
Abstract. We review the current state of research into the
development of nanomechanical resonators and their applica-
tion as components of nanoelectromechanical and optomecha-
nical systems for the highly sensitive detection and visualization
of material structure. Methods for the manufacture and char-
acterization of nanoscale mechanical resonators are described.
We discuss quantum properties of nanomechanical resonators
and dynamical cooling schemes for suppressing fluctuations in
order to increase the threshold sensitivity of optomechanical
and electromechanical systems.

1. Introduction

The development of nanothechnologies revived the interest in
mechanical devices that had been used in physical experi-

ments at the dawn of the scientific method. An example is a
torsion pendulum that in 1785 enabled Coulomb to formulate
the law governing the interaction of electric charges, named
after him. Another example is the Cavendish experiment
(1798) with the use of a torsion balance to measure the
gravitational force between two lead balls.

Today, micro- and nanoscale electromechanical systems
are extensively used in basic research. Their threshold force
andmass sensitivities are extremely high compared to those of
old mechanical devices, reaching a few zeptonewtons
(1 zN � 10ÿ21 N) and a few zeptograms (1 zg � 10ÿ21 g).
Using such tiny sensors, it is possible to study processes at
the atomic level, e.g., to measure forces acting between
individual biomolecules, magnetic fields of individual
nuclear spins, masses of individual molecules and atoms,
and so on.

This paper is organized as follows. Section 2 is an
analytical review of developments and applications of
nanoelectronic and nanomechanical systems in basic and
applied research. Specifically, it describes the principal
methods for the fabrication of nanomechanical resonators
and the measurement of their physical characteristics. The
dynamic and fluctuation properties of nanomechanical
resonators and their application for the detection of ultra-
small masses and ultrasmall displacements are analyzed. The
results of recent studies on the application of carbon
nanotubes and graphene as nanoelectromechanical devices
are presented.

Section 3 presents examples of the application of micro-
and nanoscale cantilevers for the visualization of material
structure. Special emphasis is laid on the operating principles
and resolution of the magnetic resonance force microscope.
Applications of cantilevers as ultrasensitive biosensors and as
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detectors of ultraweak magnetic fields generated by nuclear
spins are reviewed.

The quantum mechanical properties of nanomechanical
resonators are considered in Section 4, with special reference
to thermodynamic quantum fluctuations and their influence
on threshold sensitivity. Measurement systems allowing the
so-called standard quantum limit to be reached are presented;
the possibility of overcoming this limit is discussed. Various
methods for the cooling of micro- and nanomechanical
resonators in nanoelectromechanical and optomechanical
systems are described.

2. Applications of nanoscale
electromechanical systems

2.1 Introductory notes
The creation of new solid-state structures ranging from a few
nanometers to a few hundred nanometers opens up a novel
sphere of basic and applied research. Mechanical and
electronic nanostructures, such as carbon nanotubes, nano-
wires, and nanomechanical resonators made from semicon-
ducting and metallic materials, provide a basis for future
nanoelectronic, nanoelectromechanical, and photonic inte-
grated circuits for ultrasensitive sensors, quantum informa-
tion processing devices, and other instruments suitable for a
variety of applications, from reliable ultrafast communica-
tion systems to biomedicine. Realization of these applications
requires the knowledge of the properties of nanomechanical
devices and their controllable manipulation. For this, a
measurement and control system must be developed to
enable conversion of information on the location of a
nanoobject into electric signals and vice versa. The systems
containing electronic andmechanical components are usually
composed of an electron module and a set of mechanoelec-
trical nanosensors and/or electromechanical transducers
(actuators), generally called nanoelectromechanical systems
(NEMSs).

Considerable progress has been achieved in the develop-
ment of NEMSs. They include nanomechanical resonators
ranging in size from tens to hundreds of nanometers and
having unique characteristics, for example, the fundamental
frequency varying from a few MHz to tens of GHz, a
mechanical quality factor amounting to tens of thousands,
an active mass of several femtograms (10ÿ15 g), and a
dissipated power of several attowatts (10ÿ17 W) [1]. Thus
far, the following threshold sensitivities of NEMSs have been
reached: displacements 2� 10ÿ15 m Hzÿ1=2 [2], mass
�10ÿ18ÿ10ÿ19� g Hzÿ1=2 [3, 4], force 10ÿ16 N Hzÿ1=2 [5],
electric charge 10ÿ1 e Hzÿ1=2 (e � 1:6� 10ÿ19 is the electron
charge) [6], and spatial resolution below 100 nm [7].

As follows from these data, the unique properties of
NEMSs allow creating ultrasensitive measurement instru-
ments for use in quantum metrology, scanning force
microscopy, magnetic resonance imaging (MRI), etc. More-
over, ongoing developments in this field offer the possibility
of applying NEMS to elucidate the electronic structure of
individual molecules and controlling their motion, e.g., for
the analysis of the atomic structure of nanomaterials and
biomolecules.

The discovery of these properties stimulated a flood of
ideas and proposals of interesting experiments and NEMS
applications, from the search for gravitational waves to the
manipulation of biomolecule structure. At the same time, the

use of NEMSs raises a number of fundamental questions that
remain to be answered. They concern nanotechnological
issues (reproducibility, control of surface and bulk proper-
ties), and the development of newmeasurement tools to study
the mechanics and properties of nanoobjects at the atomic
level. From the theoretical standpoint, it is important to
analyze the applicability of the continuum approach to the
calculation of mechanical characteristics of a resonator (to
elucidate how the molecular and atomic structure of
nanoobjects relates to their behavior). It follows from the
above that NEMS studies are at the forefront of physical and
engineering sciences, encompassing a few domains of either of
them.

Figure 1 shows a typical block diagram of an NEMS. Its
main element is a nanomechanical resonator (NMR) excited
by electrical signals via an input transducer that transforms
the electric energy into the energy of mechanical vibrations of
the resonator (on its first harmonic or sub-harmonics).
Simultaneously, a control signal related to the study object
is fed into the NMR through another transducer. This signal
can carry information on the parameter being measured (e.g.,
object displacement or magnetic moment). The resultant
signal from NMR mechanical vibrations containing the
information about the parameter of interest is converted
back into the electrical signal at the exit from the NMR; this
signal is amplified and arrives to the detector.

We note that most developments in this realm are thus far
confined to laboratory experiments. At best, we can speak
only of prototypes of the future NEMSs. One such system is
the magnetic resonance force microscope (MRFM) with a
spatial resolution down to a few dozen nanometers, which
corresponds to the threshold magnetic moment sensitivity of
the order of 1000 nuclear spins [7], which is roughly 100 times
better than for a conventional nuclear magnetic resonance
spectrometer.

As is known, fluctuations of various types are the main
factor limiting the measurement range of any instrument. For
example, the threshold sensitivity of an NMR depends on
thermal fluctuations, as long as the condition �ho5 kBT is
fulfilled, where �h is the Planck constant, o is the resonator
characteristic frequency, kB is the Boltzmann constant, and T
is the absolute temperature. However, thermal fluctuations at
�ho5 kBT do not play a critical role, whereas fluctuations
determined by the quantum properties of the sensors start to
dominate. A frequency of 1 GHz corresponds to an energy
attainable experimentally at 50 mK. Hence, the advent of
nanoscale resonators with fundamental frequencies in the
GHz range made it possible, in principle, to achieve a
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Figure 1. Block diagram of a nanoelectromechanical system.
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fluctuation limit determined by their quantum properties.
Moreover, extensive experimental and theoretical investiga-
tions are carried out in this field with the aim to develop
methods for improving the sensitivity of these sensors,
overcoming the aforementioned standard fluctuation quan-
tum limits. Such methods include quantum nondemolition
measurements, radiative and electromagnetic cooling, and
the use of entangled and squeezed states.

2.2 Characteristics of nanomechanical resonators
Nanomechanical resonators have received increased atten-
tion in recent years because they can be used as more
sensitive and energy-saving detectors than their micro-
mechanical analogs [1, 8]. We also note that the quality
factor of mechanical resonators is higher than that of
electrical (nonsuperconducting) ones. The integration of an
NMR into single-electron transistors [2, 9, 10], super-
conducting interferometers [11, 12], superconducting
charge [13] and flux [14] qubits, and stripline UHF
resonators [15] opens up new possibilities for investigations
into the rich dynamics of integrated electromechanical
systems having both mechanical and electromagnetic
degrees of freedom. The coupling between these degrees of
freedom can be controlled by an external signal. Such
experiments permit studying quantum phenomena in
hybrid electromechanical systems.

Most nanomechanical resonators are either a cantilever (a
beam clamped at only one end) or a bridge (a doubly clamped
beam) fabricated by submicron (electron-beam) lithography
from single-crystal materials, such as Si [16±18] or SiC [19,
20].

The first nanoscale radiofrequency mechanical resonator
made of single-crystal silicon was described in Ref. [16]. Being
7.7 mm long, 0.33 mm wide, and 0.8 mm thick, the resonator
had the fundamental resonance frequency 70.72 MHz and
Q � 1:8� 104. Another silicon NMR with dimensions
2� 0:2� 0:1 mm and a frequency of 380 MHz was reported
a few years later in Ref. [21]. However, theQ-factors of all the
silicon NMRs studied in [21] were much smaller �Q � 103�
than in [16]. The authors of Ref. [21] failed to identify the
exact cause of the discrepancy, but suggested that the quality
of the NMR surface might be involved. Specifically, it was
shown in [21] that a decrease in the surface-to-volume ratio
(for samples fabricated within one technological cycle)
resulted in an increase in Q. A few years ago, the psycholo-
gical barrier of 1 GHz for an NMR made of semiconducting
materials was overcome, and a silicon carbide-based resona-
tor with dimensions 1:1� 0:12� 0:075 mm, the frequency
1.029 GHz, and Q � 104 was created [22].

Other materials studied for the same purpose included
gallium arsenide (GaAs) [23, 24] (frequency � 10 MHz,
dimensions 6� 0:5� 0:1 mm, Q � 103; see [24]); silicon
nitride �SixNy� [25] (frequency � 100 MHz, dimensions
� 4� 0:5� 0:2 mm, Q � 103); aluminium nitride (AlN) [26]
(frequency � 100 MHz, dimensions � 2� 0:2� 0:2 mm,
Q � 104); nanocrystalline diamond (NCD) [27] (frequency
� 10 MHz, dimensions � 1� 0:2� 0:05 mm, Q � 103); and
later,Q-factors� 104 were achieved at low temperatures [28].

Elastic deformations of solids are described by the Euler±
Bernoulli theory. We consider a beam of length L and cross
sectionA clamped at both ends and made of a material with a
density r andYoung's modulusE. The z axis is directed along
the principal axis of the beam. The displacement of the beam
U�z; t� from the equilibrium position in the absence of an

external force is described by the equation

rA
q2U
qt 2
�z; t� � EIy

q4U
qz 4
�z; t� � 0 ; �2:1�

where Iy is the geometric moment of inertia with respect to the
y axis. If the time dependence of the displacement is assumed
to be harmonic, U�z; t� � U�z� exp �ÿiot�, the spatial depen-
dence must satisfy the equation

d4U

dz 4
�z� �

�
rA
EIy

�
o2U�z� : �2:2�

The general solution for the beam displacement has the form

U�z; t� � a cos �bz� � b sin �bz� � c cosh �bz� � d sinh �bz� ;
�2:3�

where b � �rA=EIy�1=4o1=2. This solution must satisfy four
boundary conditions. For a beam clamped at both ends (at
z � 0 and z � L), the displacementsU�0� andU�L� as well as
the slopes dU=dz�0� and dU=dz�L� are equal to zero. It
follows from these boundary conditions that a � ÿc and
b � ÿd, while the parameter b takes discrete values satisfying
the relation

cos bnL cosh bnLÿ 1 � 0 : �2:4�
The numerically found solutions of Eqn (2.4) are bnL � 0,
4.730, 7.853, 10.996, 14.137, ... . Discarding the trivial solu-
tion bnL � 0, we arrive at the following expression for the
displacement:

Un � an
�
cos �bnz� ÿ cosh �bnz�

�� bn
�
sin �bnz� ÿ sinh �bnz�

�
;

�2:5�
where the amplitude ratio an=bn for the first few modes is
found from the boundary conditions: an=bn � 1.018, 0.999,
1.000, ... . The values of Un�z� satisfy the normalization
condition� L

0

Un�z�Um�z� dz � L3dmn : �2:6�

This condition yields an � L, while bn can be found from the
above relations.

The frequencies of the corresponding modes are given by

on �
��������
EIy

rA

s
b 2
n : �2:7�

Typically, the fundamental bending (flexural) mode of
beam vibrations is measured in experiment as producing the
highest signal. For the fundamental mode, b1 � 4:73=L.
Therefore, its resonance frequency is given by

f1 � 1

2p
�4:73�2
L2

��������
EIy

rA

s
� 3:56

L2

��������
EIy

rA

s
: �2:8�

For a resonator of a rectangular cross section, A � wt,
where w and t are the width and the thickness of the resonator
strip (in the direction of vibrations). The moment of inertia is
Iy � wt 3=12; hence, the resonance frequency of the funda-
mental mode is

f1 � 1:03

����
E

r

s
t

L2
: �2:9�
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The frequencies of the next modes are found from the relation
fn=f1 � 2:756, 5.404, 8.933 for n � 2, 3, 4.

It follows from (2.9) that the frequency can be increased
by increasing the t=L2 ratio or choosing stiffer (with greater
E) and lighter (of low density r) materials.

Expression (2.8) was obtained in the absence of resonator
stress. Taking the stress into account leads to the following
expression for the frequency of the fundamental flexural
mode [29]:

f0 � 2p
L2

��������������������������������������
EI

3rA

�
1� L2T0

4p2EI

�s
; �2:10�

where T0 is the residual stress, for example, due to the
difference between thermal expansion coefficients of the
resonator and the substrate materials.

If the resonator is clamped at one end (at z � 0) and free at
the other �z � L� (cantilever), the boundary conditions have
the form U�0� � 0, dU=dz�0� � 0, d2U=dz 2�L� � 0, and
d3U=dz 3�L� � 0. The last two conditions ensure the absence
of a transverse force and torque at the free end. In this case,
the resonance frequencies are determined from the equation

cos bnL cosh bnL� 1 � 0 ;

whose solutions are bnL � 1.875, 4.694, 7.855, 10.996, ... . As
in the case of a resonator clamped at both ends, the shape of
harmonics Un�z� is described by Eqn (2.5) with the ratios of
coefficients an=bn � ÿ1:3622, ÿ0:9819, ÿ1:008, ÿ1:000, ... .
Apparently, the resonance frequency of a doubly clamped
resonator is �4:730=1:875�2 � 5:62 times that of a resonator
with one free end.

2.3 Methods for the fabrication
of nanomechanical resonators
A transition from micro- to nanoscale typically implies
qualitatively new technological solutions. Electron-beam
lithography and dry etching become the key technological
tools for dealing with nanoscale objects. Usually, NMR is
first fabricated with the use of a mask on the so-called
sacrificial layer from which the resonator is subsequently
released by etching, while the leads of the resonator remain
attached to the substrate.

The NMR fabrication process consists of several steps
that we briefly describe for a silicon-based NMR [16].
Fabrication of NMRs from other materials is discussed
below (see monograph [30] for more details).

The main NMR fabrication steps (1±7) are schematically
shown in Fig. 2a [16]. At the initial step 1, an SiO2 layer 1 mm
thick is grown on a single-crystal Si(100) substrate to be used

as a mask at the stage of Si etching. SiO2 is spin-coated with a
two-layer positive electron resist, with polymethyl methacry-
late-495 (PMMA-495) forming the bottom layer andPMMA-
950 the top one. At the next step, electron-beam lithography is
used to form a window in the resist, whose shape determines
the structure of future NMRs. Then, an Ni layer is deposited
onto the substrate by evaporation. After the removal of the
resist, Ni covers only the window region formed earlier at
step 1. The Ni layer plays the role of a mask during
subsequent etching of SiO2. The Ni mask pattern is
transferred into the SiO2 layer by means of anisotropic
reactive ion etching in the atmosphere of C2F6 (step 2 in
Fig. 2a). Because the etch rates of SiO2 and Si are different,
the etching process practically stops after SiO2 is removed.
Then anisotropic etching of Si continues in a mixture of NF3

and CCl2F2 (step 3). At this step, the future Si beam forms, its
thickness being a function of the etching depth. The removal
of the Ni layer is followed by pyrogenic oxidation of the side
walls of the silicon structure. At the same time, SiO2 is formed
on the horizontal silicon surface (step 4). SiO2 is removed by
repeated anisotropic reactive ion etching (step 5). At the final
step, silicon beneath the beam is removed by isotropic reactive
ion etching in NF3 (step 6), the etch rate of Si being virtually
identical to that of the upper SiO2 layer; hence, the
importance of monitoring etch time at step 6. After the
beam is released from the substrate (which is confirmed by
scanning electron microscopy), the remaining SiO2 layer is
removed by diluted hydrofluoric acid and the processed
samples are rinsed in deionized water. They are frequently
subjected to additional metallization for measurement pur-
poses. In such cases, the NMR is coated with a 5±10 nm
adhesive Cr or Ti layer overlaid with a thicker Au or Al layer
(step 7). A scanning electron micrograph of the silicon-based
NMR thus obtained is presented in Fig. 2b. It shows that the
bottom part of the has some scalloping, probably due to
nonuniform oxidation of Si. Moreover, the Si surface etched
beneath the resonator shows a protrusion, because NMR
itself serves as a mask at the final step of isotropic etching.

A somewhat simpler method was used in Ref. [25] to
fabricate an NMR from silicon nitride (Fig. 3). At step 1, an
SiO2 layer a few hundred nanometers in thickness is grown on
a single-crystal silicon (Si(100)) substrate. It is covered with
silicon nitride of roughly the same thickness, which is then
spin-coated with PMMA. At the next step, the geometric
structure of the future NMR is formed in the resist by
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Figure 2. (a) Schematic representation of the main technological steps for

the fabrication of an Si-based NMR. (b) Scanning electron micrograph of

an Si-based NMR [16].
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electron-beam lithography, and the entire substrate is covered
with Cr by evaporation. After removal of the resist, the
chromium film remains only over the window region formed
in step 1. The Cr layer serves as a mask during subsequent
etching of SiN. Silicon nitride is removed by plasma etching in
CH4ÿH2, which leaves SiN only under the Cr mask (stage 2).
At the final step 3, the SiO2 layer is removed by selective
chemical etching that releases NMR from the substrate.
Silicon nitride being a dielectric, the completed NMR is
subjected to metallization for the purpose of measurements.

Figure 3b shows a scanning electron micrograph of an
SiN-based NMR [25] 8 mm long� 200 nm wide� 100 nm
thick, with a resonance frequency of 19.7 MHz. The NMR is
covered with an Au layer 20 nm thick.

One more attractive material for NMR fabrication is
single-crystal silicon carbide (SiC) [19, 20], in which the
speed of sound

���������
E=r

p
is roughly twice that in silicon. The

technological steps for the fabrication of the SiC NMR are
very similar to those used to form an SiNNMR; we therefore
refer to Fig. 3a.

The fabrication of an SiCNMR requires growing a film of
this material on a silicon wafer by means of chemical
deposition from the high-pressure gaseous phase. This step
is followed by coating a 30±60 nm thick Cr layer over SiC by
electron-beam lithography; its pattern determines the shape
of the future NMR (see structure 1 in Fig. 3a). This pattern is
transferred into the SiC layer by anisotropic etching in an
NF3=O2=Ar mixture in an electron cyclotron resonance
reactor (see structure 2 in Fig. 3a). Narrow beams formed in
the SiC layer are released from the substrate by isotropic
etching of Si in the same apparatus using an NF3=Ar mixture
that does not etch SiC in the absence of oxygen. The
chromium mask is removed either by argon plasma or by a
standard liquid etching agent. The high chemical stability and
mechanical strength of the beams thus obtained allow further
lithographic procedures for metallization. The metallic layer
consists of a 200 nm thick Au and a 5 nm Cr sublayer (a
structure resembling structure 3 in Fig. 3a). NMRs fabricated
by this method are depicted in Fig. 3c.

A metallic mask is also used to fabricate NMRs from
single-crystal AlN [26]. Aluminum nitride has gained the
attention of researchers as a light (r � 3255 kg mÿ3) material
with a rather high Young modulus (E � 345 GPa). These
characteristics ensure resonance frequencies higher than
those for resonators of identical geometry made of some
other materials.

The technological steps of resonator formation from AlN
are also similar to those in the fabrication of an SiN NMR.
Therefore, we again refer to Fig. 3a. At the beginning, an
Si=AlNwafer is coatedwith a two-layer electron resist.A 3nm
thick adhesive Ti layer, 35 nm Au layer, and 60 nm Ni layer
are deposited into a window formed in the resist by electron-
beam lithography. After the resist with metallic layers is
removed, the resulting structure looks as structure 1 in
Fig. 3a. The Ni layer serves as a mask during anisotropic
reactive ion etching of AlN, whereas Au forms a conductive
layer for magnetomotive measurements. AlN etching per-
formed in clorine gas (see structure 2 in Fig. 3a) is followed by
the removal of Ni using a standard liquid etchant. The
resonator is released from the substrate by the liquid etchant
and rinsed in ethanol (see structure 3 in Fig. 3a).

Another material suitable for the fabrication of NMRs is
diamond, characterized by the highest speed of sound

���������
E=r

p
,

which accounts for a higher resonant frequency than in other

materials with the same geometry. For example, the reso-
nance frequency of diamond resonators is roughly thrice that
of silicon ones of the same size. Moreover, diamond shows
high thermal conductivity at low temperatures compared
with other insulators, which allows effective thermalization
of mechanical resonators.

The procedure of forming resonators from nanocrystal-
line diamond is as follows. A film of nanocrystalline diamond
is deposited onto a pure silicon or silicon oxide substrate [31].
Both types of wafers are covered with a seed diamond
nanopowder in three steps. In the case of pure silicon, these
steps are (1) cleaning the substrate in an acetone ultrasonic
bath, (2) immersing the substrate in the ultrasonic acetone
bath containing diamond nanopowder, (3) rinsing the
substrate in acetone. The diamond film is deposited at a
substrate temperature of 800 �C by plasma±chemical vapor
deposition using a mixture of 1%CH4, 2%±10%H2, and Ar.
The resulting film is 400±600 nm thick. The next steps are
shown in Fig. 3a.

A metal pattern is written by the lift-off process on the
diamond film obtained as described in the preceding para-
graph. The metal layer of Au with a sublayer of Ti and a Cr
layer on top of Au resembles structure 1 in Fig. 3a. The Cr
layer used as a mask in subsequent etching of the diamond
film is removed upon completion of fabrication. The gold
layer remains at the diamond surface to enable resonator
measurements by the magnetomotive method. At the next
step, a structure (the future NMR) is cut out in the diamond
film by the reactive ion etching technique [32, 33]. Anisotropic
diamond etching through the Cr mask in an O2=CF4 mixture
yields a structure analogous to structure 2 in Fig. 3a. At the
final stage, suspended diamond beams are formed by etching
the substrate material underneath the film with buffered
hydrofluoric acid (see structure 3 in Fig. 3a).

Metallic NMRs are also a subject of intense current
interest because many types of transducers, e.g., single-
electron transistors and SQUIDs, are also made of metal;
hence, the opportunity to fabricate NMRs and these devices
in one production cycle.

In what follows, we describe a method for the fabrication
of NMRs from metals having a relatively low melting
temperature. It was used to form NMRs from aluminum,
gold, and titanium [34, 35, 39]. A limitation on the melting
temperature is imposed by the use of an organic polymer in
the fabrication process, which excludes the application of
refractory metals such as niobium.

The main steps of fabrication of metallic nanomechanical
resonators are shown in Fig. 4. First, a layer of calixarene, a
negative resist, is spin-coated onto the substrate and a
pedestal is formed by electron-beam lithography that serves
to form a metal structure (structure 1 in Fig. 4a). Then the

b

Al1 mm
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Si/SiO2

Calixaren

Metal
(Al, Ti, Au)
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3

Figure 4. (a) Schematic representation of the main technological steps for

the fabrication of a metallic NMR [35]. (b) Scanning electron micrograph

of an Al-based NMR [35].
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entire substrate is coated with a trilayer resist structure
consisting of LOR3A resist, germanium, and PMMA (from
bottom up). The future resonator is patterned in the PMMA
layer by an electron beam and subsequent development. At
the next step of reactive ion etching with CF4, the pattern is
transferred into the Ge layer. Then, the PMMA layer over Ge
is removed by oxygen plasma and the LOR3a is subjected to
etching through the open windows in Ge using a special RPG
solution (remover PG) that does not react with calixarene.
Upon metallization, the substrate is placed in RPG heated to
80 �C to remove all the layers except the metallic one
deposited through the Ge mask. At this step, the structure
looks like structure 2 in Fig. 4a. The fabrication is completed
by ashing calixarene under the resonator in oxygen plasma
(structure 3 in Fig. 4a). Calixarene is completely removed
only from beneath the resonator, i.e., the narrowest part of
the metal layer, but preserved as a support under the wider
clamps.

As an example, Fig. 4b demonstrates a fabricated Al-
based resonator of dimensions (l.w.t.) 3 mm� 100 nm�
200 nm. It is spaced 50±100 nm (the calixarene layer
thickness) apart from the substrate. This imposes limitations
on the resonator size. For instance, the maximum length of a
200 nm thick resonator is usually less than 5 mm, because
longer ones tend to sag and adhere to the substrate.

This technology allows fabricating both a single patterned
metal layer containing nanomechanical resonators and
integrated multilayer, e.g., two-layer, structures [36]. Such
structures consisting of a nanomechanical resonator and an
electronic transducer can be regarded as two-in-one devices
exemplified by a single-electron transistor whose island is
suspended above the bottom gate. Its mechanical resonator is
the source-to-drain part of the island, while the clamps are the
source and drain electrodes that are made much thicker than
the island. The conversion of mechanical vibrations into an
electric signal (which is possible due to the high sensitivity of
single-electron transistors to island charge variations) is
described in Section 2.4.4.

2.4 Methods for measuring
the characteristics of nanomechanical resonators
There are a variety of methods for measuring the character-
istics of nanoscale resonators, some of which are borrowed
from macroresonator studies. The most sensitive of them are
used to measure mechanical vibrations of NMR in the
absence of an external drive, such as those induced by
thermal fluctuations. Otherwise, a resonator must be driven
by an external force. In any case, mechanical vibrations must
be transduced into variations of an electric signal. The
transducer may be a special device located near the resonator
and coupled to it one way or another. Moreover, the
resonator itself can be part of an electronic (nanoelectronic)
device. Finally, transformation of mechanical vibrations into
variations of the electric current is possible in the absence of
nearby or built-in electronic devices. The magnetomotive
method is an example of such a transformation. It is the
simplest and most widespread method for measuring
mechanical vibrations, which was initially used in dealing
with large resonators [37] and thereafter found application for
nanomechanical resonators [16, 35, 38].

2.4.1 The magnetomotive method. The magnetomotive mea-
surement setup is outlined in Fig. 5. The resonator is
connected to a radiofrequency circuit and placed in a

uniform constant magnetic field B normal to the resonator
principal axis. A high-frequency alternating current I is
passed through the resonator. The Lorenz force per unit
length of the resonator with the passing current is

FL�z� � I� B : �2:11�
This force is perpendicular to the magnetic field and the
current flow. The dynamics of resonator bending oscillations
are described by the equation of motion [30, 39]

rA
q2U
qt 2
�z; t� � EIy

q4U
qz 4
�z; t� � FL�z� exp �ÿiot� : �2:12�

The shape of the first harmonic of bending oscillations
U1�z; t� corresponding to a resonance at half the wavelength
for a doubly clamped beam is found from Eqn (2.5) for n � 1
[40]. The displacement U1�z� of the resonator from the
equilibrium position for an alternating current frequency o
close to the beam resonance frequency o0 is given by
U1�z; t� � a1U1�z� exp �ÿiot�, where a1 is the dimensionless
oscillation amplitude of the first harmonic,

a1 � 1

rAL3

1

o2
0 ÿ o2 ÿ io2

0=Q

� L

0

U1�z�FL�z� dz : �2:13�

In the case of a uniform force FL�z� � FL,

a1 � Z1
o2

0 ÿ o2 ÿ io2
0=Q

FL

m
;

where Z1 � �1=L2� � L0 U1�z� dz � 0:8309 and m � rAL is the
beammass. This means that the amplitude of beam vibrations
is proportional to the applied force amplitude, which, in turn,
is proportional to the passing current amplitude. This relation
holds for a linear setup (at small beam deflections).

Beam displacements in a magnetic field give rise to an
electromotive force (e.m.f.)V expressed as the time derivative
of the magnetic flux:

V�o� � dF
dt
� q

qt

� L

0

BU1�z; t� dz

� ÿi oZ 2
1

o2
0 ÿ o2 ÿ io2

0=Q

I0B
2L2

m
exp �ÿiot� : �2:14�

According to (2.14), the e.m.f. shows a quadratic dependence
on the magnetic field B and a linear dependence on the
alternating current amplitude I0. These dependences have
been confirmed in experiment.
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I
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Figure 5. Schematic of NMRmeasurement by the magnetomotive method

[35].
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The comparison of (2.14) and the expression for the
voltage in the tank circuit with parallel connection of the
effective capacitance Cm, inductance Lm, and resistance Rm

reveals their complete equivalence. At the resonance fre-
quency,

Cm � m

Z 2
1L

2B 2
; Lm � Z 2

1L
2B 2

o2
0m

; Rm � Z 2
1L

2B 2

o0m
Q ;

whence o2
0 � 1=�LmCm�. Measurement of a radiofrequency

RF signal passing through the beam by a network analyzer
yields a transmission coefficient with a characteristic dip at
the beam resonance frequency.

2.4.2 The electromotive (capacitive) method. The electromo-
tive method is outlined in Fig. 6 [41]. A nanomechanical
resonator is capacitively coupled to a gate to which an RF
signal is applied to induce vibrations with an amplitude
depending on the signal frequency. It can be shown that the
NMR at resonance is equivalent to a series-connected array

of capacitance, inductance, and resistance with the effective
values

Cm �
V 2

gC
2
g

o2
0d

2M
; Lm � d 2M

V 2
gC

2
g

; Rm � d 2Mo0

V 2
gC

2
gQ

:

The gap impedance Z between the resonator and the gate
depends on the resonator displacement: jZj � 1=�oCg� off
resonance and jZj � Rm at resonance. In the measurements,
a resonant tank circuit connected in parallel with the NMR
is used to match the high impedance jZj (typically higher
than 100 kO) and a 50 O measurement circuit. Then, under
the condition that the frequency of the tank circuit matches
the NMR frequency, the total impedance at the resonance
frequency is Ztot � Z 2

LC=Rm � RT, where ZLC �
���������������
LT=CT

p
is

the characteristic impedance of the circuit and RT is its
ohmic losses. Ideally, when Ztot is close to 50 O, practically
all high-frequency power is transferred into the NMR,
leading to the appearance of a characteristic feature in the
signal reflected from the HF circuit. This peculiarity is a
measure of the NMR resonance frequency and the Q-factor.

An advantage of this method is the possibility of
measuring a few NMRs simultaneously if their frequencies
fall into the operating bandwidth of the tank circuit. The
threshold sensitivity to a mechanical displacement of
4:1� 10ÿ12 m Hzÿ1=2 at Vg � 15 V demonstrated in Ref. [41]
depended on losses in the tank circuit.

2.4.3 Investigations of thermal fluctuations of a nanomecha-
nical resonator by an atomic point contact. In this method, a
tunnel junction between a mechanical resonator and the tip
of an atomic point contact serves to transduce mechanical
vibrations into variations in the electrical current. Measure-
ments by this technique are schematically illustrated in
Fig. 7. Its application is limited to conductive materials
that do not form surface oxides. The sole experiment with
the use of this method reported in Ref. [39] was carried out
with a gold NMR to the middle of which another gold

Vs

Vg

Cg

SiN

2 mm

Al

Figure 6. Schematic of NMR measurement by the electromotive method

[41].
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Figure 7. (a) Scanning electron micrograph of a gold-based nanomechanical resonator. (b) Circuit schematic for atomic point contact (APC)

measurement of its vibrations; HEMTA is a high electron mobility transistor amplifier [39].
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electrode was connected through a tunnel junction. The
method had a 2:3� 10ÿ15 m Hzÿ1=2 threshold sensitivity to
mechanical displacement, comparable with that of a single-
electron transistor [2, 9], but a much narrower dynamic
range.

2.4.4 Detection of NMR mechanical vibrations with the use of
a single-electron transistor. The extremely high electric
charge sensitivity of single-electron transistors makes them
suitable for use as transducers of mechanical vibrations into
an electrical signal, if a method to convert mechanical
vibrations into variations of the electric charge is available.
One way to do this is to capacitively couple an NMR to the
island of a single-electron transistor (Fig. 8) and apply dc
voltage Vdc to the NMR [9]. If the center of the NMR is
displaced by x, there is a change in the charge induced on the
island, Dq � VdcDC�x�, where DC�x� is the change in
capacitance between the gate and the island. Assuming that
the gate and the island form a plane-parallel capacitor (as
realized in a two-layer configuration [36]), we express the
electrical charge variations due to mechanical displacement:
Dq � �x=d �C0Vdc, where C0 is the equilibrium capacitance
and d is the equilibrium distance between the gate and the
island. At a given size of the structure, the efficiency of the
transformation of a mechanical displacement into an elec-
trical signal increases with Vdc. However, the dc voltage is
limited by the breakdown voltage. The threshold sensitivity of
the transistor to mechanical displacements depends on its
noise characteristics. In an RF version of a transistor with a
measured charge noise of 6� 10ÿ6 eHzÿ1=2 [42], its threshold
displacement sensitivity is dx � 4� 10ÿ6 A

�
Hzÿ1=2 at

d � 100 nm, C0 � 5� 10ÿ17 F, and Vdc � 5 V. For compar-
ison, the root-mean-square deviation from equilibrium due to
zero-point vibrations of a 5 mm Al-based resonator of the
thickness 39 nm, mass m � 2:7� 10ÿ16 kg, and resonant
frequency o0=2p � 40 MHz is

��������������������
�h=�2mo0�

p � 7� 10ÿ4 A
�
.

2.4.5 The optical method for studying NMR characteristics
[43±45]. Optical detection is typically performed by means of
optical interferometry. The method is based on the fact that a
photon beam reflected from an NMR interferes with a test
signal before it enters the photodetector. The analysis of the
interference patterns allows restoring the NMR properties.

However, the measurement sensitivity worsens as the size of
the NMR decreases, because the diameter of the focused
beam is limited from below by its diffraction properties. A
possible solution could be the fabrication of waveguides of a
submicron cross section located on the substrate near the
NMR.

2.4.6 Measuring NMR displacements with a SQUID. The
superconducting quantum interferometer device (SQUID) is
themost sensitive magnetic flux detector [46]. Its dc sensor is a
conducting loop with two Josephson junctions. At a given
current flowing through the loop, the measured voltage is a
function of the external magnetic flux. In other words, the
sensor is sensitive to both the external magnetic field and the
loop area. Therefore, a SQUID placed in a constant magnetic
field can detect the vibrations of an NMR that is an integral
part of the superconducting loop of its sensor. The first
successful experiments toward this goal was recently
reported in [47].

The SQUID threshold sensitivity to mechanical displace-
ments can be estimated from the flux sensitivity dF �
10ÿ6F0 Hzÿ1=2 [46]. We regard the SQUID loop as a square
with side L. Let one side form a resonator, i.e., be suspended
above the substrate and capable of displacing parallel to its
plane, thus changing the loop area. If a constant magnetic
field B threads the loop, a displacement from the equilibrium
position of the resonator by x changes the loop area by
�1=2�xL, and therefore the flux by dF � �1=2�xLB. Hence,
the threshold sensitivity to mechanical displacement is
dx � 2dF=�BL�. This quantity is proportional to the con-
stant magnetic field. If B � 0:01 T and L � 1 mm, dx �
4� 10ÿ7 A

�
Hzÿ1=2. Strong magnetic fields markedly sup-

press superconductivity of Al films; therefore, niobium
structures can be used to enhance the threshold sensitivity
(see [47]). Moreover, the threshold displacement sensitivity
can be improved by using longer resonators at the expense of
the resonance frequency. The threshold sensitivity deter-
mined by amplifier noises that has been experimentally
achieved to date is around 10ÿ4 A

�
Hzÿ1=2 for a 50 mm long

resonator with a resonance frequency of 2 MHz [47].

2.4.7 Parameters of a modern NMRs. In Table 1, we list
experimentally found values of the fundamental harmonic
frequency and Q-factor of NMRs from metallic and non-
metallic materials. The second column shows temperatures at
whichmeasurements weremade. The bottom line presents the

2 mm

J

J

Figure 8. Scanning electron micrograph of a nanomechanical resonator

(8 mm� 200 nm) formed from a 100 nm thick SiN film with a conductive

coating of Au 20 nm in thickness. The island of the single-electron

transistor (5 mm long, 50 nm wide) spaced 600 nm apart from the

resonator forms two tunnel junctions J with the source and the drain; it

is capacitively coupled to the resonator biased by high dc voltage [9].

Table 1. Fundamental frequencies and Q-factors of certain NMRs.

Material
of NMR

Temperature,
K

Fundamental
harmonic

frequency f0,
MHz

Q Reference

Si
Si
Si
SiC
SiC
SiC
Pt
Au
Au
Ti
Al
SiN

4.2
25
20
4.2
20
4.2
4
4
4.2
4.2
4.2
293

70
80

25.598
198
71.91

190 ë 1029
105.3
39

54.38
194.47
180.86
0.133

2� 104

1:3� 104

3� 104

1� 103

4000
500 ë 5200

8500
5000
7510
3180
5320

1:1� 106

[16]
[17]
[18]
[18]
[19]
[20]
[34]
[41]
[35]
[35]
[35]
[48]
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vibration data for a 50 nm thick SiN square membrane at
T � 293 K [48].

The main problem currently facing NEMS developers is
to achieve the highest possible first harmonic frequency
without decreasing the Q value. From the standpoint of
applications, the Q-factor determines the noise (fluctuation)
bandwidth of a device, which is directly related to the NMR
threshold sensitivity to the external signal being measured.
Moreover, the Q-factor determines the maximum NMR-
dissipated power.

Figure 9 taken from Ref. [1] shows a characteristic
dependence of the fundamental harmonic frequency on the
size of Si, SiC, and GaAs-based NMRs. Clearly, the highest
frequency was obtained with a SiC NMR. The Q-factor
decreases with increasing the frequency, the underlying
cause being unknown. It may be either the losses from
NMR interactions with the input and output transducers or
the clamping losses between the NMR and the bulk material.
Anyway, experiments with free±free NMRs allowed increas-
ing their Q-factors more than two-fold [20].

Tables 2 and 3 present characteristics of SiC- and Al-
based NMRs, showing that their Q decreases with increasing
the resonance frequency.

Figure 10, borrowed from Ref. [20], shows the frequency
dependence of Q for SiC NMRs fabricated by the same
technology but differing in thickness (75, 80, and 100 nm).
Their width ranged from 120 to 150 nm and the length was
between 1 and 3 mm.The frequency was varied from 200MHz
to almost 1 GHz by changing the NMR length. The inset is a
SAFM image showing the surface structure of an 80 nm thick
SiC surface used to fabricate NMRs [20].

2.5 Power dissipated by nanomechanical resonators
The bandwidth of NMRs, as of any other resonator, can be
written in the form Do � o0=Q. Then the power of thermal
fluctuations at a temperature T is given by

Pmin � kBT
o0

Q
: �2:15�

The estimation of Pmin for T � 300 K, o0=2p � 1 GHz, and
Q � 104 gives Pmin � 2:6� 10ÿ15 W. Increasing the last
quantity by a factor of 104 for a reliable signal-to-noise ratio

and assuming that one million such devices operate simulta-
neously on the chip, we obtain the dissipated power of the
order of 10ÿ5 W or almost five orders of magnitude smaller
than the power dissipated in state-of-the-art all-electronic
systems of the same level of complexity.

2.6 Intrinsic fluctuations of nanomechanical resonators
The damping of vibrations in an NMR and its Q are related
to the energy exchange between NMR mechanical modes
and other degrees of freedom, such as phonons, electrons,
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Figure 9. Dependence of the NMR fundamental harmonic frequency on

the geometric parameter t=L2, where t is the NMR thickness and L is the

NMR length [1].

Table 2. Characteristics of SiC-based NMRs [20].

Resonant
frequency,

MHz

Length L,
mm

Width w,
nm

Thickness t,
nm

NMR
mass, fg

Q

190
200
241
295
339
357
395
411
420
428
480
482
488
590
712

1014
1029

2.35
3.1
1.8
2.66
1.6
1.55
1.75
1.7
1.8
1.65
1.32
1.55
1.31
1.6
1.55
1.11
1.09

150
180
150
170
140
160
129
120
150
120
140
120
150
140
160
120
120

100
100
100
80
75
75
80
80

100
80
75
80
75
75
75
75
75

145.0
229.5
111.1
160.2
71.3
78.9
74.4
72.3
111.1
75.5
61.3
70.9
60.8
71.2
78.9
44.2
43.4

5200
7500
1500
3000
3600
3000
2500
2500
1200
2300
1600
2000
1600
1700
900
500
500

Table 3. Characteristics of Al-based NMRs [35, 38].

Lwt, mm3

T � 4:2K T � 100mK

f0, MHz Q f0, MHz Q

0:6� 0:06� 0:1

1� 0:06� 0:1

1� 0:1� 0:2

2� 0:1� 0:2

3� 0:1� 0:2

5� 0:1� 0:2

544.93
180.86
87.00
39.44

1730
5320
7140
9420

770
360

187
110
40.5

2400
30,000

16,000
41,000

120,000

1
2

3
4 mm

nm

Roughness
� 2.1 nm

30
15

0.1 0.2
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Q
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r
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Figure 10. Dependence of Q on the fundamental harmonic frequency for

several SiC NMRs clamped at both ends. The inset shows an image of the

SiC surface obtained by scanning atomic force microscopy [20].
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bulk and surface defects of the resonator, and energy losses
at the junctions between the resonator and the parent
material.

The main source of intrinsic fluctuations in NMRs is
thermomechanical fluctuations, which are analogous to
Johnson±Nyquist noise in electrical circuits. In the classical
limit, the spectral density of fluctuations of the nth harmonic
can be written as [40]

Sfn�o� � 2kBTmo
pQL2

; o � On ; �2:16�

where T is the temperature, m is the resonator mass, L is its
length, and On is the nth harmonic frequency defined by
expression (2.7).

The quantity
��������������
Sfn�o�

p
is the fluctuation force acting per

unit length of the resonator in a unit frequency band.
Therefore, the spectral density of fluctuations can be written
in a form convenient for simple estimates:

Sx�o� � 1

�o2 ÿ o2
0�2 � �oo0=Q�2

Sfn�o�
m 2

: �2:17�

Amplitude fluctuations can also be written in the
equivalent form of phase or frequency fluctuations that are
often useful in concrete experiments. It should be borne in
mind, however, that all these expressions are equivalent
representations of the same amplitude fluctuations and
describe no additional fluctuation sources.

For example, the spectral density of frequency fluctua-
tions So�o� can be expressed through the spectral density of
thermomechanical amplitude fluctuations Sx�o� as [40, 49]

So�o� �
�
o0

2Q

�2
Sx�o�
hx 2

0 i
� o5

0

Q 3

kBT

Emax

1

�o2 ÿ o2
0�2 � o2o2

0=Q
2
;

�2:18�

where hx 2
0 i is themaximummean-square amplitude value and

Emax �Meffo 2
0 hx 2

0 i is the maximum fluctuation energy.
The fluctuation resonance width do0 is defined as

do0 �
� � o0�pDf

o0ÿpDf
So�o� do

�1=2
;

whence it follows that atQ4 1 and 2pDf5o0=Q (whereDf is
the measurement frequency band),

do0 �
�
kBT

Emax

o0Df
Q

�1=2
; �2:19�

where we also used (2.18).
Another source of intrinsic fluctuations in NMRs is

thermodynamic temperature fluctuations due to finite values
of thermal conductivity and heat capacity. Because the heat
capacity of NMRs is very low by virtue of its small size, this
leads to relatively large temperature fluctuations, which in
turn cause resonator frequency fluctuations, because the
geometric dimensions and characteristics of the NMR
material are temperature dependent.

The spectral density of temperature fluctuations can be
written in the form [40]

ST�o� � 2

p
kBT

2

g

1

1� o2t 2T
; �2:20�

where g is the thermal conductivity and tT � c=g is the
characteristic time needed for thermal equilibrium to set in
(c is the heat capacity). As shown in [40], these fluctuations
can be converted into resonance-frequency fluctuations of the
resonator:

SO�o� �
�
1

O
qO
qT

�2

ST�o� �
�
ÿ c 2s k

2
n

O 2
n

aT � 2

cs

qcs
qT

�2

ST�o� ;
�2:21�

where cs �
���������
E=r

p
is the speed of sound in the material and aT

is the thermal expansion coefficient.
Other noise sources in NMRs include fluctuations

associated with adsorption±desorption of residual gas mole-
cules on the surface of NMRs and the noise produced by
crystalline defects in the bulk of the resonator [1, 40, 49].

2.7 Detection of small masses
Ultrasensitive resonant mass detectors are applied in many
branches of science and technology. Those with the highest
sensitivity are based on the detection acoustic vibrations in
crystals, thin films, and micrometer-scale cantilevers. All
these devices operate by providing a shift of the sensor
resonance frequency and a change in the Q-factor induced
by an accreted particle whose mass is to be measured.

Due to the extremely small ownmass of NMRs, they have
a very high potential for detecting small masses; in principle,
their sensitivity is sufficient to detect as small a mass as that of
a single molecule [3, 49].

Mass detection by an NMR is based on measuring the
resonance frequency shift upon accretion of a particle to the
resonator. The change in the mass is related to frequency
variations by the obvious formula

dM � qMeff

qo0
do0 � ÿ2 Meff

o0
do0 ; �2:22�

whereMeff is the effective resonator mass, which for an NMR
with a rectangular cross section can be written as Meff �
0:735Ltwr [49], where L, t, and w are the geometric
dimensions (see the inset in Fig. 9) and r is the density of the
NMR material. The last expression after the equality sign in
(2.22) follows from the relation o0 �

������������������
keff=Meff

p
, where

keff � 32Et 3w=L 3 is the effective spring constant of the
NMR.

The fundamental factor limiting the mass sensitivity
threshold of an NMR is thermomechanical fluctuations
giving rise to the resonance frequency instability.

For the threshold mass sensitivity, taking (2.19) into
account, we have

dM � 2Meff

�
kBT

Emax

�1=2� Df
o0Q

�1=2

: �2:23�

Figure 11a [49] demonstrates the mass sensitivity of an
NMR calculated by formula (2.23) and related to thermo-
mechanical fluctuations. The value of dM is plotted in
Daltons (Da) (1 Da � 1 a.m.u. � 1:66� 10ÿ24 g). It is calcu-
lated at the resonance frequency 1 GHz for two types of
silicon NMRs with rectangular (solid line, w� t� L �
50� 80� 780 nm3) and square (dashed line, w� t� L �
15� 15� 340 nm3) cross sections.

Another source of errors in small-mass measurements is
thermodynamic temperature fluctuations. In this case, the
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measurement error is given by [49]

dM � 2MeffC

�
kBT

2Df
pg

�1=2

; �2:24�

where the dimensional constant C depends on the physical
properties of the NMR material. For a silicon bridge,
C � 1:26� 10ÿ4 Kÿ1 [49].

Figure 11b shows the dependence of the NMR mass
sensitivity on the measurement frequency bandwidth attribu-
table to thermodynamic temperature fluctuations and calcu-
lated fromEqn (2.24) [49]. The calculations were done for two
types of NMR at T � 300 K and the same parameters as in
Fig. 11a.

Two more sources of errors were analysed in Ref. [49]:
adsorption/desorption of residual gas molecules at the NMR
surface and elastic collisions of gasmolecules with the surface.
Taken together, all these sources of measurement errors give
reason to conclude that the threshold mass sensitivity of
NEMSs ranges from a few fractions to tens of Dalton, i.e., it
is comparable with the mass of individual molecules. Such
experiments are typically carried out [50] in a vacuum
chamber where a flow of molecules is directed toward a
resonator to which some of them adhere, thereby changing
the resonance frequency. As mentioned above, this change
can be measured in experiment.

In recent years, the threshold sensitivity of NEMSs as
mass sensors has been annually improved by a factor of 10;
today, it is close to 100 a.m.u., i.e., it remains inferior to the
theoretical value of less than 1 a.m.u. [49, 51]. Table 4 shows
the results of molecular mass measurements by NEMS
obtained to date.

Studies of small-mass detection by NEMSs have shown
that the smaller the resonator size at the minimal L=t ratio is,
the better the results. As follows from Table 4, the best results
were obtained using carbon nanotubes as the NMR [52±54].
The resonance frequency needs to be enhanced to 1 GHz at
Q � 10;000 and the NMR mass of the order of 1� 10ÿ16 g if
the threshold sensitivity equivalent to the single proton mass
is to be achieved. This goal appears attainable in view of the
advances in the modern technology of NMR fabrication.

2.8 Detection of ultrasmall displacements
Historically, studies on the detection of ultrasmall displace-
ments started as searches for gravitational waves and the

exploration of weak piezo- and magnetostriction effects
and phase transitions in small-size samples at low tempera-
tures [55±59]. The record high threshold sensitivity
6� 10ÿ9 A

�
Hzÿ1=2 in the measurements with the use of an

NMR displacement capacitive transducer at 40 kHz was
achieved as early as 1981 [59]. It was subsequently improved
to 2� 10ÿ9 A

�
Hzÿ1=2 in laser interferometrymeasurements of

fluctuations of a mechanical resonator placed in an optical
cavity at 2 MHz [69].

However, such high threshold sensitivities are not
necessarily inherent in nanoscale sensors. For example, the
signal of a capacitive sensor can be indiscernible from the
background noise generated by parasitic conductor capaci-
tances coupling the sensor to the amplifier. Moreover, fiber-
optic interferometers of extremely high (subangstrom) sensi-
tivity cannot be used to study structures whose size is smaller
than the optic fiber diameter. One of the methods having no
geometric constraints is the magnetomotive method [16]
described in Section 2.4.1. It was used to achieve a threshold
sensitivity of the order of 3� 10ÿ5 A

�
Hzÿ1=2 for a 1 MHz

mechanical resonator [61].
In recent years, considerable progress has been made in

the application of NEMSs for the detection of small
displacements with a sensitivity close to the standard
quantum limit (SQL). This goal was achieved using a
variety of experimental methods, including registration of
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Figure 11. Dependence of the NMR mass sensitivity on the measurement frequency bandwidth due to (a) thermomechanical and (b) temperature

fluctuations [49].

Table 4. Results of molecular mass measurements by NEMS.

The smallest
measured mass,

a.m.u.

Frequency shift
sensitivity df0=dM,
Hz (10ÿ21 g)ÿ1

Resonance
frequency
f0, MHz

NMR
Q-factor

Refer-
ence

4:9� 104 12 428 [50]

1:52� 106 3� 10ÿ3 32.8 3000 [3]

4:0� 103 1 133
190

5000 [114]

15�103 (300 K)
840 (5 ¬)

11� 103 143 50 (300 K)
865 (5 K)

[52]

200 (300 K) 0.104 328.5 1000 (300 K) [53]

2:35� 105 13.36 8500 [4]

50 (6 K) 300 200 [54]

1:8� 109 0.01 10,000 [117]
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NMR amplitude profiles by the atomic point contact
technique [39], coupling of an NMR to a stripline resonator
circuit [62], integration of a mechanical resonator into the
loop of a superconducting quantum interferometer [47], and
application of a single-electron transistor for recording NMR
amplitude vibrations [2, 9]. The results of displacement
measurements obtained thus far are presented in Table 5.

2.9 Application of carbon nanotubes and graphene
as nanoelectromechanical devices
Carbon nanotubes (CNTs) provide an interesting alternative
to traditional nanomechanical resonators [63]. These devices
have attracted much attention since the publication of reports
concerning multi-wall [64] and single-wall [65, 66] CNTs.
Presently, they are among the most extensively studied
NEMSs [67]. A single-wall CNT is a hollow graphene
cylinder with one-carbon-atom thick walls. The tube can be
several micrometers long and have a diameter of several
nanometers. An ideal (defect-free) CNT can carry an electric
current of the density 109 A cmÿ2 [68]. CNTs show either
metallic or semiconducting properties, depending on the
symmetry type. They are highly elastic (Young's modulus
around 1 TPa [69]); hence, their resonant frequency is greater
than 3 GHz [70]. Very soon after the discovery of CNTs, they
began to be used as ultrasensitive nanomechanical sensors

[71, 72]. Other proposed applications included mechanical
structural elements of memory cells [73], relay structures [74],
oscillators [75, 76], switches [77], and various types of sensors
[78±80].

It is clear that the unique electrical and mechanical
properties of CNTs make them promising candidates for use
as ultrasensitive elements of NEMSs. The very small mass of
CNTs (roughly 10ÿ21 kg per mm length) results in the root-
mean-square amplitude of zero-point vibrations of the order
of 1 pm and enables their direct detection. Moreover, the
small mass of CNTs make them highly sensitive mass [53, 54]
and force [81] sensors.

Figure 12a schematically depicts a CNT-based device.
The CNT is clamped between the ends of metalized pads
functioning as tunnel junctions and coupled to the control
gate (highly doped silicon) through a capacitance. CNT
vibrations perpendicular to its axis change the capacitance
between theCNTand the gate and thus alter the impedance of
the measurement circuit.

The CNT vibration spectrum is far richer than that of
metals or dielectric-based NMRs. Moreover, the peculia-
rities of interplay between CNT electrical and mechanical
properties make it very difficult to measure CNT vibration
modes [70].

Figure 12b is an SEM image of a CNT. CNT vibration
modes are depicted in Fig. 12c. Figure 12d shows the
dependence of the vibration mode energy on the CNT
length. The radial breathing mode (RBM) shown in Fig. 12c
(top) is inversely proportional to the CNT diameter d and
does not depend on the CNT lengthL, whereas the transverse
bending mode in Fig. 12c (bottom), inversely proportional to
L2, is a function of both the diameter and the stress. The two
modes have a continuous frequency spectrum, shown as
broadened bands in the upper and lower parts of Fig. 12d.
The electron excitation energy E �e (upper curve in Fig. 12d)
and the longitudinal stretching mode are inversely propor-
tional to L. The experimental data points (squares in Fig. 12d
for the stretching±compression mode shown in the middle
part of Fig. 12c) correspond to the measured quantized
vibrational modes [82].

A number of experiments with the use of various methods
were performed to study bending vibration [83, 84] and radial
breathing [85] modes for which the highest Q values were
obtained. Table 6 presents the results of the measurement of
the fundamental harmonic of CNT bending vibrations [70].

Table 5. Results of displacement measurements by NEMS.

Displace-
ment

resolution,
fm Hzÿ1=2

Mean-square
displacement

(in SQL
units)

Force
resolution,
aN Hzÿ1=2

Tem-
perature,

mK

Type of
transducer

Refer-
ence

2.3 42 78 250 Atomic
point
contact

[41]

200 30 3 200 Strip
resonator

[60]

10 36 (133 fm) 20 dc-SQUID [47]

2 100 (23 fm) 30 Single-
electron
transistor

[2]

3.8 4.3 (114 fm) 35 Single-
electron
transistor

[9]

a c

RBM

Longitudinal
stretching mode

Flexural mode

0 1L, mm
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d
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E
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Figure 12. (a) Schematic representation of a CNT, (b) its scanning electron micrograph, (c) vibrational modes, and (d) vibration spectrum [82]. RBM

(Radial Breathing Mode) vibrations of a CNT; E �e is the electron excitation energy.
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They show that the resonance frequency strongly depends on
the CNT parameters. Resonance frequencies for a multi-wall
CNT are more readily reproducible and better agree with the
theory of an elastic beam clamped at both ends. Resonance
quality factors in Ref. [70] are rather low (from 3 to 20), in
contrast to those obtained earlier for a CNT of similar
geometry. The quality factor of a CNT resonator in
Refs [83, 86] ranges from 10 to 200. Recently developed
mechanical resonators based on ultrapure CNTs have the
frequency of the first harmonic amounting to hundreds of
megahertz and the Q-factor higher than 105 [87]. Experi-
ments with these CNT resonators revealed a strong coupling
between mechanical vibrations and electron transport
through a CNT [88, 89].

A recent study of the use of graphene as a material for
NMRs [90] is worthy of mention. Such an NMR is
schematically shown in Fig. 13. According to Ref. [90], it
has Q � 14;000 at T � 5 K and the frequency 130 MHz. The
threshold mass sensitivity measured at a signal integration
time of 300ms is around 2 zg, or significantly higher than that
reported for nanotubes in Refs [53, 54]. It can be further
improved by optimizing the noise characteristics of the
readout electronics. Graphene resonators have more repro-
ducible characteristics and a greater surface area than CNTs,
which is important for small-mass detection. Graphene
properties are highly susceptible to adsorbates, and this
material can therefore be used in the future to create devices
for the detection of individual molecules. Graphene has one
more important, even if currently not well understood,
property distinguishing it from other materials for NMR
fabrication: high tensile breaking strength �130� 10�GPa at
the limits strain of 0.25 [91]. This is crucial for the achieve-

ment of gigahertz frequencies while preserving the level of the
signal being measured.

To conclude this section, we note that CNTs appear to be
themost promisingmaterials for designingNEMSs for a wide
range of applications due to their small diameter and mass
and the defect-free structure at the molecular level.

3. Applications of micro-
and nanoscale cantilevers
for the visualization of material structure

3.1 Introductory notes
The advent of scanning tunneling microscopy (STM)
allowing the visualization of individual atoms [92, 93]
(1982) was a truly revolutionary advance in surface
physics. STM measures the tunneling current between the
sample surface and the sensitive element (a micrometer-size
tip) of the microscope. The operational principle of STM
determines the range of its applications; specifically, it is
suitable to study only conducting materials. This limitation
motivated the development of atomic force microscopy
(AFM) [94]; many researchers are currently focused on
modifying it.

The principle of AFM operation is based on the measure-
ment of forces acting between atoms of two bodies, the
sample surface and the nanoscale cantilever clamped at one
end above the surface. A change in the force resulting from
the interaction between the sample and the tip of the
cantilever causes the bending of the cantilever, detected by
the methods described in Section 2. The magnitude of
deflection carries information about both the surface topo-
graphy and the interatomic interactions. Thus, while the
cantilever in STM moves over the surface of constant
tunneling current, the AFM cantilever moves over a constant
force surface. The principles of feedback sensing even minor
changes in the surface topography are practically identical in
the two methods.

The threshold force sensitivity of modern AFM is
10ÿ14ÿ10ÿ15 N, which is too low to detect a single-electron
spin. Therefore, magnetic resonance force microscopy
(MRFM) was developed [5, 44, 95±97] to improve the
sensitivity of atomic force microscopy. MRFM differs from
AFM in that it uses the cantilever mechanical properties.

The idea to detect nuclear magnetic resonance mechani-
cally rather than inductively was suggested in 1991 [95]. In the
framework of this approach, the fundamental mode of a
mechanical resonator is related to the external force deter-
mined by the dynamics of the object under study. In practical
devices, the silicon cantilever having a submicron ferromag-
netic particle attached to its free end is excited by an
alternating magnetic field at the frequency equal to its
mechanical resonance frequency. The spin magnetic moment
of the sample interacts with the cantilever and causes a shift in
its vibration frequency. This idea was verified in 1994 in an
experiment that for the first time demonstrated the possibility
of mechanical detection of nuclear magnetic resonance of
hydrogen nuclei in ammonium nitrate with the help of
MRFM [44]. The threshold sensitivity achieved in the
experiment amounted to 1013 spins in a 2.3 T field at room
temperature, substantially higher than that of conventional
inductive nuclear magnetic resonance imaging. In a later
study, the method was used to measure the magnetic moment
of a single-electron spin [98]. We note that the interaction

Table 6. Experimental values of the fundamental harmonic of CNT
bending vibrations [70].

Type of
CNT

CNT length,
nm

CNT radius,
nm

Number
of layers

Fundamental
harmonic

frequency, MHz

MW*
MW
MW
MW
MW
MW
SW**
SW
SW
SW

770
1370
650
785
195
265
640
465
572
193

4.2
5
5
8
5
10
1.0
0.6
2.0
0.7

9
12
12
21
12
27

154
51
264
276

2850
3124
30
260
290
573

* MW: multi-wall.
** SW: single-wall.

Au

Au

Si

SiO2

Figure 13. Schematic of a nanomechanical resonator made of a graphene

sheet [90].
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force between the nanocantilever and the electron spin in
Ref. [98] was 10ÿ18 N.

Today, MRFM provides a powerful tool for visualizing
the surface of variousmaterials [5, 99±102] with the 3D spatial
resolution less than 10 nm [45], two orders of magnitude
better than the resolution of conventional high-field magnetic
resonance tomography. Moreover, the use of MRFM
promoted considerable progress in nuclear spin detection [7,
44, 103±105].

The operating principle ofMRFM is illustrated in Fig. 14.
The free end of a cantilever is coated with a layer of
ferromagnetic material that induces a strongly nonuniform
magnetic field B1�r� in the sample material. Simultaneously,
an external polarizing field B0 is applied to the sample. As a
result, the nuclear spins of the sample reside in the total
nonuniform magnetic field

B�r� � B0 � B1�r� ; �3:1�
with the r-dependent nuclear magnetic resonance frequency
o�r� � gB�r�, where g is the gyromagnetic ratio of the nuclei
being studied. In addition, an RF magnetic field Brf of the
frequency orf close to the nuclear magnetic resonance
frequency of nuclear spins at a concrete r value is applied to
the sample by the coil depicted in the right part of Fig. 14.
Thus, the alternating field acts only on those spins whose
nuclear magnetic resonance frequency o�r� coincides with
orf. Once the spatial configuration of the nonuniform
magnetic field B1�r� is known, it is possible to reconstruct
the spatial distribution of the nuclei of interest.

Figure 14 shows the mutual position of the cantilever and
the sample as described in early studies. But it is not the only
one possible. Its disadvantage ensues from the fact that if the
cantilever lacks sufficient stiffness and is positioned close (a

few hundred angstroms) to the surface, then the electrostatic
forces and van der Waals forces may overcome the cantilever
rigidity and cause its end to `stick' to the sample surface. To
avoid this, a different approach is frequently used (Fig. 15), in
which the cantilever is positioned normally to the sample
surface [106]. This highly rigid vertical construction excludes
close contact of the cantilever with the sample, which can be
kept spaced around 10 nmapart. Such a design also offers two
variants. In one case, the magnetic material creating a
magnetic field gradient is coated on the free end of the
cantilever and the sample is placed directly underneath it
(see Fig. 15). In the other, the free end of the cantilever is
covered with the material to be examined while the magnetic
material generating a nonuniform magnetic field is coated
just under the cantilever.

3.2 Methods for signal detection
in the magnetic resonance force microscopy
The equation for cantilever vibrations in the direction of a
polarizing field B0 (assumingly along the z axis) has the form

d2z

dt 2
� G

dz

dt
� o2

0z �
Fz

m
; �3:2�

where G is the resonator damping and

Fz �Mz
dBz�r�
dz

�3:3�

is the average force acting on the cantilever from all sample
spins; Mz is the longitudinal component of nuclear spin
magnetization depending on the polarizing �B0�, radiofre-
quency �Brf� fields, and nuclear relaxation times T1 and T2.

As the cantilever vibration amplitude is much smaller
than the cantilever±sample distance, the magnetic field in
(3.3) can be expanded up to the second order with respect to
the small vibration amplitude:

Bz�r� � Bz�r0� � dBz�r0�
dz

z� 1

2

d2Bz�r0�
dz 2

z 2 ; �3:4�

where r0 is the distance between the cantilever and the spin in
the stationary state.

With (3.3) and (3.4), the equation for cantilever vibrations
(3.2) takes the form

d2z

dt 2
� G

dz

dt
�
�
o2

0 ÿ
Mz

m

d2Bz�r0�
dz 2

�
z �Mz

m

dBz�r0�
dz

: �3:5�

It follows fromEqn (3.5) that interactionswith the spins cause
the cantilever resonance frequency to shift by

Df �Mz f0
2k

d2Bz�r0�
dz 2

; �3:6�

where k is the cantilever spring constant.
Cantilever vibrations are excited not only by low-

frequency (cantilever frequency) modulation of the external
polarizing field B0 but also by modulation of the RF
excitation frequency orf. This results in low-frequency
oscillations of the spin magnetic moment Mz, which in turn
induce low-frequency vibrations of the cantilever. We
emphasize that MRFM detects low-frequency oscillations of
the longitudinal magnetization component, whereas the
conventional MRI technique measures high-frequency oscil-
lations of the transverse component.

B0

Figure 14. Schematic representation of the MRFM operation principle

[100].

Magnetic
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Figure 15.Vertically positioned cantilever with a magnetized tip affixed to

its free end in the schematic diagram of a magnetic resonance force

microscope.
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Equation (3.5) implies two ways of detecting cantilever
vibrations caused by nuclear spins. One is to directly detect
the amplitude of these vibrations due to the spin force acting
on the cantilever and described by the term in the right-hand
side of Eqn (3.5). The amplitude of these vibrations (usually
down to a few picometers) is detected by laser interferometry
[103, 104]. The other method consists in measuring the
cantilever resonant frequency shift given by Eqn (3.6) [107].
According to (3.6), this shift is proportional to the force
gradient (usually of the order of a few millihertz).

3.3 Force and magnetic moment resolution
of the magnetic resonance force microscope
The main factor limiting the MRFM sensitivity threshold is
thermomechanical fluctuations of the cantilever, which are in
most cases characterized by the white noise spectral density
Sf � 4kBTmG. These fluctuations lead to fluctuations of the
cantilever vibration amplitudes at its resonance frequency o0

[99]:

hDz 2i � 4kBT

kG
Df ; �3:7�

where k is the cantilever spring constant and Df is the
measurement frequency bandwidth, G � o0=Q.

On the other hand, the cantilever vibration amplitude in
resonance under the action of spin forces can be written as

Dzf � hMzijHB j
mo0G

: �3:8�

A comparison of (3.7) and (3.8) yields the minimal magnetic
moment that can be detected,

hMzimin �
1

jHB j

������������������������
4kBTGk

o2
0

Df

s
� 1

jHB j

���������������������
2kBTk

pQ f0
Df

s
: �3:9�

Expression (3.9) can be rewritten using geometric and
material parameters of the cantilever [106]:

hMzimin �
1

jHB j
�
wt 2

LQ

�1=2

�Er�1=4�kBTDf �1=2 : �3:10�

The last expression can be represented in terms of theminimal
detectable force [106]:

Fmin �
�
wt 2

LQ

�1=2

�Er�1=4�kBTDf �1=2 : �3:11�

Table 7 lists characteristics of cantilevers, output thresh-
old sensitivities of certain magnetic resonance force micro-
scopes, and characteristics of MRFM-based devices used to
detect nuclear spins. Higher threshold sensitivities were
achieved in test measurements of cantilever noise and
fluctuation parameters (e.g., when the cantilever was excited
by an external force).

The most straightforward way to improve the threshold
sensitivity is to decrease the cantilever stiffness and tempera-
ture. The fabrication technology of a 60 nm thick cantilever
from single-crystal silicon with the spring factor k �
6:5� 10ÿ6 N mÿ1 is described in [69]. An MRF microscope
with this cantilever had the force resolution
5:6� 10ÿ18 N Hzÿ1=2 at T � 4:8 K, higher by a factor of
1000 than the typical value for AFM. A much higher
sensitivity can be obtained using a rather stiff cantilever by
decreasing the temperature. The achievement of the force
resolution 8:2� 10ÿ19 N Hzÿ1=2 using a cantilever with the
spring constant k � 260� 10ÿ6 N mÿ1 at T � 110 mK was
reported in [108].

The latest developments in this field have experimentally
demonstrated the possibility of usingMRFM in combination
with reconstructive tomographic techniques for visualizing
two-dimensional [7] and three-dimensional [45] spin density
distribution with a high spatial resolution unattainable by
conventionalMRI. Because the spatial resolution is related to
themagnetic field gradientG asDx � Do=gG, whereDo is the
frequency resolution of the instrument, its high value was
obtained by using a CoFe alloy to create the largest magnetic
field gradient ever reached in experiments of this type:
G � 1:4� 106 T mÿ1. When constructing a two-dimensional
image (the experiment in [7] to detect the magnetic moment of
19F nuclei was carried out atT � 0:6K), the spatial resolution
proved to be around 100 nm, i.e., corresponded (with the
known nuclei distribution density in the sample) to the
sensitivity threshold of 1200 nuclear spins. Further improve-
ment of this method permitted obtaining a 3D image of the
proton density distribution in tobacco mosaic virus particles
[45]. A spatial resolution of 10 nm was achieved, an almost
100 million-fold improvement over conventional MRI.

3.4 Detection of individual nuclear spins
The detection of individual nuclear spins is an important area
of MRFM applications. There are no conceptual limitations
on the use of MRFM for this purpose as a powerful tool to
gain insight into the structure of biological molecules or, in a

Table 7. Characteristics of certain MRF microscopes.

References
Parameters

[109] [110] [107] [98]

Mass, pg 3:9� 104 6:4� 103 2:0� 103 92

Spring constant, mN mÿ1 100 15 0.06 0.11

Frequency, Hz 8:0� 103 7:7� 103 850 5:5� 103

Q-factor 2000 2:2� 104 4:4� 104 3:0� 104

Magnetic éeld gradient, mT nmÿ1 1:0� 10ÿ5 0.25 0.028 0.20

Temperature, K 300 77 4 1

Amplitude sensitivity, pm Hzÿ1=2 1 1 1 10

Force sensitivity, zN Hzÿ1=2 4:1� 106 2:4� 105 7:8� 103 6:7� 103

Single-spin signal, zN 1:4� 10ÿ4 3.5 0.39 2.8
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broader sense, the structure of matter at the atomic and
molecular levels. Moreover, MRFM is suitable for dynamic
studies of the quantum evolution of individual spins during
measurements, which is of great importance for the develop-
ment of building blocks of quantum processors (qubits).
Today, this goal seems to be only a distant dream, but it
should be remembered that the sensitivity of MRFM for
sensing spinmagnetic moments has been increased by a factor
of 106ÿ107 since 1992. In earlier experiments on the
mechanical detection of electron spin resonance, the thresh-
old magnetic moment sensitivity was only 1:5� 10ÿ17 J Tÿ1

[109]. Later, it was improved to 1:7� 10ÿ21 J Tÿ1 by
significantly increasing the magnetic field gradient [110].
Presently, magnetic resonance force microscopy allows
detecting electron spins with the sensitivity 9:3� 10ÿ24 J Tÿ1

(which corresponds to the magnetic moment of a single
electron) [98] and detecting nuclear spin resonance [7] with
the sensitivity 1:6� 10ÿ23 J Tÿ1 [a little more than 3000
detected particles (protons)].

3.5 Application of the nanomechanical cantilever
as a biosensor
The unique sensitivity of nanocantilevers makes them highly
attractive tools for biophysical and biochemical research.
This section is focused on the main applications of nano-
and microcantilevers as efficient chemical sensors and
ultrasensitive biosensors. If a cantilever is treated with a
chemical agent and placed in a proper medium, the resulting
chemical reaction alters its mechanical properties, including
mechanical stress, temperature, and mass. Such studies date
back to 1994, when a cantilever was first used as a
thermosensor for the registration of chemical reactions [111,
112].

A cantilever operates in three sensing modes: static,
dynamic, and thermal.

The first is used to measure cantilever bending as a result
of chemical or physical reactions on one of its surfaces
previously covered with a layer of reactant. As the reactant
adsorbsmolecules from the environment, the cantilever bends
down. In addition, electrostatic interactions between the
reacting molecules at the cantilever surface cause longitudi-
nal stress in its material [113]. A major drawback of the static
mode is that the detected signal results from the collective
action of many molecules. Moreover, it does not permit
determining the number of molecules producing this signal.
This problem can be resolved in the dynamic regime that
allows estimating the number of molecules responsible for a
change in the resonance frequency.

In the dynamic mode, it is possible to follow variations in
the resonance frequency of the cantilever due to a change in its
mass in the course of the chemical reaction at the surface. The
best threshold mass sensitivity of a nanocantilever reported
thus far amounts to a few zeptograms [114]. In 1995, the
dynamic mode was first used to detect Hg vapors [115].
Ultrasensitive nanocantilevers developed later detect mass
variations at the level of � 1 ag [4] and � 1 zg [114]. Other
design variants of nanocantilevers were proposed for high-
precision measurements of mass changes [1, 3, 116]. They
enabled researchers to measure the mass of various viruses
[117, 118]. Aluminum [119] and polymer [120] ultrasensitive
cantilevers were tested (the latter were used to determine the
mass of a deoxyribonucleic acid (DNA) molecule). As shown
in Ref. [121], the threshold mass sensitivity of a cantilever can
be further increased by operating it at higher vibrationmodes.

A cantilever operated in the thermal regime is covered on
one side with a material having the thermal expansion
coefficient different from that of the cantilever material.
Silicon cantilevers are coated with gold, aluminum, or
catalytically active platinum, whose thermal expansion
coefficients are much higher than that of silicon. Changes in
ambient temperature cause such cantilevers to bend; a
deflection under the effect of a temperature change by a few
microkelvins is readily detectable.

An interesting observation was made in Ref. [122], where
a hollow cantilever was considered. The liquid of interest was
passed through the hollow structure to alter its resonance
characteristics. The threshold mass sensitivity achieved in
[122] was 1 ag, sufficient to `weigh' biomolecules and
individual cells.

The first experiment on the use of a cantilever to study
an exothermal chemical reaction with the energy about 1 pJ
was carried out in the thermal regime in 1994 [111]. The
thermal analysis of phase transitions with a small relaxation
time (about 1 ms) was undertaken in Ref. [123]. The pH
titration technique was used to unravel the relation between
surface mechanical stress in the cantilever and the molecular
structure of aqueous solutions of chemical agents. Changes
in the mechanical stress of the order of 1:2� 0:3 mN mÿ1

detected at pH � 6:0 corresponded to the force of attraction
between molecules equal to 1 pN [124]. Further develop-
ments in this field resulted in the creation of a so-called
artificial nose, an array of cantilevers differing in functional
characteristics; it was used to identify gaseous substances
[125] and perfume constituents. Investigations of the
artificial nose concept were continued in Refs [126, 127],
where the frequency and amplitude of cantilever vibrations
were measured simultaneously to characterize the physical
and chemical properties of the ambient medium [126, 127].

A new line of genome research was initiated by experi-
ments on the effect of DNA hybridization on the cantilever
surface on its nanomechanical behavior [128]. Using this
approach, a few femtomoles of DNA were detected in a
solution containing 75 nanomoles of DNA [129]. The
detection of RNA biomarkers at the picomol level that took
only a few minutes was recently reported in Ref. [130].

Also, the possibility of using this method in proteomics
was considered. Its clinical utility was demonstrated by the
detection of prostate-specific antigen (PSA) in a broad
concentration range, from 0.2 ng mlÿ1 to 60 mg mlÿ1, for
early diagnosis of prostate cancer [131]. The mechanical
response of a cantilever to the alteration of the free energy
of biomolecules on its surface provides a basis for the analysis
of protein±protein and protein±nucleic-acid interactions,
hybridization, and drug identification. Cantilever array-
based sensors were used to simultaneously detect as many as
7 different antigen±antibody reactions, including additional
thermomechanical and chemical reference points. It proved
possible to continuously monitor two cardiac marker
proteins, myoglobulin and creatine kinase, with the resolu-
tion up to 20 mgmlÿ1 [132]. Thinned cantilevers used to detect
antigen molecules were shown to have an even better thresh-
old sensitivity, of the order of 1 nmol [133].

The progress in DNA and protein detection technologies
allowed an interesting experiment for the observation of
protein±oligonucleotide interactions at the transcriptional
level [134]. SP1 and NFkB transcription factors were
detected independently in a solution containing 80 to
100 nmol of these molecules.
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Conformational changes in biomolecules alter their
mechanical properties and thereby mechanico-biological
reactions. In one experiment, a cantilever coated with a
monolayer of azobenzene molecules underwent periodic
upward and downward bending as a result of interconver-
sion of two configurations of molecules under the effect of
periodic UV radiation [135].

The interaction of membrane proteins with their ligands
results in conformational changes that carry information
about intracellular processes. They were studied with the use
of cantilevers in Refs [136±138].

Microcantilevers were also used to study nanomotion
induced by controlled conformational changes in DNA
molecules [139]. This motion causes a surface tension of
32 mN mÿ1, corresponding to the force of an elementary
molecular motor (11 pN mÿ1 or an order of magnitude lower
than the values obtained earlier). Studies on the transforma-
tion of biochemical energy intomicromechanical work open a
new avenue for designers of mechanical nanobiosensors and
micromachined devices.

Micromechanical oscillators were also used as fast-work-
ing biosensors to measure the growth rate of Escherichia coli
bacteria [140, 141] and certain bacterial spores [142, 143]. The
measurement was based on the changes in the cantilever
resonance frequency upon an increase in its mass. The
threshold sensitivity achieved in this study was 1000 E. coli
cells per hour.

Paper [144] demonstrates the possibility of using micro-
cantilevers for detecting explosives, exemplified by trinitro-
toluene adsorbed on a cantilever surface covered with a layer
of 4-mercaptobenzoic acid.

An important point to be made in conclusion is that
nanocantilevers are beginning to be used for studying
biological fluids. However, peculiarities of their functioning
in liquid media impose specific requirements on the design of
experiments [145]. Recent advances give hope of rapid
progress in this area [146, 147].

4. Quantum properties
of nanomechanical resonators

4.1 General remarks
The search for evidence of the quantum behavior of
macroscopic mechanical objects is a long-term challenge
facing theoretical physicists [56, 148, 149]. The solution of
this problem depends on advances in solid-state nanotechnol-
ogies, giving reason to expect that the threshold sensitivity of
nanomechanical resonators will be determined by the laws of
quantum mechanics in the near future. As a rule, quantum
mechanical constraints arise from Heisenberg's uncertainty
principle, stating that any two observables whose operators
do not commute cannot be measured simultaneously with
arbitrary precision. The simplest example is the measurement
of coordinate x and momentum p: DxDp5 �h=2.

An NMR usually consists of � 1010ÿ1011 atoms. For
such a `macroscopic' (from the traditional quantum stand-
point) body showing quantum properties, the boundary
separating classical mechanics from quantum mechanics is
appreciably shifted toward the former. We note that NMRs
are not the sole macroscopic quantum object attracting
attention of researchers. Superconducting charge [150] and
flux [151] qubits created recently belong to the same family.
The transition between the classical and quantum regimes of a

flux qubit was observed in experiment [152].We also note that
electromagnetic oscillators, such as tank circuits [153, 154] or
stripline resonators [155, 156], are frequently used for the
measurement of superconducting qubits. This accounts for
the current interest in the properties of oscillator±qubit and
NMR±qubit systems.

4.2 Standard quantum limit of measurements
As is known, the accuracy with which a given quantity whose
operator does not commute with the full Hamiltonian of the
measurement system can be measured is fundamentally
limited by the Heisenberg uncertainty relation. Such a limit
is termed the standard quantum limit (SQL). For example,
the accuracy of measurement of a quantum oscillator
coordinate in amplitude/phase detection is defined by the
expression [55]

�Dx�SQL �
�������������

�h

2mo0

s
; �4:1�

coinciding with the fluctuation amplitude of its zero-point
oscillations. In (4.1), m is the oscillator mass and o0 is its
resonance frequency expressed, for example, for NMRs,
through the spring constant k as o2

0 � k=m.
Reaching the SQL in real experiments is essentially limited

by the feedback effect of detector fluctuations on the NMR.
Quantum mechanics imposes strict constraints on the mini-
mal effect exerted by linear detector fluctuations on a test
object [55, 56, 157, 158]. In the case of a continuous
coordinate measurement and optimal matching between the
linear detector and the object, the minimal attainable
measuring accuracy is

���
2
p

times the SQL value in (4.1) [157].
This limitation is as fundamental as (4.1) because the detector
`coordinate' is assumed to be only linearly related to the
oscillator coordinate.

Estimation of the measurement inaccuracy of NMR
displacements at the SQL level is a difficult experimental
problem. The SQL was most closely approached in schemes
where single-electron transistors [2, 9, 159], SQUIDs [47], or
quantum point contacts [41, 160] were used as NMR
displacement transducers.

In principle, overcoming the standard quantum limit is
possible using interferometric measurement systems based on
counting the number of quanta or those where information
about the oscillator displacement amplitude is contained in
the interferometer signal phase [55, 161]. For NMRs, this
means that information on the quantum state of amechanical
resonator can be obtained by detecting the quantum state of
the related microwave field [162]. Considerable progress in
this area proved feasible with the advent of a new generation
of subquantum microwave amplifiers based on Josephson
metamaterials [163]; their application allowed going 20%
below the SQL [164]. Another approach is based on the
interaction of an NMR with a silicon toroidal microwave
resonator [165, 166]. This uses the interaction between the
NMR and the microwave field of so-called whispering gallery
modes in a toroidal resonator. In this case, theNMR is placed
outside the toroid and its interaction with the microwave
resonator occurs due to the penetration of the resonator
microwave field through the toroid walls. Information
about the displacement amplitude and fluctuations of the
NMR is contained in the width of the resonance line and the
frequency shift of the microwave field. With this system, the
lowest measurement error reported thus far for NMR
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displacements at room temperature (0.5 SQL) has been
obtained [166]. The contribution of shot noise, which often
dominates in such experiments, was much smaller, around
0.08 SQL.

It follows from (4.1) that the SQL depends on NMR
properties, i.e., the greater the product mo0 is, the lower the
SQL. Substituting (4.1) in Eqn (2.9) for the fundamental
harmonic frequency, we express the SQL in terms of the
NMR parameters:

�Dx�SQL �
0:389

t

����
L

w

r ����������������
�h

�Er�1=2
s

: �4:2�

It follows from (4.2) for silicon (E � 1:5� 1011 N mÿ2,
r � 2:33� 103 kg mÿ3) that

�Dx�SQL � 2:36� 10ÿ5
1

t

����
L

w

r
�A� � ; �4:3�

where the geometric parameters of the NMR are expressed in
micrometers. For an NMR with dimensions Ltw �
1� 0:1� 0:1 mm3, Eqn (4.3) gives �Dx�SQL � 7:4� 10ÿ4 A

�
.

The above relations indicate that the fundamental
frequency depends on the Young modulus E and density r
as

���������
E=r

p
, while the coordinate uncertainty is defined by the

SQL as �Er�ÿ1=4. This implies that for the SQL to be reached,
maximally stiff (with a high Young modulus) and light (low-
density) materials are to be used at a fixed mass. In this
context, materials such as diamond, SiC, SiN, and AlN are
preferred to Si and GaAs. Moreover, the quality factor of
NMRs fabricated from these materials can in principle be
increased (using their high chemical stability) by proper
surface treatment. We also note that AlN shows good
piezoelectric properties, which can be used to directly detect
fluctuations of AIN-based NMRs [26, 167].

Although the value of the SQL for actually attainable
NMR parameters m and o0 can be of the order of a few
femtometers, the resonator position measurement error
usually depends on the preamplifier noise. For example, at
m � 6:1� 10ÿ10 g and o0 � 2p� 2 MHz [47], �Dx�SQL �
2:6 fm, even though the position measurement error in this
experiment is 36�Dx�SQL.

Despite multiple vibrational modes of NMRs, only a few
fundamental ones actually interact with the detector. Given a
very high quality factor of these modes, small vibrations of
such a resonator are fairly well described by the model of a
damped linear harmonic oscillator:

d2x

dt 2
� G

dx

dt
� o2

0x �
Ff�t�
m

; �4:4�

where G is the resonator damping, m is its mass, o0 � 2p f0 is
the resonance frequency, and Ff�t� is the fluctuating force due
to acoustic thermal oscillations of NMR atoms. The spectral
density of these equilibrium fluctuations is defined by the
fluctuation±dissipation theorem:

Sf�o� � 2mG�ho coth
�ho
2kBT

: �4:5�

In the classical regime with �ho5 kBT, Eqn (4.5) can be
rewritten as Sf�o� � 4mGkBT, whence the RMS value of the
fluctuation force acting on the NMR is F 2

f � 4mGkBTDf,
where Df is the measurement frequency bandwidth expressed
in Hertz. It follows from (4.4) for the fluctuation displace-

ment of the NMR equilibrium position in a unit bandwidth
that

dx 2�o� � Sx�o� do
2p
� Sf�o�

m 2

1

�o2
0 ÿ o2�2 � o2G 2

do
2p

; �4:6�

where Sx�o� is the spectral density of NMR displacement
fluctuations. Assuming the NMR to be weakly damped
�G5o0�, it is possible to integrate (4.6) over all frequencies,
taking Sf�o� at the resonance point. In this way, the
dispersion of NMR amplitude vibrations due to quantum
fluctuations is found as

�Dx�2 �
�1
0

Sx�o� do
2p
� �h

2mo0
coth

�ho0

2kBT
: �4:7�

Although Eqn (4.7) was obtained in the framework of the
above approximations, it is exact and follows directly from
quantum statistics in the computation of the mean potential
energy of an undamped harmonic oscillator.

In actual practice, it is more convenient to use the spectral
density of displacement fluctuations at the resonance fre-
quency of a mechanical resonator. Equations (4.5) and (4.6)
lead to

Sx�o0� � Sf�o0�
m 2o2G 2

� 2�h

mo0G
coth

�ho0

2kBT
; �4:8�

where Sx�o0� is the unilateral spectral density in [m2 Hzÿ1]
units. The first factor in the right-hand side of (4.8) is just the
Fourier component of the SQL in (4.1) at the resonance
frequency. For this reason, it is sometimes referred to as the
standard quantum limit with respect to the spectral density of
displacement fluctuations:

SSQL
x �o0� � 2�h

mo0G
� 2�hQ

mo2
0

; �4:9�

where Q � o0=G is the resonator quality factor.
Experimental Q-factors of low-lying NMR modes fall

within the range 103ÿ104, which enables the observation of
quantum properties of such NMRs at appropriate tempera-
tures.

Expressions (4.7) and (4.8) can be represented in the form

Dx � �Dx�SQL

������������������
1� 2Nth

p
; �4:10a�

Sx�o0� � SSQL
x �o0�

������������������
1� 2Nth

p
; �4:10b�

where Nth is the mean number of thermal phonons of the
resonance mode o0 in the resonator:

Nth � 1

exp ��ho0=kBT � ÿ 1
: �4:11�

As follows from (4.10a) and (4.10b), the NMR vibration
amplitude in thermodynamic equilibrium is bounded by the
standard quantum limit and increases with temperature.
The temperatures corresponding to Nth � 1 (at which
Dx � ���

3
p �Dx�SQL) are roughly equal to 9 mK at o0=2p �

100 MHz and 90 mK at o0=2p � 1 GHz.
The resonator regime changes from classical to quantum

when its thermal energy kBT becomes comparable to the
energy �ho0 (or below) separating the resonator ground state
from the first excited state:

�ho0 5 kBT : �4:12�
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In this case, the contribution of the thermal energy to the total
vibrational mode energy is comparable to or lower than the
zero-point vibration energy. The equality sign in Eqn (4.12)
corresponds to Nth � 0:58, while the temperature 1 K
corresponds to the oscillator fundamental frequency equal
to 21 GHz.

If T > �ho0=kB, the number of thermal phonons can be
roughly deduced from (4.11) as Nth � kBT=��ho0�. However,
there are no quantitative constrains on the value of Nth at
which quantum properties begin to emerge. The smaller Nth

is, the higher the probability of observing quantum effects in
an NMR (entangled and squeezed states, pure superposition
quantum states, zero-point vibrations). The condition
Nth < 1 is not always strictly necessary to enable the
observation of quantum effects. Theoretical considerations
suggest that quantum entanglement is in principle realizable
at T � 30 mK and f0 � 50 MHz [168]; at Nth � 50, it is
possible to form an NMR consisting of approximately
1010 atoms in a superposition of coordinate states [13]. In
this sense, NMRs are radically different from gravitational
wave detectors having a threshold displacement sensitivity of
the order of several hundred SQLs [169±172]. However, the
operating temperature of these detectors is relatively high
(� 1 K), while the resonance frequencies are rather low
(� 1 MHz); hence, Nth � 2� 104. Recent progress in this
field has allowed decreasing the fundamental mode tempera-
ture of a 2.7 kg mechanical pendulum to 1.4 mK with
Nth � 200 and the threshold sensitivity around 10 SQLs [173].

In contrast, NMR frequencies can be relatively high (a few
GHz) [22, 167] with working temperatures 50±100 mK; in
principle, this permits achieving Nth 5 1.

The lowest temperature currently attainable in dilution
refrigerators is several millikelvins. The temperature of a
sample coupled to the electronic components of the measure-
ment circuit is somewhat higher (usually 20±50 mK), corre-
sponding to radiofrequencies in the range 400±1000 MHz.
Taking expression (2.9) for f0 as a basis, we obtain

f0 � 8:4
t

L2
�GHz� ; �4:13�

for silicon (E � 1:5� 1011 N mÿ2, r � 2:33� 103 kg mÿ3),
where the resonator dimensions are given inmicrometers. For
the resonator 1 mm in length and 0.1 mm inwidth, from (4.13),
f0 � 840 MHz.

Thus, quantum effects of mechanical resonators can be
observed if the resonators have submicron dimensions.
Moreover, the lower the temperature to which NMRs can
be cooled, the more stringent requirements are imposed on
their dimensions at which quantum properties manifest
themselves.

NMR quantum dynamics can be investigated directly
using a highly sensitive displacement transducer. Currently,
the most promising transducers for detecting zero-point
fluctuations of NMRs are those recording one or more
electrons in response to a change in the NMR position.
These are tunnel devices [174±176], single-electron transis-
tors [2, 9, 177±181], quantum dots [182], and quantum point
contacts [183]. For example, using a single-electron transistor
as a detector for NMRs with a frequency of 20 MHz, the
authors arrived at a displacement resolution of the order of
4:3�Dx�SQL and the number of thermal photons Nth � 60 [9,
179, 181]. Theoretical predictions [168] for the detection of
NMR displacements based on a single-electron transistor
suggest the possibility of achieving the threshold sensitivity

up to 10ÿ6 A
�
Hzÿ1=2. For a resonator with the frequency

100 MHz and Q � 104, this estimate corresponds to a
displacement resolution of the order of 10ÿ4 A

�
. It can

expected that the detection scenario proposed in Ref. [168]
will allow reaching the level of zero-point fluctuations.

4.3 Dynamic cooling of nanomechanical resonators
It follows from Section 4.2 that investigations into the
quantum behavior of nanomechanical oscillators are feasible
under the condition that �ho0 4 kBT; in other words, their
fundamental frequency must be as high as possible and the
temperature as low as possible. Therefore, the main difficulty
encountered in observations of quantum properties of
macroscopic mechanical systems is posed by the necessity of
cooling the mechanical mode to the ground-state tempera-
ture. For certain NMRs, such cooling is possible by purely
technical means [167] often, either the required temperatures
are lower than those attainable by standard cryogenic
methods or the working temperatures are high due to the
experimental design. Therefore, extensive efforts are devoted
to the development of alternative cooling schemes based on
ideas borrowed from quantum optics and methods for
cooling atoms with laser light.

The majority of the methods for the dynamic cooling of a
nanomechanical resonator use its interaction with an external
system whose parameters vary with the NMR position. For
optomechanical or electromenchanical systems, one such
parameter is the resonance frequency of the optical or
electric resonator coupled to the NMR. Leaving aside the
details of concrete experimental setups, the equation for the
NMR displacement amplitude can in most cases be written in
the form

d2x

dt 2
� Gm

dx

dt
� o2

mx �
Ff�t�
m
� 1

m

� t

0

M
ÿ
x�t 0�� h�tÿ t 0� dt 0 ;

�4:14�

where the functionals M and h depend on a given cooling
method. The last term in the right-hand side of (4.14) leads to
a renormalization of the intrinsic damping factor Gm and the
resonance eigenfrequency om of NMRs, such that the root-
mean-square magnitude of fluctuations, x, in the do=�2p�
bandwidth takes the form ��hom 5 kBT �

dx 2�o� � 4kBTGm

m

1ÿ
o2

eff�o� ÿ o2
�2 � o2G 2

eff�o�
do
2p

; �4:15�

whereGeff andoeff are functions of the frequencyo in general.
The effective temperature of the resonance mode of a

nanooscillator is found from the equipartition theorem:

mo2
m



x 2�t��
2

� kBTeff

2
; �4:16�

where


x 2�t�� is the result of the integration of expression

(4.15) over all frequencies. Assuming that oeff � om and
Geff 5om in (4.15), we use (4.16) to obtain the effective
temperature of the oscillator fundamental mode as [184]

Teff � T
o2

m

o2
eff�om�

Gm

Geff�om� ; �4:17�

where Geff � Gm � G 0 with G 0 being the contribution to the
damping of the mechanical resonator from its interaction
with external devices. It follows from (4.17) that the effective
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temperature is in general determined not only by damping but
also by the resonance frequency shift. In this sense, an
enhancement of resonator damping does not necessarily
result in its cooling.

We emphasize that the above reasoning holds for the
effective temperature of a single mode of the mechanical
resonator that is kept at the thermodynamic temperature T
as a whole.

A number of recent experiments have been performed to
cool the fundamental mode of NMRs by coupling it to
various external systems [162, 184±187]. These experiments
showed that cooling to an effective temperature of 0.1 K [185]
and even 5 mK is possible [186]. Ongoing theoretical studies
are aimed at searching for more efficient cooling systems. The
most promising of them is a combination of NMRs with a
solid-state quantum electron device, such as an electrical
resonator [188, 189], complanar multistrip line [15, 190],
quantum dots [191], electron [192] and nuclear [193] spins,
and superconductor devices [153, 159, 194±206].

4.4 Dynamic cooling in optomechanical systems
Realization of optomechanical systems in which optical and
mechanical degrees of freedom are coupled by radiation
pressure forces became possible due to technological
advances in the fabrication of high-quality-factor optical
microresonators and mechanical micro- and nanoresonators
[187, 207±215].

Optomechanical systems, unlike those based on electro-
magnetic interactions of light with atoms, make it possible,
theoretically, to realize strong coupling between the optical
andmechanical modes. This fact attracts the attention of both
theorists and experimentalists because it opens up new
prospects for studying the quantum properties of light and
macroscopic objects (in terms of quantum mechanics) with
which it interacts.

A necessary and inevitable procedure is optomechanical
cooling of the fundamental mode of a mechanical micro- or
nanoresonator to ensure its transition to the ground state. In
analogy with the laser cooling of atoms, the vibration mode
energy of a mechanical oscillator decreases under the effect of
the delayed radiation pressure force. However, in this system,
cooling affects not a single atom but the collective vibrational
mode of the macroscopic mechanical oscillator consisting of
more than 1010 atoms.

The main component of an experimental setup is the
Fabry±Perot resonator formed by two mirrors, one of which
is fixed and the other is movable. The latter is usually a
mechanical microbridge [210, 211]. The resonator is pumped
by laser radiation, with the movable mirror being affected by
a radiation pressure force proportional to the radiation
energy density in the resonator. This force displaces the
mirror, which results in a change in the resonator length and
a resonance frequency shift with respect to the laser radiation
frequency. The laser radiation, in turn, alters the radiation
energy density and causes a change in the radiation force
acting on the micromirror. Such coordinated dynamics of
optical radiation and mechanical bridge vibrations account
for many interesting effects in the system under considera-
tion. These effects have been investigated in manymechanical
systems in the context of dynamic cooling of the fundamental
mode of nano- and microelectromechanical systems [159,
184, 185, 187, 210, 211], improvement of sensitivity of
gravitational wave detectors [216, 217], and generation of
squeezed photon states [218].

The key factor determining the dynamics of a mechanical
resonator under the effect of the radiation pressure force is a
somewhat delayed (rather than instantaneous) change in
response to a change in the resonator position. The delay is
the time needed for a photon to leak out of the optical
resonator; it is proportional to the resonator quality factor.
For this reason, the dependence of the radiation force on the
mechanical resonator displacement is a usual Lorentzian
whose peak position coincides with the resonance frequency
of the optical cavity.

We assume that the laser frequency is on the left slope of
the resonance curve (detuning D) of the optical cavity, as
shown in Fig. 16b. Oscillations of the movable mirror then
cause the working point to move up and down on the slope
of the resonance curve. When the photon lifetime in the
cavity tk � 1=k (where k is the width of the cavity resonance
curve) is much shorter than the period of mechanical
oscillations �om 5 k�, the radiation pressure force changes
almost instantaneously upon a change in the resonator
position. In other words, in this adiabatic case, changes in
the radiation force and the resonator position occur virtually
in-phase. Therefore, the net work of the radiation force
during a single oscillation period of the resonator is close to
zero and there is no energy transfer between the cavity and
the resonator. If the mechanical oscillation period is slightly
longer than the photon lifetime in the cavity �om 4k�, the
radiation force approaching the resonance is weaker than the
equilibrium one due to the time lag, but is greater far from
the resonance. As a result, the total work of the radiation
force for one oscillation period of the mechanical resonator
is negative, which implies energy transfer from phonons to
the cavity photons and cooling of the resonator oscillation
mode.

When the laser frequency corresponds to the right slope of
the resonance curve (the detuning D in Fig. 16a), radiation
pressure has the opposite effect, that is, the total work of the
radiation force during a single oscillation period of the
resonator is positive, which implies heating of the resonator
oscillation mode. This action of the radiation force on a
mechanical resonator was first described some 40 years ago,
based on the interaction between a resonator and a high-Q
electrical loop [219±221]. In the modern literature, it is
referred to as dynamical backaction, because the light field
affects the mechanical resonator after being excited by this
resonator.

The semiclassical analysis of this effect leads to an
expression analogous to (4.17) for the effective temperature
of the vibrational mode,

Teff � T
Gm

Gm � Gopt
; �4:18�
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Figure16. Resonance characteristic of the optical density.
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where the optomechanical friction Gopt depends linearly on
the laser power and is highly sensitive to the displacement of
the mechanical resonator. Therefore, cooling is a conse-
quence of the delayed response of the radiation force to a
change in the thermal fluctuation amplitude of the mechan-
ical resonator. This delay is due to a finite leakage rate k of
photons leaving the resonator cavity.

A detailed quantum analysis [222, 223] has demonstrated
that expression (4.18) is valid if Gopt 5 k, Gm=�Gm � Gopt� >
1=Qm, and the number of thermal phonons is relatively large
�Nth � kBT=��hom�4 1�. Despite the nonequilibrium state of
the oscillation mode cooled to Teff, it is possible, by analogy
with (4.11) and assuming the mechanical oscillator to be
weakly damped �Gm5Gopt5 k�, to introduce the mean
number of its phonons

nopt � 1

exp
�
�hom=�kBTeff�

�ÿ 1
:

The total number of phonons of a mechanical oscillator is
found from the balance of absorbed and emitted energies
[223]:

nm � Goptnopt � GmNth

Gm � Gopt
; �4:19�

whereNth is the number of thermal phonons corresponding to
the temperature Tm, and Gopt and nopt are determined by the
interplay between mechanical and optical resonators. At
Nth 4 1, Eqn (4.19) reduces to classical expression (4.18).

The lowest attainable temperature depends on quantum
field fluctuations in the optical resonator, which leads in the
resolved sideband limit �om 4 k� at D � ÿom (where
D � olas ÿ ocav is the laser frequency detuning of olas from
the cavity resonant frequency ocav) to the minimally attain-
able average number of `optical' phonons in the mechanical
resonator [222±224]:

nopt �
�

k
4om

�2

5 1 : �4:20�

As follows from (4.19) and (4.20), cooling to ground-state
temperatures is quite possible in the limit om 4 k and
Gopt 4Gm. However, this level has not yet been reached in
experiments. The minimal number of thermal phonons
obtained thus far is roughly 30 in Ref. [225] and 60 in
Ref. [226].

Apart from the standard realization of the optomechani-
cal system described above, in which one of the micromirrors
of the optical Fabry±Perot resonator serves as a mechanical
resonator, other optomechanical systems were investigated
that are based on a similar operating principle, with radiation
pressure forces playing the key role. Cantilevers [184, 185] and
microbridges [210, 211] were used as mechanical resonators
having typical masses 10ÿ15ÿ10ÿ10 kg (and even 1 g [212])
and typical frequencies in the range 1 kHz±100 MHz.

The coupling of optical and mechanical modes via
radiation pressure is possible using not only a Fabry±Perot
resonator but also other optical resonators in which whisper-
ing gallery modes (WGMs) are realized [227], such as
microtoroids [187, 207, 209, 228±232], microspheres [233,
234], and microdisks [235].

Radiation pressure in WGM resonators is directed
normally to the beam path [207±209], whereas in Fabry±

Perot devices, the momentum transfer between optical and
mechanical modes occurs in the direction of light propaga-
tion. The coupling between optical and mechanical oscilla-
tions is due to radiation pressure on the walls of the WGM
resonator undergoing numerous internal reflections during
light circulation, leading to its radial mechanical vibra-
tions.

One more type of optomechanical system proposed in
Ref. [236] has recently been investigated both theoretically
[237±240] and experimentally [213, 241]. The role of the
mechanical element in such systems is played by a dielectric
membrane placed between the fixed mirrors of a Fabry±Perot
resonator, such that radiation pressure acts on either side of
the mechanical resonator. In the experiment described in
Ref. [213], the room temperature of the fundamental mode
of the mechanical oscillator was lowered to 6.8 mK, roughly
corresponding to 1100 thermal quanta. An advantage of this
method is the possibility, in principle, of positioning the
mechanical membrane strictly in an antinode of a standing
wave. The radiated power is therefore sensitive to the squared
membrane displacement amplitude hx 2i, which enables direct
detection of the mechanical oscillator energy by the `quantum
nondemolition' method.

4.5 Cooling of nanoelectromechanical systems
The use of NEMSs for the investigation of quantum proper-
ties of mechanical oscillators has certain advantages over the
application of optomechanical systems, all the more because
the currently available technologies make it possible to build
solid-state structures containing a nanomechanical resonator
and an electronic circuit on a chip.

The idea of controlling oscillations of the fundamental
mode of a mechanical oscillator via an electrical circuit is by
no means new [219, 220]. In NEMSs based on this principle,
the mechanical oscillator is one of the plates of a capacitor
forming part of the tank circuit whose resonance frequency
and amplitude depend parametrically on the oscillation
amplitude of the mechanical resonator. At the given para-
meters of the electrical circuit, the regime of oscillations of the
mechanical resonator depends on the frequency and power of
external pumping and varies in a broad range, from the
strong-damping stable one to the unstable regenerative
regime.

The main results pertaining to this scheme can be derived
from an analysis of the diagram in Fig. 17 based on the same
principle as an optomechanical scheme. Here, the role of
radiation pressure is played by the Coulomb force between
the plates of a mechanical capacitor. Oscillations of a

L
Cm Cr CbCb

NMR

Id�t�

Figure 17. A nanoelectromechanical system consisting of an NMR

connected to a microstrip resonator: Id is the excitation current, Cb is the

capacitance coupling the external measurement circuit to the microwave

resonator, Cr is the capacitance of the microstrip resonator, L is the

resonator inductance, and Cm is the capacitance of the mechanical

resonator.

402 Ya S Greenberg, Yu A Pashkin, E Il'ichev Physics ±Uspekhi 55 (4)



mechanical resonator modulate the capacitance of the
mechanical capacitor, leading to a modulation of the
resonance frequency o0 of the entire circuit. If the excitation
frequency orf is tuned to the left slope of the resonance curve
�o0 > orf�, the modulation of o0 results in charge modula-
tion on the mechanical capacitor, which leads to a change in
the Coulomb force acting on the mechanical oscillator.
However, variations of the force do not coincide in phase
with changes in the oscillation amplitude of the mechanical
oscillator owing to the finite relaxation time of the electrical
circuit. If o0 > orf, the phase shift causes the force to be
directed against the oscillator velocity, thereby damping its
oscillations. This effect generally leads to a shift in the
oscillator resonance frequency and a change in the damping
coefficient.

This scenario was thoroughly considered in Ref. [56] with
respect to gravitational-wave experiments. The first experi-
ments on the dynamic cooling of gravitational detectors were
undertaken over 15 years ago using a mechanical oscillator in
the form of a 1300 kg niobium plate with an eigenfrequency of
700 Hz [169]. The plate was part of a superconducting RF
cavity having an eigenfrequency of 10 GHz modulated by
niobium plate vibrations. Excitation of the RF cavity at a
frequency close to its resonance suppressed mechanical
oscillations of the fundamental mode of the niobium
detector from the initial level corresponding to the tempera-
ture of the whole setup (5 K) to the level corresponding to
T � 2 mK �Nth � 6� 103�. The advantages of this approach
have recently been demonstrated in Ref. [189], where a rather
big mechanical oscillator (length 1.5 mm, fundamental
frequency 7 kHz) was cooled from room temperature to
T � 45 K with the use of an LC-tank circuit with a resonance
frequency of 100 MHz.

In what follows, we briefly discuss the problems related to
the application of this system in nanomechanics. Coupled
electrical and mechanical resonators can be described by two
differential equations:

�x� Gm _x� o2
mx � ÿ

q 2
m

2mC 0
md
� Ff�t�

m
�4:21�

for the mechanical resonator and

�q� Gr _q� o2
r �x�q �

1

L

ÿ
Vf�t� � Vrf cosot

� �4:22�

for the electrical one.
In Eqn (4.21), x is the displacement of the mechanical

resonator from the equilibrium position; m, Gm, and om are
the mass, damping, and eigenfrequency of the mechanical
oscillator; qm is the charge of the `mechanical' capacitor; and
C 0

m and d are its static capacitance and interplate distance.
The first term in the right-hand side of Eqn (4.21) is the
Coulomb force acting on one mechanical plate from the
other; the minus sign in front of it reflects the fact that the
Coulomb force is always attractive. The quantity Ff�t� in the
right-hand side of (4.21) is the fluctuation force acting on the
mechanical oscillator; the spectral density of its equilibrium
fluctuations is given by expression (4.5). In Eqn (4.22), Gr

and or are the damping and resonance frequency of the
electrical component or�x� � 1=

�������������������������������
L�C0 � Cm�x��

p
, where

C0 is the equilibrium capacitance of the capacitor, Cm�x� is
the mechanical capacitance depending on the interplate
distance d� x, and q is the total charge on the capacitors

related to qm as

qm � Cm�x�
C0 � Cm�x� q :

The quantity Vf�t� in the right-hand side of (4.22) is the noise
voltage in the electrical circuit and Vrf is the external signal
amplitude. The interaction betweenmechanical and electrical
systems is determined by the dimensionless parameter
e � C 0

m=C0. Equations (4.21) and (4.22) admit an analytic
solution in the case of small mechanical oscillations �x5 d �
and relatively slow vibrations of the mechanical resonator
compared with electrical ones �om 5or�. At Gr 5om,
external signal pumping at the side frequency o � or ÿ om

can significantly suppress the resonance mode fluctuations of
the mechanical oscillator. Then the expression for the
effective temperature of the fundamental mode of the
mechanical oscillator takes the form

Teff � Tm
Gm

Geff

�
1� Ze 2

Tr

Tm

o2
r

o2
m

�
; �4:23�

where

Geff � Gm

�
1� Ze 2

o3
r

o3
m

�
; �4:24�

Z � Prf

32md 2GrGm
; �4:25�

and Tr is the thermodynamic temperature of the electrical
part of the system, which can in theory be different from the
thermodynamic temperature Tm of the mechanical oscillator.

The second term in the right-hand side of Eqn (4.23) is the
contribution of thermal fluctuations of the electrical part
resulting from the nonlinear coupling between mechanical
and electrical systems. These fluctuations limit the effective
temperature of the mechanical resonator maximally attain-
able in side-band cooling. The contribution of this term
becomes dominant if the power input Prf is enhanced. In this
case, it follows from (4.23) for the attainable limit of the
effective temperature [198] that

Tmin
eff � Tr

om

or
: �4:26�

Condition (4.26) is important specifically for NEMSs,
because the frequency ratio om=or in NEMSs is much higher
than in optomechanical schemes. The quantum analysis of
this problem [198] also leads to relation (4.26). It follows from
(4.26) that the starting temperature of a microwave resonator
must correspond to its ground-state temperature if the
oscillator is to be cooled to the ground state
Tmin
eff < T �m 4 �hom=2kB. In other words, the microwave

resonator must be originally `cooler', i.e., have fewer thermal
photons, than the mechanical one.

Good prospects for the application of the above cooling
setup for the transition of mechanical nano- and microoscil-
lators into the quantum mode have been demonstrated in a
number of recent studies [61, 162, 164, 242±244]. The authors
used a superconducting microstrip resonator as the electronic
component coupled to a mechanical oscillator, with the
circuit parameters satisfying conditions for the most efficient
cooling (resolved side-band cooling), Gr 5om, in which the
excitation frequency of the microstrip resonator matches the
side frequency o � or ÿ om. Paper [244] for the first time
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demonstrated purely quantum nondemolition measurements
of mechanical oscillator vibrations. The idea behind this well-
known method [55, 148] is to measure one of the quadrature
components, X1 or X2 �x�t� � X1 cos �omt� � X2 sin �omt��,
rather than the quantity x, which is not an integral of motion
for the oscillator. Although the componentsX1 andX2 do not
commute with each other, either of them is an integral of
motion; in other words, they are dynamically decoupled. For
this reason, the measurement, e.g., of the X1 component has
no effect on its evolution, even if it affects X2 (owing to their
noncommutativity). In Ref. [244], this idea was realized by
simultaneous excitation of a microwave resonator by two
phase-coherent signals at frequencies ored � or ÿ om and
oblue � or � om. The field in this microwave resonator was
modulated at the resonance frequency of the mechanical
oscillator E�t� � E0 cos �ort� cos �omt�, while the filtered
signal amplitude was proportional to X1.

The dynamic cooling of an NMR was demonstrated in
a setup of a different type, where a superconducting

single-electron transistor was used as the displacement
transducer [159]. The authors used the backaction of
electrical shot noise to cool the mechanical oscillator.
They managed to reduce the temperature of a nanome-
chanical oscillator with a frequency of 21.9 MHz from
550 mK to 300 mK, which corresponds to Nth � 25.

On-chip solid-state NEMSs are very convenient to
integrate into low-temperature modules of modern cryo-
genic equipment. Purely cryogenic NEMS cooling has
yielded excellent results. A threshold sensitivity close to the
SQL was demonstrated with the use of single-electron
transistors [2, 9, 159], SQUIDs [47], and quantum point
contacts [41, 160] as NMR displacement transducers. In this
context, we note a recent study [167] in which an NMRwith a
frequency of 6.175 GHz was cooled to T � 25 mK, corre-
sponding to Nth 5 1. The NMR was fabricated from
aluminum nitride (strong piezoelectric) and its oscillations
were directly converted into electrical signals detected by a
superconducting phase qubit. The number of thermal

Table 8. Cooling of micromechanical resonators in optomechanical systems.

Mechanical resonator parameters Initial
ambient

temperature, K

Effective
fundamental

mode
temperature, K

Root-mean-
square

displacement
sensitivity,
m Hzÿ1=2

Reference

Effective
mass m, g;
material

Length � width
� thickness,

mm

Fundamental
mode frequency

fm, MHz

Q factor

190� 10ÿ6

Si
103 � 103 � 60 0.814 10,000 300 2 4� 10ÿ19 [210]

400� 10ÿ9

TiO2=SiO2

520� 120� 2:4 0.28 10,000 300 8 8� 10ÿ13 [211]

1:0� 10ÿ8

Si
Microtoroid 73.5 30,000 300 20 5� 10ÿ19 [214]

Si 120� 3� 0:1 0.0039 55,600 2.2 0.290 1:0� 10ÿ12 [186]

3:8� 10ÿ9

Au=Si
223� 22� 0:46 0.0073 300 18 1:0� 10ÿ11 [184]

2:4� 10ÿ8 450� 50� 2 0.0125 20,000 300 0.135 1:0� 10ÿ13 [185]

4� 10ÿ8

SiN
103 � 103 � 0:05 0.134 1:1� 106 294 6:82� 10ÿ3 7� 10ÿ16 [213]

43� 10ÿ9

SiN
100� 50� 1 0.945 30,000 5.3 0.0015 2:6� 10ÿ17 [225]

125� 10ÿ9

Si
50ÿ300� 50� 5:4 0.557 1000 ë 3000 295 17 [215]

40� 10ÿ9

Si
50ÿ300� 50� 5:4 0.557 1000 ë 3000 35 0.29

1:5� 10ÿ8 Microtoroid 58 2890 300 11 2:5� 10ÿ18 [187]

4:1� 10ÿ8

Si
Microtoroid,
d � 30 mm

118.6 3400 1.4 0.21 1:5� 10ÿ18 [234]

1 172� 10ÿ6 3200 300 0.8 5� 10ÿ16 [212]

4:9� 10ÿ12

SiN
35� 0:8� 0:11 8 40,000 300 5:7� 10ÿ16

(0.7 SQL)
[165]

30� 10ÿ6

Si
Microtoroid,
dmin � 6,
dmax � 60,
thickness 10

6.272 300 58 1:5� 10ÿ18 [232]

�1ÿ10� � 10ÿ9

Si
Microtoroid 62 ë 122 2600 1.65 0.125 1:5� 10ÿ18 [226]

20� 10ÿ9

Si
Microtoroid 70 5000 0.6 0.037 3:2� 10ÿ19 [231]
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phonons in the NMR did not exceed 0.07. It was concluded
that direct cryogenic cooling allowed the NMR to be
obtained in the ground state.

The main experimental data on the dynamic cooling of
optomechanical and nanoelectromechanical systems are
listed in Tables 8 and 9. The first column of both tables
presents effective mass values of mechanical resonators
determined either from the known spring constant and the
measured resonance frequency or from the amplitude
response of the resonator to the applied external force.
Some cells in the tables are left blank due to the lack of
relevant data in the cited publications.

5. Conclusions

We have focused on the analysis of the development of
nanoelectrochemical systems during the past decade. The
principal physical and material characteristics and properties
of nanomechanical resonators, as well as their applications in
fundamental and experimental studies, have been reviewed.
We anticipate the development of these investigations in the
near future along the following three major lines.

One is the further improvement of fabrication technolo-
gies for silicon and metallic NMRs with the aim to achieve
fundamental frequencies of a few tens of gigahertz to enable

an insight into the quantum behavior of NMRs at the
moderately low temperatures (0 100 mK) attainable in
many laboratories. A different way to address this problem
is to develop methods for the dynamic cooling of nanoreso-
nators in order to significantly decrease the effective tempera-
ture of the fundamental mode. There is much theoretical
research along these lines, but none of the proposed
techniques to switch over a nanomechanical resonator to the
quantum regime, i.e., to obtain Nth 5 1, have yet been
realized in experiment.

The second line is the use of NMRs as biosensors.
Extensive studies in this area are currently underway based
onmicrometer resonators. There is little doubt that transition
to submicrometer resonators will open up new prospects for
the application of NMRs as ultrasensitive biosensors.

Developments along the third line have a very short
history of only 3 or 4 years. They are focused on the use of
CNTs and graphene as nanomechanical resonators. There are
still many unexplored topics in this field that, nonetheless,
appear very promising, because it is expected to promote
research on the relation between CNT quantum and mechan-
ical properties and thereby create opportunities for designing
and producing new measuring devices.

Many laboratories worldwide are currently engaged in
NMR research. The ever-increasing interest in NMRs is

Table 9. Cooling of NMRs in electromechanical systems.

Mechanical resonator parameters Initial
ambient

temperature, K

Effective
fundamental

mode
temperature, K

Root-mean-square
displacement

sensitivity, m Hzÿ1=2

(coordinate resolution
un units of SQL)

Reference

Effective
mass m, g;
material

Length � width
� thickness �Lwt�,

mm

Fundamental
mode frequency

fm, MHz

Q factor

2� 10ÿ12

Al
50� 0:1� 0:3 1.41 3800 0.2 0.14 [242]

2� 10ÿ12

Al
50� 0:13� 0:1 0.237 2300 0.04 0.002 1:6� 10ÿ12 [60]

6:2� 10ÿ12

Al
100� 0:13� 0:12 1.525 3� 105 0.05 0.01 5:5� 10ÿ14 [162]

Si 1500� 200� 14 0.007 20,000 300 45 [189]

SiN ëAl 30� 0:17� 0:14 6.3 106 0.146 0.0013 1:125� 10ÿ15 [243]

2:2� 10ÿ12

SiN
30� 0:17� 0:06 5.57 2:5� 105 0.142 0.013 (1.3) [244]

11� 10ÿ12

Al
150� 0:17� 0:16 1.04 0.015 4:8� 10ÿ15

(0.8)
[164]

AlN 6175 260 0.025 0.025 [167]

Al=SiN 9� 0:2 21.9 150,000 0.3 0.15 3:8� 10ÿ16

(3.9)
[159]

9:7� 10ÿ13

Au=SiN
8� 0:2� 0:1 19.7 35,000 0.056 0.056 3:8� 10ÿ15

(4.3)
[9]

2:84� 10ÿ12

GaAs
3� 0:25� 0:2 116 1700 0.03 0.03 2� 10ÿ15

(100)
[2]

6:1� 10ÿ10

Nb
L � 50 2 18,000 0.02 0.084 1� 10ÿ14

(36)
[47]

2:3� 10ÿ12

Au
5:6� 0:22� 0:1 43.1 5000 5 5.73 2:3� 10ÿ15

(42)
[41]

2� 10ÿ9

Si
350� 3� 1 5:2� 10ÿ3 2500 4.2 4.2 1� 10ÿ12 [160]

GaAs L � 50, t � 0:72 1.5 3000 4.2 4.2 3� 10ÿ12 [183]
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primarily due to seeking solutions to basic problems related
to the quantum behavior of macroscopic objects and
quantum measurements. Furthermore, the interest in NMRs
is stimulated by the prospects of their practical application.
High resonance frequencies and quality factors of these
devices, coupled to the ease of their integration into electrical
and optical systems, provide a solid basis on which to develop
ultrasensitive detectors for themeasurement ofmany physical
quantities at the level of their quantum fluctuations. There is
no doubt that investigations into the quantum properties of
NMRs will result in the development of new types of
detectors and related electronics.
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