:18�

dmsh � ÿDNsh� mTF�
��

qnTF�r�
qm

dr

�ÿ1
: �5:19�

The correction DNsh�m;T � to the number of states must
therefore be calculated. Because this requires knowing the
spectrum of one-particle states, we use the results obtained
in Section 4.1, where the features of energy spectra were
considered for the two types of central attraction poten-
tials [60].

In the semiclassical approximation, the one-particle
energy levels enl in the self-consistent central potential
VTF�r� of an atomic cell are determined from quantization
condition (4.1) with nr � nÿ lÿ 1. The leading contribution
to the number of states with m < mTF for a Boltzmann plasma
( mTF < 0, j mTFj=T4 1) gives the discrete spectrum

N� m;T � � 2
X
n; l

�2l� 1� f
�
enl ÿ m

T

�
: �5:20�

The difference between (5.20) and the number of states in the
TF model,

DN� m;T � � N� m;T � ÿNTF� m;T � ; �5:21�

must contain the shell correction, but can also include other
corrections, as we show below.

To pass from sums over quantum numbers n and l in
(5.20) to integrals, we use Poisson formula (2.6) and change
the variables n! e in the obtained integral over n:�

1ÿE
. . . dn �

�1
~e10

. . .
qn�e; l�
qe

de :

We consider the lower limit in the integral over energy e.
Obviously, the exact value of the lowest energy level for n � 1
is e10 � ÿZ 2=2� C, where C � const. A value E < 1,
required to avoid the restriction on the integration interval
of the delta function in the Poisson formula, shifts this energy
down to ~e10, while still preserving its finite value. We rewrite
(5.20), adding and subtracting the integration region from
ÿ1 to ~e10 in the energy integral,

N� m;T � � 2
X
k; s

��1
ÿ1
ÿ
� ~e10

ÿ1

�
f

�
eÿ m
T

�
�. . .� de : �5:22�

Here and hereafter, we use the notation

�. . .� �
�
ÿE 0
�2l� 1� qn�e; l �

qe
cos
�
2p
ÿ
kn�e; l � � sl

��
dl :

Separating the term in the sum with k � s � 0 in the first
integral in the right-hand side of (5.22) and differentiating
quantization condition (4.1) to determine the derivative
qn�e; l�=qe, we can easily see that this term is exactly equal
to the number of states in the TF model. Hence, the sought
correction (5.21) is equal to (5.22) without this term, and is the

sum of two integrals

DN� m;T � � 2

��1
ÿ1

X0
k; s

ÿ
� ~e10

ÿ1

X
k; s

�
f

�
eÿ m
T

�
�. . .� de

� DNsh � DNSc : �5:23�
The energy spectrum of one-particle states in the TF model
extends from ÿ1 to �1; therefore, the first integral
describes the difference between the TF model and the
model taking the discreteness of the spectrum of bound
states in this energy range into account. We take it as the
definition of the shell correction to the number of states.

To elucidate the nature of the second integral, we
substitute the total correction (5.23) in expression (5.7) for
the correction to the free energy and obtain two terms:

DF � ÿ2
� mTF

ÿ1

��1
ÿ1

X0
k; s

ÿ
�~e10

ÿ1

X
k; s

�

� f

�
eÿ m 0

T

�
�. . .� de dm 0 � DFsh � ESc : �5:24�

The first term is equal to the shell correction to the free energy
in our definition, while the second term is the so-called Scott
correction ESc � Z 2=2 [44±47]. This correction is calculated
by returning to the variable n, converting the sums of cosines
into delta functions, and taking the Coulomb type of the
spectrum in this energy region into account, enl �
ÿZ 2=2n 2 � C. The principal quantum number n � 0 corre-
sponds to the energy enl � ÿ1. Hence, the Scott correction
compensates for the partially accounted for nonphysical state
with n � 0 in expressions for the free energy in the TF model
and for the shell correction to it.

In the high-temperature case considered above, the Scott
correction is a constant, independent of temperature and
density. In Section 6.2, we present a more general derivation
of the expression for this correction and show that it depends
on the density in the limit of strongly compressed coldmatter,
while its physical meaning is related to the problem of the
inapplicability of the semiclassical approximation near the
nucleus (the Coulomb center).

We return to the discussion of the `high-temperature' shell
correction. To calculate it, we integrate the energy integral in
the first term in (5.23) by parts. The term outside the integral
is zero, and we therefore have

DNsh� m;T � � ÿ
X0
k; s

�ÿ1�s
pk

�1
ÿ1

df
ÿ�eÿ m�=T �

de

�
�l 2

e

0

sin
�
2p�knel � sl�� dl 2 de : �5:25�

Taking the dependence of the derivative of the function
f ��eÿ m�=T � into account, we can see that the leading
contribution to the energy integral is made by the vicinity of
the point e � m4mTF. For high temperatures and low
densities, this corresponds to the energy region of deep
shells.The spectraof these shellswere considered inSection4.2
(also see Fig. 5). In this case, the sum over l can be replaced by
the integral, resulting in the consideration of only the term
with s � 0 in the sum over s. The discreteness of n is taken into
account via the sum over k 6� 0.

In a more general case, for energies in the spectrum at
which the occupation of a new nth shell begins when the
�nÿ 1�th shell is incomplete, the quantumnumbers n and l are
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equivalent, and this situation can be successfully described
only if the corresponding interference is taken into account,
i.e., both sums in (5.25) are completely preserved. Such an
approach was used, for example, to calculate the shell
correction to the electron binding energy in a free atom [12,
13]. However, in the general case, the problem of separating
the oscillating dependence from a double infinite sum of the
obtained Fresnel integrals is rather complicated, and the
approach loses the simplicity inherent in the TF method.
Instead of (5.25), we can then write the simplified expression

DNsh� m;T � � ÿ
X1
k�1

2

pk

�1
ÿ1

df
ÿ�eÿ m�=T �

de

�
� l 2

e

0

sin
ÿ
2pk�nel � l�� dl 2 de ; �5:26�

where the quantization condition Sel � pnel � p�nel ÿ l� is
used for Coulomb potentials.

Another variant of the derivation of similar relations is
based on the form of the squared modulus of the radial wave
function in the lowest semiclassical approximation and the
corresponding electron density (4.10). Applying the Poisson
formula and restricting ourselves to the term s � 0 in the sum
over s, we use (4.10) to obtain the shell correction to the
density

Dnsh�r� � 1

2p 2r 2

X0
k

�1
ÿV�r�

f

�
eÿ m
T

�
�
� l 2

e

0

cos
ÿ
2pk�nel � l��
pel�r� dl 2 de : �5:27�

Integrating by parts in the energy integral and taking into
account that cos

ÿ
2pk�nel � l�� is a rapidly oscillating func-

tion, we can segregate the leading term in the semiclassical
behavior parameter, containing, as in (5.25), the derivative of
f�e� in the integrand.

It was shown in Section 4.2 that the dependence of n�e; l�
on l is quadratic in a rather broad spectral range and is linear
down to the deepest energy levels. If the quadratic depen-
dence of n�e; l� on l is valid in the entire range 04l4lm,
then the equality

Sm � plm � 1

2
d 0
m l

2
m ; d 0

m � ÿpn 00m �0� �5:28�

must be satisfied, which relates the action Sm at the zero
momentum to the maximum orbital momentum lm.

Figure 17 demonstrates the temperature range where the
linear dependence is applicable and shows the region of
applicability of quadratic formulas (4.8) and (5.28). In the
linear dependence range, where the potential coincides with
the Coulomb potential up to a constant, it follows from (5.26)
that

DNsh� m;T � � 4l 2
m tmT

X1
k�1

sin �2kSm�
sinh �2pktmT � : �5:29�

Integrating (5.27) over the cell volume, we obtain the
expression

DNsh� m;T � � 8T

� � Rm

0

pm�r� r 2 dr
� X1

k�1

sin �2kSm�
sinh �2pktmT � ;

�5:30�

which differs in its form from (5.29). However, the relations

Sm � pZ���������
2j mjp ; tm � qSm

qm
� pZ

�2j mj� 3=2
;

�5:31�
plm � Sm ;

q�plm�
qm

� tm

are valid for the Coulomb potential, and it can be easily
shown that expressions (5.29) and (5.30) are identical.

We analyze the high-temperature asymptotic form of the
shell correction. The sum

P
k�sin�ak�=sinh�bk�� in (5.29) and

(5.30) can be calculated analytically under the conditions
a < 1:6p, a=b > 10 by replacing it with an integral using the
Euler formula. In this case of very high temperatures, the shell
correction to the number of states is given by

DNsh� m;T � � l 2
m

�
tanh

Sm

2tmT
ÿ 2Sm

p

�
! Z 2

2jmj ;

m � ÿT ln

�
v

Z
���
2
p
�
T

p

�3=2�
:

�5:32�

It follows from (5.32) that the shell correction in the high-
temperature limit has the first order in the semiclassical
behavior parameter [see (5.3)]: DNsh=Z � Zÿ1=3, similarly to
the Scott correction.

The inclusion of both these corrections (shell and Scott) in
the TFC model not only leads to the correct value of the
ionization energy limit for Boltzmann plasma at very high
temperatures but also describes the step-like temperature
dependences of the degree of ionization and ionization
energy for the ideal plasma. This is illustrated well in Fig. 18,
which presents the results of calculations of the thermal and
caloric equations of states for high-temperature iron plasma
in the TF model, with or without the shell and Scott
corrections, in comparison with calculations using the
semiempirical Saha±Reiser model [109]. The good agreement
between semiclassical results and the results obtained in this
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lgT [eV]
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plm

plm � 0:5 d 0
m l 2

m

Figure 17. Radial action Sm (solid curve) of an electron with energy equal

to the chemical potential in comparison with the linear plm (dashed curve)

and quadratic plm � 0:5 d 0
m l

2
m (dashed-dotted curve) functions of the

orbital moment lm at different temperatures in iron plasma with density

r � 10ÿ4 g cmÿ3.
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model underlies the `hot' method for estimating ionization
potentials of free ions, which is considered in Section 5.5.

Expression (5.26) can also be integrated analytically in a
more general case of not very high temperatures, at which
quadratic dependences (4.8) and (5.28) are valid. As a result,
the compact expression

DNsh� m;T � � 2

pd 0
m

X1
k�1

�
kXl

sinh �kXl� cos �2pklm�

ÿ kXS

sinh �kXS� cos �2kSm�
�

1

k 2
; �5:33�

XS � 2ptmT ; Xl � 2p
qplm
qm

T

is obtained, which contains only the characteristics of electron
motion with the energy equal to the chemical potential m of
the system with zero (the s-state) and maximal orbital
moments lm corresponding to linear trajectories (with
reflection from the center) and circular trajectories. As
d0m ! 0, expression (5.33) transforms into (5.29).

Shell correction (5.33) depends on the semiclassical
behavior parameter nonanalytically, as cos �a=x�, and the
oscillation amplitude at low temperatures has the same order
x 2 as the quantum-exchange correction. At very high
temperatures, the shell correction, as shown above, becomes
a first-order correction (� x).

5.5 `Hot' method for estimating
the ionization potentials of ions
The number of ionized electrons in a statistical model is
determined in terms of the electron density at the boundary of
an atomic cell and, in view of the asymptotic form of the
Fermi±Dirac function for the Boltzmann plasma, is given by

z � ne�R� v � T 3=2��������
2p 3
p exp

�
m
T

�
v : �5:34�

A comparison of this expression with the corresponding
formula in the Saha±Reiser model [109] for the classical
plasma in the average-ion approximation gives the relation

mz � ÿIz ; �5:35�

between the chemical and ionization potentials. We note that
the values m � mz�1=2 shifted by 1/2 in z should be used in
(5.34), which agrees with similar relations for ions with
different charges at zero temperature (see Section 3.1).

The calculation of the chemical potential in the refined TF
(RTF) model

mRTF�T � � mTF � dmquÿex � dmsh

and of the corresponding quantity zRTF�T � via (5.34), after
elimination of the temperature dependence, allows deter-
mining the function mRTF�zRTF�. Using relation (5.35)
between potentials and taking the shift into account, we
can then calculate the corresponding ionization potentials.
The results of such calculations are presented in Fig. 19 for
aluminum and uranium ions. We can see from this figure
that the introduction of the shell correction into the
statistical model allows reproducing shell oscillations in the
dependence of the ionization potentials of ions on their
charge quite accurately.

The above method for calculating ionization potentials in
terms of the chemical potential is called the `hot' method, in
contrast to the known `cold' method for calculating the
ionization potentials of ions in the TF [8, 9] and TFC [14±
16] models, which was considered in Section 3.1.

6. Wide-range equation of state of matter

In this section, the semiclassical equation of state for the
electron component of matter is generalized to the case of
degenerate matter. A consistent quantum mechanical correc-
tion of the statistical TF model in the vicinity of nuclei gives
an everywhere finite expression for the lowest quantum
correction to the free energy and an expression for the
modified Scott correction. In an limit of strongly compressed
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Figure 18. High-temperature part of the dependence of (a) the number of

ionized electrons z and (b) the ionization energy Q � Eÿ 3Pv=2 on

temperature in iron plasma with the ion density ni � 1018 cmÿ3 calculated
using different models: curve 1 with white dots: the TFC model, curve 2:

the Saha±Raizer model [109], curve 3 with crosses: the TFC model [109]

taking the shell and Scott corrections into account, tringles are calcula-

tions by the modified Hartree±Fock±Slater model [110].
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matter, these corrections provide an agreement between the
results of the statistical model and the perturbation theory.

The refined TF model obtained by incorporating the
corrections described above retains the self-similarity prop-
erty. Hence, the data tabulated for hydrogen allow calculat-
ing the thermodynamic characteristics of matter with high
energy density in the applicability range of the ionization
equilibrium model and the TFC model, as well as in the
intermediate range between them.

6.1 Generalized quantization condition
It was shown in Section 5 that to calculate the shell correction,
it is necessary to know the classical characteristics (momen-
tum, action, time, and the maximal orbital momentum) of an
electron with the energy equal to the chemical potential mTF in
the self-consistent potential VTF�r�.

The chemical potential of electrons in the Boltzmann
plasma is negative (the potential at the boundary of an
atomic cell is set equal to zero, VTF�R� � 0) and the electron
energy is located in the region of the discrete spectrum of
strongly bound states and is determined by Bohr±Sommer-

feld quantization condition (4.1). As the temperature of the
electron system decreases or its density increases, the chemical
potential of the system falls into the region of bound states in
the band spectrum.

If the discrete energy levels of bound electrons did not
broaden with compression, forming energy bands, passing to
a continuum spectrum would result in drastic features in the
thermodynamic characteristics, including phase transitions,
as predicted in [1, 49]. The presence of the intermediate band
region between discrete and continuum spectra considerably
levels these effects. In what follows, we describe the inter-
mediate band region using the model quantization condition.

The problem of calculating the band spectrum enlm�k� of a
compressed crystal was first formulated in Gandelman's
papers (see [111] and the references therein). In these
pioneering papers, a crystal was considered in the Wigner±
Seitz cell approximation and conditions for the Bloch wave
functions and their derivatives at the boundaries of the cell
were written taking the crystal periodicity into account.

The model quantization condition

~Sel � p
�
nÿ lÿ 1

2

�
ÿ �ÿ1�l arcsin

�
tanDel cos

�
p

k
k0

��
;

�6:1�

~Sel � Sel � d 2
el

4
ln
jd 2

elj
2e
� 1

2
argG

�
1ÿ id 2

el

2

�
;

Del � p
8
� 1

2
arctan

�
tanh

pd 2
e

4

�
;

d 2
el�

p 2
el�R�R 2

b 1=2
l

ÿ �l�1=2�
2

b 3=2
l

; bl�4pne�R�R 4ÿ3�l�1=2�2;

k0R � 2:418 ; 04k4k0 ;

was constructed using the same method for the description of
matter as in [111, 112] and the solution for a one-dimensional
crystal (see Appendix B). Quantization condition (6.1)
describes the discrete, band, and continuum spectra. Not
aspiring to a high quantitative accuracy in the description of
the band spectrum, this condition correctly reflects all the
features of the spectrum and has the following properties:

(i) For a strong coupling, it transforms into Bohr±
Sommerfeld quantization condition (4.1) with an exponen-
tially small level-band width;

(ii) for sufficiently high energies, this condition describes
the continuum spectrum;

(iii) for small quasimomenta k, the energy enl�k� quad-
ratically depends on k as enl�k� � enl�0� � anlk 2.

Figure 20 illustrates the qualitative agreement of the
electronic spectra calculated by (6.1) with these spectra
calculated using the band Gandelman model [111].

To describe shell effects taking the band structure of the
spectra into account, we represent the number of states,
unlike in (5.22), in the form

N� m;T � � 2

k0

� k0

0

X
n; l

�2l� 1� f
�
enl�k� ÿ m

T

�
dk : �6:2�

Here, we assume for simplicity that the band occupation with
respect to the quasimomentum corresponds to the one-
dimensional case. Because the spectrum strongly depends on
the orbital momentum parity, the sums over even and odd l
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Figure 19. Ionization potentials of free (a) aluminum and (b) uranium ions

as functions of the charge in the `hot' semiclassical model (solid curve).
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are considered separately. Using the Poisson formula for the
sum over n, after simple transformations (see the details in
[39]), we obtain the expression

N� m;T � � 2
X1

k�ÿ1

X
l

�2l� 1�

�
�
f

�
enl ÿ m

T

�
cos
�
2k
ÿ

~Sel � p�l� 1=2���Ck�jel� dn ; �6:3�

C0�j� � 1 ;

Ck>0�j� � �ÿ1�
k

2

�
Pk�2j2 ÿ 1� ÿ Pkÿ1�2j 2 ÿ 1��;

where jel � tanDel and Pk�x� is the Legendre polynomial of
order k. The formula for the number of states with the band
structure of the spectrum neglected, i.e., according the Bohr±
Sommerfeld quantization condition (4.1), differs from (6.3)
only by the absence of the factorCk�jel�, which accounts for
the influence of the broadening of levels to bands under
compression.

The value of Del changes from zero in the discrete
spectrum region to p=4 in the continuum spectrum region
(Fig. 21). Because Ck�j! 0� ! 1 and Ck�j! 1� ! 0, the
maximum contribution to the shell correction is made by the
discrete spectrum. The continuum spectrum does not make

any contribution to the shell correction, and an intermediate
energy region (ÿ ��������������

pne�R�
p

< e <
��������������
pne�R�

p
for l � 0) exists

between these two regions in which the role of shell effects
gradually decreases. In [1, 49], the width of this region was set
equal to zero, i.e., it was assumed that the discrete and
continuum spectra are separated by a sharp boundary.
Under this assumption, the function Ck>0�je� has the shape
of the step-like Heaviside function, whose derivative is the
delta function, and all the dependences in the model
constructed in this way turn out to be very sharp. This
disadvantage of the model in [49] can be eliminated using
generalized quantization conditions (6.1).

We also note semiclassical calculations [113, 114] in which
the influence of the discreteness of spectra on thermodynamic
quantities was studied taking the band broadening into
account in the model proposed in [115]. In that case, the
parameter of the problemwas the boundary e0 of the spectrum
above which the continuum spectrum was assumed. The
advantage of our approach is the absence of such a parameter
and the physical clarity of expressions obtained.

Separating the Thomas±Fermi term from expression
(6.3), passing to the energy integral, and integrating by
parts, we write the shell correction to the number of states as
the sum of two terms:

DN m
sh � DN 0

sh � ÿ
2

p

X1
k�1

1

k

�1
ÿ1

de
�
sin
�
2k� ~Sel � pl��

�
�
Ck

qf
qe
� f

qCk

qe

�
dl 2 : �6:4�

Here, as in Section 5.4, the sum over l is replaced by an
integral. As a result, the first term gives an expression for the
`temperature' shell correction:

DN m
sh

� 2

pdm

X1
k�1

�
kXl

sinh �kXl� cos �2pklm�ÿ
kXS

sinh �kXS� cos �2kSm�
�

�Ck�jm0�
k 2

; �6:5�
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Figure 20. Electronic spectrum of iron for the compression degree s � 4:3
at T � 0. Calculations of enlm�k� in the band Gandelman model [111]:

dashed curves; calculation of enl�k� by expression (6.1): solid curves.
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which coincides with (5.33) in the Boltzmann plasma region,
where Ck�jm0� � 1. This function tends to zero when the
chemical potential is in the region of positive energies, and
therefore describes the decay of temperature oscillations
typical for a nondegenerate plasma in passing to degenerate
matter. The superscript m inDN m

sh means that all the quantities
entering (6.5) are calculated for the energy equal to the
chemical potential.

An analysis of the second term in (6.4), taking the form of
the derivative qDe0=qe into account (Fig. 2), together with the
expansion of the integrand at the extremum e � 0, leads to the
expression

DN 0
sh �

f�ÿm=T �
2d0

X1
k�1

�
cos �2kS0�
cosh �kX 0

S�
ÿ cos �2pkl0�

cosh �kX 0
l �
�

� qCk�j00�
qD0

1

k 2
; �6:6�

X 0
S � 2 ~t0

��������������
pne�R�

p
; X 0

l � 2
q�ple�
qe

����
e�0

��������������
pne�R�

p
;

where the superscript 0 indicates that the momentum, action,
motion time, and maximal orbital moment of an electron are
calculated for zero energy. For the Boltzmann plasma, the
value of (6.6) is exponentially small because of the factor
f�ÿm=T �. In the opposite limit case of degenerate matter,
f�ÿm=T � ! 1 and (6.6) describes oscillations due to the
extrusion of the discrete shell to the continuum spectrum.
Numerical estimates give values of X 0

S and X 0
l certainly

greater than unity, which corresponds to a very small
oscillating addition (5 1%) to all thermodynamic quantities
in the TF model at T � 0. This is also confirmed by
calculations in the cell Hartree±Fock±Slater model [110].

We note that although the role of shell effects in the
equation of state of strongly compressed matter, predicted in
[1, 49], proved to be grossly overestimated, these papers
stimulated interest in more accurate calculations of the
equation of state of matter in the entire compression range.
For example, the calculations in [94, 116±119] revealed weak
pressure oscillations with respect to the results of the
statistical model (Fig. 22), which the authors explained by a
redistribution of electrons among bands under compression.

It follows that `temperature' shell effects in plasma caused
by the successive thermal ionization of inner electron shells
are most important; the characteristic oscillations of Hugo-
niot curves with respect to results of the TFC model are
related precisely to them (see Fig. 25). These conclusions
agree with the investigations in [113, 114].

6.2 Correction of the statistical model of matter
in the vicinity of nuclei
The violation of semiclassical behavior condition (1.1) in the
vicinity of nuclei leads to a number of consequences. First,
the integral energy characteristics in the TF model are
greatly overestimated; second, the volume integrals
through which gradient (quantum) corrections to these
quantities are expressed diverge at r � 0; and, third, in
regions of superhigh compressions or temperatures with
the chemical potential j mj > Z 2, the results differ from
those obtained in the perturbation theory, which is valid in
these regions [1, 99].

We show how these disadvantages of the semiclassical
model can be eliminated by correcting the expression for the
lower-order quantum gradient correction d2A to any physical

quantity A [41±43]. For this purpose, the correction to the
level density in the TF model is calculated:

dg� m 0� � 1

�2p�3
� �

d
�
m 0 ÿ 1

2
�p̂ÿ iH�2 � V�r�

�

ÿ d
�
m 0 ÿ p 2

2
� V�r�

��
dr dp ; �6:7�

which is involved, in particular, in expression (5.9). Here, p̂ is
the momentum operator and the gradient acts only on V�r�.

We next use the fact that in a small vicinity of the nucleus
r < r0, where semiclassical behavior condition (1.1) is
violated, the potential V�r� virtually coincides with the
Coulomb potential. Along with the initial problem, we then
solve an auxiliary Coulomb problem (with the relevant
quantities indicated by a tilde), assuming that electrons
interact only with the nucleus. The corrected quantity

dA c � d2Aÿ d2 ~A� d ~A �6:8�

is then finite everywhere and is equal to the exact solution of
the Coulomb problem for r < r0 and to the original value d2A
at distances r > r0, where the semiclassical approximation is
valid by the definition of r0.

Next, the standard method for expanding a function of
the sum of operators is used [35]. The expansion in gradients
in (6.7) through the second order and the use of (5.9) give the
lowest quantum correction to the energy in the original
problem:

D2E� m 0� � ÿ 1

6p

�
pm 0 nTF�r; m 0� dr� inf1 � inf2 ; �6:9�
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crystal cell. Comparison of pressures in compressed aluminum calculated

using the APW, TFC, and TFD models at T � 0 [94].
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where nTF is the electron density in the TF model, the infinite
quantity inf1 is a diverging integral over a surface of an
infinitely small radius surrounding the point r � 0, and the
divergence inf2 is related to the density of the point-like
nuclear charge entering the TF equation.

For the auxiliary Coulomb problem, the expression

D2
~E� m 0� � inf1 � inf2 � Z

6p

�������
2m 0

p
y � m 0� �6:10�

is similarly obtained with the same infinite quantities inf1 and
inf2. Here, y �x� is the step-like Heaviside function.

The exact solution of the auxiliary problem is considered
separately for continuum and discrete spectra. In the discrete
spectrum region (m < 0), the obvious expression

~g� m 0��
X1
n�1

n 2 d� m 0ÿEn� ; En� ÿ Z 2

2n 2
; m 0 < 0 : �6:11�

for the density of levels is used. Calculating the sum by the
Poisson formula, separating the term with k � 0, and
extending the integration over n to zero, we rewrite (6.11) as
the sum of three integrals:

~g� m 0� �
��1

0

1�
� �1

0

X
k 6�0
ÿ
�1ÿE
0

X
k

�
cos�2pkn�

�
� n 2d� m 0 ÿ En� dn : �6:12�

To obtain the total contribution of gradient terms, we should
remove the Thomas±Fermi term (the first integral) and the
shell correction (the second integral) from exact expression
(6.12). The substitution of the third integral in (5.9) gives the
contribution to the Scott correction for the discrete spectrum,
coinciding with the result obtained in Section 5.4:

D ~E� m 0� � ESc � Z 2

2
; m 0 < 0 : �6:13�

It follows from the boundedness of the spectrum from
below (g�m 0� � ~g�m 0� � 0 for m 0 < ÿZ 2=2) for both the
original and auxiliary problems that the Scott correction can
be written in the form

ESc � ÿETF� m 0� ÿ Esh� m 0� ; m 0 < ÿZ 2

2
: �6:14�

In the case m > 0, where integral (5.9) also contains the
continuum-spectrum region, the contribution of the region
m 0 < 0 is still determined by expression (6.13). The contribu-
tion of the region 0 < m 0 < m, in which shell effects are absent,
can be expressed in terms of the exact Coulomb Green's
function [120], which is related to the density of levels as
g� m 0� � ÿIm Tr Ĝ� m 0�=p. As a result, we obtain the final
expression for the correction in the entire range of values of m 0

(see the details in [41, 42]):

D ~E� m 0��ESc �
�
Z

6p

�������
2m 0

p
� Z 2

p
f
� �������

2m 0
p
2Z

��
y� m 0� : �6:15�

The behavior of the function f�x� and its derivative f 0�x�
was analyzed in [22, 42]. The asymptotic expressions of this
function in the limit case x5 1, where the semiclassical
behavior condition is satisfied, and for x4 1, where the

perturbation theory is valid, are

f�x� � 2

45
x 3 �O�x 5� ; x5 1;

f�x� � x

3
ÿ p

4
�O

�
1

x

�
; x4 1:

Assuming that A is the free energy F and substituting
(6.9), (6.10), and (6.15) in (6.8), we obtain the final expression
for the improved gradient (quantum) correction,

DF c � ESc ÿ p
6

�
nTF

qnTF
qm

dr

ÿ Z 2

p

�1
0

f
� �������

2m 0
p
2Z

�
qf
ÿ�m 0 ÿ m�=T �

qm 0
dm 0 ; �6:16�

where the second term in the right-hand side is the commonly
used finite part of the lowest quantum correction to free
energy (1.6).

It is easy to show that expression (6.16) is free of the
disadvantages inherent in the original model. The improved
quantum correction to the energy at zero temperature has the
form

DE c � ESc ÿ 1

18p 3

�
p 4
m dx�

Z 2

p
f
� ������

2m
p
2Z

�
y�m� : �6:17�

The chemical potential for an isolated atom in the TFmodel is
zero, the last term being absent in this case. Adding the TF
term and exchange correction to (6.17), we obtain the known
trinomial expression

E0 � ÿ0:7687Z 7=3 � Z 2

2
ÿ 0:2699Z 5=3; �6:18�

which describes the energy of the electron atomic shell in the
Hartree±Fock model for Z > 4 with an accuracy of a few
fractions of a percent [10, 121]. This example demonstrates
the elimination of the first and second disadvantages of the
initial model.

We now consider cold, strongly compressed matter in the
region m > Z 2, where the results of the noncorrected TFC
model and the perturbation theory, corresponding here to the
Thomas±Fermi±Dirac (TFD)model, are inconsistent. Of real
physical interest is the pressure correction, its improved
expression having the form

DP c � D2P

�
1ÿ 3f 0

� ������
2m
p
2Z

��
: �6:19�

In the region under study, the quantity in square brackets
tends to zero in accordance with the perturbation theory.
Figure 23 compares different models of the equation of state
of aluminum in the region of superhigh compressions.We can
see that the results of the theory considered here and of the
complete quantum mechanical calculation by the method of
augmented plane waves (APWs) are in good quantitative
agreement [94]. We also note that result (6.19) becomes closer
to the results of the perturbation theory as the compression
increases and to the original model as the compression
decreases.

In the region of very high temperatures, the perturbation
theory (PT) should also be valid, according to which the free
energy of electrons [see (1.2)], taking the exchange interaction
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into account, has the form

FPT � Z� mÿ T � � DFex : �6:20�

In Section 5.4, we already considered the limit high-
temperature case and showed that the semiclassical model,
taking the Scott and shell corrections into account, describes
the ideal Boltzmann plasmawell.We nowprove this in amore
general case.

We consider the improved semiclassical expression for the
free energy containing the Thomas±Fermi term, the
exchange, corrected quantum, and shell corrections:

FRTF � FTF � DFex � DF c � Fsh : �6:21�

A comparison of (6.20) with (6.21) in the region under
consideration (m < ÿZ 2=2) shows that the combination of
terms

ESc � ~FTF � Fsh ; �6:22�

is `redundant'. Taking into account expressions (5.8) and
(6.14), we obtain the mutual compensation of terms in (6.22)
at the level of integrands, which means that the results of the
refined TF model and perturbation theory (6.20) completely
coincide. This is well illustrated in Fig. 18, which presents
calculations of the thermal and caloric equations of states of
high-temperature iron plasma by using various semiclassical
models compared with calculations in the semiempirical
Saha±Reiser model.

6.3 Self-similar matter equation of state
The investigation described above forms the basis for
constructing the wide-range semiclassical equation of state

of the electron component of matter with high energy
density, which correctly describes the ideal Boltzmann
plasma and degenerate matter, and in the intermediate
region represents a reasonable physical interpolation taking
the effects of nonideality, degeneracy, band broadening,
etc., into account.

The free energy of electrons in this refined cell TFmodel is
written as the sum of Thomas±Fermi term (5.1), exchange
(1.5), corrected quantum gradient (6.16), and shell correc-
tions according to (6.21). Expressions for the pressure and
internal energy can be written similarly, with the shell
corrections to these quantities calculated in accordance with
(5.18) and (5.19).

An attractive feature of the statistical TF method is its
self-similarity with respect to the atomic number Z. It is
sufficient to perform calculations for hydrogen; the corre-
sponding recalculation for any other substance then
amounts to scale transformations in accordance with to
(5.3). The quantum-exchange correction in the TFC model
also has this property. For example, pressure and energy
corrections have factors Z 8=3 and Z 5=3 in a representation
similar to (5.3). The detailed tables [37] of thermodynamic
quantities calculated from the TFC model for hydrogen are
based on this property.

For the shell correction, the dependences are not so
simple; however, they can also be calculated using the self-
similarity property because all the quantities entering shell
corrections (5.18), (5.19), and (6.5) to the thermodynamic
functions are calculated using the TF model [122]:

S �Z�m � Z 1=3S �1�m ; t �Z�m � Zÿ1t �1�m ;
�6:23�
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dr
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� Z

��
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ÿ
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�
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We discuss the applicability range of the proposed
equation of state of matter in more detail. We recall that in
the cell approximation, the contribution of thermal oscilla-
tions of the ion component is considered separately. This
contribution is described in different parts of the phase
diagram via different models, such as the Mie±Gr�uneisen
model, ideal gas, one-component plasma, neutral and rigid
and soft sphere charges, etc. (see, e.g., [110]).

Because the detailed description of the ion subsystem is
beyond the scope of our consideration, we here discuss the
electron±electron and electron±ion interactions. They are
taken into account in the equation of state by the electron
contributions to pressure and internal energy in the semi-
classical model in the framework of a self-consistent field in
the cell approximation. The interaction between electrons is
then described up to correlation effects. Their smallness
signifies the smallness of the corresponding parameter equal
to the ratio of the mean energy of the Coulomb interaction of

a=aN
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Figure 23.Relative deviation of the aluminum pressure from the TFmodel

calculated in different models as a function of the reduced lattice constant

a=aN under compression in the intermediate region s � ������
2m
p

=2Z � 1.

Dotted curve: the TF model with the exchange correction (perturbation

theory), dashed curve: the TF model with the exchange and uncorrected

quantum corrections, solid curve: RTF, the TF model with exchange and

corrected quantum corrections (6.19), symbols: the APW method [94],

aN � 7:65288.
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a pair of particles to their mean kinetic energy,

d0 � n
1=3
e

p 2
m
� n

1=3
e

T
5 1 : �6:24�

This condition coincides with the applicability condition of
the cell approximation.

As regards the interaction of electrons with nuclei, the
interaction of electrons with their nucleus in a cell is described
quite completely, while the interaction with other cells is
determined by boundary conditions valid for condensed
matter. The inaccuracy of this approximation for a disor-
dered system such as plasma is not so great, as can be seen
from the correct description of the ideal-gas limit by cell
models: the proposed semiclassical model and the quantum
mechanical Hartree±Fock±Slater model (HFSM) [110].

The semiclassical behavior parameter x in the Boltzmann
plasma region is

x �
�����
ne
p
p 2
m
�

�����
ne
p
T

; �6:25�

and the condition of its smallness ne 5T 2 is weaker than
condition (6.24), which can therefore be regarded as a
theoretical substantiation of the applicability condition for
statistical models of plasma. For degenerate matter, the

semiclassical behavior condition has the form

x � nÿ1=6e 5 1 : �6:26�

The corresponding curves are presented in the (r, T ) phase
diagram for aluminum in Fig. 24. The theoretically sub-
stantiated applicability range of semiclassical models in the
cell approximation is the region above curve 1 and to the right
of curve 2. Degeneracy line 3 restricts the applicability of the
TFC model from above in temperature; in the region below
line 4, the ion contribution to thermodynamic characteristics
dominates over the electron contribution. The analysis shows
that the semiclassical model gives a good description of the
equation of state of matter for a more than 10-fold cold
compression or (and) temperatures exceeding several tens of
electronvolts; this model therefore describes an extreme state
of matter with high energy density. Under these conditions,
the role of the ion component is small, which is confirmed by
precision calculations [94, 116±119] performed in the entire
compression range. In addition, the Wigner±Seitz cell
approximation used here cannot describe structural phase
transitions at lower pressures. Nevertheless, the actual
applicability range of the semiclassical model for plasma
proves to be broader that that predicted theoretically (from
T > 10 eV for gas densities up to T > 30 eV at the normal
density), possibly because of an interplay of numerical
factors.

That the semiclassical equation of state of matter can be
correct only at such high parameters is also explained by the
inversely proportional dependence of the semiclassical
behavior parameter in the three-dimensional case on the
cubic root of the number of particles (x � N

ÿ1=3
e ), as

mentioned above. Because Ne � Z4 100, this means that
matter cannot be treated in full measure as multiparticle. In
this sense, the situation is more advantageous in atomic
clusters, where the number of particles can exceed a few
hundred or even thousand (see Section 7).

Figure 25 [52] shows normal Hugoniot curves for
aluminum and molybdenum calculated in the RTF model
and compared with TFC calculations and experimental data.
The equation of state of ions was calculated using the one-
component plasma model [134]. Figure 25 illustrates the role
of temperature shell effects well.

Thus, the RTF model proposed for matter with a very
high energy density already covers the regions in which the
ionization equilibrium model (Boltzmann plasma) and the
TFCmodel (condensedmatter) are commonly used, as well as
the intermediate region in which different methods for sewing
these two models together are used in the literature (see, e.g.,
[97, 135]). In addition, the RTF model has the similarity
property with respect to the atomic number, which allows
using tabulated hydrogen data for calculations for any
substances.

The semiclassical equation of state for the electron
component is used in [53] to construct a wide-range
semiempirical equation of state of matter. To properly
describe the low-temperature region, the corrected RTF
model is used in which the theoretical zero isotherm is
replaced by a semiempirical isotherm and the ion compo-
nent is described using the modified Mie±Gr�uneisen model.
Compact tables for hydrogen are also presented, which are
necessary for calculations of Thomas±Fermi and correction
(quantum-exchange and shell) thermodynamic quantities,
the procedure of calculations with the tables is described,
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Figure 24. Phase diagram for aluminum. Parameter (6.24) on curve 1 is

d0 � 1, semiclassical behavior parameter (6.25), (6.26) on curve 2 is x � 1.

On degeneracy line 3, the temperature T � n
2=3
e ; 4 is the curve of equal ion

and electron contributions. Curve 5 is the boundary of the applicability

range of the Saha model, and curve 6 is the region of parameters of the

normal Hugoniot curve. The dashed curves correspond to the plasma

nonideality parameter g � 0:1 and g � 1, and C is a critical point on the

spinodal.

456 G V Shpatakovskaya Physics ±Uspekhi 55 (5)



and the normal Hugoniot curves are calculated for some
metals.

7. Shell effects in metal clusters

In this section, the semiclassical model is used to describe
metal clusters. The relative role of different classical trajec-
tories in the formation of oscillations observed in the mass
spectra of clusters is analyzed. The conditions for the
appearance of different types of trajectories are determined
depending on the temperature, cluster size, and shape and
rigidity of the potential. The proposed approach is especially
efficient for large clusters, in which self-consistent calcula-

tions by the density functional method are very time-
consuming and their results are difficult to interpret.

The obtained analytic expressions were used to describe
the experimental mass spectra for sodium and aluminum
clusters and to explain their difference.

7.1 Mass spectra of metal clusters
Theoretical studies of metal clusters are often based on the
spherical jelly model mentioned in Section 3.2, which assumes
that ions are homogeneously distributed in a cluster volume
with the radius R � rsN

1=3
e . This model is used for self-

consistent calculations (see, e,g., [136], where sodium clusters
were studied by the density functional method in the Kohn±
Sham representation). One of the results of such calculations
is the reproduction of two characteristic types of periodicity
in the oscillating part of the electron energyDEsh as a function
of the cluster size observed in experiments: oscillations with a
small period accompanied by beats with a period an order of
magnitude greater. Similar results were also obtained in
calculations in [137] using the phenomenological Woods±
Saxon potential and in [138] for variousmetals with potentials
close to self-consistent potentials.

For small clusters with N < 100, the interpretation of
numerical calculations meets no difficulty: the cusps of the
minima of the electron shell energy correspond to clusters in
which the shell with the maximum orbital momentum
l � lmax is completely occupied. But this property is
violated for N > 100, and the nature of such specific
oscillations has already been discussed in the literature for
a few decades.

The theory developed in fundamental paper [139] explains
the beats of the electronic level density in a potential of a
spherical cavity by a superposition of contributions from
closed periodic classical electron trajectories. It was shown
in [139] that these effects can be approximately described
using only triangular and square orbits. This theory has been
successfully used in nuclear physics to describe the shell
structure of atomic nuclei [68].

The detailed numerical calculations in [138] for clusters
with more complex potentials also reproduce similar oscilla-
tions with beats. It was found that electronic energy levels
e�nr; l � with high angular momenta are grouped into super-
shells with pseudoquantum numbers Knr � l: e�nr; l � '
e�nr � 1; lÿ K �, where nr is the radial quantum number and
K � 2; 3; 4; :::.

It was found (see, e.g., [140]) that a correspondence can be
established between quantum supershells and classical trajec-
tories. The integerK characterizing a supershell is equal to the
ratio of the frequencies of the radial and angular motions for
the corresponding closed orbit. For K � 2, the pseudoquan-
tum number coincides with the principal quantum number
and characterizes the location of one-electron levels in small
clusters. The corresponding classical motion of an electron
occurs along a linear orbit passing through the point r � 0. As
the number N of atoms in the cluster increases, supershells
with K � 3 and then with K � 4 appear, corresponding to
triangular and square orbits.

Thus, the scrupulous analysis of time-consuming calcula-
tions performed in the above-mentioned papers suggests that,
first, the expansion in classical trajectories is equivalent to the
expansion in supershells and, second, the result obtained in
[139] for a spherical cavity is also valid for a spherical cluster
potential of a more general form. The second assumption was
partially confirmed in [141] for the Woods±Saxon potential
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Figure 25.Normal Hugoniot curves of (a) aluminum and (b) molybdenum

calculated in the RFT model [52] (solid curves) in comparison with TFC

calculations (dashed curves) and experimental data [123±133] (symbols).

The equation of state of ions is calculated in the one-component plasma

model [134].
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by expanding in the parameter a=R (where a is the surface
width) near the known result [139].

Just the use of the semiclassical method of separating
shell effects allowed obtaining the expansion in trajectories
and studying the origin of supershells and their appearance
for potentials in the general form [23, 61, 62]. We follow
these papers in Sections 7.2 and 7.3.

Oscillations in the mass spectra of metal clusters can be
not only a manifestation of the shell structure of electronic
spectra but also a consequence of the arrangement of ions in
lattice sites [142]. Experiments have shown that the form of
oscillations in the mass spectra of large aluminum AlN [143,
144] and sodium NaN [145] clusters is substantially different.
While sodium clusters reveal oscillations with beats, alumi-
num clusters withN > 250 exhibit sinusoidal oscillations at a
frequency approximately twice that for sodium. The spectra
of smaller AlN clusters are quite intricate and have no distinct
period.

In [146], an attempt was made to explain experimental
results in the framework of a spherical jelly model using the
semiclassical theory [137, 147±149]. It was assumed that in the
soft potential of AlN clusters in the range 250 < N < 900,
only one trajectory of a five-point star shape makes the main
contribution. This considerably differs from the situation in
the rigid potential of NaN clusters, in which a triangular
trajectory and a square trajectory close in frequency dominate
(the interference of their contributions leads to oscillations
with beats). According to this theory, the triangular trajectory
and then the square trajectory should appear in larger clusters
(this is confirmed by the calculation of the density of states for
Ne � 4940 in a self-consistent model [143]), which should
result in a change in the oscillation frequency.

An alternative to this explanation is given by the results in
[144], where the mass spectra of `cold' (T � 100 K) AlN
clusters were experimentally studied and analyzed in a very
broad range of the number of atoms (250 < N < 10;000). The
analysis of the spectra showed that the maxima of oscillations
numbered successively with the index k (k > 25) in the entire
range under study appeared with a constant frequency and
corresponded to the dependence N ' 0:0104k 3, which is
explained well by the arrangement of ions into an octahedral
lattice. In this case, the cluster is not a sphere but an
octahedron, and the occupation of the shell corresponds to
the formation of one of its facets. Obviously, in this case, the
spherical jelly model, in which ions are assumed homoge-
neously distributed within the sphere volume, should not give
correct results.

The assumption about the leading contribution of the
five-point star shell in aluminumwas refuted by the authors of
[150] based on the quantum mechanical calculation of the
density of states in the Woods±Saxon potential for the
number of electrons Ne � 1000.

Nevertheless, the positions of maxima observed in [143]
for T � 295 K and 250 < N < 430 agree well with the results
of self-consistent calculations [143] in the jelly model, while a
comparison of the mass spectra for AlN with N < 250 for
T � 110 K and 295 K reveals a noticeable influence of
temperature on these spectra, which was attributed to the
melting of the crystal lattice with increasing temperature and
the manifestation of the electron shell structure.

It therefore seems that the contribution of the Al ion
lattice to oscillations of the mass spectrum at low tempera-
tures dominates, and the spherical jelly model is inapplicable
in this region, while the role of the crystal lattice decreases

with increasing the temperature, and the application of the
jelly model becomes more substantiated. We can assume that
the electron structure should be manifested in `hot' clusters
during lattice melting, and the lattice melting point can be
experimentally determined by the characteristic change in the
mass spectrum in the region N � 1000.

In paper [23], which we follow in Section 7.4, the
dependence of the oscillating part of the free energy of
electrons in an aluminum cluster on its size and temperature
was studied in the jelly model in the semiclassical approxima-
tion, and the assumption about the decisive role of the five-
point star orbit in the oscillations of AlN spectra for
T ' 300 K in the experimentally established range [146] of
the number of atoms was confirmed.

7.2 Shell correction to the number of states
Shell effects in clusters [23, 61, 62] are described by the same
semiclassical method that was previously successfully used in
problems of atomic [1, 13] and plasma [51, 52] physics (see
also Sections 2, 4±6).

We assume that the chemical m and self-consistent V�r�
potentials of the electron system in a cluster, neglecting shell
effects, are known. These potentials are approximated below
by the Woods±Saxon potential 12

V0�r� � ÿV0

�
1� exp

�
rÿ R

a

��ÿ1
; R � rsN

1=3
e ; �7:1�

with the parameters for aluminum (V0 � 0:5319, a � 2:7,
rs � r bs � 2:07, m0 � ÿ0:1053) and sodium (V0 � 0:22,
a � 1:4, rs � r bs � 3:93, m0 � ÿ0:1015) clusters as in [146].
Here, r bs is the electron radius in a solid. An extremely rigid
potential is approximated by a `rectangular well':

V0�r� � ÿ2eF ; r4R ;
0 ; r > R ;

�
R � rsN

1=3
e ;

eF � 1

2r 2s

�
9p
4

�2=3

; m0 � ÿeF :
�7:2�

We study the contribution of shell effects in clusters at
high temperatures using correction (5.8) to the free energy
containing correction (5.9) to the number of states
DN� m� � DN� m; 0� � N� m; 0� ÿN0� m; 0� without the expli-
cit temperature dependence,

N� m; 0� � 2
X
nr; l

�2l� 1� y� mÿ enrl� : �7:3�

Here, energy levels enrl are determined from quantization
condition (4.1) with nr from (4.5). Simple transformations
similar to those presented in Section 5.4 with the use of
Poisson formula (2.6) for replacing sums over quantum
numbers enrl by integrals allow rewriting expression (5.21)
for the shell correction, after integration with respect to
energy in the form13

DNsh� m��2

p

X 0
1

k; s�ÿ1

�ÿ1�k�s
k

� lm

0

sin
ÿ
2p
�
knm�l� � sl

��
l dl :

�7:4�

12 The difference between potential (7.1) and the self-consistent potential is

discussed in [137].
13 Expression (7.4) was used for calculating the shell correction to the

number of states for a free atom in the TF model in [12, 13], and for

systems with the cylindrical symmetry in [151, 152].

458 G V Shpatakovskaya Physics ±Uspekhi 55 (5)



Here, the prime on the summation symbol denotes the
omission of the term with k � s � 0, which corresponds in
the expression for N� m; 0� to the averaged nonoscillating
dependence N0� m; 0�.

It follows from (7.4) that shell oscillations are completely
determined by the radial action function Sml � pnm�l� for the
motion of an electron with the energy m and orbital
momentum l in the spherically symmetric potential V�r�.
The corresponding curves for different numbers of atoms in
sodium clusters are presented in Fig. 11a.

In the general case, the leading contributions to integrals
(7.4) are made by integration limits and stationary-phase
points �lj, which are determined from the relation

n 0m��lj� �
qnm�l�
ql

����
�lj

�ÿ sj
kj
; 04 �lj 4lm ; j � 0; 1; 2; ::: :

�7:5�
Condition (7.5) separates the leading terms kj and sj (where j
labels the stationary-phase points) in sums over k and s and
leads to substantially different results for cluster and atomic
potentials.

The derivative in (7.5) is always negative (Figs 11b and
12b) and its modulus is equal to the ratio of frequencies of the
angular and radial motion of a particle with the energy m and
orbital momentum �lj. The requirement that this ratio be a
ratio of integers is the condition of the closure of the
trajectory and periodicity of this motion [153]. We note that
the motion with the maximum possible orbital momentum lm
is also virtually closed. In this case, the two turning points of
the radial motion merge into one, and the particle moves
along a circular orbit of the radius Rmlm .

For clusters of any size, n 0m�0� � ÿ1=2. This means that
the point l � 0, i.e., the lower integration limit, is also a
stationary-phase point, because it satisfies condition (7.5) for
k0 � 2s0. The trajectory with �l0 � 0 for a cluster potential
corresponds to a linear orbit passing through the center.

Shell effects also contain a contribution from the upper
integration limit, i.e., the circular trajectory with the max-
imum orbital momentum lm, the role of the circular orbit
being dominant over that of the linear orbit due to the small
number of particles in the s-states.

In the case of small clusters with Ne < 100, the solutions
of Eqn (7.5) with small k and s are absent in the possible range
of l (Fig. 11b), and shell effects are determined only by
trajectories with l � 0, lm considered above. This agrees
with the interpretation of numerical calculations: the minima
of the electron shell energy correspond to clusters in which the
shell with the maximum orbital momentum is completely
filled.

The sum of contributions from other stationary-phase
pointsÐ solutions of Eqn (7.5)Ð is given by

DNsh� m� � 4

p

X
j6�0

X
kj

�ÿ1�kj�sj�lj������������������n 00m ��lj���q
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3=2
j
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�
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ÿ
kjnm��lj� � sj�lj

�� sjp
4

�
; �7:6�

where sj and kj are related by (7.5), n 00m ��lj� � q2nm�l�=ql2j�lj ,
and sj � sign

�
n 00m ��lj�

�
.

For a fixed stationary-phase point �lj, the leading con-
tribution to the sums in (7.6) is made by terms with the lowest
values of kj � �kj and sj � �sj, giving the ratio �sj=�kj in (7.5). We

call the correspondingminimal-length trajectory the jth orbit.
Then the quantity pnm��lj� is the radial action for themotion of
an electron with the energy m and orbital momentum �lj along
the jth orbit between turning points. Multiplying the
numerator and denominator in the ratio �sj=�kj by an integer
m � 1; 2; 3; :::, we obtain trajectories with m periods of
motion along the jth orbit. This allows rewriting expression
(7.6) in the form
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Differentiating (7.7) with respect to m, we obtain an
expression for the shell correction to the density of levels,
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where ~tm��lj� � tm��lj� ÿ n 0m��lj� q�p�lj�=qm and tm��lj� �
q�pnm�l��=qmj�lj is the motion time of a particle with the
energy m and orbital momentum �lj between turning points,
i.e., half the radial period for the jth orbit. Expression (7.8)
coincides with the result obtained in [154] for spherically
symmetric systems by a different method.

The integration of (7.7) with respect to m, taking (5.8) into
account, gives an expression for the shell correction to the free
energy,

DFsh� m� �
X
j6�0

4�lj T������������������n 00m ��lj���q
�k
3=2
j

X1
m�1

�ÿ1�m��kj��sj�

m 3=2 sinh �X j
m�T ��

� cos

�
2pm

ÿ
�kjnm��lj� � �sj�lj

�� sjp
4

�
: �7:9�

Here, the notation Xj
m�T��mT 2p�kj ~tm��lj� � mT=Tj is used,

where Tj is the characteristic temperature determining the
decay of the contribution of the jth orbit with increasing
temperature.

The contribution of trajectories with j � 0, �l0 � 0 is not
included in expressions (7.6)±(7.9). This contribution should
be considered separately because the point l � 0, being a
stationary-phase point, is also the lower integration limit and,
in addition, the integrand vanishes at this point. The term
with j � jm, where �lj � lm is the upper integration limit,
should also be considered separately. As a result, we obtain
the sum of these terms:

DN j�0; jm
sh � m� � ÿ 1

p 2n 00m �0�
X1
m�1
�ÿ1�m cos

�
4pmnm�0�

�
m 2

� 2lm

p
�������������������n 00m �lm���q

�k
3=2
m

X1
m�1

�ÿ1�m��km��sm�

m 3=2

� sin

�
2pm�smlm � smp

4

�
: �7:10�

The notation �km � �kjm , �sm � �sjm , �sm � n 0m �km is used here.
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The calculation of the sum entering (7.8)±(7.10) essentially
depends on the rigidity of the cluster potential. In Section 7.3,
we consider clusters with a rigid potential (NaN) and in
Section 7.4, clusters with a soft potential (AlN).

7.3 Rigid potential
As is shown in Section 7.2, the shell correction is the sum of
contributions from closed trajectories j determined by
condition (7.5). We note that not all the trajectories make
the same contribution to quantities (7.6) and (7.9), which are
of interest to us. Because of the presence of terms �k

3=2
j ,

Eqn (7.6), and �k
5=2
j [see (7.9) for T � 0] in the denominator,

the trajectories with minimal values of �kj make the leading
contribution to sums (7.6) and (7.9).

Figure 11 demonstrates the behavior of the function nm�l�
and its derivative for sodium clusters, which is typical for a
rigid potential. We can see that the derivative n 0m�l� for
sodium clusters of all sizes monotonically increases from the
valueÿ1=2. This means that rational fractions �sj=�kj satisfying
condition (7.5) must lie in the range

ÿn 0m�lm�4
�sj
�kj
4

1

2
; �7:11�

which gives the conditions �sj 5 1, �kj 5 2.
Fractions with the least value �sj � 1 and �kj � 2; 3; 4; :::,

i.e., fractions like

ÿ �sj
�kj
� qnm�l�

ql

����
�lj

� ÿ 1

2� j
; j � 0; 1; :::; jmax ; jmax�

�
1

n 0m
ÿ 2

�
; �7:12�

correspond to the linear, triangular, square, etc., on orbits.
For �sj 5 2, the smallest corresponding numbers are

�kj � 2�sj � 1. In this case, the values of �sj=�kj lie between 2/5
and 1/2 and correspond to orbits with the �2�sj � 1�-point star
shape.

The horizontal straight lines n 0m�l� � ÿ1=�2� j �,
j � 1; 2; ::: are plotted in Fig. 11b. According to (7.12), the
intersection points of the derivative curve with these lines
determine the stationary-phase points �lj. We can see from the
figure that in the case of a rigid sodium potential for
Ne � 100, a contribution from the triangular orbit ( j � 1)
exists, whereas for the cluster with Ne � 1000, contributions
from the square ( j � 2) and pentagonal ( j � 3) trajectories
are also present. The contribution to (7.9) from the five-point
star orbit corresponding to �sj � 2, �kj � 5 proves to be
insignificant against their background because of the factor
�lj=�k

5=2
j .
Hence, in this case, the sum over the leading trajectories in

the expression for the free energy correction has the form

DFsh� m��
Xjmax

j�1

4�lj T������������������n 00m ��lj���q
� j� 2�3=2

X1
m�1

�ÿ1�m� j�1�
m 3=2 sinh �mT=Tj�

� cos

�
2pm

ÿ� j� 2� nm��lj� � �lj
�� p

4

�
; �7:13�

where

1

Tj
� 2p�2� j� ~tm��lj� � 2p

�
�2� j � tm��lj� � q�p�lj�

qm

�
�7:14�

and it is taken into account that we always have n 00m > 0 for a
rigid potential.

The terms in the sum over j in (7.13) are contributions
from supershells with quantum numbers nj � Knr � l,
K � 2� j, where an essential point is given by quantization
at the energy level equal to the chemical potential m of the
system. Figure 26a demonstrates the results of analysis [23]
based on (7.13) of the relative role of supershells (trajectories)
with different j in the formation of beats at zero temperature
in sodium clusters with Woods±Saxon potential (7.1) and
schematically shows the corresponding trajectories. We can
see that including trajectories with j > 4 does not change the
form of oscillations, i.e., they make no contribution in this
range of cluster sizes. The results of calculations in [23] are in
good agreement with quantum mechanical calculations [137]
for potential (7.1). In particular, the magic numbers Ne

corresponding to the positions of minima can be calculated
up to the third significant digit, and the beat period, the curve
shape, and the fine-structure details are reproduced well.

At a temperature exceeding the characteristic temperature
Tj, the contribution of the corresponding orbit becomes
negligibly small. The role of temperature in the reduction of
free-energy oscillations is demonstrated in Fig. 26b, which
shows the results of calculations by expression (7.13) for two
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Figure 26. (a) Oscillating part of energy (7.13) forT � 0 as a function of the

cluster size N for sodium with potential (7.1) in Fermi energy units. The

different number of j-trajectories is taken into account. (b) The oscillating

part of the free energy as a function of the cluster size N for sodium with

`rectangular well' potential (7.2) at different temperatures.
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finite temperatures, compared with zero temperature for the
`rectangular well' potential in (7.2). These results are in good
agreement with reference calculations [136]. We can see from
Fig. 26b that supershells (trajectories) with a large number j
`evaporate' more rapidly. The analysis of the dependences of
characteristic temperatures (7.14) on the cluster size shows
that although the slowest temperature decay corresponds to
the trajectory with j � 0, the contribution of the correspond-
ing shell is insignificant, and the decay of the supershell with
j � 1 plays a key role. We note that this differs from the
estimate of T0 often used in the literature by analogy with a
harmonic oscillator.

7.4 Soft potential
The difference between rigid and soft potentials is well
illustrated in Fig. 27 [62], showing the dependences n 0m�l� for
sodium and aluminum clusters for different numbers Ne of
electrons. In the case of the rigid potential in sodium clusters
studied in Section 7.3, the triangular and square trajectories,
already appearing in small clusters, make the leading
contribution. The contribution of star-shaped trajectories is
negligibly small. In the case of aluminum, the situation is
quite different. Because of the weak dependence of the
derivative on l in a soft potential, the triangular orbit
appears only in very large clusters for Ne � 3000, while for
smaller clusters, for example, for Ne � 1000, the five-point
star orbit dominates.

A comparison of expressions (7.8) and (7.9) shows,
however, that the domination of this orbit in the correction
to the density of levels (7.8) is not so obvious as in free-energy
correction (7.9): according to our calculations, the oscillation
amplitudes for five-point and seven-point stars differ in (7.8)
only by a factor of 1.36, whereas in (7.9), the contribution of
the five-point star is 3.3 times larger that that of the seven-
point star. For this reason, it was difficult to distinguish a
definite period in numerical calculations [150] of only the
density of levels as a function of m 0 for a fixed number of
particles Ne � 1000. In our opinion, the negative conclusion
about the possible role of the five-point star trajectory made
in [150] is explained by this fact.

We can see from expression (7.1) and Fig. 27 that the size
N j

e of aluminum clusters at which new stationary-phase
points �lj appear can be estimated from the condition
n 0m�lm;N j

e � � ÿ�sj=�kj. For this, it is sufficient to know the
dependence of n 0m�lm� on the cluster size Ne. The analysis of
this dependence performed in [62] for different parameters rs
and a showed that a decrease in rs is equivalent to an increase
in a, i.e., to the softening of the potential. The weak
dependence of rs on Ne found in self-consistent model
calculations [137] should result in a very weak increase in the
oscillation period with increasing Ne and a gradual passage
from curves with large rs to a curve with the smaller Wigner±
Seitz electron radius r bs � 2:07, corresponding to the bulk
characteristic of the metal.

The shell correction to the total electron energy was
calculated in [62] for AlN by expression (7.9) at T � 0 with
potential (7.1) for a constant rs � 2:17 > r bs . Figure 28
presents the results of these calculations, together with signal
oscillations measured for the mass spectra of aluminum [146].
We can see that the contribution of five-point-star trajectories
becomes dominant for Ne > 750 (N

1=3
e > 9:1), whereas the

contribution of other star trajectories considered here is
negligible. The argument of the cosine for the five-point-star
trajectory linearly depends on N

1=3
e ,

5nm��l?� � 2�l? � ÿ2:75317� 3:1487N 1=3
e ; �7:15�

which determines the periodic dependence on this variable. It
is easy to see that the curves presented in Fig. 28 are in good
agreement in their structure and period forNe > 750.We also
note the similar behavior of the chaotic part of the calculated
and experimental spectra forNe < 750, which, in our opinion,
is formed by the contributions of star trajectories with
�sj=�kj � 3=7; 4=9; 5=11; 6=13, and 6/13. The triangular trajec-
tory and, correspondingly, the reconstruction of spectra
should appear for N

1=3
e 5 14, N > 900, i.e., outside the

range of cluster sizes studied experimentally in [146].
Estimates [23] of the temperature decay of contributions

from five-point-star and triangular trajectories show that the
temperature factor for T � 300 K weakly differs from unity.
Hence, if the lattice melts atT � 300 K, oscillations related to
electron shells should be manifested almost in full measure.
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Figure 27. Dependences of the derivative n 0m�l� of the radial action on the

orbital momentum l � l� 1=2 for the rigid (sodium: solid curves) and soft

(aluminum: heavy dashed curves) variants of Woods±Saxon potential

(7.1) for different numbers Ne of electrons in a cluster. The shape of

symbols corresponds to the trajectory shape.
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signal (IS) oscillations in the mass spectrum of aluminum clusters [146].
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8. Conclusions

We have presented the modern semiclassical method for
describing systems of many interacting fermions. The
method is based on a refinement of the well-known, simple
but comparatively rough Thomas±Fermi statistical model
widely used in atomic and molecular physics, high-energy-
density physics, nuclear physics, finite system physics, and so
on. The introduction of additive corrections removed many
disadvantages of the initial TF model, thereby extending the
scope of its applications and the number of objects and
properties described by the method without losing its
simplicity and universality.

The correction of the TFmodel in the vicinity of Coulomb
centers (nuclei of matter or individual atoms and molecules)
removed theoretical difficulties inherent in the semiclassical
model and completed its development. It was shown that
these difficulties are related in part to another disadvantage of
the TF statistical model and its modifications with the
additive and self-consistent consideration of quantum and
exchange corrections: the neglect of the shell structure of
atoms and molecules. These difficulties can be eliminated
only by considering all the quantum effects together.

Taking the refined quantum correction and exchange,
correlation, and shell corrections into account, the refined
model based on the TF model has been constructed; this model
describes the thermodynamics of a weakly nonideal plasma well
without the use of any experimental data, is consistent with the
Saha±Reiser model at high temperatures, and transforms into
the TFC model for degenerate matter. Thus, the RTF model
covers a large region of the phase diagram corresponding to
matter with high energy density and replaces the traditionally
used combination of the ionization equilibrium model (for
plasma) and the TFC model (for degenerate matter), with
ambiguous interpolation between them.

We note that the RFT model retains the important self-
similarity property with respect to the atomic number
inherent in the TF model, while tabulated data available for
hydrogen allow obtaining results for any substance, which
considerably simplifies large-scale numerical calculations.

We have also shown that many properties of a spherically
symmetric many-electron system are determined by the type
of the self-consistent potential, which is either finite at the
center, as in atomic clusters and nuclei, or has the Coulomb
singularity, as in atoms and ions. These two types of
potentials considerably differ, in particular, in the shape of
one-particle spectra and possible forms of classical trajec-
tories. This fact poses a question about the correctness of
using pseudopotentials in which the Coulomb singularity of
the potential is replaced by a `ledge'. When quantum effects
are taken into account, such a passage to a different type of
potential can lead to erroneous results.

The semiclassical method was used for studying the local
and integral characteristics of a variety of many-electron
systems, such as one-dimensional quantum dots, atoms, ions,
hollow and bulk atomic clusters, high-energy-density matter,
and metal clusters. In particular, the intricate dependence of
total-electron-energy oscillations on the number of particles
and the interaction parameter in a one-dimensional quantum
dotwas explained, the reason for differences between themass
spectra of aluminum and sodium clusters was elucidated, an
algorithm was proposed for estimating the ionization poten-
tials of free ions, and the wide-range equation of state of high-
energy-density matter was constructed.

The high efficiency and clarity of the rather simple and
universal semiclassical RTF model for describing the proper-
ties ofmatter and finite systems have thus been demonstrated.
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9. Appendices

Appendix A
The monotonically increasing Fermi±Dirac functions

In�y� �
�1
0

x n

1� exp �xÿ y� dx

satisfy the recurrence relation I 0n � nInÿ1 and have the
asymptotic forms

y n�1

n� 1
as y!1 ; G�n� 1� exp y as y! ÿ1 :

Approximating relations between some frequently used
Fermi±Dirac functions and the function I1=2 are given by the
Kalitkin formulas [102]

I3=2 � 3

2
z
ÿ
1� 0:795z� 0:104z 7=3

�2=7
;

I 01=2 �
1

2
Iÿ1=2 � z

ÿ
1� 1:452z� 0:623z 7=3

�ÿ2=7
;

I0 � 2���
p
p z

ÿ
1� 1:28z� 0:351z 7=3

�ÿ1=7
;

where z � I1=2�y� � p 2n=� ���2p T 3=2� and I0�y� � ln�1� exp y�
is the zeroth-order Fermi±Dirac function expressed in terms
of elementary functions.

Appendix B
We consider the semiclassical spectrum of particles in a one-
dimensional periodic potentialU�x�with period 2R satisfying
the conditions U�R��U�ÿR��0, U 0�R�� U 0�ÿR� � 0.
Taking Bloch relations into account, the spectrum is
determined from the solution of the Schr�odinger equation in
one cell ÿR4x4R with the boundary conditions

c�R��exp �2ikR�c�ÿR� ; c 0�R��exp �2ikR�c 0�ÿR� :
�B:1�

The traditional semiclassical approximation is inapplicable at
r � R near the `hump' of the potential (jej � 0) because the
classical momentum of the particle j pe�R�j �

�������
2jejp

becomes
small. We wish to obtain the quantization condition describ-
ing this region correctly by using the explicit form of the
potential U�x� in the vicinity of the cell boundary r � R:

U�x� � ÿg�Rÿ x�2 ; g > 0 :

The solution of the Schr�odinger equation with this
potential is expressed in terms of parabolic cylinder func-
tions. By matching the asymptotic forms of these functions
with the semiclassical solution and using conditions (B.1) (see
the details in [39, 112]), we obtain the quantization condition
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valid in the entire energy region:

cos ~Se � sin �de� cos �2kR� ;

where

de � p
4
ÿ arctan

�
tanh

pd 2

4

�
;

~Se � Se ÿ d 2

2
ln

��d 2j
2e
� argG

�
1� id 2

2

�
;

d 2 � d 2
e � ÿ

���
2

g

s
e ;

and G�z� is the gamma function of complex argument.
As the energy e changes from ÿ1 to �1, the value of de

changes from 0 to p=2, characterizing the energy band in the
spectrum of a one-dimensional crystal, the main change in de
occurring for jd 2j4 1. This region is intermediate between
the discrete and continuum spectra. The strong-coupling
approximation corresponds to energies with d 2 > 1 when
the value of de is proportional to the tunnel exponential, and
the spectrum consists of discrete narrow bands (levels). The
continuum spectrum corresponds to energies with d 2 < ÿ1,
where de � p=2.
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