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A scientific session of the Physical Sciences Division of the
Russian Academy of Sciences (RAS) was held in the
conference hall of the P N Lebedev Physical Institute, RAS
on 26 October 2011.

The following reports were put on the session’s agenda
posted on the website www.gpad.ac.ru of the RAS Physical
Sciences Division:

(1) Morozov S V (Institute of Microelectronics Technol-
ogy and High Purity Materials, RAS, Chernogolovka,
Moscow region) “New effects in graphene with high carrier
mobility”’;

(2) Volostnikov V G (Samara Branch of the P N Lebedev
Physical Institute, RAS, Samara) “Modern optics of Gaus-
sian beams’’;

(3) Mushnikov N V (Institute of Metal Physics, Ural
Branch of the Russian Academy of Sciences, Ekaterinburg)
“Intermetallide-based magnetic materials”.

The papers written on the base of these reports are
published below.
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New effects in graphene with high carrier
mobility

S V Morozov

1. Ways of improving mobility and ballistic transport

in graphene

The study of graphene is among the most rapidly advancing
areas of solid-state physics. Graphene continues to surprise
physicists with its various properties, combining a high
strength, record high extensibility, and high conductivity,
thermal conductivity, optical transparency, etc. But the chief
thing attracting the attention of numerous researchers to
graphene is its unusual electronic system and unique trans-
port properties [1-5].
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Carriers in graphene have exhibited a rather high mobility,
even in the early experimental works, despite the fact that a film
only one atom in thickness was in no way protected from the
environment. It is significant that the high carrier mobility
persisted upon increasing the temperature to room temperature
owing to relatively weak electron—phonon scattering. However,
attempts to raise the mobility to values exceeding the typical
values of (1-2)x10* em?® V~! s7! observed in graphene on
oxidized silicon substrates did not meet with success for a long
time. The scattering by nanowavy film structure and more
recently the scattering by resonant impurities were considered
as the main scattering mechanisms responsible for limiting
electron mobility in graphene [2, 3].

A new stage in the study of graphene commenced with the
emergence of structures exhibiting a far higher (by 1-2 orders
of magnitude) mobility. It became clear that the new
structures made it possible to study many subtle multi-
particle effects, in particular, the fractional quantum Hall
effect which was discovered in the new structures [6].

This report reviews the experiments on high-mobility
graphene structures, which were recently performed by the
author jointly with A Geim’s group at the University of
Manchester.

Two ways of obtaining more perfect graphene structures
began to show: the use of suspended bridges, and encapsula-
tion of graphene between boron nitride (BN) crystallites.
The former method involves the making of graphene
bridges suspended between metal contacts (Fig. 1a). First,
the standard method of micromechanical delamination is
employed to fabricate graphene bridges on an oxidized
silicon substrate. Then, a part of the oxide under the
graphene bridge is removed by chemical etching. An
important role is played by the concluding annealing of
the structure with the help of current pulses passed through
the suspended graphene bridge. The annealing is executed
under conditions close to the threshold of bridge damage;
however, it permits attaining locally high temperatures
(estimated at 700-800°C) without degrading the remaining
parts of the structure. Our experience suggests that long-
term exposure of graphene structures on silicon oxide to
temperatures above 400 °C impairs the transport properties
of graphene.
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Figure 1. (a) Suspended graphene bridge. (b) Graphene encapsulated
between two-dimensional crystals of boron nitride.

This technique permits attaining record high mobility in
graphene (above 10° cm? V~! s71), but at the same time leads
to several disadvantages. First, this technique permits
fabricating structures which are highly limited in both the
size (typically micrometer-sized) and topology (ordinarily
only two-contact structures). Second, suspended graphene
structures are in no way protected from the environment as
before and the concluding annealing is carried out directly in
a low-temperature cryostat in an inert helium atmosphere.

The second way of obtaining high-mobility structures
consists in placing graphene between thin (down to mono-
layer-thin) crystallites of boron nitride (Fig. 1b).

From a more general viewpoint, the latter way of
constructing graphene—boron nitride layered structures exhi-
bits a way of fabricating three-dimensional crystals on the
base of different two-dimensional constituents. There are
different approaches to the formation of new quasi-two-
dimensional graphene-based crystals. The feasibility of
obtaining new quasi-two-dimensional crystals by chemical
modification of graphene has been demonstrated in recent
years. This method was employed to obtain graphan [7] and
fluorographene [8], in which hydrogen and fluorine atoms,
respectively, are attached to the graphene lattice in an ordered
manner. Graphan and fluorographene possess dielectric
properties, and may be recovered to the initial graphene on
thermal processing.

Earlier, we showed [9] that the capacity of forming two-
dimensional crystals is inherent not only in carbon and that
they may be produced also from other layered materials, like
boron nitride, high-temperature superconducting BiSCCO
ceramics, and some dichalcogenides. Therefore, the spectrum
of two-dimensional crystals is rather broad: from semimetals
to dielectrics and superconductors. By placing individual
monolayers of different two-dimensional crystals one on top
of the other, it is basically possible to obtain new hetero-
structures with highly diverse properties.

One of the first examples of the implementation of such
heterostructures is the encapsulation of graphene between
two-dimensional boron nitride crystals with an atomic-
smooth surface, which were obtained by micromechanical
delamination. The fabrication procedure of the like structures
comprises the following stages. First, thin crystallites of
boron nitride are placed on the surface of oxidized silicon
with the aid of micromechanical delamination. A graphene
film is formed in a similar manner on another oxidized silicon
substrate preliminarily coated with a polymer. Next, the
graphene on the polymer is transferred to the first substrate
and superposed with the BN crystallite. On dissolving the
polymer, forming the topology of the structure, and metalli-
zation routing, the structure is covered with another boron
nitride film.

Both methods described above have advantages and
disadvantages of their own. Today, the highest electron

mobility in suspended graphene bridge structures exceeds
10° cm? V-1 571, At the same time, suspended bridges are
seriously limited in size as well as in structure topology, which
is due to the complexity of their annealing by current pulses,
while the two-point measurement system significantly bounds
the scope of possible investigations. The graphene on BN is
devoid of these drawbacks, since the encapsulation of
graphene protects it to a large extent from the action of the
environment, but the magnitudes of mobility attained to date
have been somewhat lower [as a rule, no greater than (1—
2) x10° em? V- 571,

The advent of high-mobility graphene structures based on
boron nitride made it possible to explicitly demonstrate
ballistic transport [10]. The experiment was carried out on
Hall bridges in the geometry of bend resistance Rg = V34/D)
(see the inset to Fig. 2). The current flows between contacts 2
and 1, while the potential difference is measured across
contacts 3 and 4, which may be calculated by Van der Pau’s
formula for the case of diffusion transport. The bend
resistance in high-mobility structures is negative in a wide
carrier density range, with the exception of a low-concentra-
tion domain, testifying that the injected carriers pass from
contact 2 to contact 4 almost without scattering (ballistically).
A similar effect has earlier been demonstrated in high-
mobility GaAlAs heterostructures, and its realization
requires that the carrier free path far exceed the characteristic
dimensions of the active region of the structure [11]. On
application of a weak magnetic field perpendicular to the
graphene layer, the bend resistance R becomes positive (see
Fig. 2), because the magnetic field bends the trajectories of
injected electrons and they can no longer reach the opposite
contact ballistically. With the assumption of diffuse carrier
scattering from the specimen’s boundaries, it is possible to
estimate the free path in the film bulk: it is ~ 3 pm at helium
temperature, and ~ 1.5 pm at room temperature. Therefore,
graphene-BN heterostructures exhibit micrometer-scale bal-
listic transport even at room temperature, which undoubtedly
opens up new vistas for the development of high-frequency,
low-noise microelectronic applications.
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Figure 2. Bend resistance Rg = V34/1; as a function of magnetic field B
forn ~ 6 x 10" cm~2 and temperatures of 50, 80, 110, 140, 200, and 250 K
(from the lowermost curve to the topmost one, respectively). The inset at
the left shows the measurement schematic, and the inset at the right depicts
the calculated dependence Rp(B) for n = 6 x 10'' cm~ in the billiards
model [11].
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2. Features of the band structure in the vicinity

of the electroneutrality point

A high carrier mobility is one of the principal special features
of new specimens, though far from being the only one. A
wealth of interesting physical effects are expected near the
point of electric neutrality (on approaching a zero carrier
concentration). But in a real experimental situation, it is
hardly possible to reach this point. Indeed, since there are
chaotic potential fluctuations, on lowering the carrier con-
centration the two-dimensional electron gas breaks up into
‘pools’ with holes and electrons (at points of local rise and fall
in the potential, respectively), and therefore a uniform
situation with the zero carrier concentration cannot be
reached. Of course, how close it is possible to approach the
Dirac point depends on the purity and quality of the
specimens. New graphene structures have allowed lowering
the working carrier concentration by factors of 10-100 and
studying the details of the band structure in the vicinity of the
electroneutrality point.

First, let us discuss single-layer graphene. The charge
carriers in graphene are similar to relativistic particles with a
zero rest mass. The linear dispersion law is described by the
expression E = vghik, where the Fermi velocity vg plays the
part of the speed of light, and k is the wave vector. As the
carrier concentration lowers and the electroneutrality point is
approached, the screening length increases and the electron—
electron interaction plays an increasingly important part. The
standard Landau theory of a Fermi liquid, which permits
representing a strongly interacting electron liquid as a gas of
noninteracting electrons, will no longer be applicable. The
inset to Fig. 3 illustrates the form of single-layer graphene
spectra obtained in a single-particle approximation using the
renormalization group technique [12]. The inclusion of
electron—electron interaction results in a lowering of the
density of states at low energies and in an increase in vg,
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Figure 3. Experimental (circles) and theoretical (solid curve) dependences
of Fermi velocity vg on the charge carrier concentration # in single-layer
graphene. The dotted line fits the standard value of vg in graphene at high
concentrations. The inset shows a diagram of the band structure in single-
layer graphene at low concentrations without (a single-particle approx-
imation, the outer cone) and with (the inner cone) the inclusion of
electron—electron interactions.

with a logarithmic divergence in concentration near the zero
energy.

By measuring the temperature dependences of Shubni-
kov—de Haas oscillations, it was possible to obtain the
dependence of the cyclotron mass on the carrier concentra-
tion n[12]. The experimental curve vg (n) corresponding to the
latter dependence is depicted in Fig. 3. In new high-mobility
specimens there is a possibility (which did not exist in our
earlier work [13]) of varying the carrier concentration within
three orders of magnitude. Experimental points show a three-
fold rise in vg as the Dirac point is approached, which nicely
agrees with the theory. Furthermore, several theoretical
papers [14—17] predict that electron—electron interaction at
low energies may give rise to new electron phases accom-
panied by the formation of a forbidden band. However, our
experiments revealed no hints at a dielectric behavior of
graphene down to energies on the order of 0.1 meV.

An even more interesting picture of the dispersion law at
low energies was discovered in two-layer graphene [18]. The
single-particle theory [19] predicts that the parabolic disper-
sion law in two-layer graphene passes into a quasilinear one
(the four minicones in the left inset to Fig. 4) for an energy
E < 1 meV. It was not feasible to ascertain the presence of
these special features in standard graphene structures on an
oxidized silicon substrate, which had a typical mobility of
~ 10* cm? V-! s~!. However, it was possible to verify the
data of theoretical calculations on suspended bridges of two-
layer graphene with a mobility of ~ 10° cm? V! s~!. The
behavior of the temperature dependence of resistance and the
picture of the motion of Landau levels along energy
coordinate when varying the magnetic field (Fig. 4) are
indications that the cones with a quasilinear spectrum do
exist, but there are only two of them rather than four. It is
precisely this picture caused by nematic phase transition with
a lowering of rotational symmetry in the electron subsystem
of two-layer graphene that is predicted by many-particle
theories [20, 21].
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Figure 4. Experimental (symbols) and calculated (curves) dependences of
cyclotron gaps 4 for different occupation numbers v. The inset displays the
low-energy portion of the two-layer graphene spectrum in a single-particle
approximation (the left part of the inset) and its reconstruction in nematic
phase transition (the right part of the inset).
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3. Giant spin Hall effect in graphene

The fact that graphene is a semiconductor with a zero band
gap revealed itself unexpectedly in nonlocal transport experi-
ments [22]. In the experiment schematized in Fig. 5a, the
electric current is passed between the contacts which are quite
close to each other, while the potential drop is measured away
from the classical current flow path. In a magnetic field, a
voltage appeared across remote contacts, whose dependence
on the carrier concentration or on the magnetic field was
qualitatively similar to the oscillations of longitudinal
magnetoresistance. Experiments of this kind had earlier
been carried out in high-mobility GaAs heterostructures,
and their results were attributed to the edge character of
current flow in a quantizing magnetic field and to the
scattering of edge states [23, 24]. An advantage of the
nonlocal experiment is that it enables filtering out the ohmic
contribution in the current flow and detecting more subtle
effects.

However, experimental results obtained with graphene
significantly depart from those with semiconductors [22].
First, the effect manifests itself with an increase in tempera-
ture up to room temperature, and at low temperatures it also
takes place in low magnetic fields up to 0.1 T (Fig. 6), making
problematic the explanation of experimental data by the
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Figure 5. Spin Hall effect in graphene. Schematic of the experiment and an
illustration of the emergence of the spin current in a direction perpendi-
cular to the charge current (a) as a result of Zeeman level shifts and the
production of electrons and holes with oppositely directed spins in a
magnetic field at the electroneutrality point (b).
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Figure 6. Nonlocal resistance of single-layer graphene encapsulated
between boron nitride crystallites in different magnetic fields at room
temperature.

scattering of edge states. Second, the effect is much more
pronounced only for the zero Landau level (which resides at
Zero energy).

The idea of explaining nonlocal response in graphene near
the point of electroneutrality is illustrated in Fig. 5b. The
Zeeman level splitting in a magnetic field shifts the Dirac
cones up and down in energy for quasiparticles with opposite
spin directions. When graphene resides at the point of
electroneutrality, this gives rise to a finite concentration of
electrons and holes with opposite spin directions. In the
passage of electric current, the Lorentz force induces the
currents of the carriers with opposite spins in the opposite
transverse directions, thus leading to a spatial spin disbalance
(the spin Hall effect). In this case, the hole and electron charge
currents compensate each other in the transverse direction,
and the Hall voltage is equal to zero at the point of
electroneutrality. Owing to a rather weak spin relaxation
[2, 25], a potential drop appears across remote contacts due to
inverse transformation.

Phenomenologically, the situation is similar to that for the
spin Hall effect caused by spin—orbit interaction [26-28]. The
spin—orbit interaction in graphene is weak, and the effect is
due to Zeeman level splitting in a magnetic field and the zero
band gap. In this case, its magnitude is two orders of
magnitude greater than that of the spin Hall effect in
conventional semiconductors, which makes the spin Hall
effect in graphene quite suited for use in spintronics.

4. Metal-insulator transition in graphene

In the early experimental works on graphene, it came as a
surprise that the maximum graphene resistivity p near the
electroneutrality point approached a value o h/e? (per
carrier type), but no indications of strong localization were
observed in this case. Indeed, even weak chaotic potential
fluctuations in two-dimensional systems lead to a sharp rise in
resistivity on lowering the temperature and the carrier
concentration [29, 30]. A value of p exceeding the quantity
h/e? signifies that the carrier free path / becomes shorter than
the Fermi wavelength Ap, so that quantum interference begins
to play the dominant role, resulting in a strong (Anderson)
localization. Because of the thermal activation of the carriers,
only a weak temperature dependence of the conductivity was
observed, even at the point of electroneutrality in graphene.

The situation changed radically on executing experiments
[31] on a system consisting of two closely spaced, but
electrically separated, graphene layers with a high mobility
(~10° cm?® V~!'s1). Figure 7a presents the schematics of the
experiment and the multilayer BN—graphene—BN—graphene-
BN structure under investigation, which lies on an oxidized
silicon plate. Measurements were made of the transport
properties of the first (investigated) graphene layer, with the
second (control) graphene layer serving as a neighboring gate
for the first layer (along with the Si substrate). It is significant
that the thickness of the boron nitride layer between the
graphene layers was equal approximately to 10 nm, and by
varying the carrier concentration in the control graphene
layer it was possible to substantially change the screening in
the graphene layer under investigation.

At low carrier concentration 7. in the control layer, the
graphene layer studied exhibited a usual behavior with a
conductivity minimum of o 4e?/h. However, for
ne > 101 cm? V-1s~! the resistivity rose rapidly near the
electroneutrality point at low temperatures (see Fig. 7). In
this case, the rise in resistivity was suppressed by a weak
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Figure 7. (a) Schematic diagram for the measurement in a structure
comprising two separated graphene layers lying on an oxidized silicon
substrate (the lower layer). There are boron nitride crystallites (not shown
in the drawing) between all the layers. The thickness of the boron nitride
layer between the graphene layers is d ~ 10 nm. (b) Dependence of the
resistivity p on the carrier concentration » in the graphene layer under
investigation for different carrier concentrations 7, in the control (upper)
graphene layer.

magnetic field (B < 0.1 T) perpendicular to the graphene
layer, which is more likely an indication of an interference
effect rather than of the discovery of a forbidden band in
graphene.

This behavior of the resistivity is indicative of a metal—
insulator transition, demonstrating the Anderson localization
on increasing p > h/e?. In standard specimens on a silicon
substrate, the metal-insulator transition is masked by
inhomogeneities and the formation of ‘pools’ of electrons
and holes near the electroneutrality point. The state of
graphene inside each of them is far from electroneutrality
point, and it remains metallic. Accordingly, the resistivity of
the system is determined by semitransparent (owing to Klein
tunneling [32, 33]) electron—hole transitions with a weak
temperature dependence [34, 35].

The control graphene layer may effectively screen the
fluctuation potential and suppress the emergence of electron
and hole pools, making it possible to study the behavior of
graphene in the vicinity of the electroneutrality point. This
interpretation also favors the idea that the proximity of the
minimal conductivity in traditional structures to the quantity
4e?/his due to the flow across the boundaries of the pools of
electrons and holes. Therefore, an unusual situation, which is
extrinsic to conventional metals and semiconductors, is
realized in graphene, whereby localization results from a
lowering of disordering rather than from its increasing.

In summary, it should be noted that the emergence of
high-mobility graphene structures has led not only to a
refinement of certain notions of the graphene physical
properties, but also to their revision. At the same time, it is
hard to overestimate the promise of the recently commenced
work on layered structures consisting of two-dimensional
crystals of boron nitride and graphene.

Graphene began its history at some point by separating
from its three-dimensional progenitor — graphite. It is not
unlikely that in the near future we will obtain a variety of new
three-dimensional materials custom-made of different two-
dimensional crystals and highly diversified in properties.
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Modern optics of Gaussian beams

V G Volostnikov

1. Introduction

A coherent light field, like any oscillatory process, is
characterized by its amplitude and phase. The methods and
means for analyzing light fields from intensity measurements
underlie optical instruments, and from the physical stand-
point the solution to any optical measurement problem
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involves establishing the relation between the energy and
structural parameters of optical radiation.

Owing to the special nature of the optical range, it is not
the complex amplitude of an optical signal that is amenable to
measurement, but only its intensity, which is not the complete
characteristic of a light field in the general case. Traditional
interferometric techniques provide, in principle, a possibility
of indirect phase measurements; however, in several problems
it is impossible or hard to realize the interferometric principle
for acquiring information about the complex amplitude or
phase of the field. This situation takes place in astronomy,
X-ray, and adaptive optics. In this connection, the quest for
and investigation of field intensity—phase relations, which
provide an answer to the question of how many intensity
measurements should be made and of what type should they
be so as to reconstruct the field itself or its certain character-
istics, are relevant. On the other hand, there is a separate area
of investigations in which the sought-after field is to be
synthesized rather than reconstructed. This applies to the
problems of radiation focusing on a domain with given spatial
characteristics and to the task of the intracavity formation of
a beam with a given output radiation structure. These
problems are kindred to that of light field analysis: they all
involve gaining information about the field from its energy
characteristics. However, it is easy to see that they are
significantly different as well: the physical realizability of a
field with the intensity under analysis is inherent in the very
formulation of the analysis problem, while the question of
whether a field with a given intensity exists is one of the
central ones in the synthesis problem. It nevertheless turned
out that the results of investigations concerned with the
analysis of light fields also open up fundamentally new
possibilities for their synthesis in different physical situa-
tions. Recent years have seen important new findings, which
have not been reflected in monographs. The central aim of
this report is to fill in this gap.

This report outlines the results of an investigation into the
so-called one-dimensional phase problem in optics. An
explicit analytical relation was found between the intensity
and the phase of a one-dimensional field in the Fresnel zone.

A two-dimensional problem in optics was also considered
and shown to be radically different from the one-dimensional
problem. It was established that the vector field of light
energy flux generally comprises potential and vortical
components; an explicit analytical relation was found
between the two-dimensional phase and intensity distribu-
tions for vortex-free fields in the Fresnel zone; the vortical
component was shown to obey a conservation law, specifi-
cally: the integral of the projection of the rotor of the light
energy flux vector onto the direction of propagation is equal
to zero for any plane in the Fresnel zone, and a relation was
revealed between the vortical component of the light energy
flux vector and wave-front dislocations.

Also obtained were explicit analytical dependences of the
phase of a two-dimensional light field on its intensity as
functions of certain parameters of the generating optical
system.

The behavior of Gaussian beams under astigmatic action
was investigated, too. It was theoretically shown that certain
astigmatic optical systems accomplish the mutual transfor-
mation of Hermite-Gauss (HG) and Laguerre-Gauss (LG)
beams. A parametric class of light beams— the generalized
Hermite-Laguerre-Gauss (HLG) beams described by a
complete system of parameter-dependent orthogonal func-

tions—was discovered and experimentally realized, the
known HG and LG beams being their special types. Optical
systems that realize the HG-to-LG beam transformation and
the results of the corresponding experiments are described
below.

The question of the search for light fields that retain their
structure in the course of propagation and focusing, correct to
scale and rotation, is formulated and solved in the paraxial
approximation. A total description of such light fields, which
are termed spiral beams, is given, as are their propagation and
rotation laws. The linkage between spiral beams and
quantum mechanics is considered. Several ways of realizing
spiral beams in experiment are suggested.

Methods for synthesizing light fields with a given intensity
distribution that are structurally stable during propagation
were considered. Proceeding from spiral beam optics, it was
possible to obtain light fields whose intensity distribution is of
the form resembling an arbitrary plane curve. The properties
of spiral beams for closed curves were investigated. Such
beams were found to exhibit characteristic quantization
properties: first, the intensity distribution undergoes a
radical change under similarity transformations of the
corresponding curve and has the shape of this curve only for
certain values of the similarity factor; second, the area under
the beam’s curve for the same values of the similarity factor is
related to the Gaussian parameter by an integer-valued
relation, and in this case the number of phase singularities of
a spiral beam inside the curve is also quantized and their
number is defined only by the area inside the curve rather than
by its shape.

Also outlined are the results of the application of spiral
beam optics to the synthesis problem of phase diffraction
optical elements intended for the focusing of a light field on a
plane curve and on a two-dimensional domain of a given
shape. A new iterative method was proposed for the solution
of this problem, which involves the employment of the near-
field phase distribution of a spiral beam and its far-field
intensity distribution for curves. Proposed for the focusing on
a domain were the corresponding distributions of Fourier-
invariant fields as the initial approximations in the synthesis
of the corresponding phase diffraction optical elements. The
results of numerical and natural experiments are presented.

2. Reconstruction of a one-dimensional coherent
monochromatic field from measured intensities

in the Fresnel zone

Let us elucidate the relationship between the intensity and the
phase of a light field in the Fresnel zone. The equation which
describes the Fresnel transformation has the form

F(x)= \/2% exp (—% m) Jb exp B’; (x — 5)2] U(é)de.
(1)

Most works on the one-dimensional phase problem are
concerned with algorithmic, purely numerical methods for
reconstructing the object field from intensity measurements.
On the other hand, it would be instructive to elucidate the
physical aspect of the problem and its association with the
mathematical formulation and, in particular, to derive
explicit formulas expressing the intensity—phase relation.
This formulation of the problem is all the more justified
since the use of explicit formulas offers several advantages
from the practical point of view: it shortens the computation
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time and permits, in principle, estimating the effect of
intensity measurement uncertainty on the accuracy of phase
reconstruction.

A similarly formulated problem for a parabolic approx-
imation was studied in several papers (see Ref. [1] and
references cited therein), which also suggest that deriving the
exact solution requires knowledge of the phase derivative
0@ /0x at some point. It is stated simultaneously that finding
the boundary condition for d¢/0x from intensity measure-
ments is unlikely.

We show below that it is possible to overcome this
difficulty and to determine the field F(x,/) and, hence, the
object field U(¢) from the measurements of intensity /(x,/)
and its derivative [;(x, /) along the direction of field propaga-
tion in the Fresnel zone [1]. In the latter zone, U(¢) = F(x,0)
and F(x,!) are related by Eqn (1). It may be shown that the
field F(x, /) entering Eqn (1) obeys the parabolic equation [2]

o°F . OF
Substituting F(x,/) into Eqn (2) in the form F(x,/) =
v/ 1(x,1) exp (ip(x,!)) and separating the real and imaginary
parts give the system of differential equations for the intensity
and the phase of the field F(x,/) in the Fresnel zone:

o () Uy
Ox Ox ol (3)

0’1 /o1’ g \* op
20— —(=—) —4r*|( = 2k—|=0.
ox? <ax) Kax) + al] 0
The former equation serves as the continuity equation for the
flux j = (jv, ji) = (I0¢/0x, kI') and expresses the law of light

energy conservation in differential form [1]. By integrating
this equation, we obtain

a [ X

1,1y 2200 ka L(t,1)dt +c, (4)
ox

where ¢ = I(xo) 0¢/0x (x9). Repeated integration yields an

expression for the field phase in the Fresnel zone:

< dr | X dr
x)=¢a)—k| — Irdr+cJ—. 5

o) =@ k| 7 | n@acre| 75
One can see from expression (4) that obtaining the phase
requires knowledge of the boundary condition for ¢ /0x at
some point xo, the nonlinear character of the relation between
I(x,1) and ¢(x,/) in expression (4) making this issue quite
significant. Let us show that the boundary condition for
0¢/0x may be found from intensity measurements.

We define the differential operators

or .o ., 3% .0

and rewrite equation (2) in the form

X0

LF(z,l)=L"F*(z,1)=0.

The action of operators L and L* on I(z,/) leads to the
following result

LI(=1) =2 % (F(z,z) aaiz (z,l)), .
LI(z,1) =2 % <F*(2J) Z—f (ZJ)> :

Figure 1. Zero pairs (z,,, Z,,) of the analytic continuation of intensity /(z, /).
Black dots indicate the zeroes of field F(z,7), for which the first of
equalities (8) takes place.

Both differential relations (7) are proved by direct substitu-
tion with the use of Eqn (2), for instance:

OF OF*
OF*
F—:1].
62)

LI=F'LF+ FLF*+2 —
0z Oz
0%F*
Consequently, if z; and z; are the zeroes of function F(z, /) for
some fixed /, then

=2F +2

For e
0z2 0z 0z oz

J S H(z,0)dz = 0. (8)

k53
J Li(z,l)dz=0,

Z1 1

The use of equalities (8) permits determining all zeroes of
the function F from magnitudes of the intensity /(z, /) and its
derivative 01(z, /) /0l for some [ = Iy = const (Fig. 1).

Therefore, the problem of separating out the set of F(z)
zeroes from the set of I(z) zeroes may be solved from the
distributions of the intensity /(x) and its derivative [;(x) in
some fixed plane / = const with the aid of analytic continua-
tion and the use of the properties of the functions /(z) and
I)(z) in the complex plane.

3. Reconstruction of a two-dimensional coherent
monochromatic field from measured intensities

in the Fresnel zone

The linkage between the intensity and the phase of a two-
dimensional light field F(x, y) is more poorly understood than
its one-dimensional analog. In particular, the nature of the
nonuniqueness of the problem’s solution and the body of
measurements required for its solution are not quite clear.

To substantively analyze the differences between the two-
and one-dimensional phase problems, it is expedient to
consider the two-dimensional version of a problem solved in
the one-dimensional case.

In this section we shall study the two-dimensional
problem, or the reconstruction of light field F(x,y) at
/ = const from the measurements of intensity /(x,y) and its
derivative along the direction of propagation of the radiation
I)(x,y) in the Fresnel zone. This formulation of the phase
problem is of interest in the quality control of large-sized
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optics, the synthesis of optical elements and light fields, and
several other applications.

It is well known that U(&, %) and I(x,y,/) in the two-
dimensional case in the Fresnel domain are related by the
expression

I(x,y,1) = F(x,3,1) F (x,y,1)
2

©)

where Qs the U(¢, n) carrier, i.e. U(&,n) = O when (&,1) € Q.
The amplitude of F(x,y,/) from expression (9) satisfies
the following quasioptical parabolic equation [1]

s ”Q P (lzi; (=8 + - nﬂ) U(&,n) dedy

0*F . OF
ax2+ay_2+21ka—0

o%F

(10)

By analogy with the one-dimensional case, F(x,y,!/)
may be represented in the form F(x,y,/)=
I(x,y,0)exp (ip(x,y,1)) and, on substituting it into equa-
tion (10), it is possible to separate the real and imaginary
parts.
It is easy to verify that

No FVF—FVF

A 2ik )= (]xv.]y)7 (11)

where j is the vector component of the light energy flux in the
(x, y) plane, and obtain the light energy conservation law, or
the continuity equation which may be treated as the three-
dimensional divergence of the vector j = (v, jy, 1) or as the
equation for a flat field:

0 | o
a"-v‘]—o,

where p = I(x,y,1), and j = (jy, j,). Substituting F(x, y,/) =
U(x,y,0) +1iV(x,y,!) into expression (11) gives

(12)

_UVV-wWU _ 1, ov oU L ov  0U
1= k AT R R T A
(13)

One can see from expression (11) that the phase reconstruc-
tion problem in this formulation reduces to the reconstruction
problem of the vector field from its rotor and divergence. The
rotor of the flux is defined as

2<6U6V 6U6V> 1<g6_<p_g©_q)> (14)

rotoJ = k Ox Oy

Ox 0y Oy Ox

k

Mention should be made of the fundamental difference
between the two-dimensional phase problem and the similar
one-dimensional one. The solution to the two-dimensional
problem is similar to the solution of the one-dimensional
problem only when rotg j(x,y) = 0. This is true, for instance,
for fields F(x,y,l) = F(g(x,y),!), where g(x,y) is a real
function. The physical meaning of the difference between
the two- and one-dimensional cases may be treated as follows.
As revealed by analysis of the similar one-dimensional
problem, the structural and phase field properties may be
directly and completely represented by its energy character-
istics; the intensity distribution and the energy conservation

law permitted obtaining explicit formulas for the phase of the
field. As follows, for instance, from equation (12), the
structural and phase properties of the field in the two-
dimensional case are not necessarily representable directly
by its energy characteristics.

The complete definition of rotg j(x, y) in terms of the field
intensities is impossible. It is nevertheless possible to prove
several results characterizing the local and global properties
of rotg j(x, ) [3].

Let F(x,y) = v/I(x,y) exp (ip(x, y)) be the Fresnel trans-
formation at / = const of some function with a finite carrier,
with the scalar function rot j(x, y) defined by equality (14).
Then one has:

) if (xp, yo) is the intensity extremum point and
I(x0,y0) # 0, then rotg j(xo, yo) = 0; if I(x¢, yo) = 0, then

1 (021 %1 0% \?
to (o = — : (15
|roto j(xo, )| i\ ox2 5y <axay> (x0,»0) ;5 (15)
2) if (xo, yo) is an isolated simple zero of function F(x, y)
and L is some contour which does not contain zeroes other
than (xg, yo), then

ﬂg Vo dr = 2 sign rotg j(xo, yo) ; (16)

L

3) the following rotor ‘conservation law’ takes place:

” rotyj(x,y)dxdy =0. (17)
RZ

In this section, therefore, the problem of the relation
between the intensity and the phase of light field F(x,y,/)
was considered. In this case, we revealed a radical difference
between the two- and one-dimensional phase problem
solutions, which is due to the existence of the rotor of the
light energy flux vector. The properties of the scalar function
roty j, which generates this difference, were investigated.

4. Relation between the phase and intensity

of the light field as functions of optical system parameters
In Section 3 we showed that passive measurements of the two-
dimensional intensity distribution in the Fresnel zone do not
permit deriving in general an explicit analytical relation
between I(x,y,/) and ¢(x,p,/). To state it in different
terms, the information about the action of the field propaga-
tion operator L = 02 /dx? + 02 /dy? + 2ik 0/d/ on the inten-
sity does not produce a result similar to that obtained for the
operator L = 3°/0x? + 2ik /0l in the one-dimensional case.
Now the question is in order: Are there operators which
describe real physical situations and provide the solution of
this problem for a two-dimensional light field?

Let us consider the transformation of an optical field by
an optical system. To simplify calculations, in this section we
put x =x;, y=x;. It is well known that the complex
amplitude F(x;, x;) in the image plane is a Fourier transform
of the amplitude Uy(¢;,&,) at the exit pupil of an optical
system:

F(XI’XZ):”Rz exp [—i(x1¢+x28)] Up(&y, &) dép dé,,
(18)
where Uy (&, &) = P(&),82) f(61,82), P(&y, &) is the complex

function of the pupil of the optical system, and f{&;, &,) is the
Fourier spectrum of the image.
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It is evident that F(x;,x;) and I(x1,x;) = F(x1, x2)X
F(x1,x;) depend on the parameters of the optical system,
characterized by function P(&q, &5).

Consider the problem of F(x, x,) reconstruction from the
measurements of intensity /(xj,x;) as a function of these
parameters. By analogy with the aberration theory [1], we
represent P(¢q, &,) in the form

P(ﬁhfZ):X(€17£2)exp(_iw(éh£2))7 (19)
where y(&, &) is the characteristic pupil function Q defined
as

INERRCERSE Y
dee={y (G ea

W&, &) = W21€12 + szfzz; here, W, stands for astigma-
tism.

Now if W», = ay,, the problem reduces to the reconstruc-
tion of F(xy, x,) from the measurements of intensity /(x;,x2)
and its derivatives with respect to oy, forn =1, 2.

Upon similar transformations, equation (12) reduces to
the following system of equations

ol o (. dp
2 I = =1,2.
0oz, + ox, ( Gx,l> 0, n ’

The system of equations (20) describes an optical system
with cylindrical phase mask exp (—ikoo, if) at the exit pupil of
the optical system or an optical system with cylindrical
defocusing of the illuminating beam and recording in the
far-field radiation zone. We note that the problem in the one-
dimensional case is completely similar to that considered in
Section 2.

Therefore, the field variation under purposeful action on
the field is more informative than its variation under natural
propagation. This is supposedly an illustration of the well-
known fact that an active experiment gives better results than
passive observation.

The requisite astigmatic actions (20) on the light field may
also be realized directly by employing specific diffraction
elements [4].

Let us select the phase function W(&,,&,) entering
expression (19) in the form

(20)

W) =To( 5 o + &) + To 306 + &), 1)

where T (x) is a T-periodic function of argument x, and o is a
parameter. The phase element with the profile (21) may be
represented as a Fourier series:

. . . 2n
exp (I8, 6)) = ch exp <lmoc€f +im = a)

X exp (inocfz2 +in 2%: §2> ) (22)

(T 2n .
n =7 Jo exp < — 7n imx + 1T0(x)> dx.

It is easy to see that such a diffraction element operates as
a system of off-axis astigmatic lenses with principal focal

lengths f,, = n/ami, f, = n/anl. in the (m, n)-th diffraction
order (Fig. 2). The diffraction angles of order (m, n) are

Figure 2. Diffraction pattern of a Gaussian beam: intensity (a, b) and
phase (c, d) with diffraction element (21) without astigmatism (a, ¢), and
with astigmatism ©(¢7 — 2)/ My, fo = m/a2 in figures (b, d).

B, = arcsin (mA/T) and f, = arcsin(nd/T), respectively,
and the complex amplitude (19) in the image plane for phase
function (21) takes on the form

Flia) = enes || exp (cinty i) e &)

m,n

2 2
X exp (imocflz +im _; fl> exp <ina§§ +in = (:2> dé, dé,

Z 2r 2n
= CmCnlpm | X1 T m, X __T nj.

m,n

(23)

5. Transformation of Hermite-Gauss beams

into Laguerre—Gauss beams

The phase problem in optics may be considered as the
problem of the linkage between the structural and energy
characteristics of a light field. In Sections 2—4 we investigated
the relation between the intensity and phase of a light field
which satisfies the quasioptical parabolic equation in the
Fresnel zone.

Different modifications of this equation describe a broad
class of phenomena in quantum mechanics and optics. It is
evident that the fields which possess structural stability
during propagation occupy a special place, and the inten-
sity—phase relationship is characteristically embodied in
them.

On the other hand, as noted in Section 4, an HG beam is
transformed into an LG beam in the course of diffraction by
an astigmatic diffraction element (Fig. 3). In this connection,
the structurally stable solutions of the parabolic equation call
for a closer examination.

HG beams are well-known families of the stable solutions
of the parabolic equation in optics:

Ho,m(x,¥) = exp (_xz - y2) Hn(ﬁX) Hm(\/zy) )

n,m=0,1,..., (24)
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Figure 3. Pattern of Hermite-Gauss beam diffraction by diffraction
element (21): intensity (a), and phase (b).

like LG beams:
ﬁn‘j:m(xﬂj) = eXp(—X2 - yz)(x + iy)'77£’:’l(2x2 + 2y2) )
(25)

nm=0,1,...,

and occupy a prominent place in the theory of resonators and
light guides.

Therefore, the change in HG beams under defocusing
reduces, correct to a quadratic phase factor, to only a change
of scale.

On the other hand, the general form of astigmatism is
described by the expression

W(&ma,0) =al(E* —n?) cos 2o+ 2¢nsin 2] . (26)
One can see from expression (26) that, unlike defocusing
which is invariant under rotations, the form of the field

Fvyna) = [ | exp (=iCat+3m) +i0(En.a.2)

x U(&,n)dédy (27)
depends on the rotation angle o in the propagation in
‘astigmatic’ space.

Let us now consider the transformation of HG beams
under general astigmatic action (see also Ref. [1]):

Funloyea)= [ [ exp (=i(xz +m) +ib(E.n. )

&y

X Hom (—, —) dédy. (28)
p’p

Of particular interest is a special case of transformation
(28): for a=1/p? and « = n/4, HG beams go over to LG
bea ]:

ms [4
. 2i¢ .
” exp {—l(xé+yn) +—‘i’7] Hn,m(ﬁ, ﬁ) dédy
R p pp
2
np n+m L. 2 >
=— (-1 exp|——1p"xy
ﬁ( ) p< 7P

n X )
(21) M!Em.,nfm (Zpﬁ, %) for n=m,

(29)

px

N\ p.y
20" 0Ly men | ——=,
(@) L ”(2\/5 2V2

For any fixed «, the set of fields is a full-value family of
orthogonal, structurally stable beams, like the families of
HG {Hym(x,y),n,m=0,1,...} and LG {L, n(x,y),n,£m=
0,1,...} modes. These fields, which were termed generalized
Hermite—Laguerre-Gauss beams, were obtained experimen-
tally for different a. These fields were sequentially realized in
rotating the cylindrical lens about the optical axis by an angle
o. The generalized beams obtained experimentally are
exemplified in Fig. 4 forn =5, m = 4.

) for n<m.

6. Fields with rotation and their properties

As a rule, the alteration of beams in their propagation and
focusing is associated with the stretching—compressive defor-
mations: converging and diverging beams. On the other hand,
it is evident that even for a simple anisotropy of the beam
phase the beam divergence (deformation) also becomes
nonuniform. This brings up the legitimate question: Is there
some analogy to the torsional strain in the case of a beam with
nonuniform divergence? As shown in Section 2, generally the
light energy flux consists of two components: divergent, and
vortical. In a certain sense, the former component corre-
sponds to stretching—compressive deformations, and the
latter one to torsional strains.

In Section 5, we considered the links between HG and LG
beams. A characteristic property of these beams is structure
retention, correct to scale, in their propagation and focusing.
Taking into consideration the vortical component of the light
energy flux vector, the notion of structural stability of light
fields may be extended. Specifically, this involves examining
the question of whether there exist light fields which retain
their structure, correct to scale and the character of rotation.

Figure 4. Hermite—Laguerre-Gauss beams with angle o varying from 0 to ©t/4.
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In this case, the structural stability condition may be
defined as follows:

I(x,y,1) =D(l
(xcos ol

X]()

)
)—ysin0(l) xsin0(l)+ycosO(l)
e ) o

where 0(/) stands for the intensity rotation in the propagation
of field F(x,y,/), and d(/) > 0 is the intensity variation
scaling. Let us define real variables by the equality
X +1Y = (x +1iy) exp (10(/))/d(!). The exponential decrease
in the intensity at infinity (28) permits revealing the structure
of the phase ¢, (X, Y, /) and rewriting the representation for
the light field in the form

Fx, 1) :ﬁmx Y)

X exp (% ikd(1)d'(1)(X* + Y?) +iy(l)) . (31)

where Fy(X,Y) = /I)(X,Y) exp (ipy(X, Y,0)). The struc-
tural stability of the intensity thereby generates the structural
stability of the phase.

On substituting expression (31) into the parabolic equa-
tion, we arrive at the equation for the function Fy(X, Y):

o _
oY

0F

Yox

V2F0+4i60(X )—4F0(X2+ Y2 —9,)=0.

(32)

At 0y =0, equation (32) coincides with the stationary
Schrodinger equation for a harmonic oscillator, and its
solutions are well known. These are Hermite—Gauss func-
tions Hym(X,Y), yo=n+m+1 for n,m=0, 1,..., and
Laguerre-Gauss functions £, ,(X, Y), yo = 2n + |m| + 1 for
n,+m=20,1,....

We shall seek the solutions of equation (32) in the form

o0

Fo(X, Y) = Z Cnn1£n,/11(X7 Y)'
n, £m=0

(33)

Expansion (33) is always possible owing to the finiteness of
the energy of field Fy(X,Y) and the completeness of the
system of functions {L, .(X,Y), n,£m=0,1,...} in
L,(R?). Substituting expression (33) into equation (32), we
obtain

chm‘cn,m(Ac Y)(zl’l + |m| + Oom — yo + l) =0,

n,m

and on the strength of the completeness of the system of LG
functions, the following relation comes into play:

Com(2n + |m| + Ogm — yo+1) =0 for all n, m.

Thus, the problem of the search for Fy(X, Y) reduces to the
determination of integers n, m from the equation

2n+ |m| + 0pm =yy — 1. (34)
Thus, this completes the total description of rotating
structurally stable solutions to the parabolic equation,
which have come to be known as ‘spiral light beams’ [2].

The Schrodinger equation for the wave function of a
charged particle with mass M and charge ¢ in a uniform

magnetic field A has the form

’

.. a!// 2¢ 1
2 @ 2 2cME
V2 + 4disign (eH) 30 41//<R Al H| )

where E; = E — p2/2M, E is the particle energy, and p. is the
component of the particle momentum along the field
direction. One can see that the last equation is equivalent to
Eqn (32).

7. Spiral beams with a given intensity distribution
It is well known from different works on the phase problem
that the intensity—phase relations in the one- and two-
dimensional cases are radically different. The physical
aspects of this difference were considered in Sections 2 and
3, where we came to recognize that it is intimately concerned
with the possibility of the occurrence of a vortical component
of the light energy flux vector in the two-dimensional
approach. A nonzero rotor of the light energy flux vector
significantly complicates the intensity—phase relation in this
case. On the other hand, this complexity also gives rise to new
possibilities.

From the results outlined in Section 6, it follows that in the
two-dimensional case there exists a class of coherent light
fields — spiral beams — of the form

1 x24y? x+i
F(X»J/:l):;eXp (_ pZO'y )f< p6y>

(35)

One can see from this representation that the class of these
fields is rather broad, but the proof of the existence of a beam
with given properties and the constructive method of its
extraction from this class represents a nontrivial task. This
section is concerned with the study of the possibilities for
goal-seeking synthesis of light beams (35).

Let us consider several properties of the spiral beams of
this class, which follow from representation (35) and are
addressed in the subsequent discussion.

Property A. If S,(z, 2) = exp (—zz/p?) f(z/p) is some
totality of spiral beams, their linear combination

S(z,2) = eaSulz, 2)

is also a spiral beam. And, in general, if S,(z, z, a) =
exp (—zz/p?) f(z/p, a) stands for a parametric family of
spiral beams, then

S(z, 2) = JS(Z, z, a)da

is also a spiral beam.
Property B. If Sy(z, z) = exp (—zz/p?) f(z/p) defines
some spiral beam, then

S(z, 2) = exp ( _%i)f(w)

likewise is a spiral beam possessing the same intensity
distribution as Sy(z, Z) but turned by an angle a.

Property C. If Sy(z, Z) = exp (—zZ/p?) f(z/p) is some
spiral beam, then

S(z, 2) = exp < _EC 22524—2020)],(2 —pZo)

(36)
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also represents a spiral beam possessing the same intensity
distribution as Sy(z, Z) but shifted to a point zy. These results
naturally generate the following question. Let there be some
curve in a plane, specified in a complex parametric form
{ ={(r), where parameter ¢ varies over the interval [0, T].
Does there exist a spiral beam S(z, z|{(¢), ¢ € [0, T']) with the
shape resembling this curve? It turns out that such a beam
does exist and assumes the form

S(z,21(1), € 0, T7)
— T 3 o o
:wp(_é)Jeq{_4m§”+”§”
p?) Jo p p
t
s e - rm) e coja. @
It is significant that for practical applications, i.e. in the
representation of a plane curve in a discrete form, finite
increments turn out to be more convenient than differen-
tials, because in the former case there is no need to find
derivatives —a none too pleasant task.

The beams for closed curves occupy a special place and
deserve separate consideration. Let function {(¢), ¢ € [0, T']
describe a closed curve without self-intersections. Without
loss of generality, it may be assumed that the curve is traced
counterclockwise with increasing 7. We define {(¢) for all real #
by continuing it periodically beyond the segment [0, T']. Then,
the functions {(z + a), t € [0, T'] describe the same curve for
different a. Do the spiral beams for the curves ((z+ a)
coincide for different a?

It will be shown that the beams constructed for closed
curves exhibit characteristic quantization properties. This
manifests itself in the fact that, first, the intensity distribution
of these curves undergoes radical changes under the similarity
transformation {(¢) — v{(¢), and possesses the topology of
the curve v{(¢) only for certain discrete values of parameter v.
Second, the intensities of the beams constructed by the curves
v((t + a) for different a are the same only for these values of
parameter v.

Let us find the condition whereby the spiral beams
constructed for curves {(¢) and {(z + a) coincide:

1S(z, 21C(0), 1 € [a, a+ T))|* = |S(z, 2lc(0), 1 € [0, T)) .

We rewrite the above identity in the form
exp (i@(a)) S(z, 2IL(2), 1 € [a, a+ T))

=S(z, z[L(r), 1€ [0,T]), (38)

where @(a) is some real function independent of z (otherwise,
by canceling the Gaussian function from both sides of identity
(38), we find that @ is an analytical function of z and,
consequently, may not be real for all z). Differentiating
identity (38) with respect to ¢ and making use of the
periodicity of {(¢), one obtains

exp (19(a)) S(z, 2|L(1), 1 € [a, a + T])
x {id&’(a) U@ '(e) - La)l (a)}
{

(@) }

<Jow (5] e -nae) <1 i =o.

Replacing the spiral beam in the first term in accordance with
identity (38), canceling the Gaussian function, we rewrite this
equation in a symbolic form

.ﬂnzaw>+ema(2fg”

)aw:m

where f(z) is an integer analytical function, and Fj(a) and
F>(a) are some functions of a. This equality takes place for all
z, a only when Fj(a) = F>(a) = 0 (when f'(z) has a zero, this
follows immediately; the case where f(z) has no zeroes is also
simple). Therefore, one has
l ¢z / ! 1 g ol 2
ola) = o | @ —tdn e (| @ - car) =1
1= Jo P=Jo

and, hence [4]

L mem - iore)a ==,

in2
1p= Jo

where S is the area bounded by contour {(¢).

Therefore, the beam intensity is independent of the origin
of integration a only for curves whose area satisfies the
quantization condition

S:%TtpzN, where N=1,2,.... (39)
The closed curves which satisfy equality (39) will be referred
to as N-quantized curves, and the spiral beams for such curves
are called N-quantized beams.!

A strictly defined number of optical vortices inside the
domain bounded by the generating curve correspond to a
quantized beam, which depends on the domain area and not
on its shape (Fig. 5) [3, 4]. Hence it follows that, with an
increase in domain area, say, from S = (1/2)mp’N to
S = (1/2)mp%(N + 1), an increase in the number of zeroes
occurs inside the domain due to the entry of one zero from

Figure 5. Intensity (a, d), phase (b, e), and phase outside the beam waist
(c, ) for a spiral beam in the form of the boundary of a triangle (a—c) and a
square (d—f).

UIf we refer to the quantum-mechanical analogy noted in Section 6, the
wave functions of a ground-state particle in a constant magnetic field
correspond to the spiral beams with 6y = =1, y, = 1. In this case,
condition (39) matches the quantized magnetic flux through the contour
{(t): @ = (2nhc/|e|) N (see also Ref. [2]).
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Figure 6. Spiral beam evolution under variation of the radius of the generating circumference.

the outside. One can see the process of zero penetration inside
the contour in Fig. 6 which shows the evolution of a spiral
beam for a circumference {(r) = R exp (it), ¢ € [0,2xn] for
2R?/p? € [4.0,5.0]. The zero entry zone is determined, as
discussed above, by the integration origin.

8. Conclusions

The aim of our conclusion consists in providing a summarized
and comparative analysis of the new results presented and in
formulating some incompletely resolved problems.

The generalized Hermite-Laguerre-Gauss beams found
in the investigation of astigmatic transformations of Gaus-
sian beams make up a parametric family in which the
previously known HG and LG beams are special representa-
tives corresponding to two certain parameter values. Further-
more, the astigmatic transformations of Gaussian beams
permitted proposing a new approach to the synthesis of
phase elements intended for the formation of light fields in
the form of arbitrarily shaped domains. This problem is now
at the research stage, and the level of its solution is still far
from the results obtained for light fields in the form of curves.
In our view, the reason lies with two interrelated circum-
stances: first, a domain, unlike a curve, is not an ordered set.
Second, light fields in the form of domains contain phase
singularities of both signs and are not structurally stable in the
Fresnel zone. That is why the synthesis of the appropriate
phase elements is complicated by several factors: the domain
shape, the synthesis technique, etc.

In recent years, the term singular optics has been used in
reference to light fields with wavefront dislocations, or optical
vortices. Fields of this kind, which are formed and observed
both in linear and nonlinear optical media, are the subject of
rather intensive investigation, and the development of
adequate theoretical and experimental approaches for the
exploration of fields with optical vortices is, therefore, a
topical task.

Of course, any coherent light field may be formally
represented as a superposition of the known HG and LG
beams, but this approach proves to be nonoptimal for the
analysis and synthesis of fields with phase singularities.

Vortical light fields which retain, correct to scale and kind
of rotation, their structure in the course of propagation, or
spiral beams, which are the concern of Section 7, are peculiar
‘vortical modes’ in the class of fields with phase singularities,

and deserve special consideration as a subject of coherent
optics.

In our opinion, this is due to the following main reasons.
First, spiral beams, despite the fact that they differ greatly in
the shape of intensity distributions, are described by explicit
analytical expressions, which makes them efficient instru-
ments in the study of the laws of formation and transforma-
tion of light fields with phase singularities of a general kind.

Second, in quantum mechanics there is a direct analog to
spiral beams — the wave functions of a charged particle in a
uniform magnetic field—and the laws of spiral beam
transformation have their representation in the theory of
coherent states. It is quite possible that these analogies will be
mutually beneficial, both for quantum mechanics and for
optics. Lastly, the flexibility of variation of spiral beam
intensity distributions with the retention of structural
stability in the beam propagation and focusing is of interest
for laser technologies and the development of specific atomic
traps, whereas the nonzero angular momentum of these
beams opens new possibilities for manipulating microobjects.
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Intermetallide-based magnetic materials

N V Mushnikov

1. Introduction

Intermetallic compounds of transition f- and d-metals are
interesting in that they can possess two systems of electrons of
different natures, namely localized and itinerant, which can
be responsible for magnetism. Rare-earth atoms have their 4f
electrons localized both in space and in energy. The interac-
tion of an orbital momentum with the lattice crystal field
results in a large magnetic anisotropy and a large magneto-
striction. At the same time, the indirect exchange interaction
between the 4f electrons is relatively weak, and the magnetic
ordering temperatures of rare-earth metals are low. Unlike 4f
metals, the energy spectra of transition 3d metals form
quasicontinuous bands. 3d (or iron group) metals typically
have a high magnetic ordering temperature but a low
anisotropy. Rare-earth intermetallic compounds often com-
bine the magnetic characteristics of pure 4f and 3d metals to
yield materials with a high ordering temperature and immense
anisotropy (or magnetostriction) simultaneously — which
enables their use as permanent magnets, as magnetostrictive
or magnetoresistive materials, and for magnetic cooling.

The magnetic properties of rare-earth intermetallides
have been the subject of intense study since the pioneering
work by K P Belov and his team at Moscow State University
in the late 1960s. In Ekaterinburg, the initiators of research
into the field were S V Vonsovskii, Academician, and
Ya S Shur, Corresponding Member of the USSR Academy
of Sciences, both at the Institute of Metal Physics (IMP) of the
Ural Branch of the USSR Academy of Sciences, and
A V Deryagin, Corresponding Member of the USSR
Academy of Sciences, at Ural State University. With a host
of exciting results obtained in recent years, it is beyond the
ambition of this review to cover the entirety of what has been
done and achieved in this vast area of the physics of magnetic
phenomena. The discussion will be limited to the work carried
out at the UrB RAS IMP in close cooperation with other
research centers on magnetism of intermetallides, both in
Russia and abroad.

2. Permanent-magnet materials

From the middle 1970’s onwards, the highest values of
specific magnetic energy have been achieved in permanent
magnets made of highly anisotropic intermetallide phases
such as SmCos, Sm,Co;7, and Nd,Fe4B [1]. From the
application point of view, of most importance is the
segment of high energy-consuming permanent magnets
based on Nd—Fe-B [2], whose global production is about
100,000 tons a year. Russia is lagging far behind developed
countries both in production volume (about 140 tons a year)
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and in the property level of rare-earth permanent magnets. In
particular, Russian-produced permanent magnets typically
have a maximum energy product (BH ). of 40.0 MG Oe —
in contrast to the specific magnetic energy of 50.0 MG Oe
accessible on the world market. Recently, the joint research
efforts of the IMP, Ural State University, the Ural Electro-
mechanical Plant, and the Moscow Steel and Alloys Institute
has resulted in developing a low-oxygen technology for
fabricating sintered permanent Nd—Fe-B magnets using
strip-cast alloys. With the basic technological processes
optimized, a maximum energy product (BH),, >
50 MG Oe was obtained industrially, which matches the
level of the best magnet manufacturers and is 25% superior
to the domestic commercial analogs [3]. Importantly, though,
the maximum theoretical value for the Nd,Fe 4B phase is
68.0 MG Oe, leaving significant room for improvement. The
maximum theoretical value of the energy product for a
permanent magnet is determined by magnetization. The
material showing the highest magnetization at absolute zero
temperature is holmium, for which the theoretical value of
(BH ).« 18 350.0 MG Oe. Thus, the potential for magnetic
materials based on intermetallic compounds between rare-
earth metals and iron group metals is far from exhausted.

High-technology industries including computer hard-
ware, robotics, and automobile engineering are unimagin-
able without permanent magnets. In the rotors of high-speed
centrifuge-driving hysteresis motors, only mechanically
strong hard magnetic materials can be used. The IMP
Laboratory of Ferromagnetic Alloys developed a high-
strength hard magnetic alloy based on nanocrystallized
Fe-Cr—Co, whose combination of functional properties
makes it unique in the world. Its mechanical properties are
close to those of high-strength steels, whereas its magnetic
characteristics are optimum for hysteresis motors [4].

In tungsten- and gallium-doped Fe-Cr-Co alloys, by
using hardening, annealing, and intense plastic rolling
deformation, a multiphase nanocomposite state was formed
instead of a conventional modulated structure, resulting in a
high-strength high-plasticity material (conditional yield limit
of up to 1500 MPa, and relative elongation of up to 6%).
Structure studies [5, 6] using nuclear gamma resonance
(NGR), X-ray diffraction and transmission electron micro-
scopy established that the hardening of the alloy and the
formation of a highly coercive state are due to the decom-
position of a homogeneous a-Fe-based solid solution com-
bined with the evolvement of nano-sized particles of the
tungsten-enriched paramagnetic intermetallic phase.

3. Materials for magnetothermal applications

The employment of the magnetocaloric effect in cooling
machine design [7] is believed in the last few years to be one
of the most promising applications of magnetic materials.
Unlike the mechanical compressors currently used in refrig-
erators, magnetic cooling devices are noiseless, consume less
electric power, and are ecologically safe. While most of their
working prototypes utilize gadolinium as a working medium,
a number of rare-earth intermetallides, such as La(Fe,Si);3H,
and RCo> (where R is a rare-earth element), also show
considerable promise for application. Because the tempera-
ture change due to the demagnetization of a material is
determined by magnetic entropy, it follows that compounds
whose magnetization is strongly temperature-dependent near
room temperature hold promise as magnetic cooling materi-
als. This understanding stimulated recent interest of research-
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Figure 1. Spontaneous magnetization of (CoMn);_,Ge compounds as a
function of temperature for different x. Dashed lines fit calculated results
for the hexagonal and orthorhombic phases.
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Figure 2. Magnetization curves of the NisoMns7(Sng gIng ») alloy illustrat-
ing a martensite transformation induced by a pulsed magnetic field.

ers in compounds with structural phase transitions near room
temperature, with various structural components having
widely different magnetizations. The most widely known
examples are Heusler Ni;,MnGa alloys [8] and alloys based
on Gds(Si,Ge)s [7]. The IMP is currently searching for
effective magnetocaloric materials based on CoMnGe,
Ni-Mn-Sn—In, etc.

The CoMnGe compound undergoes a diffusionless
structural martensite type transition at 470 K from the high-
temperature hexagonal NixIn type structure to a low-
temperature orthorhombic TiNiSi type phase [9]. Although
both are ferromagnetic, these modifications differ signifi-
cantly in magnetization and in the Curie temperature 7¢. By
varying the composition of the system (CoMn),_,Ge, we
were able to obtain alloys for which the structural transition
near the ferromagnetic ordering temperature is one from the
paramagnetic hexagonal to the ferromagnetic orthorhombic
phase [10] (see Fig. 1), which shows exactly the compositions
for which magnetothermal effects are expected to be
strongest. For x = 0.02, the transition occurs in the room
temperature range and involves an entropy change of
33.8 J (kg K)~!. Applying a magnetic field in excess of the
threshold value of 20 kOe in the vicinity of the structural
transition increases the relative volume of the higher-
magnetization orthorhombic phase.

The magnetic shape memory effect is even more pro-
nounced in Ni-Mn—In and Ni-Mn—Sn alloys [11], in which
the austenite and martensite phases differ widely in their
magnetization. The NisoMn37(Sng gIng )13 alloy subjected to
an 8-ms magnetic field pulse exhibits a field-induced
martensite transformation (Fig. 2) [12]. The critical transi-
tion field decreases as the measurement temperature
approaches the temperature of spontaneous martensite
transformation. Both the spontaneous and the field-induced
martensite transformation involve a considerable resistance
change: AR/R ~ —45%.

4. Mixed valence compounds and band metamagnets

The situation of practical interest is when two magnetic states
of an intermetallide are close in energy, in which case even a
slight action on the system (such as an external field, pressure,

temperature change, hydrogenation, or doping) can change
drastically the magnetic and other physical properties of the
system.

A free Yb*" ion has one unfilled 4f electronic state and
carries a magnetic moment. When in a compound, the 4f
vacancy is often filled by conduction electrons, resulting in
the formation of the diamagnetic Yb?* state. In the YbInCuy
compound, the change in valence occurs via a first-order
isostructural phase transition in a narrow temperature range
[13]. Although the valence of Yb decreases by a mere 0.1, the
magnetic susceptibility and electrical resistance show sharp
changes, and the specific heat and the sample volume undergo
an anomaly (Fig. 3). At low temperatures, applying a
magnetic field can destroy the low-magnetization Fermi-
liquid state.

Our laboratory study of pressure and doping effects on
the transition temperature, transition field, magnetic suscept-
ibility [14], specific heat [15], and magnetostriction [16] shows
that the anomaly in physical properties associated with the
small change in valence in a given compound is due to a
fivefold increase in hybridization factor between f electrons
and the conduction electrons [17].

Ferromagnetic ordering in a system of itinerant electrons
emerges in the presence of high density of electronic states
near the Fermi level. In a band structure of the compound
with the Fermi level lying on the steep downward portion of
the density-of-states curve, exchange interactions are
unstable, and a magnetic field can induce ferromagnetism in
a paramagnetic compound — a phenomenon known as band
metamagnetism [18]. (This usually requires a strong magnetic
field, according to Refs [19, 20].) The YCo, compound, being
a Pauli paramagnet, changes to a ferromagnetic state in an
external magnetic field of 700 kOe [21]. As shown in Ref. [22],
doping with aluminium reduces the critical transition field. In
Ref. [23], we investigated the effect of hydrostatic pressure on
the critical transition field in the Y (Co, Al), compounds under
pulsed magnetic fields. By comparing the effects of doping,
hydrogenation, and pressure, it proved possible to see
separately how the interatomic separation and the concentra-
tion of d-band electrons contribute to changing the transition
field [24].
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Figure 3. Magnetic susceptibility y, heat capacity C,, resistivity p, and
relative change in the sample size AL/L as functions of temperature for
YbInCuy. The isostructural valence-change transition at 7= 40 K in-
volves a sharp change in properties.

While UCoAl also shows signs of being band metamagnet
[25], its properties differ strongly from those of YCo,. The
critical transition field of this compound does not exceed
6.0 kOe. The magnetic moment emerges on uranium, whereas
cobalt carries no moment. Metamagnetism is observed only
along the c-axis, i.e. is anisotropic, unlike the isotropic
metamagnetism seen in YCo,. The goal of this research,
conducted in close cooperation with counterparts from
Japan and the Czech Republic, was to reveal the general and
particular aspects of an isotropic itinerant 5f-electron
metamagnetism.

The metamagnetic magnetization curves of UCoAl
measured for different pressures were analyzed with a
phenomenological theory of metamagnetic transitions using
the magnetic equation of state in the form of Landau
expansion in odd powers of magnetization [26]. Matching as
best as possible the theoretically predicted to experimental
curves yielded the Landau coefficients for different pressures,
which determine the temperature behavior of the magnetic
susceptibility in the theory of spin fluctuations [27]. The
numerical estimates of the maximum magnetic susceptibility
and the temperature dependence of the transition critical field
are in good agreement with calculated results, implying that
spin fluctuation theory is good at describing the properties of
anisotropic band metamagnets.

The term ‘metamagnet’ is also applied to ferromagnets
that lose their ferromagnetism—and become metamag-
netic— when subject to pressure or acted upon by thermal
flux. Such a transition is of particular interest in that applying
a relatively weak magnetic field drastically changes the
magnetization and conductivity of the material, as well as
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Figure 4. Hysteresis loops at 1.5 K measured for different values of
external hydrostatic pressure (a), and magnetic 7— P phase diagram (b)
for anisotropic band metamagnetic UCog 9gFeg 02Al.

the size of the sample. In UCoAl, ferromagnetism can be
obtained by substituting nonmagnetic iron for only 2% of
nonmagnetic cobalt. At a pressure above 0.4 GPa, ferromag-
netism is suppressed and, as is typical of UCoAl a
metamagnetic transition occurs (Fig. 4a) and the tempera-
ture dependence of the susceptibility reaches a maximum. A
study of this sample at various temperatures and pressures
provided the full magnetic phase diagram in the pressure—
temperature plane [28] (Fig. 4b), which agrees well with the
theoretical phase diagram obtained for a spin-fluctuating
band metamagnet [29]. To summarize, the results obtained
place UCoAl type compounds in a new class of anisotropic
itinerant 5f-electron metamagnets.

5. Layered magnets

The study of the physical properties of quasi-two-dimen-
sional and multilayered structures is currently one of the most
active areas in the physics of condensed matter. While most
research is done on thin multilayered films, there are among
intermetallic compounds a number of natural bulk analogs of
multilayered structures, including intermetallides of the
RM X, and RM¢ X, types (R is a rare-earth metal, M is a 3d
(4d) transition metal, and X is Si, Sn, or Ge). These
compounds consist of intermittent layers of magnetic and
nonmagnetic atoms. The strong ferromagnetic interaction of
magnetic atoms within a layer results in high magnetic
ordering temperatures. Therefore, the magnetic moment of
each layer turns out to be a macroscopic quantity and can be
treated as a classical vector. At the same time, the relatively
weak and easy to control interlayer interaction turns out to be
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Figure 5. Temperature dependences of magnetization along different
single-crystal directions at 50 Oe, and magnetic structures occurring in
the Lag75Smo2sMnsSi,> intermetallide at various temperatures. (AF
stands for antiferromagnetic structure, F for ferromagnetic, and P for
paramagnetic.)

responsible, by and large, for the formation of the magnetic
structure of the material.

In RMn, X, intermetallides, the magnitude and sign of the
interlayer exchange interaction between the magnetic
moments of manganese atoms in neighboring layers depend
strongly on the intralayer Mn—Mn distance and hardly, if at
all, on the interlayer separation [30]. In the RMn,Si, family,
the maximum Mn—Mn interatomic distance is observed for
R = La, and this is the only compound to exhibit ferromag-
netic ordering. Replacing lanthanum by any other rare-earth
metal can gradually reduce interatomic distances, thus
destabilizing ferromagnetism. The Lag75Smg25sMn;Si, com-
pound, with the Mn—Mn distance close to the critical value,
exhibits a number of spontaneous magnetic phase transitions,
due to temperature-related changes in the lattice parameters.
In Fig. 5, magnetic structures determined by neutron diffrac-
tion are shown for all the phases involved [31]. From the
magnetization measurements presented in Fig. 5, one deter-
mines the regions of existence of the ferromagnetic and
antiferromagnetic phases. In a low-temperature antiferro-
magnetic state, applying a magnetic field induces a first-
order phase transition to a ferromagnetic state [32], produ-
cing large changes in the parameters (Aa/a = 1.5 x 107%) and
volume of the crystal lattice, as well in the magnetic resistance
(AR/R = —27%)[33] (see Fig. 6). Varying the relative content
of the alloy components can alter the transition temperatures
and critical fields of these compounds over a wide range.

If the interlayer exchange interactions are long-range,
then, if there is interaction competition between the nearest
neighboring and next-to-nearest layers, a spiral magnetic
structure can develop, with the feature (observed in
YMneSne [34]) that the spiral divides into two branches
shifted through a certain angle. To find out the conditions
for the existence of double flat spiral structures, a theory was
developed — accounting for three interlayer exchange inter-
actions —which was also employed to model magnetization
processes in spiral structures [35, 36]. The results of this
modeling provided an explanation for the observed abrupt
change in magnetization caused by a magnetic field applied in
the basal plane.

Hp
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0 10 20 30 40 50 60 70
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Figure 6. Field dependence of magnetization M (a), linear magnetostric-
tion 4 (b), and electrical resistance R (c) along different directions in a
single-crystalline Lag 75Smg 2sMn»Siz at 7= 4.2 K.

In a highly anisotropic uniaxial ferromagnet, the applica-
tion of a magnetic field along the hard magnetization axis
normally causes the magnetization vector to turn smoothly in
the direction of the field. However, when the magnetic energy
of a sample varies nonmonotonically with angle, a field-
induced spin-reorientation phase transition involving a
sharp change in magnetization occurs in a certain critical
field [37, 38]. Unlike most first-order phase transitions, this
one exhibits a weak magnetic hysteresis, making it of interest
for practical implementations.

The occurrence of magnetic-field-induced first-order
phase transitions is thought to be related to a special feature
of the compound’s magnetic anisotropy: the presence of large
higher-order contributions in the expansion of the anisotropy
energy in terms of the directional cosines of the magnetization
vector. In accordance with the theory of single-ion aniso-
tropy, the higher the order of the contribution, the faster its
magnitude decreases with increasing temperature. Therefore,
such transitions are usually observed at low temperatures in
strong magnetic fields. In the TbMneSng compound, the
competition among contributions to magnetic anisotropy
from the Tb and Mn sublattices, combined with the presence
of a spontaneous spin-reorientation transition, result in the
occurrence of a magnetic-field-induced first-order phase
transition in weak fields around room temperature [39]. This
enabled the first neutron diffraction study of how magnetiza-
tion components change in the transition process [40]. The
replacement of terbium by gadolinium in a quasiternary
Tb,_.GdMngSng system produces a disordered solid solu-
tion within the rare-earth sublattice, allowing the magnetic
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anisotropy and exchange interactions to be gradually con-
trolled to shift the critical temperature and field of a magnetic
phase transition [41].

6. Nonstoichiometric intermetallides

The compounds comprising 4f and 3d metals are usually
characterized by a certain stoichiometry and are therefore
limited in number. All binary and many ternary intermetal-
lides have been synthesized, and their magnetic characteristics
are available in the reference and review literature. At the
same time, though, some structures allow deviations from
stoichiometry with the result that the properties of a
compound can vary widely within a homogeneity region.

It was found recently [42] that the RNi;Mn alloys, where
R = Tb, Dy, Ho, and Er, crystallize into an fcc MgCu, type
structure exactly as the compounds RNi, and RMn, do, even
though the number ratio of rare-earth-to-transition 3d metal
atoms is 1:3. The Mn atoms occupy partly rare-earth and
partly Ni sites [43], something which has never been seen
before in rare-earth Laves phases. Investigations showed
that the RNi;Mn, alloys remain cubic structure over a wide
Mn concentration range [44, 45]. It was found that
introducing manganese sharply enhances the exchange
interaction and greatly increases the magnetic ordering
temperature (4—7 times more than in the original RNi,). The
maximum 7¢ is reached for TbNi;Mng 75 and equals 160 K.

In the TbNi,Mn, system, spontaneous magnetization
monotonically decreases with increasing x. Unlike the
original TbNi,, where the nickel sublattice barely carries a
magnetic moment, introducing manganese results in the 3d
sublattice acquiring a magnetic moment directed opposite to
that of the terbium sublattice. The magnetization curves of
ferrimagnetic samples do not saturate until magnetic fields of
15 T. The introduction of manganese results in a monotonic
increase in the coercive force which is due to the pinning of
narrow domain walls on structural defects. It appears that the
partial replacement of terbium atoms by manganese atoms
leads to local distortions in the crystal field acting on the Tb
ions. As a result, local, random, uniaxial anisotropy arises,
giving rise to a noncollinear magnetic structure of the terbium
sublattice.

The starting TbNi, compound possesses giant magnetos-
triction at low temperatures [46]. Adding manganese causes
the anisotropic magnetostriction to decreases monotonically.
Unfortunately, because local anisotropy on Tb sites in these
materials is uniaxial, it is only in very strong magnetic fields
that magnetostriction due to the rare-earth sublattice can be
realized. However, the fact itself of the existence of non-
stoichiometric rare-earth intermetallides opens wide possibi-
lities in the search for new magnetic materials.

7. Conclusion

To summarize, the resource of utilizing magnetic materials
based on the intermetallic compounds of rare-earth metals
with iron group metals is far from exhausted. An important
issue is to search for new materials exhibiting large magneto-
caloric, magnetostrictive, and magnetoresistive effects. There
is still much room for increasing the maximum energy
product, extending the operating temperature range, and
enhancing the stability of permanent magnets. Today, it is
the development of new magnetic materials and of their
fabrication technology which determines to a large measure
the technological progress.
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