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Figure 7. (a) Schematic diagram for the measurement in a structure
comprising two separated graphene layers lying on an oxidized silicon
substrate (the lower layer). There are boron nitride crystallites (not shown
in the drawing) between all the layers. The thickness of the boron nitride
layer between the graphene layers is d ~ 10 nm. (b) Dependence of the
resistivity p on the carrier concentration » in the graphene layer under
investigation for different carrier concentrations 7, in the control (upper)
graphene layer.

magnetic field (B < 0.1 T) perpendicular to the graphene
layer, which is more likely an indication of an interference
effect rather than of the discovery of a forbidden band in
graphene.

This behavior of the resistivity is indicative of a metal—
insulator transition, demonstrating the Anderson localization
on increasing p > h/e?. In standard specimens on a silicon
substrate, the metal-insulator transition is masked by
inhomogeneities and the formation of ‘pools’ of electrons
and holes near the electroneutrality point. The state of
graphene inside each of them is far from electroneutrality
point, and it remains metallic. Accordingly, the resistivity of
the system is determined by semitransparent (owing to Klein
tunneling [32, 33]) electron—hole transitions with a weak
temperature dependence [34, 35].

The control graphene layer may effectively screen the
fluctuation potential and suppress the emergence of electron
and hole pools, making it possible to study the behavior of
graphene in the vicinity of the electroneutrality point. This
interpretation also favors the idea that the proximity of the
minimal conductivity in traditional structures to the quantity
4e?/his due to the flow across the boundaries of the pools of
electrons and holes. Therefore, an unusual situation, which is
extrinsic to conventional metals and semiconductors, is
realized in graphene, whereby localization results from a
lowering of disordering rather than from its increasing.

In summary, it should be noted that the emergence of
high-mobility graphene structures has led not only to a
refinement of certain notions of the graphene physical
properties, but also to their revision. At the same time, it is
hard to overestimate the promise of the recently commenced
work on layered structures consisting of two-dimensional
crystals of boron nitride and graphene.

Graphene began its history at some point by separating
from its three-dimensional progenitor — graphite. It is not
unlikely that in the near future we will obtain a variety of new
three-dimensional materials custom-made of different two-
dimensional crystals and highly diversified in properties.
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Modern optics of Gaussian beams

V G Volostnikov

1. Introduction

A coherent light field, like any oscillatory process, is
characterized by its amplitude and phase. The methods and
means for analyzing light fields from intensity measurements
underlie optical instruments, and from the physical stand-
point the solution to any optical measurement problem
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involves establishing the relation between the energy and
structural parameters of optical radiation.

Owing to the special nature of the optical range, it is not
the complex amplitude of an optical signal that is amenable to
measurement, but only its intensity, which is not the complete
characteristic of a light field in the general case. Traditional
interferometric techniques provide, in principle, a possibility
of indirect phase measurements; however, in several problems
it is impossible or hard to realize the interferometric principle
for acquiring information about the complex amplitude or
phase of the field. This situation takes place in astronomy,
X-ray, and adaptive optics. In this connection, the quest for
and investigation of field intensity—phase relations, which
provide an answer to the question of how many intensity
measurements should be made and of what type should they
be so as to reconstruct the field itself or its certain character-
istics, are relevant. On the other hand, there is a separate area
of investigations in which the sought-after field is to be
synthesized rather than reconstructed. This applies to the
problems of radiation focusing on a domain with given spatial
characteristics and to the task of the intracavity formation of
a beam with a given output radiation structure. These
problems are kindred to that of light field analysis: they all
involve gaining information about the field from its energy
characteristics. However, it is easy to see that they are
significantly different as well: the physical realizability of a
field with the intensity under analysis is inherent in the very
formulation of the analysis problem, while the question of
whether a field with a given intensity exists is one of the
central ones in the synthesis problem. It nevertheless turned
out that the results of investigations concerned with the
analysis of light fields also open up fundamentally new
possibilities for their synthesis in different physical situa-
tions. Recent years have seen important new findings, which
have not been reflected in monographs. The central aim of
this report is to fill in this gap.

This report outlines the results of an investigation into the
so-called one-dimensional phase problem in optics. An
explicit analytical relation was found between the intensity
and the phase of a one-dimensional field in the Fresnel zone.

A two-dimensional problem in optics was also considered
and shown to be radically different from the one-dimensional
problem. It was established that the vector field of light
energy flux generally comprises potential and vortical
components; an explicit analytical relation was found
between the two-dimensional phase and intensity distribu-
tions for vortex-free fields in the Fresnel zone; the vortical
component was shown to obey a conservation law, specifi-
cally: the integral of the projection of the rotor of the light
energy flux vector onto the direction of propagation is equal
to zero for any plane in the Fresnel zone, and a relation was
revealed between the vortical component of the light energy
flux vector and wave-front dislocations.

Also obtained were explicit analytical dependences of the
phase of a two-dimensional light field on its intensity as
functions of certain parameters of the generating optical
system.

The behavior of Gaussian beams under astigmatic action
was investigated, too. It was theoretically shown that certain
astigmatic optical systems accomplish the mutual transfor-
mation of Hermite-Gauss (HG) and Laguerre-Gauss (LG)
beams. A parametric class of light beams— the generalized
Hermite-Laguerre-Gauss (HLG) beams described by a
complete system of parameter-dependent orthogonal func-

tions—was discovered and experimentally realized, the
known HG and LG beams being their special types. Optical
systems that realize the HG-to-LG beam transformation and
the results of the corresponding experiments are described
below.

The question of the search for light fields that retain their
structure in the course of propagation and focusing, correct to
scale and rotation, is formulated and solved in the paraxial
approximation. A total description of such light fields, which
are termed spiral beams, is given, as are their propagation and
rotation laws. The linkage between spiral beams and
quantum mechanics is considered. Several ways of realizing
spiral beams in experiment are suggested.

Methods for synthesizing light fields with a given intensity
distribution that are structurally stable during propagation
were considered. Proceeding from spiral beam optics, it was
possible to obtain light fields whose intensity distribution is of
the form resembling an arbitrary plane curve. The properties
of spiral beams for closed curves were investigated. Such
beams were found to exhibit characteristic quantization
properties: first, the intensity distribution undergoes a
radical change under similarity transformations of the
corresponding curve and has the shape of this curve only for
certain values of the similarity factor; second, the area under
the beam’s curve for the same values of the similarity factor is
related to the Gaussian parameter by an integer-valued
relation, and in this case the number of phase singularities of
a spiral beam inside the curve is also quantized and their
number is defined only by the area inside the curve rather than
by its shape.

Also outlined are the results of the application of spiral
beam optics to the synthesis problem of phase diffraction
optical elements intended for the focusing of a light field on a
plane curve and on a two-dimensional domain of a given
shape. A new iterative method was proposed for the solution
of this problem, which involves the employment of the near-
field phase distribution of a spiral beam and its far-field
intensity distribution for curves. Proposed for the focusing on
a domain were the corresponding distributions of Fourier-
invariant fields as the initial approximations in the synthesis
of the corresponding phase diffraction optical elements. The
results of numerical and natural experiments are presented.

2. Reconstruction of a one-dimensional coherent
monochromatic field from measured intensities

in the Fresnel zone

Let us elucidate the relationship between the intensity and the
phase of a light field in the Fresnel zone. The equation which
describes the Fresnel transformation has the form

F(x)= \/2% exp (—% m) Jb exp B’; (x — 5)2] U(é)de.
(1)

Most works on the one-dimensional phase problem are
concerned with algorithmic, purely numerical methods for
reconstructing the object field from intensity measurements.
On the other hand, it would be instructive to elucidate the
physical aspect of the problem and its association with the
mathematical formulation and, in particular, to derive
explicit formulas expressing the intensity—phase relation.
This formulation of the problem is all the more justified
since the use of explicit formulas offers several advantages
from the practical point of view: it shortens the computation
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time and permits, in principle, estimating the effect of
intensity measurement uncertainty on the accuracy of phase
reconstruction.

A similarly formulated problem for a parabolic approx-
imation was studied in several papers (see Ref. [1] and
references cited therein), which also suggest that deriving the
exact solution requires knowledge of the phase derivative
0@ /0x at some point. It is stated simultaneously that finding
the boundary condition for d¢/0x from intensity measure-
ments is unlikely.

We show below that it is possible to overcome this
difficulty and to determine the field F(x,/) and, hence, the
object field U(¢) from the measurements of intensity /(x,/)
and its derivative [;(x, /) along the direction of field propaga-
tion in the Fresnel zone [1]. In the latter zone, U(¢) = F(x,0)
and F(x,!) are related by Eqn (1). It may be shown that the
field F(x, /) entering Eqn (1) obeys the parabolic equation [2]

o°F . OF
Substituting F(x,/) into Eqn (2) in the form F(x,/) =
v/ 1(x,1) exp (ip(x,!)) and separating the real and imaginary
parts give the system of differential equations for the intensity
and the phase of the field F(x,/) in the Fresnel zone:

o () Uy
Ox Ox ol (3)

0’1 /o1’ g \* op
20— —(=—) —4r*|( = 2k—|=0.
ox? <ax) Kax) + al] 0
The former equation serves as the continuity equation for the
flux j = (jv, ji) = (I0¢/0x, kI') and expresses the law of light

energy conservation in differential form [1]. By integrating
this equation, we obtain

a [ X

1,1y 2200 ka L(t,1)dt +c, (4)
ox

where ¢ = I(xo) 0¢/0x (x9). Repeated integration yields an

expression for the field phase in the Fresnel zone:

< dr | X dr
x)=¢a)—k| — Irdr+cJ—. 5

o) =@ k| 7 | n@acre| 75
One can see from expression (4) that obtaining the phase
requires knowledge of the boundary condition for ¢ /0x at
some point xo, the nonlinear character of the relation between
I(x,1) and ¢(x,/) in expression (4) making this issue quite
significant. Let us show that the boundary condition for
0¢/0x may be found from intensity measurements.

We define the differential operators

or .o ., 3% .0

and rewrite equation (2) in the form

X0

LF(z,l)=L"F*(z,1)=0.

The action of operators L and L* on I(z,/) leads to the
following result

LI(=1) =2 % (F(z,z) aaiz (z,l)), .
LI(z,1) =2 % <F*(2J) Z—f (ZJ)> :

Figure 1. Zero pairs (z,,, Z,,) of the analytic continuation of intensity /(z, /).
Black dots indicate the zeroes of field F(z,7), for which the first of
equalities (8) takes place.

Both differential relations (7) are proved by direct substitu-
tion with the use of Eqn (2), for instance:

OF OF*
OF*
F—:1].
62)

LI=F'LF+ FLF*+2 —
0z Oz
0%F*
Consequently, if z; and z; are the zeroes of function F(z, /) for
some fixed /, then

=2F +2

For e
0z2 0z 0z oz

J S H(z,0)dz = 0. (8)

k53
J Li(z,l)dz=0,

Z1 1

The use of equalities (8) permits determining all zeroes of
the function F from magnitudes of the intensity /(z, /) and its
derivative 01(z, /) /0l for some [ = Iy = const (Fig. 1).

Therefore, the problem of separating out the set of F(z)
zeroes from the set of I(z) zeroes may be solved from the
distributions of the intensity /(x) and its derivative [;(x) in
some fixed plane / = const with the aid of analytic continua-
tion and the use of the properties of the functions /(z) and
I)(z) in the complex plane.

3. Reconstruction of a two-dimensional coherent
monochromatic field from measured intensities

in the Fresnel zone

The linkage between the intensity and the phase of a two-
dimensional light field F(x, y) is more poorly understood than
its one-dimensional analog. In particular, the nature of the
nonuniqueness of the problem’s solution and the body of
measurements required for its solution are not quite clear.

To substantively analyze the differences between the two-
and one-dimensional phase problems, it is expedient to
consider the two-dimensional version of a problem solved in
the one-dimensional case.

In this section we shall study the two-dimensional
problem, or the reconstruction of light field F(x,y) at
/ = const from the measurements of intensity /(x,y) and its
derivative along the direction of propagation of the radiation
I)(x,y) in the Fresnel zone. This formulation of the phase
problem is of interest in the quality control of large-sized
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optics, the synthesis of optical elements and light fields, and
several other applications.

It is well known that U(&, %) and I(x,y,/) in the two-
dimensional case in the Fresnel domain are related by the
expression

I(x,y,1) = F(x,3,1) F (x,y,1)
2

©)

where Qs the U(¢, n) carrier, i.e. U(&,n) = O when (&,1) € Q.
The amplitude of F(x,y,/) from expression (9) satisfies
the following quasioptical parabolic equation [1]

s ”Q P (lzi; (=8 + - nﬂ) U(&,n) dedy

0*F . OF
ax2+ay_2+21ka—0

o%F

(10)

By analogy with the one-dimensional case, F(x,y,!/)
may be represented in the form F(x,y,/)=
I(x,y,0)exp (ip(x,y,1)) and, on substituting it into equa-
tion (10), it is possible to separate the real and imaginary
parts.
It is easy to verify that

No FVF—FVF

A 2ik )= (]xv.]y)7 (11)

where j is the vector component of the light energy flux in the
(x, y) plane, and obtain the light energy conservation law, or
the continuity equation which may be treated as the three-
dimensional divergence of the vector j = (v, jy, 1) or as the
equation for a flat field:

0 | o
a"-v‘]—o,

where p = I(x,y,1), and j = (jy, j,). Substituting F(x, y,/) =
U(x,y,0) +1iV(x,y,!) into expression (11) gives

(12)

_UVV-wWU _ 1, ov oU L ov  0U
1= k AT R R T A
(13)

One can see from expression (11) that the phase reconstruc-
tion problem in this formulation reduces to the reconstruction
problem of the vector field from its rotor and divergence. The
rotor of the flux is defined as

2<6U6V 6U6V> 1<g6_<p_g©_q)> (14)

rotoJ = k Ox Oy

Ox 0y Oy Ox

k

Mention should be made of the fundamental difference
between the two-dimensional phase problem and the similar
one-dimensional one. The solution to the two-dimensional
problem is similar to the solution of the one-dimensional
problem only when rotg j(x,y) = 0. This is true, for instance,
for fields F(x,y,l) = F(g(x,y),!), where g(x,y) is a real
function. The physical meaning of the difference between
the two- and one-dimensional cases may be treated as follows.
As revealed by analysis of the similar one-dimensional
problem, the structural and phase field properties may be
directly and completely represented by its energy character-
istics; the intensity distribution and the energy conservation

law permitted obtaining explicit formulas for the phase of the
field. As follows, for instance, from equation (12), the
structural and phase properties of the field in the two-
dimensional case are not necessarily representable directly
by its energy characteristics.

The complete definition of rotg j(x, y) in terms of the field
intensities is impossible. It is nevertheless possible to prove
several results characterizing the local and global properties
of rotg j(x, ) [3].

Let F(x,y) = v/I(x,y) exp (ip(x, y)) be the Fresnel trans-
formation at / = const of some function with a finite carrier,
with the scalar function rot j(x, y) defined by equality (14).
Then one has:

) if (xp, yo) is the intensity extremum point and
I(x0,y0) # 0, then rotg j(xo, yo) = 0; if I(x¢, yo) = 0, then

1 (021 %1 0% \?
to (o = — : (15
|roto j(xo, )| i\ ox2 5y <axay> (x0,»0) ;5 (15)
2) if (xo, yo) is an isolated simple zero of function F(x, y)
and L is some contour which does not contain zeroes other
than (xg, yo), then

ﬂg Vo dr = 2 sign rotg j(xo, yo) ; (16)

L

3) the following rotor ‘conservation law’ takes place:

” rotyj(x,y)dxdy =0. (17)
RZ

In this section, therefore, the problem of the relation
between the intensity and the phase of light field F(x,y,/)
was considered. In this case, we revealed a radical difference
between the two- and one-dimensional phase problem
solutions, which is due to the existence of the rotor of the
light energy flux vector. The properties of the scalar function
roty j, which generates this difference, were investigated.

4. Relation between the phase and intensity

of the light field as functions of optical system parameters
In Section 3 we showed that passive measurements of the two-
dimensional intensity distribution in the Fresnel zone do not
permit deriving in general an explicit analytical relation
between I(x,y,/) and ¢(x,p,/). To state it in different
terms, the information about the action of the field propaga-
tion operator L = 02 /dx? + 02 /dy? + 2ik 0/d/ on the inten-
sity does not produce a result similar to that obtained for the
operator L = 3°/0x? + 2ik /0l in the one-dimensional case.
Now the question is in order: Are there operators which
describe real physical situations and provide the solution of
this problem for a two-dimensional light field?

Let us consider the transformation of an optical field by
an optical system. To simplify calculations, in this section we
put x =x;, y=x;. It is well known that the complex
amplitude F(x;, x;) in the image plane is a Fourier transform
of the amplitude Uy(¢;,&,) at the exit pupil of an optical
system:

F(XI’XZ):”Rz exp [—i(x1¢+x28)] Up(&y, &) dép dé,,
(18)
where Uy (&, &) = P(&),82) f(61,82), P(&y, &) is the complex

function of the pupil of the optical system, and f{&;, &,) is the
Fourier spectrum of the image.
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It is evident that F(x;,x;) and I(x1,x;) = F(x1, x2)X
F(x1,x;) depend on the parameters of the optical system,
characterized by function P(&q, &5).

Consider the problem of F(x, x,) reconstruction from the
measurements of intensity /(xj,x;) as a function of these
parameters. By analogy with the aberration theory [1], we
represent P(¢q, &,) in the form

P(ﬁhfZ):X(€17£2)exp(_iw(éh£2))7 (19)
where y(&, &) is the characteristic pupil function Q defined
as

INERRCERSE Y
dee={y (G ea

W&, &) = W21€12 + szfzz; here, W, stands for astigma-
tism.

Now if W», = ay,, the problem reduces to the reconstruc-
tion of F(xy, x,) from the measurements of intensity /(x;,x2)
and its derivatives with respect to oy, forn =1, 2.

Upon similar transformations, equation (12) reduces to
the following system of equations

ol o (. dp
2 I = =1,2.
0oz, + ox, ( Gx,l> 0, n ’

The system of equations (20) describes an optical system
with cylindrical phase mask exp (—ikoo, if) at the exit pupil of
the optical system or an optical system with cylindrical
defocusing of the illuminating beam and recording in the
far-field radiation zone. We note that the problem in the one-
dimensional case is completely similar to that considered in
Section 2.

Therefore, the field variation under purposeful action on
the field is more informative than its variation under natural
propagation. This is supposedly an illustration of the well-
known fact that an active experiment gives better results than
passive observation.

The requisite astigmatic actions (20) on the light field may
also be realized directly by employing specific diffraction
elements [4].

Let us select the phase function W(&,,&,) entering
expression (19) in the form

(20)

W) =To( 5 o + &) + To 306 + &), 1)

where T (x) is a T-periodic function of argument x, and o is a
parameter. The phase element with the profile (21) may be
represented as a Fourier series:

. . . 2n
exp (I8, 6)) = ch exp <lmoc€f +im = a)

X exp (inocfz2 +in 2%: §2> ) (22)

(T 2n .
n =7 Jo exp < — 7n imx + 1T0(x)> dx.

It is easy to see that such a diffraction element operates as
a system of off-axis astigmatic lenses with principal focal

lengths f,, = n/ami, f, = n/anl. in the (m, n)-th diffraction
order (Fig. 2). The diffraction angles of order (m, n) are

Figure 2. Diffraction pattern of a Gaussian beam: intensity (a, b) and
phase (c, d) with diffraction element (21) without astigmatism (a, ¢), and
with astigmatism ©(¢7 — 2)/ My, fo = m/a2 in figures (b, d).

B, = arcsin (mA/T) and f, = arcsin(nd/T), respectively,
and the complex amplitude (19) in the image plane for phase
function (21) takes on the form

Flia) = enes || exp (cinty i) e &)

m,n

2 2
X exp (imocflz +im _; fl> exp <ina§§ +in = (:2> dé, dé,

Z 2r 2n
= CmCnlpm | X1 T m, X __T nj.

m,n

(23)

5. Transformation of Hermite-Gauss beams

into Laguerre—Gauss beams

The phase problem in optics may be considered as the
problem of the linkage between the structural and energy
characteristics of a light field. In Sections 2—4 we investigated
the relation between the intensity and phase of a light field
which satisfies the quasioptical parabolic equation in the
Fresnel zone.

Different modifications of this equation describe a broad
class of phenomena in quantum mechanics and optics. It is
evident that the fields which possess structural stability
during propagation occupy a special place, and the inten-
sity—phase relationship is characteristically embodied in
them.

On the other hand, as noted in Section 4, an HG beam is
transformed into an LG beam in the course of diffraction by
an astigmatic diffraction element (Fig. 3). In this connection,
the structurally stable solutions of the parabolic equation call
for a closer examination.

HG beams are well-known families of the stable solutions
of the parabolic equation in optics:

Ho,m(x,¥) = exp (_xz - y2) Hn(ﬁX) Hm(\/zy) )

n,m=0,1,..., (24)
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Figure 3. Pattern of Hermite-Gauss beam diffraction by diffraction
element (21): intensity (a), and phase (b).

like LG beams:
ﬁn‘j:m(xﬂj) = eXp(—X2 - yz)(x + iy)'77£’:’l(2x2 + 2y2) )
(25)

nm=0,1,...,

and occupy a prominent place in the theory of resonators and
light guides.

Therefore, the change in HG beams under defocusing
reduces, correct to a quadratic phase factor, to only a change
of scale.

On the other hand, the general form of astigmatism is
described by the expression

W(&ma,0) =al(E* —n?) cos 2o+ 2¢nsin 2] . (26)
One can see from expression (26) that, unlike defocusing
which is invariant under rotations, the form of the field

Fvyna) = [ | exp (=iCat+3m) +i0(En.a.2)

x U(&,n)dédy (27)
depends on the rotation angle o in the propagation in
‘astigmatic’ space.

Let us now consider the transformation of HG beams
under general astigmatic action (see also Ref. [1]):

Funloyea)= [ [ exp (=i(xz +m) +ib(E.n. )

&y

X Hom (—, —) dédy. (28)
p’p

Of particular interest is a special case of transformation
(28): for a=1/p? and « = n/4, HG beams go over to LG
bea ]:

ms [4
. 2i¢ .
” exp {—l(xé+yn) +—‘i’7] Hn,m(ﬁ, ﬁ) dédy
R p pp
2
np n+m L. 2 >
=— (-1 exp|——1p"xy
ﬁ( ) p< 7P

n X )
(21) M!Em.,nfm (Zpﬁ, %) for n=m,

(29)

px

N\ p.y
20" 0Ly men | ——=,
(@) L ”(2\/5 2V2

For any fixed «, the set of fields is a full-value family of
orthogonal, structurally stable beams, like the families of
HG {Hym(x,y),n,m=0,1,...} and LG {L, n(x,y),n,£m=
0,1,...} modes. These fields, which were termed generalized
Hermite—Laguerre-Gauss beams, were obtained experimen-
tally for different a. These fields were sequentially realized in
rotating the cylindrical lens about the optical axis by an angle
o. The generalized beams obtained experimentally are
exemplified in Fig. 4 forn =5, m = 4.

) for n<m.

6. Fields with rotation and their properties

As a rule, the alteration of beams in their propagation and
focusing is associated with the stretching—compressive defor-
mations: converging and diverging beams. On the other hand,
it is evident that even for a simple anisotropy of the beam
phase the beam divergence (deformation) also becomes
nonuniform. This brings up the legitimate question: Is there
some analogy to the torsional strain in the case of a beam with
nonuniform divergence? As shown in Section 2, generally the
light energy flux consists of two components: divergent, and
vortical. In a certain sense, the former component corre-
sponds to stretching—compressive deformations, and the
latter one to torsional strains.

In Section 5, we considered the links between HG and LG
beams. A characteristic property of these beams is structure
retention, correct to scale, in their propagation and focusing.
Taking into consideration the vortical component of the light
energy flux vector, the notion of structural stability of light
fields may be extended. Specifically, this involves examining
the question of whether there exist light fields which retain
their structure, correct to scale and the character of rotation.

Figure 4. Hermite—Laguerre-Gauss beams with angle o varying from 0 to ©t/4.
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In this case, the structural stability condition may be
defined as follows:

I(x,y,1) =D(l
(xcos ol

X]()

)
)—ysin0(l) xsin0(l)+ycosO(l)
e ) o

where 0(/) stands for the intensity rotation in the propagation
of field F(x,y,/), and d(/) > 0 is the intensity variation
scaling. Let us define real variables by the equality
X +1Y = (x +1iy) exp (10(/))/d(!). The exponential decrease
in the intensity at infinity (28) permits revealing the structure
of the phase ¢, (X, Y, /) and rewriting the representation for
the light field in the form

Fx, 1) :ﬁmx Y)

X exp (% ikd(1)d'(1)(X* + Y?) +iy(l)) . (31)

where Fy(X,Y) = /I)(X,Y) exp (ipy(X, Y,0)). The struc-
tural stability of the intensity thereby generates the structural
stability of the phase.

On substituting expression (31) into the parabolic equa-
tion, we arrive at the equation for the function Fy(X, Y):

o _
oY

0F

Yox

V2F0+4i60(X )—4F0(X2+ Y2 —9,)=0.

(32)

At 0y =0, equation (32) coincides with the stationary
Schrodinger equation for a harmonic oscillator, and its
solutions are well known. These are Hermite—Gauss func-
tions Hym(X,Y), yo=n+m+1 for n,m=0, 1,..., and
Laguerre-Gauss functions £, ,(X, Y), yo = 2n + |m| + 1 for
n,+m=20,1,....

We shall seek the solutions of equation (32) in the form

o0

Fo(X, Y) = Z Cnn1£n,/11(X7 Y)'
n, £m=0

(33)

Expansion (33) is always possible owing to the finiteness of
the energy of field Fy(X,Y) and the completeness of the
system of functions {L, .(X,Y), n,£m=0,1,...} in
L,(R?). Substituting expression (33) into equation (32), we
obtain

chm‘cn,m(Ac Y)(zl’l + |m| + Oom — yo + l) =0,

n,m

and on the strength of the completeness of the system of LG
functions, the following relation comes into play:

Com(2n + |m| + Ogm — yo+1) =0 for all n, m.

Thus, the problem of the search for Fy(X, Y) reduces to the
determination of integers n, m from the equation

2n+ |m| + 0pm =yy — 1. (34)
Thus, this completes the total description of rotating
structurally stable solutions to the parabolic equation,
which have come to be known as ‘spiral light beams’ [2].

The Schrodinger equation for the wave function of a
charged particle with mass M and charge ¢ in a uniform

magnetic field A has the form

’

.. a!// 2¢ 1
2 @ 2 2cME
V2 + 4disign (eH) 30 41//<R Al H| )

where E; = E — p2/2M, E is the particle energy, and p. is the
component of the particle momentum along the field
direction. One can see that the last equation is equivalent to
Eqn (32).

7. Spiral beams with a given intensity distribution
It is well known from different works on the phase problem
that the intensity—phase relations in the one- and two-
dimensional cases are radically different. The physical
aspects of this difference were considered in Sections 2 and
3, where we came to recognize that it is intimately concerned
with the possibility of the occurrence of a vortical component
of the light energy flux vector in the two-dimensional
approach. A nonzero rotor of the light energy flux vector
significantly complicates the intensity—phase relation in this
case. On the other hand, this complexity also gives rise to new
possibilities.

From the results outlined in Section 6, it follows that in the
two-dimensional case there exists a class of coherent light
fields — spiral beams — of the form

1 x24y? x+i
F(X»J/:l):;eXp (_ pZO'y )f< p6y>

(35)

One can see from this representation that the class of these
fields is rather broad, but the proof of the existence of a beam
with given properties and the constructive method of its
extraction from this class represents a nontrivial task. This
section is concerned with the study of the possibilities for
goal-seeking synthesis of light beams (35).

Let us consider several properties of the spiral beams of
this class, which follow from representation (35) and are
addressed in the subsequent discussion.

Property A. If S,(z, 2) = exp (—zz/p?) f(z/p) is some
totality of spiral beams, their linear combination

S(z,2) = eaSulz, 2)

is also a spiral beam. And, in general, if S,(z, z, a) =
exp (—zz/p?) f(z/p, a) stands for a parametric family of
spiral beams, then

S(z, 2) = JS(Z, z, a)da

is also a spiral beam.
Property B. If Sy(z, z) = exp (—zz/p?) f(z/p) defines
some spiral beam, then

S(z, 2) = exp ( _%i)f(w)

likewise is a spiral beam possessing the same intensity
distribution as Sy(z, Z) but turned by an angle a.

Property C. If Sy(z, Z) = exp (—zZ/p?) f(z/p) is some
spiral beam, then

S(z, 2) = exp < _EC 22524—2020)],(2 —pZo)

(36)
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also represents a spiral beam possessing the same intensity
distribution as Sy(z, Z) but shifted to a point zy. These results
naturally generate the following question. Let there be some
curve in a plane, specified in a complex parametric form
{ ={(r), where parameter ¢ varies over the interval [0, T].
Does there exist a spiral beam S(z, z|{(¢), ¢ € [0, T']) with the
shape resembling this curve? It turns out that such a beam
does exist and assumes the form

S(z,21(1), € 0, T7)
— T 3 o o
:wp(_é)Jeq{_4m§”+”§”
p?) Jo p p
t
s e - rm) e coja. @
It is significant that for practical applications, i.e. in the
representation of a plane curve in a discrete form, finite
increments turn out to be more convenient than differen-
tials, because in the former case there is no need to find
derivatives —a none too pleasant task.

The beams for closed curves occupy a special place and
deserve separate consideration. Let function {(¢), ¢ € [0, T']
describe a closed curve without self-intersections. Without
loss of generality, it may be assumed that the curve is traced
counterclockwise with increasing 7. We define {(¢) for all real #
by continuing it periodically beyond the segment [0, T']. Then,
the functions {(z + a), t € [0, T'] describe the same curve for
different a. Do the spiral beams for the curves ((z+ a)
coincide for different a?

It will be shown that the beams constructed for closed
curves exhibit characteristic quantization properties. This
manifests itself in the fact that, first, the intensity distribution
of these curves undergoes radical changes under the similarity
transformation {(¢) — v{(¢), and possesses the topology of
the curve v{(¢) only for certain discrete values of parameter v.
Second, the intensities of the beams constructed by the curves
v((t + a) for different a are the same only for these values of
parameter v.

Let us find the condition whereby the spiral beams
constructed for curves {(¢) and {(z + a) coincide:

1S(z, 21C(0), 1 € [a, a+ T))|* = |S(z, 2lc(0), 1 € [0, T)) .

We rewrite the above identity in the form
exp (i@(a)) S(z, 2IL(2), 1 € [a, a+ T))

=S(z, z[L(r), 1€ [0,T]), (38)

where @(a) is some real function independent of z (otherwise,
by canceling the Gaussian function from both sides of identity
(38), we find that @ is an analytical function of z and,
consequently, may not be real for all z). Differentiating
identity (38) with respect to ¢ and making use of the
periodicity of {(¢), one obtains

exp (19(a)) S(z, 2|L(1), 1 € [a, a + T])
x {id&’(a) U@ '(e) - La)l (a)}
{

(@) }

<Jow (5] e -nae) <1 i =o.

Replacing the spiral beam in the first term in accordance with
identity (38), canceling the Gaussian function, we rewrite this
equation in a symbolic form

.ﬂnzaw>+ema(2fg”

)aw:m

where f(z) is an integer analytical function, and Fj(a) and
F>(a) are some functions of a. This equality takes place for all
z, a only when Fj(a) = F>(a) = 0 (when f'(z) has a zero, this
follows immediately; the case where f(z) has no zeroes is also
simple). Therefore, one has
l ¢z / ! 1 g ol 2
ola) = o | @ —tdn e (| @ - car) =1
1= Jo P=Jo

and, hence [4]

L mem - iore)a ==,

in2
1p= Jo

where S is the area bounded by contour {(¢).

Therefore, the beam intensity is independent of the origin
of integration a only for curves whose area satisfies the
quantization condition

S:%TtpzN, where N=1,2,.... (39)
The closed curves which satisfy equality (39) will be referred
to as N-quantized curves, and the spiral beams for such curves
are called N-quantized beams.!

A strictly defined number of optical vortices inside the
domain bounded by the generating curve correspond to a
quantized beam, which depends on the domain area and not
on its shape (Fig. 5) [3, 4]. Hence it follows that, with an
increase in domain area, say, from S = (1/2)mp’N to
S = (1/2)mp%(N + 1), an increase in the number of zeroes
occurs inside the domain due to the entry of one zero from

Figure 5. Intensity (a, d), phase (b, e), and phase outside the beam waist
(c, ) for a spiral beam in the form of the boundary of a triangle (a—c) and a
square (d—f).

UIf we refer to the quantum-mechanical analogy noted in Section 6, the
wave functions of a ground-state particle in a constant magnetic field
correspond to the spiral beams with 6y = =1, y, = 1. In this case,
condition (39) matches the quantized magnetic flux through the contour
{(t): @ = (2nhc/|e|) N (see also Ref. [2]).
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Figure 6. Spiral beam evolution under variation of the radius of the generating circumference.

the outside. One can see the process of zero penetration inside
the contour in Fig. 6 which shows the evolution of a spiral
beam for a circumference {(r) = R exp (it), ¢ € [0,2xn] for
2R?/p? € [4.0,5.0]. The zero entry zone is determined, as
discussed above, by the integration origin.

8. Conclusions

The aim of our conclusion consists in providing a summarized
and comparative analysis of the new results presented and in
formulating some incompletely resolved problems.

The generalized Hermite-Laguerre-Gauss beams found
in the investigation of astigmatic transformations of Gaus-
sian beams make up a parametric family in which the
previously known HG and LG beams are special representa-
tives corresponding to two certain parameter values. Further-
more, the astigmatic transformations of Gaussian beams
permitted proposing a new approach to the synthesis of
phase elements intended for the formation of light fields in
the form of arbitrarily shaped domains. This problem is now
at the research stage, and the level of its solution is still far
from the results obtained for light fields in the form of curves.
In our view, the reason lies with two interrelated circum-
stances: first, a domain, unlike a curve, is not an ordered set.
Second, light fields in the form of domains contain phase
singularities of both signs and are not structurally stable in the
Fresnel zone. That is why the synthesis of the appropriate
phase elements is complicated by several factors: the domain
shape, the synthesis technique, etc.

In recent years, the term singular optics has been used in
reference to light fields with wavefront dislocations, or optical
vortices. Fields of this kind, which are formed and observed
both in linear and nonlinear optical media, are the subject of
rather intensive investigation, and the development of
adequate theoretical and experimental approaches for the
exploration of fields with optical vortices is, therefore, a
topical task.

Of course, any coherent light field may be formally
represented as a superposition of the known HG and LG
beams, but this approach proves to be nonoptimal for the
analysis and synthesis of fields with phase singularities.

Vortical light fields which retain, correct to scale and kind
of rotation, their structure in the course of propagation, or
spiral beams, which are the concern of Section 7, are peculiar
‘vortical modes’ in the class of fields with phase singularities,

and deserve special consideration as a subject of coherent
optics.

In our opinion, this is due to the following main reasons.
First, spiral beams, despite the fact that they differ greatly in
the shape of intensity distributions, are described by explicit
analytical expressions, which makes them efficient instru-
ments in the study of the laws of formation and transforma-
tion of light fields with phase singularities of a general kind.

Second, in quantum mechanics there is a direct analog to
spiral beams — the wave functions of a charged particle in a
uniform magnetic field—and the laws of spiral beam
transformation have their representation in the theory of
coherent states. It is quite possible that these analogies will be
mutually beneficial, both for quantum mechanics and for
optics. Lastly, the flexibility of variation of spiral beam
intensity distributions with the retention of structural
stability in the beam propagation and focusing is of interest
for laser technologies and the development of specific atomic
traps, whereas the nonzero angular momentum of these
beams opens new possibilities for manipulating microobjects.
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