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Abstract. A semianalytic formation model for the large-scale
structure of the Universe (from a few to hundreds of mega-
parsecs) is discussed. The model is a natural generalization of
Zeldovich’s 1970 approximation and is mathematically based
on the Burgers equation for low or even vanishing viscosity. It
offers a natural explanation of the galaxy distribution that is
observed in the scale range mentioned above and is reminis-
cent in its shape of a 3D mosaic or a giant cosmic web. Many
predictions of the model have been confirmed by modern
observations. New theoretical results related to the Burgers
model are discussed together with their applications to cos-
mology.

1. Introduction

Forty years ago, Zeldovich published two related papers
discussing the question of the large-scale structure of the
Universe: one in Russian in Astrofizika [1] and the other in
English in the European journal Astronomy and Astro-
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physics [2]. The fate of both papers was difficult: in the first
20 years, there were only 33 and 200 references to the Russian
and English papers, respectively. The citation rate increased
in the next 20 years: the Russian paper was cited 74 times and
the English, 950 times, which made it one of the most cited
papers published in Astronomy and Astrophysics over the
40 years of its existence [3]. In addition, an uncounted number
of authors have just referred to the Zeldovich approximation
without giving any reference.

In papers [1, 2], Zeldovich, with his customary easiness
and clarity of thinking, introduced the culinary term
‘pancake’ into cosmology, which became very popular in the
cosmological literature. The aim of the present review is to
develop the ‘pancake idea’ and to show its role in the modern
theory of the large-scale structure of the Universe.

The large-scale structure of the Universe has been
discussed many times in Physics—Uspekhi. In particular,
reviews with similar titles were published in 1983 [4] and
1995 [5]. One and a half decade after the publication of review
[5], the situation in cosmology significantly changed once
again, although not so radically as after 1983. From the
standpoint of the topic under discussion, the most significant
changes can be summarized as follows.

e Starting from 1998, observations of remote supernovae
(SNs) have increasingly evidenced the accelerated expansion
of the Universe [6, 7].

e Most cosmologists believe that dark energy, which
makes up three fourths of the total energy density in the
Universe, can explain these observations (see, e.g., [8, 9]).

e The joint analysis of multi-year observations of the
cosmic microwave background anisotropy (the Wilkinson
Microwave Background Probe, WMAP) [10] and the results
of two completed, large programs of galaxy redshift measure-
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ments, the Two-degree-Field Galaxy Redshift Survey (2DF)
[11] and the Sloan Digital Sky Survey (SDSS) [12], allowed
significant improvement in measurements of the main
cosmological parameters of the Universe.

e The Hubble constant, which characterizes the present
expansion rate of the Universe, was measured most reliably
from the analysis of data obtained in the Hubble Space
Telescope Key Project [13].

The main cosmological parameters, from our standpoint,
were obtained from a joint analysis of all relevant data,
including the WMAPS results, observations of Baryon
acoustic oscillations (BAOs), and measurements of distant
supernovae [14]. For the convenience of the reader, the
cosmological parameters are listed in Table 1. We only
briefly explain the physical meaning of each of them. For
more a detailed discussion of the role of these parameters, we
recommend the book by Gorbunov and Rubakov [8], two
recent reviews in Physics—Uspekhi[15, 16], and paper [14].

Table 1. Basic cosmological parameters.

Parameter Value
h 0.705 +£0.013
Qu 0.726 £0.015
Qcpmh? 0.113 £0.003
Quh? 0.0227 + 0.0006
Quh? 0.136 £ 0.004
n 0.960 £0.013
a3 0.81£0.03

The Hubble constant Hj determining the present-day rate
of expansion of the Universe is traditionally given as the
dimensional parameter h = Hy/[100 km (s Mpc)~!]. The
parameters Q,, Qcpm, Qb, and Qp, respectively denote the
dark energy density, the mean density of dark matter and
ordinary baryon matter, and the sum of all nonrelativistic
mass components in units of the critical density
p.=3H}/(8nG) ~ 1.88 x 10242 g cm~3, where G is the
Newton gravitational constant. The parameters n and oy
respectively characterize the shape and normalization of the
spectrum of initial perturbations.

The physical role of these parameters is explained below.
Nevertheless, we now wish to stress an increased precision of
measurements of cosmological parameters at the level of one
to two percent. Overall, the cosmological model is currently
known much better than 15 years ago. Therefore, parameters
of the large-scale structure and the most important aspects of
its formation, which directly depend on the cosmological
model, can be described by the theory with much better
accuracy.

Both observational and theoretical studies of the large-
scale structure of the Universe have significantly increased in
the last two decades, especially in relating numerical simula-
tions to theory, as most observational astronomer believe.
However, we believe that numerical modeling is close in spirit
to the work of an experimental physicist. Similarly to a
physical experiment, conditions that are simpler than in
nature are created in numerical models, which allows study-
ing them analytically in greater detail.

The principal task of this review is to consider analytic
models proposed to describe the structure of the Universe on

large scales exceeding 1 Mpc. In particular, special attention
is given to the complex geometry and topology of the
structure, which were suggested for the first time within the
Zeldovich approximation (ZA), but were denied by most
leading theoreticians from the USA and other western
countries for 15-20 years [3] after the publication of
Zeldovich’s papers [1, 2].

The main feature distinguishing the present review from
reviews [4, 5] is that we consider the so-called standard
cosmological model, or the ACDM (Lambda-Cold Dark
Matter) model, which differs from both the HDM (Hot
Dark Matter) model assumed in [4] and the CDM (Cold
Dark Matter) model considered in [5]. In addition, review
[5] focuses on the central structure of virialized halos, whose
density profiles were proposed by the authors as being
described by an analytic solution, while here we primarily
study the global picture of the large-scale structure, i.c., the
formation of filaments and their role in integrating the halos
into a unique connected structure called the cosmic web or
cosmic net. This by no means implies that the properties of
dark matter halos are less interesting. Not at all— the
significant difference between the results of modern numer-
ical modeling of halos using a record large number of
particles (4.4 bln) [17] and theoretical predictions [5]
already deserves a thorough analysis; however, this pro-
blem is beyond the scope of this review and should be
discussed separately.

The so-called adhesion model (AM) is a comparatively
simple but at the same time effective analytic approximation
describing the formation and evolution of the large-scale
structure of matter distribution in the Universe. The adhe-
sion model is based on the ZA and reproduces the main
geometrical features of the observed galaxy distribution
structure on scales from 1 Mpc to several hundred Mpc both
qualitatively and quantitatively.

The AM involves a nonlinear diffusion equation, the
multidimensional Burgers equation (BE). The well-known
general solution of the BE allows detailed studies of the large-
scale structure behavior in the framework of the AM. The
limit form of the AM corresponding to a vanishing viscosity
coefficient in the BE leads to the formation of an irregular
mosaic structure, which can be treated as a geometrical
skeleton of matter distribution in the Universe.

The typical elements of the mosaic structure — vertices,
edges, faces, and individual cells—can be associated with
different types of astronomical objects, such as galaxy
clusters and superclusters and huge dark voids between
them, where the density of galaxies is very low [18].
Currently, the vertices of the mosaic large-scale structure
correspond to galaxy clusters. Quasi-1D filaments of
galaxies corresponding to edges of the mosaic structure,
which represent another typical element of the large-scale
structure, contain a small mass fraction of the Universe. At
the same time, faces of the cells contain a small amount of
mass and, in addition, have a low density contrast, and are
therefore the most difficult to recognize. The identification
of the structure elements is a difficult and still unsolved
problem of cosmology, whence the uncertainty in their
geometry and mass determination. For example, a recent
numerical calculation of the structure in the standard
cosmological model showed that most mass (about 39%)
is contained in edges (filaments), the vertices (clusters)
comprise about 28% of matter, somewhat more than 27%
of matter is inside the cells, and the least amount of dark
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matter resides in faces (less than 6%) [19]. We emphasize
that the results of such calculations obtained by different
groups depend on the adopted identification algorithm of
the structure elements, as well as on the spatial resolution of
the model, and can therefore be significantly different.

The evolution of the large-scale structure of the Universe
itself can be treated as a continuous process of matter
transport predominantly from objects with a high dimension
to those with a mosaic structure, which have a lower
dimension. For example, matter flows from the inner cells of
the mosaic structure (3D objects) to its faces (quasi-2D
objects), and from them to the edges and vertices of the
mosaic structure. At the same time, there is a continuous
motion, deformation, and merging of cells [20]. Recently,
similar conclusions were obtained by a group of researchers
from Princeton University (USA), who studied the galaxy
distribution using SDSS [21, 22].

All these formation features of the large-scale structure of
the Universe are considered in this review using various
approaches that are now generally accepted: the ZA, the
numerical modeling of N gravitationally interacting particles,
and the AM. The results of these approaches are analyzed and
compared. It is shown that the adhesion approximation is the
most convenient analytic tool for studying the large-scale
structure and is in good agreement with both the results of
other approaches and cosmological observations.

The structure of the review is as follows. In Section 2, we
provide basic facts about the large-scale structure of matter
in the Universe, known from cosmological observations and
physical principles. The main focus is on the role of dark
matter in the large-scale structure formation. In Section 3,
equations describing the evolution of density inhomogeneities
in the Universe are formulated. Sections 4 and 5 describe the
appearance and evolution of structure in the framework of
the ZA and AM; in particular, similarities and differences of
these approaches are discussed. In Section 6, we briefly
discuss statistical characteristics of the potential turbulence,
the vector Burgers turbulence.

2. Basic formation laws
of the large-scale structure of the Universe

We are living in an expanding Universe, as was theoretically
predicted in 1922 by Russian mathematician A Friedman
[23]. In 1929, American astronomer E Hubble [24] indepen-
dently discovered the expansion of the Universe.

We explain the essence of the expansion of the Universe
with the example of an idealized Universe that is homo-
geneous everywhere. The expansion of the Universe means
that any two particles located at a distance r from each other
move away along the direct line connecting their centers with
a relative velocity u that follows the Hubble law:

u=H(f)r. (1)

In the real inhomogeneous Universe, law (1) is approxi-
mately valid only at large distances between the particles.
The positive factor H(r) is called the Hubble parameter, and
its present-day value is called the Hubble constant. The
Hubble parameter quantitatively characterizes the expan-
sion rate of the Universe. Presently, the expansion rate of
the Universe is Hy = H(t) = 100h =~ 70.5 km s~! Mpc~!
(1 Mpc = 10° pc ~ 3,260,000 light years) (see Table 1).

Until the end of the 20th century, most cosmologists
believed that the expansion rate of the Universe was larger
in the past and monotonically decreased with time (i.e., H < 0
for any ¢ > 0) due to gravitational attraction. But the study of
motion of very distant supernovae showed that the expansion
of the Universe has recently (on a cosmological time scale)
started accelerating [6, 7].

The acceleration of the expansion of the Universe can be
quite simply explained by assuming that most of the Universe
is filled with dark energy—a hypothetical substance uni-
formly distributed in space. Although the nature of dark
energy is still unknown, the most popular current explanation
of the accelerated expansion of the Universe assumes the
existence of dark energy. According to this hypothesis, dark
energy has an equation of state that is unusual for ordinary
matter, p = —¢, where p is the pressure and ¢ is the energy
density. The negative sign of the pressure causes the
accelerated expansion of the Universe. The equation of state
given above corresponds to the simplest model of dark energy
and the presence of the cosmological constant term in the
Einstein equations (see, e.g., [8, 9]).

Although dark matter particles have not yet been found
in physical experiments, the hypothesis of dark matter is
firmly justified. Gravitational interaction of dark matter
particles is similar to that of ordinary matter particles.
Because of its dominance over ordinary matter in the
gravitational interaction force, dark matter plays the
decisive role in the formation and evolution of the large-
scale structure of the Universe.

It is well known that the Universe is permeated by the
cosmic microwave background radiation (CMB), which
carries unique information on the properties of the Universe
as a whole (which are characterized by the values of
cosmological parameters) as well as on small initial devia-
tions of the matter density in the Universe from a smooth
uniform distribution; these initial perturbations served as the
‘seeds’ of the structure of the Universe presently observed. We
know from the analysis of CMB that with a high accuracy, the
seeding fluctuation density field is represented by a realization
of the random Gaussian field whose power density can be
reliably determined from CMB measurements.

As can be seen from Fig. 1, the present-day Universe is
inhomogeneous on scales up to several hundred megaparsecs.

We note, however, that Fig. 1 does not correctly represent
the actual distribution of galaxies in physical space, because
the locations of points (symbolizing galaxies) are obtained by
a recalculation of galaxy velocities in their coordinates using
Hubble law (1). In an inhomogeneous Universe, the true
relation between the distance r and the observed radial
velocity u,ps should be given by

Uobs = Hor + Up , (2)

including the additional term u, that is called the peculiar
velocity and appears because of the density inhomogeneity in
the Universe due to the motion of particles relative to the
homogeneous expansion. The total radial velocity compo-
nent uyps can be measured using the Doppler effect, while
measuring the peculiar velocity vector uj, is impossible. We
can roughly estimate its radial component u;, only on spatial
scales not exceeding the distance to several thousand nearby
bright galaxies, which is too small for studying the geometry
of the large-scale structure of the Universe. Therefore,
distances to galaxies derived from observations of their
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Right ascension
17 I

Figure 1. Two examples of galaxy distribution in the Universe. Scales
shown in velocity units (km s~') can be converted into megaparsecs using
Hubble law (1). Each point corresponds to a galaxy [25, 26].

radial velocities,

Uobs Up
Test =0 =1+—-,
Hy Hy

give only a rough estimate of their actual values, which
introduces a serious bias in the geometry and scales of the
real physical structure.

The matter density distribution in the Universe can be
illustrated most clearly (in some statistical sense) by
numerically simulating the motion of N gravitationally
interacting particles in the framework of the standard
model (the N-body problem). The result of such a simula-
tion is shown in Fig. 2 [27].

In cosmology, the notion of the large-scale structure is
related to distributions of galaxies and dark matter on scales
from 1 Mpc to several hundred megaparsecs. On smaller
scales, the effect of discreetness of galaxy distribution
becomes important, while on large scales, the distributions
monotonically tend to homogeneous ones. Redshift observa-

Figure 2. Dark matter density field in the Universe obtained in numerical
simulations of the large-scale structure formation. Dark areas in this figure
correspond to low-density regions, light areas show high-density large-
scale structures [27].

tions reveal different structures that are usually characterized
as filaments or mosaic structures [21, 22, 25, 26] and can be
clearly seen in Figs 1 and 2.

We emphasize once again that the process of the
emergence of the large-scale structure is one of the important
issues in cosmology. Many fundamental questions of physics,
cosmology, and astronomy, such as the explanation of the
physical nature of dark matter, measurement of the angular
anisotropy of CMB, and the determination of the galaxy
formation epoch are tightly related to the question of the
appearance and formation of the large-scale structure of the
Universe (see, e.g., [28-31]).

Modern theory explains the formation of the large-scale
structure of the Universe as a consequence of the increase in
the initially small matter density fluctuations due to gravita-
tional instability [32, 33]. It is assumed that the initial density
fluctuations appear as vacuum fluctuations at the very early
stage of the evolution of the Universe, when the Universe was
expanding exponentially, in the epoch of the so-called
inflationary Universe (see, e.g., [9]). These initial density
fluctuations passed a long way before they gave rise to the
formation of galaxies, galaxy clusters, superclusters, and
voids. The galaxy formation problem is very complicated in
and of itself. Many extremely complex physical processes,
such as star formation and supernova explosions, are
fundamentally important for understanding galaxy forma-
tion. We do not discuss these complicated processes and focus
on the matter distribution in the Universe in the rough large-
scale approximation, according to which galaxies can be
considered ‘elementary’ particles (point masses), which is
justified by the small sizes of galaxies relative to the size of
galaxy clusters and superclusters, not to mention huge dark
void volumes.

As long as matter density fluctuations in the Universe are
small, their evolution can be well described by the linear
theory of gravitational instability (see, e.g., [28-31]). The
linear theory of gravitational instability is quite simple and
admits a clear interpretation. Notably, this theory predicts
that the growth rate of density perturbations D(z) is

D(t) x &, (3)

where 6 =0p/p and dp = p —p is the matter density
fluctuations. In the linear theory, the normalization of the
function D(¢) is arbitrary, and can therefore be chosen
conveniently. We recall that the linear approximation is
valid as long as the inequality y/(62) < 1 holds.

At the nonlinear stage of the gravitational instability,

(62) 2 1, when density perturbations become large and the
large-scale structure starts emerging (sheets, filaments, and
compact clusters of galaxies), the description of the evolution
of density fluctuations in Eulerian coordinates becomes very
complicated.

The most obvious way to account for the complexity of
the nonlinear gravitational instability effect on the matter
density field evolution is by numerical simulation of the 3D
N-body problem (see, e.g., [34, 35] and Fig. 2). The relevance
of such a simulation agrees with the hypothesis that dark
matter consists of particles interacting only gravitationally. In
the simulation, the trajectory of an individual particle is
calculated by numerical integration of the equations of
motion in the gravitational field created by other particles.
To imitate the boundlessness of the Universe, periodic initial
conditions are posed.
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Below, we discuss other approaches to the description of
the large-scale structure of the Universe; namely, we consider
in some detail two approximate analytic solutions of some
partial differential equations that correctly describe the
growth of density fluctuations in the expanding Universe.
The first approach proposed by Zeldovich [1, 2] in 1970 is
known as the Zeldovich approximation. The second analytic
approach to the formation of the large-scale structure of the
Universe [20, 36, 37] is based on the vector BE, which is a
natural generalization of the one-dimensional BE [38, 39]. In
this approach, the multi-stream flow of gravitationally
interacting particles in regions with increased density, which
leads to matter localization, is modeled by the ‘viscous’ term
in the BE. In the limit of vanishing viscosity, this is equivalent
to adhesion of particles, and hence this method is often
referred to as the adhesion model (see, e.g., [30, 40—45]).

The limit version of the AM describes the characteristic
mosaic structure of matter distribution in the Universe in a
natural way. The principal elements of the ‘mosaic’ in three-
dimensional space (vertices, edges, faces, and cell volumes)
can be associated with the observed structures of the 3D
galaxy distribution (compact galaxy clusters, filaments and
chains of galaxies, sheets with a relatively high density of
galaxies, and empty dark voids between them).

Both numerical simulation of gravitational interaction
and the analytic methods mentioned above require the initial
conditions to be specified. At the linear stage of the
gravitational instability development, density fluctuations
are assumed to be random Gaussian fields, which corre-
sponds to the results of the analysis of CMB fluctuations
with good accuracy [10]. Statistical properties of such fields
are fully determined by the characteristic amplitude and
spatial spectral density of fluctuations. In cosmology, it is
common to normalize the initial spectrum by the parameter
og (see Table 1), which corresponds to root-mean square
density field fluctuations smoothed by a top-hat filter with the
radius 84~! Mpc according to the assumption that the
evolution is described by the linear theory. Both the
amplitude and the spectral density of the initial fluctuations
are determined from CMB observations with an accuracy of
about a few percent. The amplitude of temperature fluctua-
tions suggests that the characteristic spatial scales of density
fluctuations, which presently reach the nonlinear stage, are
~ 2—6 Mpc, depending on the method of estimation. These
scales (2-6 Mpc) are in good agreement with observations of
the large-scale structure galaxy distribution. The exponents of
power-law spectra of the initial (linear) density fluctuations
are fully determined by the parameters of the cosmological
model. On large scales (for small wave numbers k), the spatial
density spectrum behaves as

P(k) < k",

where n = 1 (see Table 1) determines the so-called Zeldovich
spectrum. On smaller scales (with larger wave numbers), the
spatial spectrum smoothly transforms into the quasi-power-
law spectrum

Plk) ok~ Ink. (4)

The transition of the perturbation spectrum from one limit
case to another is fully determined by cosmological
parameters and can be calculated, for example, using the
well-known code for CMB anisotropy calculations,

CMBFAST [46]. Calculations and observations suggest that
presently, near the nonlinearity scale value (formally deter-
mined by Eqn (17) below), P(k) o k=12,

In this review, we discuss the evolution of the growing
mode of gravitational instability for the dark matter density.
Luminous objects in the Universe consist of baryons; there-
fore, it is also important to take the dynamics of the baryonic
component in the Universe into account. The reader can find
more on this topic in paper [47], which proposes an interesting
generalization of the model described here when the baryon
dynamics is taken into account.

3. Equations for the gas
of gravitationally interacting particles

The evolution of inhomogeneous matter density fluctuations
in the Universe is properly described by three partial
differential equations: the continuity equation, the Euler
equation, and the Poisson equation (see, e.g., [28-31]). To
exclude the homogeneous component of the expanding
Universe, the comoving reference frame x (the one moving
with the homogeneous expansion of the Universe) and the
corresponding peculiar velocity u, are typically used:

r=a(t)x, FT=H{r+u,. (5)

The monotonically increasing function «(), which takes
the homogeneous expansion of the Universe into account, is
usually called the scale factor. If we normalize the scale factor
to unity at the present epoch, then «a(¢) is simply expressed
through the redshift z: a(r) = (1 + z)~'. Correspondingly, the
Hubble constant determined by relation (1) is given by

dIna(z)

H(t) = IR
The scale factor is uniquely determined by the cosmological
model parameters. For example, in the Einstein—de Sitter
model with 4 = 0and Q = 1, we have a(¢) o £3/2. In the more
realistic ACDM model, the scale factor is represented by a
somewhat more complicated but known function of time [48].

It is known that during the evolution of the Universe,
neither peculiar velocities nor the gravitational potential
reach relativistic values. For this reason, in studies of the
evolution of density perturbations in the Universe, the use of
classical mechanics and the Newtonian gravitational poten-
tial is well justified. In the reference frame specified above, in
terms of peculiar velocities up, the continuity, Euler, and
Poisson equations describing the gravitational instability in
the expanding Universe take the respective forms

op 1
L= Vi(puy) = —3Hp,

ot
Ou 1 1
a—tf’ + 5 (upVu, = — - V¢ — Hu,, (6)

1 _
Vi =4nGlp—p),

where p and p are the density and the mean density of matter
and ¢ is the gravitational potential that appears due to
inhomogeneities in the matter distribution.

In Eqns (6), pressure forces are ignored because we are
studying the medium consisting of particles that interact only
gravitationally. In the first two equations of system (6), the
continuity equation and the Euler equation, the terms —3Hp



228 S N Gurbatov, A I Saichev, S F Shandarin

Physics— Uspekhi 55 (3)

and —Hu, in the right-hand sides take the expansion of the
Universe into account; the factor 1/a appears as a result of
differentiation in the comoving frame x:

0 0

V= a—Xl = a(l) a—r’ .
System of equations (6) should be solved by specifying the
initial density fluctuations and a smooth initial velocity field.

The evolution of density perturbations, as long as their
amplitude is small, is described in the linear approximation
by equations obtained from linearization of system of
equations (6). The exact solution of the linearized equations
involves a growing mode, which is the main object of our
analysis, and two decaying modes, which can be neglected in
the subsequent analysis. The velocity field of the growing
mode is a potential vector field proportional to the gradient of
the linear gravitational potential:

Up, lin X _Vd)lin .

In the linear mode, the spatial structure of density perturba-
tions (in the comoving frame) remains unchanged, while the
amplitude of density perturbations is proportional to the
growing mode: 0 « D(¢) in Eqn (3), determined by the
cosmological model parameters [48]. For example, in the
Einstein—de Sitter model, D(¢) is a monotonically increasing
function of time:

D(1) < a(t) o t¥3.
Equations (6) describing the evolution of perturbations in

the Universe become more convenient for analysis after the
following change of variables proposed in [49]:

: 3
p=an, w=aDv, ¢:<§Qod2D)<ﬂ~ (7)

In addition, we use the variable D, a monotonically increasing
function of time ¢, instead of time z. As a result, the system of
equations takes the forms

on

@—FV(WV)—O,

611,- _ 3 Qo

6_D+(VV)V__§W(V¢+V)’ (8)
0

2 —_—

Vg D

where Qy = p,,,/p. is the ratio of the mean density at the
present time to its critical value p,=3HZ/8nG,
f=dInD/dlna, and 6= (n—1#)/f, where 7= Qop, =
const. The meaning of the transition to Eqns (8) is that their
left-hand sides have the form of standard hydrodynamic
equations. As we see in what follows, the right-hand side of
the Euler equation vanishes in both the ZA and AM, and the
Poisson equation can be omitted in the linear approximation.
Hence, it becomes possible to extend many results obtained in
the Burgers hydrodynamic turbulence model to the cosmolo-
gical problem of the structure formation in the Universe.

The second equation of system (8) can be simplified after
introducing the full derivative

d 0

aD =D " % A

where summation over repeated indices is understood. Then
the second equation of system (8) takes the form

dv 3 .Qo
@—77—(V<p+v). 9)

It is easy to verify that in the linear mode (which is valid if
V/(62) < 1), the growing mode of linearized system (8) takes
the form

3(q, D) = DV Po(q),
v(q, D) = vo(q) = —VqPo(q),
@(q,D) = Po(q),

(10)

where q are Lagrangian coordinates of a liquid particle and
®(q) is the initial value of the gravitational potential.
Solution (10) describes density, velocity, and gravitational
potential perturbations in the Lagrangian space. We stress
that in the linear approximation, the gravitational potential
and the velocity potential have the same spatial structure, and
they simply coincide in the chosen dimensionless variables.
To find these fields in the Eulerian space, it is necessary to
solve equations for particle trajectories

X(qu):q+DV0(q)v (11)

for q = q(x, D) and to substitute the solution in (10). We
recall that the initial field of the gravitational potential ®y(q)
is determined by the initial density perturbations in the linear
mode, which are assumed to be a random Gaussian field.
The power-law spectrum (see Fig. 5 in Section 4.2), which
uniquely determines the statistical properties of this Gaussian
field, can be found from CMB observations (see, e.g., [9]).

Although the velocity v remains constant for each particle
in the linear regime, the physical, peculiar velocity u, changes
with time [see (7)]. In the growing mode (10), gravitational
forces proportional to O¢/0x; are balanced by resistance
forces Hu, oc v, which appear in the expanding Universe.
Correspondingly, in the linear approximation, the right-hand
side of Eqn (9) vanishes, and the equation of motion in the
Eulerian representation becomes

(12)

We note that the reduction of the Euler equation to Eqn (12),
from which solution (11) follows, had been misunderstood by
some cosmologists and many observers for many years. The
zero right-hand side of the Euler equation was interpreted as
the total disregard of gravity. Therefore, Zeldovich’s conclu-
sion about the formation of pancakes at the nonlinear stage
was regarded as an unjustified extension of the result valid
only in the medium of noninteracting particles to a gravitat-
ing medium.

4. The Zeldovich approximation

In 1970, Zeldovich found solutions of the gravitational
instability equations at the linear stage of evolution and
extended these solutions to the early nonlinear stage of
gravitational instability [1, 2] (also see [30]). Such an
extension assumes that the initial perturbations are suffi-
ciently smooth in the sense that the initial power spectrum
must decay faster than k =3 as k — oo. In realistic cosmologi-
cal models, for example in the ACDM model, the spectrum
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follows the law P(k) o< In (k)k—3 up to very large wavenum-
bers, at which cosmological assumptions become invalid.
Therefore, to be applied at formation scales of galaxy
clusters and superclsuters, the ZA must be modified. Such a
modification is discussed in Section 4.2.

4.1 Basic equations
The Zeldovich approximation can be visually interpreted as
the map given by relations (11) from the Lagrangian space
L{q} to the Eulerian space E{x}. The illustration of this map
for four stages of the density field evolution is given in Fig. 3.
The stages are marked by the value of the parameter
o= (51%n> 1/ 2, where Jj, is the normalized density fluctuations
(the so-called density contrast),

S :p(X,[)—ﬁ(l) 777(X:D) -1 )

mn — — -

p(1) ]

(13)

For convenience, the parameter ¢ is calculated in the frame-
work of the linear theory, where o o D(z).

In two dimensions, the ZA equations for velocity are
equivalent to equations for the inclination angle of the wave
front and intensity of an optical wave incident on a phase

Figure 3. (a—d) The Zeldovich approximation in two dimensions for
different values of the parameter ¢ = (51%]1)]/ 2, where Jji, is given by
Eqn (13). (e) Caustic on the floor of a swimming pool.

screen. The variable D(¢) then plays the role of the distance

from the phase screen. The bright caustic on the floor of a

swimming pool with a wavy surface on a sunny day (Fig. 3e)

properly reflect the density distribution in the 2D case [50].
Using the mass conservation in the form

nd’x =qdq,

where q are the initial particle coordinates, which we call the
Lagrangian coordinates, and x is the comoving reference
frame, which we refer to as the Eulerian frame, Zeldovich
derived the expression for the current density as a function of
D(t) and the Lagrangian coordinate q:

n
(D) (1= D2i(q)) (1 = DAa(a)) (1 = DAs(q)) (4
where 2;(q), 22(q), and 43(q) are eigenvalues of the deforma-
tion tensor d;; = 0°®y/0¢,0q;.

The distribution function of eigenvalues of the deforma-
tion tensor for Gaussian random fields, which plays a major
role in many cosmological issues related to structure forma-
tion (see, e.g., [51-53]), was found by Doroshkevich [54]:

, 675v'5
P(MJ.Q,/Q) = 3 { (}.1 — /12)().1 — )»3)(12 — )v3)
TCO'é
_ (712
X exp —8f + 15h +21512 . (15)
20}

Here and below, we assume that the eigenvalues are ordered,

= A =3,

and the exponent depends on invariants of the deformation
tensor

Lh=h+l+i, bh=h+iiz+/lis. (16)

It follows from (15) that the probability of finding two or
three equal eigenvalues is zero. Nevertheless, there are points
where A = /1, or 1; = A3, but no points where all three
eigenvalues coincide. The set of points with two equal
eigenvalues consists of one-dimensional lines, and therefore
has measure zero. Correspondingly, the probability of finding
two equal eigenvalues is zero. From the standpoint of
dynamics, the above statement means that spherical collapse
is specifically forbidden, while the collapse into a line is
possible, although it is different from the cylindrically
symmetric case, even locally [55].

In cosmology, initial conditions are usually characterized
by the initial perturbation spectrum Ps(k) (see also Fig. 5 in
Section 4.2), which is connected with the spectrum of the
gravitational potential by the obvious relation Ps = k*Pg,.
Similarly to what we did at the linear stage, we can find the
density field in the Eulerian representation by solving Eqn (11)
for q and substituting the obtained solution in Eqn (14). For
realistic initial conditions, this procedure requires numerical
methods.

As follows from relation (14), for smooth initial condi-
tions, density peaks first arise around the largest eigenvalue 4,
(we recall that we label the eigenvalues for any q in decreasing
order, A} = A, > A3). These clumps have an oblate form
because the other eigenvalues are smaller than A;. In
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cosmology, such objects are referred to as ‘Zeldovich
pancakes’. Their form is qualitatively different from the
density clumps predicted by the linear theory, according to
which the clumps first emerge in the vicinity of peaks of the
sum d = A; + A, + 3. In fact, the difference in the location of
Zeldovich pancakes from that of density clumps predicted by
the linear theory is not large because of a significant
correlation between ¢ and the maximum eigenvalue Ai:
</115>/(O‘A| 05) ~ 0.49.

We note that the results of numerically solving the N-
body problem are in good agreement with the ZA predic-
tions [56]. The Zeldovich pancakes emerge in collisionless
dark matter as regions with three-stream flows particle
motions restricted by caustics—surfaces with formally
infinite density. The form and other characteristics of
Zeldovich pancakes, as well as other features of the
characteristic spatial structure of the density field shown in
Fig. 3, are determined by the catastrophe theory [55].
Although the difference between the high-density regions
and multi-stream flow regions had not been stressed for
many years, it was recently clearly demonstrated in [57, 58].

Later, it was discovered that the ZA correctly describes
the behavior of density fluctuations only until caustics
emerge, i.e., at the stage corresponding to a5 < 1 (see, e.g.,
review [30] and the references therein). At o5 > 1, formula
(11) predicts a much more rapid broadening of multi-stream
flow regions than follows from the N-body simulations [34,
35, 59]. This is clearly seen from a comparison of Figs 3b, d
with Fig. 4. From Figs 3b, d and 4, in spite of the difference in
the corresponding initial conditions, it is evident that
correctly taking gravitational interactions into account leads
to the formation of much thinner pancakes than the ZA
predicts. This discrepancy between the N-body simulations
and the ZA stimulated the development of the AM, which is
discussed in Section 5. In Section 4.2, we briefly discuss
modifications of the ZA, which allow generalizations to the
case where the power-law behavior of the spectrum on small
scales cannot be disregarded any more [60, 61].

4.2 The modified Zeldovich approximation

We note that the 2D and 3D N-body results very weakly
depend on the initial density perturbations on small scales
[62-64]. We stress that a similar effect is observed in the
Burgers turbulence [65, 66], in which the behavior of large-
scale structures weakly depends on low-scale components. In
the case of gravitationally interacting particles, the large-scale
structure formation is mostly affected by those initial density
perturbations that have currently reached the stage of non-
linear gravitational instability [63]. This fact allows using an

Figure 4. The distribution of gravitationally interacting particles numeri-
cally obtained at two stages: (a) o5 = 1 and (b) a5 = 2.
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Figure 5. The initial power-law spectrum in the cosmological ACDM

model (solid curve) and the corresponding initial spectrum with a cut-off
at the current nonlinear scale (dashed curve).

auxiliary model leading to a large-scale structure similar to
what is formed in the initial model but ignoring tiny small-
scale structure details [60, 61]. The intermediate scale that
separates the large-scale structure from the small-scale one at
a time ¢ corresponds to the nonlinearity scale /,, which is
determined by the solution of the equation

0% () = 4nDZJ Pin (k) Wk, Iy)k*dk = 1, (17)

0

where W(k, ) is the filter function. For example, the initial
power-law spectrum in the currently popular ACDM model is
shown in Fig. 5 by the solid curve, and the corresponding
spectrum with a low-scale cut-off is shown by the dashed
curve.

If the amplitudes and phases of the initial perturbations in
both models are the same, then the auxiliary model with a cut-
off power-law spectrum yields a large-scale structure very
similar to the one that emerges from the spectrum without a
cut-off. The dashed curve in Fig. 5 corresponds to a Gaussian
window cut-off. A simpler cut-off, with the spectrum set to
zero for k > ky ~ 1/ly, where ky is determined from the
equation

ki
4 D2J Pin(k) k> dk =1,

0

(18)

yields a similar large-scale structure. The auxiliary model
with a cut-off initial spectrum allows using the ZA, which
requires smooth initial perturbations and better understand-
ing complex nonlinear processes that affect the large-scale
structure formation. The loss of low-scale structure details
that are present in the original model with the full spectrum
is the price to be paid for such a simplification. The AM
described in Section 5 was developed to correct this short-
coming of the ZA.

In conclusion, it is useful to note that both the ZA
(Fig. 3b,d) and numerical N-body results (see Fig. 4) give
rise to an irregular mosaic large-scale structure of the
Universe in which relatively thin pancakes with high
galaxy number density enclose ‘dark volumes’ with a low
number density of galaxies, corresponding to single-stream
regions.
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However, the results of direct numerical modeling show
that after the appearance of singularities, their width
increases much more slowly than follows from the Zeldovich
theory [30]. This is because the returning force starts pulling a
particle passed through the singularity because of the
enhanced density there, such that particles start oscillating
in the vicinity of a singularity. To describe the effect of
transition from large-scale motions to low-scale oscillations
semiqualitatively, the diffusion term vV2v was introduced
into the equation of motion [20, 36, 37], which must
approximately describe a ‘sticking’ of particles near singula-
rities caused by gravity. That is why this model is called the
adhesion model in cosmology.

The ZA has been carefully tested by comparing it with the
results of numerical calculations [60, 61, 67—69]. These results
have been reviewed several times [4, 30, 31], and we do not
repeat them here. We note only that in [67] (see also [4, 30]), an
analytic estimate of the accuracy of the ZA was obtained,
which was subsequently rederived by Mukhanov [9]; how-
ever, it was given erroneously in [9]. The estimate is based on
the determination of the self-consistency level of the ZA,
which can be quantitatively expressed by the ratio of the
difference between the density p,, in (14) predicted by the ZA
and the density p calculated using the Poisson equation, and

PzA:

AEp_pZAEVI_VIZA:_D212+2D3I37
Pza Nza

where I, is determined by Eqn (16) and Iz = 2;Ax43. This
estimate shows, in particular, that an arbitrary one-dimen-
sional perturbation is described by the ZA exactly until the
appearance of multi-stream flow regions and that by the time
the singularity is reached (D = 1), the density error remains
finite.

To conclude this section, we present Fig. 6, which allows
comparing the ZA and AM with the results of 3D numerical
calculations in the standard cosmological model [70, 71]. This
figure shows thin slices of the 3D density distribution
obtained in the AM (Fig. 6a), in 3D numerical simulations
of the structure evolution (Fig. 6b), and in the ZA (Fig. 6c).
Initial conditions in all models were taken to be the same and
corresponded to those in the standard cosmological model
with the initial spectrum shown in Fig. 5 by the solid curve.

4.3 Lagrangian and Eulerian statistics of matter

We recall that the Zeldovich formation model of the large-
scale structure of the Universe at the early nonlinear stage was
discussed in Section 4.2. The Zeldovich analysis of model

equations of motion was carried out in the Lagrangian space,
whereas the particle distribution in the Eulerian space is of
most interest. In addition, although the Zeldovich model uses
dynamical equations (e.g., Eqn (11), which connects the
Lagrangian and Eulerian coordinates of the particle
motion), the fields themselves are initially chaotic due to
generic randomness of matter density perturbations in the
early Universe.

Therefore, the analysis of matter distribution in the
Universe in the framework of the Zeldovich model assumes
a statistical analysis of random matter density fields, which is
based on relations between statistical characteristics of fields
in the Lagrangian and Eulerian representations. Below, we
indicate some relations of the Lagrangian and Eulerian
statistics and then use them to analyze statistical properties
of the large-scale structure of the Universe in the Zeldovich
model framework.

We start with the general relation between the Lagrangian
and Eulerian coordinates of a hydrodynamic motion of
particles x = X(q, 7). We note that in the particular case of a
vector function X(q, 7), the last equality passes into Zeldovich
relation (11) after the change of variables D —

x=q+1vo(q), vo(q) =—V4Po(q). (19)

We call the field X(q, 7) the Lagrangian field of Eulerian
coordinates of a particle. In addition, we introduce the
Lagrangian field of particle density R(q,¢), which, as is well

known, has the form

_ Po(q)
J(q. 1)’

where py(q) is the initial density field and J(q,7) is the

Jacobian of the transformation from Eulerian to Lagrangian
coordinates,

R(q, 1) (20)

o) = |

Assuming all fields to be random, we introduce the distribu-
tion of Lagrangian coordinate and density fields

fL(va;q7 t) = <5(X(q7 l) - X) 5(R(q> t) - p)> .

,  J(q,r=0)=1. (21)

(22)

In what follows, we call such distributions Lagrangian
distributions, and analogous field distributions in the Euler-
ian space are called Eulerian distributions. As we show below,
distribution (22) is tightly connected with the Lagrangian
probability density of coordinate fields, which is more

Figure 6. Three thin slices of the 3D density distribution obtained in the standard cosmological model for the same initial conditions: (a) AM, (b) 3D

numerical model, and (¢) ZA [70, 71].
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convenient for manipulations, and the Jacobian:
Su(x, jiq,1) = (5(X(q,7) —x) 6(J(q, 1) —Jj)) -

We next discuss formulas connecting Lagrangian field
distributions with the corresponding Eulerian fields. The
Eulerian field of Lagrangian coordinates of particles q(x, ¢)
is inverse to the Lagrangian field of Eulerian coordinates
X(q, ?). In addition, the Eulerian density and Jacobian fields
are expressed as

p(x,1) = R(a(x,1),7), j(x,1)=J(q(x,1),1).

We first consider the Eulerian probability density
= <5<q(x7 [) - q) 6(]("7 t) _1>> .

We temporarily assume that the functions x = X(q, #) and
q = q(x, t) are one-to-one maps of the Lagrangian coordi-
nates ¢ into Eulerian ones, and vice versa. Then the relation
that connects the delta-functions of a nonlinear argument
holds (see, e.g., [72]):

J(x,1)6(X(q, 1) — x) = 6(q(x,7) — q) .

Je(q, jix, 1)

Using this formula and the ‘puncturing’ property of the delta-
function (see [72] for more details, as well as [42]), it is easy to
obtain the following formula connecting the Lagrangian and
Eulerian distributions:

fe(ix, 1) :ijL(x,j;q, ) dg. (23)

Using Eqns (20) and (23), we can easily obtain a similar
relation for more ‘physical’ Eulerian and Lagrangian dis-
tributions describing the matter density statistics:

pfilpin,t) = [ pola) flx.pia 1) da. (24)
More detailed calculations leading to various relations
between Eulerian and Lagrangian distributions can be
found in [42, 72—74]. Because we are mostly interested in the
evolution of the matter density distribution, we present the
formula relating the Eulerian and Lagrangian density
distributions that follows from (24) in the case of a
statistically homogeneous density field with low amplitudes
in the early Universe (p ~ p, = const):

0
TE (p31) :fff(p;t)- (25)
The superscript here marks the random variable correspond-
ing to this distribution; for example, f;(j; 7) is the Lagrangian
distribution of the Jacobian. Taking into account that the
density and Jacobian are related by the equation R = p,/J,

we find
Po ,7(Po
— fi (—;t).
2 /L )

S (ps0) =
Substituting the last formula in (25), we obtain a very useful
formula expressing the Eulerian density distribution through
the Lagrangian Jacobian distribution:

o)

Je(pi 1) = (26)

So far, we have discussed relations between Lagrangian
and Eulerian random fields assuming the Eulerian density
field to be single-stream. However, as noted above, the
Zeldovich model of gravitational instability leads to multi-
stream flow fields; for example, the Zeldovich pancakes
occupy regions of multi-stream flow motion of matter. We
therefore present several formulas connecting the Lagrangian
and Eulerian statistics that take multi-stream flow motions
into account. One such relation has the form

00 N
[ ote i 10 = 3" PN xS i ),
N=1 n=1
27)

where P(N;x, t) is the probability that there are N flows at the
moment ¢ at point x and f!(p; x, #|N) is the Eulerian density
distribution of the nth flow, n =1,..., N. A similar formula
for the Jacobian distribution in the case of a statistically
homogeneous matter density field is (see [42])

o0

> P(N;1) Zf (j:1|N).

N=1

|j|fL(X7 jv ) (28)

Here, the probability P(N;¢) bears a clear geometrical
meaning: it is equal to the fraction of space volume occupied
by N-stream motions.

An important characteristic of the Zeldovich model is the
mean number of streams at an arbitrary point in space x:

o0

> NP(N;x,1).

N=1

(N(x,1)) =

In the statistically homogeneous case, it follows from (28) that
(N(x,1)) can be expressed through the mean value of the
Jacobian modulus:

(NG, 1)) = ([(a. D))

We also note that at any point of space except measure-zero
regions, the number of streams is odd. Hence, at the early
stage, where (N(x,1?)) is close to unity, the following
approximate equalities are valid:

<N(X, l)> ~

(29)

P(l;0)+3P(3;1), P(l;¢)+ P(3;1) ~1. (30)

The second expression in (30) is an approximate normal-
ization. Solving Eqns (30) for the relative probabilities, we
find

3— (N)

P(l;1) ~ 3 , (M) — 1

—. (31)

P(3;1) ~

These results were used in calculations of the cosmological
distribution function of the mass density at the nonlinear
stage [75].

4.4 Statistics of flows and matter density distribution
Relations between the Lagrangian and Eulerian distributions
presented in Section 4.3 can be used to study some character-
istic features of matter density fields in the framework of the
Zeldovich model. For simplicity, we consider the two-
dimensional model. We note, however, that similar calcula-
tions can also be carried out in the three-dimensional case.
We first find the Lagrangian field of the Jacobian of the
transformation of Eulerian to Lagrangian coordinates. It
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follows from (19) and (21) that this field is equal to the
Jacobian

J(a,1) = (1 ! azg;}gq)) (1 ! az%@) - t2<%>2'
(32)

Below, we consider the initial potential @¢(q) to be a
statistically isotropic Gaussian field with the correlation
function

(®o(a) Bo(a +5)) = Als), s =1s| = \/s? +53 .

The terms in the Taylor series expansion of this function are

u? 2
A(S):A—7S2+—S4+
u? 2

:Afj(s12+s22)+§(sf‘+2312s22+s§)+....

Based on the known properties of the Gaussian field @((q),
we can represent it in a more convenient form. We note that
the components of the deformation tensor in Jacobian (32)
can be substituted by the statistically equivalent values

S Po(@) _ 5 0*@o(q) 0*®o(q)
=V2u0+ , = \/ia -p, —=—==7,
g 4 0q3 4 dq1 0¢>
where {o, f,y} are independent Gaussian variables with zero
mean and dispersion v2. Then Jacobian (32) takes the form

J=(0—=V2ur)* —1%6%, 6=1/p>+7y2.

Another form of the Jacobian that is geometrically more
suggestive can be written in terms of eigenvalues of the
deformation tensor

(33)

J=(1=4)(1 - 1),

where

M=V20+48, l=V2a-34. (34)
Clearly, the joint distribution g(a,d) of independent
random variables & and ¢ has the form

aZ + d2>

gla,d) = oy (35)

d
V2mv3 P (
where a and d are the arguments of the joint distribution of

the respective random variables o« and 6. Correspondingly, the
distribution of eigenvalues (34) is expressed as

M= (_3(1% +43) 72;L1;,2>

M
P()ul,/lz)—g\/Ev3 eXp 16v2

(36)

Similarly to distribution (15) of eigenvalues of the deforma-
tion tensor, distribution (36) forbids the coincidence of
eigenvalues. In other words, cylindrical collapse is forbid-
den, but the collapse into lines — two-dimensional analogs of
Zeldovich pancakes —is possible.

Using formula (33) for the Jacobian and distribution (39),
it is not difficult to find the Lagrangian distribution of the
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Figure 7. The mean number of flows (N) (38) and probabilities of one and
three flows as a function of (a) the dimensionless time T = vz in the 2D
Zeldovich model and (b) the parameter = ¢5D(¢) in the 3D version of the
Zeldovich approximation.

Jacobian:
1 3j—1
J( .
fL(J’l)_4\/§‘C2 eXp( 6’L'2 )
2, J<0,
3Vj— 1) (3\04— 1) . (37)
erfc : + erfc , j>0.
(2\/§1’ 231 /

Here, the dimensionless time T = vt is introduced. In turn, the
distribution of the Jacobian allows calculating the mean
number of matter streams (29):

(N)y=1 +%exp (—#)

The 7 dependences of the mean number of streams, as well as
approximate values (31) of the probabilities P(1; ¢) and P(3; 1)
characterizing the region of (two-dimensional) space occu-
pied by one-stream and three-stream flows of matter are
shown in Fig. 7a. In Fig. 7b, we present the same curves for
the 3D Zeldovich model obtained by numerical integration
using Doroshkevich distribution (15) of eigenvalues of the
deformation tensor.

After substituting the Lagrangian distribution of Jaco-
bian (37) in a multi-stream-flow analog of relation (26), we
obtain the Eulerian distribution of matter density. The
presence of a power-law tail (Fig. 8) is the characteristic

(38)
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Figure 8. The density distribution in the 2D Zeldovich model for 7 = 0.1,

0.3, 0.5, and 0.7. The power-law tail of the distribution ff o« p =3 is clearly
seen.

feature of this distribution:

fEpi)=C)p=,  p>py, (39)
where
2
_ P 1
0 =Fzon(5a).

We note that power law (39) provides more evidence of
predominantly one-dimensional focusing of matter (see, e.g.,
[42]) and the formation of Zeldovich pancakes, which are
clearly seen in Figs 3 and 4.

4.5 Spectrum of density fluctuations
As noted in Sections 4.1 and 4.2, a relatively fast power-law
decrease in the initial density spectrum (4) or even of the cut-
off exponential law of the initial spectrum decay shown in
Fig. 5 is transformed by the gravitational instability into a
spectrum with a heavy power-law tail at large wave numbers.
Below, we demonstrate this important fact using the
Zeldovich model, which is reduced to Eqns (19).

We consider statistically isotropic density fluctuations,
with the correlation function of the density fluctuations

B(s, 1) = (8p(x,1) 8p(x +8,1))

depending only on the modulus of the vector s connecting
points of observations. It can be shown (see [42]) that in the
hydrodynamic approximation, the density correlation func-
tion B(s,?) is expressed through the initial correlation
function By(s) as

B(S7 l) = JBO(SO)fL(S; So, l) dSO s (40)
where f (s; s, ) is the Lagrangian distribution of the vector
of relative particle displacements,

S(siso, 1) = (0(s —so + 1 Vah(q, %)) ) - (41)

Here, /(q,0) = Po(q + S0) — Po(q).
Before studying the spatial density spectrum correspond-
ing to correlation function (40), we recall that there are several

types of spatial spectra. The first is the one-dimensional
spectrum P(k, t) reflecting the spectral properties of density
fluctuations dp(x,?) as a function of one argument, the
coordinate along some direction (for example, the x axis of a
Cartesian coordinate system). The correlation function and
the one-dimensional spectrum are then related as

P(k,t) = 1 ro B(s, 1) cos (ks)ds. (42)

TTJo

In the case of anisotropic random fields, the three-dimen-
sional spectrum

G(k;t) = <%> 3 ”J B(s, 1) exp (—iks) ds

is frequently considered. If the density field is isotropic,
Eqn (43) reduces to

(43)

o0

Gk, 1) = 3 L

B(s, 1) sin (ks) ds. (44)

By comparing Eqns (42) and (44), we find the relation

between one-dimensional and three-dimensional spectra:
1 dP(k,1)
2nk  dk

(e}

o Pk, 1) :2an Glk' 1)k dic”
(45)

Gk, t)=

We first calculate the three-dimensional density fluctua-
tion spectrum. Substituting B(s, ¢) from (40) in (43), taking
(41) into account, and using the ‘puncturing’ property of the
delta-function, we obtain

1\’ .
Glk;t) = (ﬂ) J” By(so) exp (—iksp)
1? 2
X exp (—E<<qu [@o(q+5) — @O(q)]) >) dsg. (46)
Here, we used that the initial gravitational potential @¢(q) is
Gaussian.

If @(q) is an isotropic random field, simple transforma-
tions lead to

2
((kVa[o(a+5) = @o(@)]) ) = 24Cls) + 2(K)Els) , (47)
where

s ds s ds

C(s) . (48)

5s=0 s ds

Substituting (47) and (48) in (46), passing to polar coordinates
in the integrand, and performing integrals over angular
variables, we obtain

2 roo
) = () [ B exp (PR COptkr e

2n) Jo )
where
Y(k,rt) = \/;%; exp (— W)
« Re {erf (%)] . (50)
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We find the asymptotic form of three-dimensional
spectrum (50) as v — oo. We note that, as follows from the
structure of the right-hand sides of (49) and (50), for k — oo,
By(r), C(r), and E(r) can be substituted by their asymptotic
expressions as r — 0:

8]
[S]

C(r) ~ 2 2 ’

BO(O):o‘Z, 7] re,

As a result, we obtain

2 1 i L

Gk,t)~o <%> exp (—5 vt )
xlroexp —ltzkzvzr2 rdr
ko 4 '

Integrating, we finally arrive at
a2 (1) 1 1

kit) ~—|— —— v~k k .
Gk, 1) =3 (2n> eXp( 2" )(sz P

After substituting this asymptotic expression in the second
expression in (45), we determine the asymptotic form of the
one-dimensional spectrum in the Zeldovich model:

Plk,t)~k™', k—oo.

It can be shown that this asymptotic form is determined by the
characteristic behavior of density at the boundaries of
volumes that form the Zeldovich pancakes.

5. The adhesion model

The main idea of the AM is to use the ZA determined by
Eqns (10) and (11) everywhere except in multi-stream flow
regions. This turns out to be possible after introducing a
diffusion (viscous) term into the Euler equation in order to
prevent particle trajectories from intersecting, and thus make
the appearance of multi-stream flow motions impossible. An
advantage of such a modified Euler equation is that it
strongly slows down the growth in the width of the pancakes
and thus neutralizes the main shortcoming of the ZA,
although this is achieved by a significant modification of
particle trajectories inside the pancakes. Another advantage
of the BE is that the smallness of the viscosity coefficient
warrants an almost full agreement of the AM with the ZA as
long as trajectories do not intersect.

5.1 From the Zeldovich model to the adhesion model

We sketch the derivation of the main equation of the AM.
Because the growing mode of gravitational instability is
potential at the linear stage, it is natural to introduce the
velocity potential @ related to the particle velocity as

v=-Vo.

Taking into account that in the linear mode, the velocity
potential is approximately equal to the gravitational poten-
tial, ¢ ~ @, and adding the viscous term vV ?v to the right-
hand side of the second equation in (8), we arrive at the
nonlinear diffusion equation [20, 37]

ov

—+ (W)v=V?y,

D (51)

which is also referred to as the multidimensional (three-
dimensional) Burgers equation. We note an interesting
attempt to explain the value of the viscosity coefficient from
the dynamics of particle motion in multi-stream flow regions
undertaken in [76].

Unlike the Navier-Stokes equation, the BE does not
include density. Therefore, this equation does not respect the
momentum conservation in general. Only for one-dimen-
sional perturbations and a constant initial density does the
BE with vanishing viscosity describe the gas of coalescing
particles satisfying the momentum conservation. The loca-
tion of density clumps (heavy particles) resulting from the
merging of light particles coincides with velocity disconti-
nuities in the AM. The coordinates of density clumps formed
by the already coalesced particles in the case of an
inhomogeneous initial density are different from the loca-
tion of velocity discontinuities of the BE [77]. In the
multidimensional BE, the formation of dense features does
not depend on the density behavior, and the density and
velocity fields do not satisfy the momentum conservation
law even for a constant initial density distribution. This last
point is related to the fact that the coalescence of particles
with nonplanar geometry, from the standpoint of momen-
tum conservation, corresponds to a medium with variable
density. Moreover, in the spherically symmetric case, with
the coordinates of the coalesced particles defined formally in
accordance with the BE, it follows that the energy of the
system increases in the three-dimensional case due to the
merging of particles [78].

The relatively good agreement between the motion of
gravitationally interacting particles and the solutions of the
multidimensional BE is a very nontrivial fact, which appar-
ently can be explained by the random character of initial
perturbations. Indeed, the Zeldovich model can be exact only
for the growing mode and one-dimensional perturbations.
The location of clumps formed by coalesced particles can also
be correctly predicted by the BE for one-dimensional
perturbations only. Precisely such one-dimensional perturba-
tions are predominantly realized for random initial condi-
tions.

Generally speaking, the term describing the viscosity of
the medium can have a different form than the term in
Eqn (51) [79]; however, the choice in Eqn (51) reduces the
Euler equation in a pressureless medium to the BE, which has
an analytic solution. As in the one-dimensional case, the
multidimensional BE can be reduced to a linear diffusion
equation by the Hopf—Cole substitution [80, 81].

5.2 Calculation of density in the adhesion model,

finite viscosity

In cosmology, the AM has been used in two forms. In one of
these, the viscosity coefficient v is assumed to be tiny but
nonzero, and in the other, it is taken to be infinitely small
(v — 0,). If the viscosity coefficient is nonzero, then particle
trajectories can be found by numerical integration of the
equations of motion:

dx(q, D)

——=v(x(q,D),D),

aD x(q,D =0)=q.

(52)

After that, the density of particles can be calculated from the
continuity equation [40—42, 59, 69]. An example of the large-
scale structure obtained in this way is presented in Fig. 9,
which shows the result of numerical modeling of the galaxy
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0<d<20
10,258 galaxies

Figure 9. Model distribution of galaxies in the redshift space obtained with
the AM in the case of a small but nonzero viscosity coefficient v [40].

distribution in a thin slice of a three-dimensional volume [40].
We note that Fig. 9 is qualitatively similar to Fig. 1 obtained
from the observed galaxy redshift catalog.

In [82], the matter density in one-dimensional Zeldovich
pancakes was calculated analytically. It was shown that the
fine structure of the matter distribution is different from that
predicted by the AM with finite viscosity. To study the
dynamics, a discrete matter distribution model—the so-
called Q-model [83, 84]—was used; the full description of
the numerical scheme can be found in [85].

It was assumed that within a certain interval L on the
x axis, all matter is concentrated in N planes, which can be
conveniently called particles. The particle density then has the
form

p(xit) = > m;d(xi = x7), (53)

where x; is the coordinate of the ith particle along the
direction of the density and the particle velocity variation.
The transition to the continuous model can be done by
increasing the number of particles and decreasing the
distance between them.

The equation of motion of any particle has the form [85]

d’x; a dx; _3

dtzl P ditl —4nGpy(1)x; = a > Egav(xi, 1), (54)
where p, (f) is the mean mass density at the time ¢,

Egrav(x, 1) = —Z‘EGZFH_/ sign (x; — x;) . (55)

J

We note that the effect of the expansion of the Universe
changes the particle dynamics and leads to the appearance of
friction-like terms in the equation of motion. In the Einstein—
de Sitter model, we can substitute the time © = 7y log (z/1),

and then Eqn (54) takes the form (the Q-model)

dle' 1 dx,- 2
S 2 N = By (7).
a2 T de 3 T Bl D)

(56)

where 7,2 = 6nGp(1p). In classical stationary self-gravitating
one-dimensional systems, Fg.y is an invariant of the
Lagrange function, proportional to the mass difference on
the right and on the left of a given particle at a given time.
Therefore, in the time interval between the tangency instants
(self-crossing of particle trajectories in the multidimensional
case), Eqn (56) has the exact solution [85]

_ 2 7™ _ L

Xi(t)= cj exp [M}rcz’em (—T £ )+K;’, (57)
RIN) ty

where K/' = —(3[02/2)Egmv(xl:,r) is constant between the

tangencies. The coefficients ¢] and ¢} are determined by the
coordinates and velocity of particles at the time of the last
tangency. The first and the second terms in (57) respectively
correspond to the growing and decaying modes. To find the
instant when the coordinates of two adjacent particles
coincide, it is necessary to solve a quintic equation; hence,
the name of this description, the Q-model.

If all particles have equal masses m; = Lp,/N within the
interval L, then the gravity force in (56) becomes Egray (X;,7) =
N;L/3Nt}, where N;= Njignt — Niter is the difference
between the number of particles to the right and to the left
of a given particle.

We discuss how the ZA and AM can be obtained from the
Q-model. In the ZA, the decaying mode is neglected, i.e., ¢} in
(57) is set to zero. The evolution of the initial perturbation
(particle location) in this case is described as

3 2
Xi(x) = 3 wto exp <3—:0) + K/, (58)

where w! is the initial velocity of the ith particle. The
substitution of time D = (3/2)t exp (2t/31y) reduces solu-
tion (58) to an expression describing free particle motion:

X:(D) = w)D + X;(0). (59)

We recall that in the Zeldovich model, similar relations
are assumed to be valid at all times, even when particle self-
crossing occurs and the motion becomes multi-stream. On the
contrary, in the AM, particles coalesce at the tangency
instant, thus forming more massive particles with the mass
equal to the sum of masses of the colliding particles and with
the velocity determined by momentum conservation. In this
model, the decaying mode is also disregarded, i.e., cé =0,
both before and after the coalescence of particles.

The evolution in the real dynamical system, i.e., the
Q-model, is somewhat intermediate between the evolution of
the two models above. However, there are specific conditions
under which all three models are equivalent. We take the
initial conditions where all coefficients ¢ in (57) are zero.
Then the initial velocities and densities are correlated such
that only the linearly growing mode is excited and expression
(57) becomes an exact solution in all three models up to the
first collision of particles.

Before describing the evolution of a continuous cluster,
we discuss the behavior of two particles with the same mass m
located on a segment of length L. In this simple example, we
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compare the behavior of particles interacting in the frame-
work of the Q-model and particles in the ZA and the AM with
infinitesimal and finite viscosities. We assume that all
particles have the mass m =1/2 and that L =1, and
introduce dimensionless variables 0 = t/ty, Q;(0) = x;/L,
and f3;(0) = 6x;/toL. Until the first collision of particles,
Eqn (57) has the form

1

0:0) = clexp (5 ) + clexn (-0) 7 (60)

We consider a special case of initial conditions where the
initial particle velocities and coordinates are chosen such that
the coefficients ¢ are zero in (60). The initial particle
velocities are w{ = —w) >0 and the particles are located
symmetrically with respect to the origin. In this case, only the
growing mode is excited, and the ZA is an exact solution until
particle trajectory crossing occurs. Therefore, it is possible to
exactly solve the equations of motion of each particle up to
the instant of the first tangency of particle trajectories. The
time of the first tangency 0. is found from Eqn (60):
Ocross = —(3/2) In $(0). The particle velocity at this instant is
Beross.0 = B(Ocross) = 1. We note that the time 0055 depends
on the initial particle velocity. After the tangency of particle
trajectories, the initial balance established between coordi-
nates and velocities is violated, and the condition cé = 0isno
longer valid. Therefore, when analyzing Eqn (60) starting
from the instant of tangency of trajectories, both the growing
and the decaying modes must be taken into account.

After that, particle trajectories start diverging, and their
velocities start decreasing because of the gravitational
interaction. At 0 = 0y,,,, the distance between the particles is
maximal, and their velocities are zero, §(0ium) = 0. For Oy,
we have Oy = Ocross + 0, 6 = (3/5)In6. The turn of the
particle occurs before it reaches its original position
(lg:(0)] = (1 — B(0))/4). The corresponding amplitude of
the maximum distance Qmax,0 = ¢(Oturn) 18

1 1 1

Qmax,O - Z_g 6_3/5 _% 62/5 =a~0.08

and is independent of the initial velocity. The decrease in this
amplitude occurs due to the presence of a specific friction in
Eqn (56) caused by the expansion of the Universe. It is easy to
see that the system thus tends to an equilibrium: the
localization of particles at the immobile center of mass. The
velocity of particles behaves similarly at the instant of the first
coincidence of particle locations, also decreasing and becom-
ing equal to ﬁret = ﬁcross,l = —0.83.

Thus, it is evident that decaying oscillations of particles
occur over large time intervals: particles oscillate with respect
to each other with decreasing oscillation amplitude and time
between crossings. The dynamics of the oscillations is reduced
to a simple iteration scheme [82]. After replacing finite
differences by differentials, we obtain

1
ﬁcross(e) = ﬂcross,O eXp [_ § (9 - QCTOSS):| ) ﬁcross,() =1 ) (61)

2

9 (9 - Htum):| y  qmax,0 = &, (62)

Aqmax(e) - 2qmax,0 exp l:_

where fi....(6) is the dimensionless velocity of particles at the
tangency instant and Agmax(6) is the maximum distance
between particles at time 6.

I 07
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Figure 10. The modulus of the particle velocity ff_.. as a function of time
in the linear—logarithmic scale (open circles). The solid curve shows
analytic formula (61). Initial conditions are shown in the inset.

Therefore, the velocity of the particles, the distance
between them, and the time between tangency instants,
0,(0) ~ |Pross(0)], decay exponentially as functions of the
time 0. In terms of the cosmological time ¢ or the new time
variable D, the decrease occurs as a power-law function of
time, Beoss(f) ~ t /2~ DV and Agmax(t) ~ t /%~ D113

Figure 10 presents a comparison of the results of direct
numerical simulation and analytic calculations. Shown is
the dependence of the modulus of particle velocity fi ., on
time 6. The solid curve corresponds to calculations using
analytic formula (61). The initial conditions are presented in
the inset; here, ¢, = 0; before the first tangency instant, only
the growing mode is therefore taken into account.

We now consider consequences of the analytic models. In
the ZA, the law of particle motion does not change after a self-
crossing of a trajectory occurs, and the distance between
particles increases proportionally to D. In the adhesion
approximation with a vanishing viscosity, colliding particles
coalesce to form an immobile particle with the mass equal to
the sum of the masses of the colliding particles. To describe
the motion of particles in the AM with a finite viscosity, we
consider the stationary solution of one-dimensional BE (51):

V(x, D) = vg(x) = —Utanh g , (63)

where 6 = U/2v is the width of the front discontinuity. This
solution is also an asymptotic solution of the BE for the step-
like velocity profile considered above. The trajectories of
individual particles x(7) satisfy Eqn (52), and we have the
following expression for particle coordinates:

x(D, q) = o arsinh [Sinh (g) exp (—%)] ,

where ¢ is the Lagrange coordinate. Solution (64) implies that
after the particle ‘enters the cluster’ (x(D, ¢) < 0), its coordinate
decreases much faster (x(D,q) ~ exp[(¢ — UD)/d]) than in
the Q-model.

Paper [82] compares the density profile evolution in the
Zeldovich model, Q-model, and AM in the case of the step-

(64)
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like initial velocity distribution

Bg) = —Pysign(q), (65)
where f, is a constant coefficient.

In the ZA, particles with an initially negative (as well
as positive) coordinate move toward a clump keeping
the distance between them unchanged. Hence, until the
last particle joins the clump, a two-stream flow occupying
the bounded region 2gy zeq exists, where gy zed =
Boexp (20/3)/4 = B,D is the clump width in the ZA. We
note that the density in each stream is equal to the initial value
Pos 1.€., the density is 2p, inside the clump (|¢| < gw, zeld)-

In the real dynamics, a multi-stream flow process occurs
inside the clump, and hence the density at the point with the
coordinate ¢ can be obtained by summing the contributions
of all flows. Passing in the Q-dynamics to the continuous
limit, we can find a closed expression for the mean density of
matter in the cluster:

3 q 1/4 ( 1 )1/3
O, mra |(B) - 6
p(q )“qK‘]w Po 2‘]p |:< q 2Ymax ( )

where y,,,, is the solution of the equation
B(max 2
Vmax = % exXp § 0 )

and ¢,(0) is the smallest spatial scale of the internal structure
of the clump,

_ _2
gp = 24/3ﬁ(1)/3 exp ( 9 0) .

The spatial distribution of density inside the clump is
characterized by two scales: the characteristic size of the
internal structure ¢,(0), which decays exponentially, g, ~
exp (—20/9), and the cluster width ¢y, which at the early stage
of cluster formation decreases more slowly than the Zeldo-
vich model predicts. The cluster mass also increases with time,
in accordance with the AM.

At the final stage of the evolution of an isolated cluster,
when all particles reach its inner region, the mass distribution
(the mass function) M(q, 0) has a self-similar form:

(67)

(68)

M(q,9>=j:p<s7e>d¢:M( 4 ) (69)

qp(0)

Therefore, at this evolutionary stage, both the density and the
mass function are characterized only by the inner scale of the
clump gy = gp(0). The function M(gq/qy(0)) in the segment
x = [0, 1] can be represented in the simple form

_ 3
M(x):2x3/4—§x, (70)

where M(1) is equal to 1/2. Expression (70) implies that most
of the matter is concentrated in the clump center. For
example, half of the total mass (i.e., 2M(xps5) = 1/2)
occupies the interval that is equal to only xys = 0.14, and
90% of all the mass is distributed over a segment that only
slightly exceeds half of the total diameter of the cluster
(Xo'g = 054)

400

200

Figure 11. The normalized density p as a function of the coordinate ¢ at the
late stage for a step-like velocity distribution. The thin and thick curves
respectively show the results of modeling and the theoretical dependence.
In the left-hand inset, presented is the normalized density p as a function of
¢ in the linear—logarithmic scale. White circles correspond to numerical
modeling results. The phase plane for 6 = 23.27 is shown in the right-hand
inset.

Results of the direct numerical simulation [82] of the late
evolution of the initial perturbation specified by (65) are in
fair agreement with analytic calculations. Figure 11 presents
the normalized density profile at the final stage of the
evolution (the thin curve) and the theoretical prediction (the
thick curve). The same plots are shown in the logarithmic
scale in the inset in the left panel of Fig. 11: here, white circles
show the results of numerical simulation. The corresponding
phase portrait illustrating the characteristic spiral behavior is
shown in the inset in the right panel of Fig. 11.

In conclusion, we compare theoretical expression (66)
with the density profile obtained in the AM with finite
viscosity [86]. From (64), taking mass conservation into
account, we find the following expression for the density:

po cosh (x/9)
\/sinh? (x/3) + exp (—2UD/5)

p(x, D) = (71)

We focus on the asymptotic behavior at times D > ¢/U and
consider the regions y >4 and x> d,, where 6, =
oexp (—UD?) is the internal scale of the clump. It is evident
that in the adhesion approximation, the collapse occurs
earlier than in the Q-model, and the spatial scale of the
clump decreases as a power law of the effective BE ‘time’
¢p ~ D~1/3. Analyzing the density profile for |x| < ,, we
find that the maximum density exponentially increases with
time:  p...(0,D) = pgexp (UD/J). Inside the interval
0p < X < 0, the density distribution function is transformed
into a time-independent power law p(x, D) = p,d/x, as is
evident from Fig. 12, where the change in the spatial density
distribution is shown as a function of the time D = b.

Thus, for a step-like initial velocity, at the late phase of
the evolution, the AM shows localizations in the region
|x| <6 =const and power-law tails, which cannot be
integrated in time, with the characteristic size J5=
oexp (—Ub/S). We note that in the Q-model, by contrast,
the integrated power-law tail is formed at the periphery
[see (66)].
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Figure 12. The normalized density p/p, versus x/d in logarithmic scales for
different values of the time 5. The initial velocity is taken as a step-like
function with the parameters 6 = 5, U = 10, and p, = 1.

Lagrange space

Figure 13. The connection of Lagrangian and Eulerian coordinates in AM.

It follows that in the one-dimensional case, the AM
correctly describes the mass increase in clumps but not their
internal structure. This is in line with the conclusion in [85],
where numerical corrections to the diffusion coefficient are
proposed and a new dynamical equation is introduced.

5.3 The general and asymptotic solutions

of the vector Burgers equation

Below, we consider the BE in its classical form using the
variable 7 instead of the effective time D:

0
A (W)v = w2y,

o (72)

We recall how BE (51) can be solved. For a potential
velocity field, the BE is equivalent to the homogeneous
Kardar—Parisi-Zhang (KPZ) equation for the velocity
potential:

0o 1

—_§(V¢)2+vvzq>.

o (73)

As in the one-dimensional case, using the Hopf—Cole
substitution [80, 81]
&(x,1) = -2vIn U(x,1),

we arrive at the linear diffusion equation

oUu

- = 2
o vw-U.

(74)
Substituting its solution in the expression for the velocity field

2v
= -2yVl1 =——YV
v wWinU U U,

we finally obtain

V1) = jd3q [(x —q)/t] exp [S(x, ;q)/2V]

[d’q exp [S(x,1;,q)/2v]

where

(x—q)’

S(X7 [N q) = Q)O(q) - 2;

(76)

is the action function.

We now discuss in more detail some consequences of the
assumption about the infinitesimal viscosity coefficient,
v — 0., because this case is directly related to the formation
of the mosaic large-scale structure of the Universe discussed
in Section 1.

The integrals in (75) can be calculated using the steepest
descent method [20, 37, 87, 88]. The velocity field is then given

(77)

where q(x, 7) is the coordinate of the absolute minimum of the
action S(x, D; q) at given values of x and ¢. Here, q(x, 7) is the
Lagrange coordinate of the particle that arrives at the point x
at time 7 [42].

In the two-dimensional case, the result of integration has a
lucid geometrical interpretation (Fig. 13). The relation
between the initial Lagrangian coordinates ¢, and the
current Eulerian coordinate x;, of a fixed particle at time ¢
can be determined by dropping the paraboloid

(Xp — ‘l)2

on (78)

P(Q?xpvt) =

on the surface of the initial potential. Specifically, we decrease
the value of the constant P, from infinity until the paraboloid
first touches the initial potential surface ®y(g) at some point
with coordinates q,. Then the coordinates q,, of the first
tangency point are equal to the Lagrange coordinates of the
particle.
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Figure 14. One-dimensional illustration of the procedure of finding the
transformation from Lagrangian to Eulerian coordinates of particles by
the scanning parabola method. The parabola apex drops onto the velocity
potential curve. (a) A particle with the Lagrangian coordinate ¢y has the
Eulerian coordinate x equal to the coordinate of the parabola apex. (b) At
a later stage of particle motion, all particles with Lagrangian coordinates
from the intervals (¢1,¢2) and (g3, g4) between points of double tangency
of the parabolas stick to form macroparticles (the two black circles in the
bottom part of the figure) with masses m; =1#(q» — ¢1) and m, =
71(qs — q3), moving with the velocities shown by arrows. (¢) A macro-
particle (the black circle) formed by merging the macroparticles shown in
panel b (see [42, 89]).

We also note that in the early stage, the time 7 is small and
the curvature of the paraboloid is significantly larger than the
characteristic curvature of the surface @,. At this stage, the
map of Lagrangian into Eulerian coordinates is almost
everywhere equivalent to the ZA.

The curvature of the paraboloid decreases with time.
Correspondingly, in the Lagrangian space, regions emerge
that cannot be mapped on the Eulerian plane. This is
evident from Fig. 14 illustrating the above procedure of
the paraboloid dropping. The parabolas in Fig. 14b cannot
be dropped without crossing the plot of @,. This means
that particles with the initial Lagrangian coordinates
located between two points of tangency of the parabola
with the initial profile @y, i.e., between the points with
coordinates ¢; and ¢, as well as between the points with
coordinates ¢3 and ¢4, coalesce to form discrete macro-
particles with masses m; = #j(¢2 — g1) and my = 7j(qs — ¢3).
At the later stage, macroparticles become more massive
because of the coalescence of particles formed earlier.
Figure 14c shows such a massive macroparticle formed
after the merging of macroparticles shown in Fig. 14b. It is
easy to see that to transit from the stage shown in Fig. 14b
to the stage shown in Fig. l4c, it is necessary that the
parabola have three points of tangency with the plot of the
initial potential at some intermediate time (i.e., for some
intermediate value of the parameter D). At the next instant,
the parabola becomes somewhat wider and loses contact
with the initial potential profile at the middle tangency

point, which geometrically signals the merging of the
colliding particles.

In the two-dimensional case, paraboloid (78) can touch
the surface of the initial potential @, at one, two, or three
points. The first type of contact corresponds to particles that
have not merged by the given instant and have a finite density.
Points of the second class of contact correspond to particles
that coalesce along the line; these are two-dimensional
analogs of Zeldovich pancakes. Particles on the coalescence
line are shown in Fig. 14 by black circles with arrows
indicating the particle velocities. These lines form boundaries
of regions containing points of the first type and represent the
locus of centers of paraboloids touching the surface of the
initial potential at two points simultaneously. Finally, when
the paraboloid touches the surface of the initial potential at
three points simultaneously, the coordinates of the centers of
such paraboloids correspond to the nodes connecting the
lines described above. The lines and nodes form a chaotic
mosaic structure consisting of cells bounded by the lines and
nodes joining different lines. Some cells expand with time,
while others contract and disappear. At the instant of cell
merging, the paraboloid touches the initial potential at four
points simultaneously. The classification of the features and
their metamorphosis is described in [90].

5.4 Flows of locally interacting particles

and a singular density field

There is an alternative way to calculate the matter density
using the Jacobian of the transformation from Eulerian to
Lagrangian coordinates [42, 43, 45, 91-94]. As long as there
no particle collisions occur, the density calculated in such a
way corresponds to that in the ZA. But after coalescence, the
function q(x, ¢) has discontinuities at singularities of different
dimensions. In the three-dimensional case, these include
planes, lines, and points. Correspondingly, in the density
distribution, singularities in the form of delta-functions of
different dimensions appear [45, 91].

Below, we interpret Eqn (12) as an equation for the
velocity field of some particle flow. As long as the solution
of this equation is single valued, the field v(x, ¢) bears the clear
physical meaning of the hydrodynamic velocity of a uni-
formly moving flow of particles. Starting from some time
instant ¢,, some particles start overtaking others, and, if the
particles do not interact with each other, a multi-stream flow
occurs. By contrast, if the overtaking particles interact and
prevent the formation of a multi-stream flow, then, instead of
multi-stream fields, discontinuous one-stream fields vy, (x, ¢)
can appear, which we call weak solutions of Eqn (77).

For a one-dimensional flow, the mechanical interpreta-
tion of the formation of weak solutions due to inelastic
particle coalescence is absolutely clear, but in the multi-
dimensional case, it is difficult to propose the physical
mechanism of the interaction leading to a relatively simple
mathematical algorithm of the weak solution choice. We
therefore consider the problem of particle interaction purely
formally by postulating that the local interaction during
collisions yields a discontinuous map y = y,(x, ) of Euler-
ian coordinates to Lagrangian ones and, correspondingly, a
weak solution for the velocity field of particles, which follows
from the absolute maximum principle and the limit solution
of the BE with infinitesimal viscosity.

We illustrate this model approach by analyzing the
generalized density field p,,(x, ) of a two-dimensional flow
of particles locally interacting during the overtaking. The flux
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density can be written in the form

o0

S(Xy(y, 1) —x) d%y,

—00

py(x,1) = poj (79)

where x = Xy (y, #) is the map inverse toy = y, (X, 7), which in
this case follows from the absolute minimum principle. In
addition, we assume for simplicity that the initial density of
gas interacting in accordance with the absolute minimum law
is the same at any point x of the plane: py(x) = p, = const. As
long as y =y,/(x,7) is a continuous function, this density
coincides with that calculated using the ZA.

In the general case, p,(x,?) is a singular generalized
function. We explain the algorithm of its action on a trial
function ¢(x). After straightforward manipulations, we

obtain
| omnxnd—p | oxma)ar. @)

To use expression (80), we need to find means for constructing
the function x = X(y,?). It is easy to show that the
transformation from Lagrangian coordinates to Eulerian
coordinates is determined by the expression [43, 45, 91]

X:XW(yat) = 7V(7)(y7 Z)7 (81)

where @(y, ) is the convex hull of the function

wmﬂ=%WN*§-

To obtain the convex hull of a function ¢(y, 1), it is necessary,
figuratively speaking, to pull an elastic film over the values of
o(y, ). The film surface then represents the convex hull of
o(y,1).

The geometric construction of map (81) reduces to finding
a plane touching the convex hull z = @(y, f) at the point with
coordinates y. We discuss this procedure in more detail. Let r
be the radius vector in three-dimensional space (y,z). The
equation for the tangent plane has the form

n(rfa):07 a:{ya (p(yvt)}v
where n is the external normal vector to the convex hull
z={(y,?) (considering the region below the hull as its
interior). We choose the z component of the normal to be
unit everywhere, n, = 1. Then the projection of the normal
onto the y plane is equal to the sought vector Xy, (y, ). In other
words, we find the map x = X, (y, ) by specifying the normal
nat each point of the surface z = @(y, 7) and projecting it onto
the y plane.

There are three robust types (which do not disappear at
small displacements of the surface) of contact of a plane and a
convex hull, which determine qualitatively different parts of
map (81). Correspondingly, the Lagrangian y and Eulerian x
planes are divided into three types of regions.

We enumerate the contact types and explain their
mechanical interpretation in application to density field (79)
of matter interacting during overtaking.

(1) The plane is in contact with the convex hull at one
point. All such points belong to both the convex hull ¢(y, ¢)
and the original surface ¢(y, 7). Projections of these points
onto the plane y are Lagrangian coordinates of particles of

the flow that have not yet participated in the interaction, and
their Eulerian coordinates x = X,,(y, ¢) are specified by the
map

X(y, 1) =y + tvo(y) (82)
for noninteracting particles.

(2) The plane is in contact with the original surface ¢(y, 7)
at two points simultaneously. Then the whole segment /
connecting these two points belongs to the convex hull
¢(y, t). Therefore, at all points of the segment, the normal
vector to the convex hull is the same. This means that all
points of the projection /, of the segment / onto the
Lagrangian plane y are mapped into one point with the
same Eulerian coordinates x = Xy(y,?). By sliding the
tangent plane covered with chalk over the convex hull and
trying to make the plane contact the hull at two points
simultaneously, we draw a closed region G on the hull. All
points of its projection onto the plane G, are projected on the
curve

L={x=Xyly,1): yeG,},

in the Eulerian plane x, where all matter originally located
inside the region y € G is concentrated at the instant 7.

(3) The plane is in contact with the surface at three points.
After connecting them by line segments, we obtain a triangle
T; the projection of all its points T, onto the Lagrangian plane
y are mapped into one point:

x'={x=Xu(y,): yeT,}.

The partition of the Lagrangian plane y into three types of
regions and the singularities of their map onto the Eulerian
plane x are illustrated in Fig. 15. In the appendix to the
English edition of book [42] (the authors of the Appendix are
V I Arnold, Yu M Baryshnikov, and I A Bogaevsky), the
classification of singularities and their bifurcations for two-
and three-dimensional potential flows are given. The con-
sidered map exactly corresponds to such flows.

Three types of maps discussed above determine the
structure of the generalized density field:

px,0) = p(x, 1)+ 3 0o+ S mo(x; = %), (83)
i J
b
L
L X
L

Figure 15. (a) A characteristic fragment of the surface z = ¢(y, ¢) with
three peaks. The points of contact of the surface with the tangent plane
form the vertices of the triangle T. The interior of the projection T, of the
triangle onto the Lagrangian plane y is mapped into one point x* of the
Eulerian plane. Troughs bounded by the double contact lines of the
surface with the tangent plane go from the sides of the triangle; they are
projected into lines £ on the Eulerian plane. (b) The geometry of the
aforementioned regions in the Lagrangian and Eulerian planes.
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The first term in the right-hand side of Eqn (83),

0= s )

describes the regular density of particles moving uniformly
until the instant ¢. This term contains the Jacobian J(y, 7) of
the transformation (21) from Lagrangian to Eulerian coordi-
nates, as well as the inverse transformation y(x, 7). The curly
brackets mean that this expression is valid only in regions of
the first type. In type-two and three regions, which have
measure zero in the Eulerian plane, the definition of the
expression in brackets must be refined by introducing any
bounded functions.

The last term in the right-hand side of Eqn (83) yields a
singular component of the density supported at type-three
points x *, where the matter from the triangle regions T, of the
Lagrangian plane is concentrated. The coefficients at the
delta-functions are equal to the mass of matter originally
located in the triangles T,. If, as we believe, the initial density
of the considered two-dimensional flow is everywhere equal
to py, then

m* = p, ST,

where St is the area of the corresponding triangle T,

We separately consider the second term in the right-hand
side of Eqn (83), which is equal to the sum of linear delta-
functions corresponding to type-two regions G,. The linear
delta-function acts on a test function ¢(y) as

JOC d(x) 00, d’x = L o(o,1) d)(x(o)) do.

—00

(84)

In other words, the linear delta-function 8, ‘cuts out’ the
contour integral of the first type along the curve £ from the
double integral. The integrand is the linear density o of the
material line £ times the test function ¢(x). The integral is
written using the parametric equation x = x(a) of the curve
L, where ¢ is the natural parameter equal to the curve length
counted from some initial point.

To find the linear density o(o, ¢) on the curve £, we take an
infinitely short segment [¢, ¢ 4+ do]. The subarea dG, of the
domain Gy, collapsing into the curve £ of the Eulerian plane is
mapped into this segment. The subarea dG, is bounded by the
intervals /,(o, t) and /,(¢ + dg, t), which are mapped into the
ends of the segment [0, 0 + do]. The sought linear density is
then

. dm(o
o(o,t) = dl;rgo dg ) ,

where dm(o) is the mass of matter originally found in the
subarea dG,.

5.5 The web-like structure in the adhesion model

In this section, we compare the results obtained using the AM
with direct numerical simulation of the motion of gravita-
tionally interacting particles.

Figure 16 demonstrates a good agreement between the
mosaic structure obtained in the AM framework and the
results of numerical simulation of two-dimensional motion of
gravitationally interacting particles. Figure 17 illustrates the
effect of the power-law spectrum of initial perturbations on
small scales. Initial perturbations in Fig. 17 are generated
with equal amplitudes and phases, but the amplitudes of

Figure 16. (a) The distribution of gravitationally interacting 2D particles
found from numerical integration of their motion. (b) The chaotic mosaic
structure obtained in the 2D version of the AM superimposed on the
particle distribution shown in panel (a) [88].
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Figure 17. Plane mosaic structures obtained in the AM, superimposed on
the particle distribution in the 2D N-body problem. For images a and b,
the initial potential @, has the same large-scale structure, but in image a,
@, is smoothed by a cut-off removing short-scale components, which are
taken into account in image b [88].

harmonics with wavelengths k& > k., are taken to be zero in
Fig. 17a. Correspondingly, the initial potential in Fig. 17a is
a smoothed version of that in Fig. 17b. Both Fig. 17a and b
correspond to the same stage of evolution of the large-scale
structure of the Universe (to the same value of the
parameter D). It is evident that although the general
character of the structure in Fig. 17a and b is nearly the
same, the mosaic in Fig. 17b demonstrates a much richer
small-scale structure.

Based on two-dimensional geometrical constructions
considered in Sections 5.3 and 5.4, it is straightforward to
understand the basic features of the mosaic structure of the
large-scale 3D matter distribution. Namely, the initial
potential @, represents a three-dimensional hypersurface in
a four-dimensional space. Correspondingly, as in the one-
and two-dimensional cases described above, three-dimen-
sional paraboloid (78) drops onto the initial potential
hypersurface. The rules to find the transformation from
Lagrangian to Eulerian coordinates remain the same: these
are coordinates of the points of the first contact between the
paraboloid and the initial potential surface and the coordi-
nates of the paraboloid apex. There are four types of contact
between the paraboloid and the initial potential.

If the paraboloid is in contact with the initial potential at
only one point, then the corresponding particle has not
collided with other particles until the current instant (the
value of the parameter D). In the other three cases where the
paraboloid is in contact simultaneously at two, three, or four
points with the initial potential, the paraboloid apex
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Figure 18. 3D dynamics of the AM. The matter falling onto a pancake is shown in three orthogonal projections; (a) the xy projection demonstrates the

motion of particles in the pancake plane [71].

corresponds to particles respectively merged on faces, edges,
or vertices of a three-dimensional mosaic structure. More-
over, as in the one- and two-dimensional cases, at critical
times corresponding to the disappearance of some cells of the
three-dimensional mosaic structure, the number of tangency
points of the paraboloid and the initial potential becomes
larger than four [90]. The set of surfaces (pancakes), massive
lines, and compact clusters determines the mosaic structure of
the 3D matter distribution, in which matter is mainly
concentrated at the mosaic boundaries—in massive pan-
cakes, filaments, and vertices separating mosaic cells (low-
density voids). This three-dimensional mosaic structure
serves as the backbone of the real matter distribution in the
Universe.

The adhesion model reveals a nontrivial structure of
quasi-2D walls surrounding cells. Particles entering the
walls continue moving inside them, which in turn leads to
the formation of a 2D web-like structure in the walls
themselves [71]. In Fig. 18a, where the wall is shown face-
on, two-dimensional cells of different sizes are clearly seen.

The two variants of the AM mentioned above were tested
by comparing the results of numerical modeling of the 2D and
3D gravitational N-body problem [59, 69—71, 79, 88]. The
same boundary conditions were used and the comparison was
made at different stages of the gravitational instability
development. In addition, the geometrical version (v — 0,)
of the AM was compared with 2D N-body simulations for the
initial power-law spectrum Ps(k) o< k" with different expo-
nents n = 2, 0, —2 and different critical cut-off wavenumbers
above which the spectrum P was set to zero [88].

It turned out that at a small but nonzero viscosity
coefficient v > 0, the AM both qualitatively and quantita-
tively agrees with numerical N-body simulations at the
strongly nonlinear stage of gravitational instability [69]. In
general, the comparison of matter density distributions
obtained in the numerical simulations and adhesion models
demonstrate good agreement, which improves with increas-
ing the steepness of the initial power spectrum on large scales
typical for the ACDM model (see Fig. 5). Figure 6 clearly
illustrates this fact.

Correlations of the initial potential peaks with the cell
diameters of the structure were studied in [69]. In the three-
dimensional numerical AM, cells were identified inside which
the initial potential peaks were found. Figure 19 demonstrates
the obvious correlation between the cell diameter and the

Present time ]
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Figure 19. The normalized initial gravitational potential at centers of the
mosaic cells (dark voids) as a function of the cell diameter [89].

initial potential peak amplitude inside it. Figure 20, obtained
in the two-dimensional case [95], clearly confirms this result.

5.6 Particle dynamics inside velocity field discontinuities
in the Hamilton-Jacobi equation
In the limit case of infinitesimal viscosity, the dynamics of
three-dimensional motion (52) were studied in papers [96, 97],
which showed a nontrivial behavior of particles in singula-
rities of the velocity field. In particular, under certain
conditions, the clumps can leave the nodes of the structure.
Below, we present the main results of the above paper and
other papers on this topic. The material for this section was
kindly provided by A N Sobolevsky.

In the multi-dimensional case, the BE 9,v 4+ (vV)v = 0 for
a vortex-free velocity field v(z,r), i.e., v = V¢, is equivalent to
the equation

0+ 5 IV = 0. (85)
It is known from mechanics that the function of action ¢ of a
general Hamiltonian system with a Hamiltonian H(¢,r,p),
where p is the generalized momentum vector, satisfies the



244 S N Gurbatov, A I Saichev, S F Shandarin

Physics— Uspekhi 55 (3)

0 50 100 150 200 250
x, Mpc

Figure 20. 2D model of the web-like structure obtained with the potential
shown in light (red) curves, the so-called quasi-Voronoi tessellation [95].

Hamilton—Jacobi equation

0,0 + H(t,xr,V¢) =0. (86)
In particular, the Hamiltonian H(p) = |p|*/2 corresponds to
Eqn (85).

Below, we consider a general Hamiltonian H(z,r, p) under
the assumption that as a function of p, it never turns to infinity
and is smooth and strictly convex at all points. This allows
establishing a one-to-one correspondence between momenta
and velocities, v = V,H(¢,1,p), and introducing the Lagran-
gian L(z,r,v) = pv — H(t,x,p), where p = V, L(t,r,v).

Our task is to give Hamilton—Jacobi equation (86) a
hydrodynamic interpretation by using its relation with the
BE. For this, we associate a solution ¢ of this equation with a
flow in which the particle, which is at the point r at time ¢,
moves with the velocity

t=VyH(t,r,V(t,r)) . (87)
Relation (87) is one of the canonical Hamilton equations, in
which the gradient of ¢ is used instead of momentum.

Definition (87) of particle velocities is valid everywhere
where the solution ¢ of Eqn (86) is differentiable. However,
due to the nonlinearity of the Burgers equation, disconti-
nuities at which the velocity is undefined appear in its
solutions. Similar singularities (discontinuities of the gradi-
ent of ¢) also emerge in solutions of the general Hamilton—
Jacobi equation (86). Therefore, it is necessary to separately
construct the particle dynamics ‘inside discontinuities’ of the
solution.

In the (1 + 1)-dimensional time-space, such a construc-
tion is straightforward. As is well known, the velocity of a
discontinuity point x(7) in the ‘correct’ solution of the BE
always satisfies the conditions wv(x(z) —0,¢) > x(1) >
v(x(f) +0,1), i.e., the flow ‘deposits’ particles on both sides
of the discontinuity, where they stay forever. The same
conditions are valid for solutions of the general Hamilton—
Jacobi equation with a convex Hamiltonian. Therefore, in the

one-dimensional case, particles settled into a discontinuity do
not leave it and continue moving with the discontinuity.

In the multi-dimensional case, the geometry of the flow
near a discontinuity is also such that particles are ‘deposited’
on the discontinuity; however, the set of discontinuity points
(‘the manifold of discontinuities’) is more complicated than in
the one-dimensional case and represents a union of smooth
pieces of different dimensions: in two dimensions, disconti-
nuities occur along curves whose ends are connected at points
with triple and higher-order multiplicities, and in three
dimensions, discontinuity surfaces appear, which are con-
nected by lines ending at points with quadruple or higher-
order multiplicities.

Hence, particles deposited on the discontinuity preserve
the degrees of freedom inside it, and the determination of
their motion inside the discontinuity manifold remains a
nontrivial problem.

For the BE (or, equivalently, for the Hamilton—Jacobi
equation with a quadratic Hamiltonian), this problem was
first solved by Bogaevsky [96, 98]. Part of his results were
anticipated in earlier work by Brézis [99] (see also [100],
lemma 5.6.2), but these papers remained unfamiliar to
specialists in nonlinear acoustics and hydrodynamics. More-
over, Bogaevsky first classified pieces of the discontinuity
manifold depending on whether they retain the deposited
particles or the particles can pass into pieces with a higher
dimension.

The methods in [96, 98-100] essentially use quadratic
Hamiltonians. We here use another approach: the general
convex Hamiltonian is considered and the presentation
follows papers by Sobolevsky and Khanin [97, 101].

We recall that the solution of Hamilton—Jacobi equation
(86) satisfying the initial condition ¢ (¢ = 0,r) = ¢,(r) can be
presented in the form manifesting the least action principle:

$(1,1) = min [qso (v(0)) + jotus,v(sm(s» ds|

where the expression in square brackets is the Lagrangian
action along the trajectory v, taking the initial value ¢, into
account, and the minimum is calculated over all trajectories
satisfying the condition y(7) =r.

At most points of the space—time, this minimum is reached
on one trajectory and the solution ¢ is differentiable. But at
some points, the same minimum value of the action
corresponds to several trajectories y; that have different
origins and different velocities at time z. Exactly these points
make the set of the velocity field discontinuities correspond-
ing to the solution ¢ in accordance with formula (87).

In the vicinity of such a point (z,r), the solution ¢ can be
represented as the minimum of several smooth functions ¢,,
each of which is determined by the initial condition ¢, near
the corresponding initial point y;(0):

d)(tlarl) = ml.in(bi(t,ar/)
= ¢(t,r) + miin [V(l),-(r’ —1) +0,,(t' — t)] +...,

in the linear order of approximation.

At the point (z,r), the smooth functions ¢; intersect, and
the values of the derivatives 0,¢, V¢ are not defined. After the
convolution with a smoothing kernel of size ¢ or after the
introduction of a small viscosity ¢ into Eqn (86), the smoothed
solution ¢¢ in a small neighborhood of this point has
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derivatives with values that fall between the limit values of
0,¢; and V¢, corresponding to smooth branches of the
solution ¢;. Therefore, it is natural to assume that for a
nonsmooth function, such a neighborhood shrinks to the
point (¢,r) in which the vector of derivatives (0,¢, V¢) takes
all values from a polyhedron—the convex hull of the set
{(©y, Vb))

For brevity, we set p; = V¢;(¢,r). Because ¢, are smooth
functions satisfying the Hamilton-Jacobi equation in
the vicinity of (z,r), we have 0,¢,=—H(t,r,V¢;) =
—H(1,r,p;) = —H,;, and the linear approximation for ¢ takes
the form

¢’ x") — (t,r) = mfin p(x' =)= Hi(t'—0)] +....

These calculations lead to a simple but important conclusion:
if a trajectory goes out from the point r with the velocity v at
time 7, then at the infinitely close time instants ¢’ > 7, the
solution in the immediate vicinity of the trajectory
r' =r+v(t' — 1) is determined not by all branches of ¢, but
only by those whose indices belong to the set

I,+(v) = argmin [py — ]

The ‘spectrum’ of momentum values along such a trajectory is
specified by the convex hull of the corresponding momentum
set conv{p;:i € I,(v)}. By virtue of (87), these momenta
correspond to velocities of the form v/ = V,H(z,r,p’), where

p = V,L(t,r,v') € conv{p;: i € I,(v)}.

We call the velocity v* admissible at a point (z,r) if

VyL(t,x,v*) € conv {p;: i € I, +(v¥)}, (88)
i.e., if v* corresponds to a momentum from the momentum
‘spectrum’ along the trajectory r + v*(z' — 7).

It turns out that the admissible velocity is defined uniquely
[97]. Indeed, it is straightforward to show that for v satisfying
condition (88), the strictly convex function

L(v) = L(t,r,v) + max [H; — p,V] (89)
1

reaches its only minimum. In particular, if the function ¢ is
differentiable at (z,r), i.e., there is only one branch, then (88)
reduces to the formula VyL(f,r,t) = V¢(s,r), which is
equivalent to (87). Therefore, it is not only at the disconti-
nuities but also everywhere inside the flow corresponding to a
nonsmooth solution ¢ of Hamilton—Jacobi equation (86) that
the trajectory dynamics can be determined using the follow-
ing generalization of canonical equation (87):

i=vi(sr), (90)

where v*(z,r) is found from the values Vé,(z,r) = p; in
accordance with condition (88).

The right-hand side of ordinary differential equation (90)
involves a discontinuous velocity field, and therefore neither
the existence nor uniqueness of its integral trajectories is
evident. We consider a solution ¢¢ smoothed out in some
way and the corresponding flow of smooth trajectories
determined by the equation

i =VyH(t,r Vo (1,r9)).

It can be shown that the flow of integral trajectories of
differential equation (90) with a discontinuous right-hand
side can be constructed as the limit of smoothed trajectories: if
a solution ¢° converges to ¢ and r¢ tends to r as the
smoothing parameter ¢ vanishes, then the one-sided deriva-
tives £¢(z + 0) of the smoothed trajectories converge to the
admissible velocity v* at the point (z,r).

We note that the constructed flow is irreversible: at points
of the field velocity discontinuities characterized by the set of
momenta p; = V¢,, the one-sided derivative f(7 — 0) can take
any value V,H(z,r,p;), but the derivative r(z + 0) is defined
uniquely. For i’ ¢ I, ;(v*), the full derivative of the branch ¢,
along the direction specified by the velocity v* is larger than
analogous full derivatives for branches with indices
i€l (v¥):

b = 0y + vV =pyv" — Hyp > mljn (pv' — H)).

Hence, the branch ¢;, does not contribute to the pointwise
minimum min; ¢; at ¢’ > ¢, and the trajectory passing through
the intersection point (z,r) of many branches of the solution
does not move together with this crossing but leaves it at
t’ >t along the region of the discontinuity manifold of a
higher dimension. This phenomenon was first noted in [96,
98].

However, even among the ¢, branches whose indices enter
I, +(v*), generally speaking, there can be ‘extra’ branches.
Indeed, if the admissible velocity v* is known, we can
determine how the momentum configuration {p;(¢z')} is
deformed at small " — ¢ > 0 in the linear approximation.
Under some additional assumptions about L, it is possible to
show that the minimal set of solution branches, which
determines the trajectory coming out from the point (z,r),
consists of the trajectories that participate in the formation of
the minimum with respect to v of the function

L(t',v) = L(t',x +v*(t' —1),v) + max [Hi(t") —p;(1")¥]

for sufficiently small ¢’ > ¢ [cf. (89)]. This minimum set is
uniquely determined and in turn defines a unique integral
trajectory of Eqn (90) passing through the point (z,r) in the
forward direction in time. The proof of the existence and
uniqueness of integral trajectories of Eqn (90) is thus
completed.

6. Statistical properties of the potential
turbulence: the Burgers vector turbulence

As noted in Section 5, vector BE (72) underlies the AM.
Jointly with the equation for density, this equation is used to
describe the large-scale structure formation of the Universe at
the nonlinear stage of gravitational instability, when pressure
forces can be neglected. In what follows, we therefore briefly
discuss the statistical properties of the Burgers turbulence —
the solution of Eqn (72) with random initial conditions. We
consider only the case of a potential velocity field, typical for
gravitational instability developments. The velocity field is
treated as the field of potential turbulence.
The one-dimensional nonlinear diffusion equation

ov ov o
TR v 1)

was originally introduced by Burgers [38] as a model for
hydrodynamic turbulence. Other problems leading to the
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multi-dimensional BE or its variants include the growth of the
medium boundary surface due to random sedimentation on
the surface and the motion of the flame front [102]. In these
cases, the potential Y corresponds to the surface profile, and
the equation describing its evolution is equivalent to KPZ
equation (73) [102-105]. In problems of the growth of the
interface between two media, v has the meaning of the surface
tension coefficient, and the term in the right-hand side
describes linear effects of surface smoothing. The surface
roughness is measured by its root-mean square gradient:

E(t) = (V(x, 1)) = (v3(x,1)) = ZE,-(;),

Ry

The angular brackets denote ensemble averaging or integra-
tion over the spatial coordinate (for a localized perturbation).

Before the formation of discontinuities, the multi-dimen-
sional BE in the limit of vanishing viscosity is equivalent to
the equation describing the free motion of particles. In the
Lagrangian representation, the velocity of particles V(#;y) is
constant and depends only on the initial (Lagrangian) particle
coordinate y. In the one-dimensional case, before the
formation of discontinuities, an increase in the length of one
elementary interval in the Eulerian representation
Ax = Ay + tAV is compensated by a decrease in the length
of the adjacent interval Ax = Ay — tAV; hence, the energy of
the wave is conserved. After the formation of discontinuities,
the energy starts increasing with time. In the multi-dimen-
sional case, the change of the elementary volume in the
Eulerian representation depends on the initial curvature of
the perturbed surface, and the compensation of expanding
and contracting volumes does not occur. Therefore, ford > 1,
the measure of surface roughness E(z) in (92) can both
increase and decrease with time [106, 107], which manifests
the absence of any conservation law in this case. Nevertheless,
we call E(¢) the ‘energy of turbulence’ and E;(r) the energy of
the ith velocity component.

The dynamical and statistical properties of solutions of
the one-dimensional (and recently, of three-dimensional) BE
have been studied in many papers (see, e.g., the references in
books [42, 45, 105, 108] and reviews [101, 109, 110]). In spite
of the existence of an exact solution (the Hopf—Cole solution)
of the BE, the analysis of deterministic—and especially
random — fields is a very complicated mathematical pro-
blem. For example, first serious results for the Brownian
initial potential [39] were obtained only 30 years after the
appearance of the equation itself [38], and this special case
was exactly described statistically quite recently [111].

The BE describes two main properties of any turbulence
[112]: the nonlinear energy redistribution across the spectrum
and the viscosity effect on small spatial scales. That is why the
BE is of great interest for both direct physical applications
and tests of different models of developed turbulence.

We note that the study of the Burgers turbulence with
infinitesimal viscosity reduces to searching for statistical
characteristics of coordinates of absolute maxima of the
action S(x, #;q). The use of the limit theorems of the theory
of random field fluctuations allows an almost complete
description of the Burgers turbulence in both one- and
multi-dimensional cases. For the Burgers turbulence, it is
possible to find conditions for the existence and types of self-

(92)

(93)

similar modes of the turbulence degeneracy, spectra, correla-
tion functions, and one-point and multi-point probability
distributions (see, e.g., [36, 42, 43, 45, 91, 101, 107, 109, 111,
113-116])).

The occurrence of local and statistical self-similarity is a
characteristic signature of turbulence evolution. A continu-
ous initial field is transformed into a cellular structure, with
each cell having the universal self-similar structure forming
on large time scales [36, 42]:
X =Yk

v(x, 1) = ;

(94)
Some cells engulf others as time passes, and the characteristic
field scale increases. Because of multiple cell coalescences, the
statistical properties of the turbulence also become self-
similar.

When there are no long-range correlations of the initial
field, the turbulence behavior at late times is determined by
the ‘tails’ of the initial potential distribution function.
Depending on the initial potential distribution, one of three
universal self-similarity modes of the turbulence decay is then
realized [115], and the ‘energy’ increase of the three-dimen-
sional turbulence (92) is possible.

If the initial potential ) (x) is described by a random
Gaussian field, the asymptotic behavior of the turbulence is
determined by the initial form of the spectrum at small wave
numbers, i.e., by large-scale field components. If these
components are sufficiently representative in the initial
spectrum, a self-similar turbulence regime is realized in
which the outer scale increase is determined by the spectral
shape at small wave numbers [42, 43].

If there are no large-scale components in the initial field,
another self-similarity mode is realized [42, 115]. The increase
in the outer scale L(z) ~ ¢'/? (with a logarithmic correction) is
then determined by integral properties of the initial spectrum.

The spectral density E(k,) is also isotropic and self-
similar:

L3 (1)

E(k,t) = pE

E(kL(1)).

At large wave numbers k, the formation of discontinuities
(small-scale jumps) leads to the appearance of a power-law
asymptotic dependence E(k) ~ k2. At small wave numbers
in the three-dimensional case, the spectrum is also character-
ized by the universal behavior

L4+d([)

E(k, [) _ kzl+l t—z ~ kd+lld/2,

suggesting nonlinear generation of the large-scale component
corresponding to small wave numbers.

For example, in the case of three-dimensional Burgers
turbulence, E(k,t) ~ k*t32. At large but finite Reynolds
numbers, the discontinuities have a finite width d~ pz/L(t)
and increase with time compared with the integral scale as
o/L(t) ~ (In (o./,t/lfff))l/z. For this reason, the linear stage of
the evolution begins on very long time scales.

In the three-dimensional Burgers turbulence, as in the
one-dimensional case [114, 115], it is possible to violate the
global statistical self-similarity: at small wave numbers, the
spectrum is preserved, but the evolution of most of the
spectrum has a universal character and is determined by
integral characteristics of the initial spectrum.
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7. Conclusion

Concluding the discussion of different formation models of
the large-scale structure of the Universe, we emphasize that
the adhesion model based on three-dimensional BE (51) gives
a visual interpretation of the formation of the basic properties
of the large-scale matter distribution and quantitatively
(although approximately) agrees with cosmological observa-
tions of the large-scale structure of the Universe. The limit
version of the AM corresponding to v — 0, leads to a natural
geometrical construction of the large-sale structure ‘skeleton’,
which can be characterized as a ‘quasi-Voronoi tessellation’
[44, 117]. The comparison of the AM predictions with 1D,
2D, and 3D N-body simulations demonstrates good agree-
ment at all stages, including the stage of the strongly
nonlinear gravitational instability development.

Therefore, the AM can naturally explain the formation of
coherent large-scale structures, including massive sheets
(Zeldovich pancakes), filaments, and compact clumps of
matter, as the result of matter density evolution due to small
fluctuations of the initial gravitational potential.

We stress that the values of the initial gravitational
potential are closely related to the details of the emerging
large-scale structure, as can be seen in Fig. 17: the higher the
initial potential peak is, the larger the size of the mosaic
structure cell around it (also see Fig. 6.2 in [95]). The
formation and later evolution of the large-scale structure is
described by the AM as a two-stage process [89, 119].

At the first stage, matter is concentrated in pancakes and
then moves inside them toward massive lines—edges of the
emerging structure, motion along which leads to the
formation of vertices—massive compact clumps in the
vicinity of intersecting edges. In the currently popular
ACDM model, this stage is characterized by a minuscule
(in cosmological terms) scale determined by the type of dark
matter assumed in one model or another. For example, if
dark matter consists of hypothetical neutralinos with the
mass of the order of 100 GeV, then the characteristic mass of
first structures is only of the order of Earth’s mass (see, e.g.,
[119]). By the end of the first stage, the mosaic structure of
matter distribution is completed, in which most of the matter
is concentrated in edges and vertices of the structure, and
only a small proportion remains in the pancakes and in dark
volumes inside individual cells. This stage has not been
numerically studied yet because it requires a huge number
of particles to be included into the model, which is currently
unfeasible.

The second stage is characterized by a deformation of the
mosaic structure due to the gravitational interaction of
matter. At this stage, some cells become increasingly massive
and large, while others shrink and disappear, being engulfed
by larger cells. Ultimately, almost all of the matter mass is
mainly concentrated in gravitationally bound compact dark
matter clusters, ranging from the lowest-mass ones that were
formed at the first stage to very large ones, which are naturally
associated with massive galaxy clusters. Such compact
clusters of dark matter are referred to as dark matter halos.
Halos corresponding to galaxy masses gravitationally attract
the baryonic mass component, and stars are formed there; the
halos thus turn into galaxies. Halos with larger masses can
form groups of galaxies and galaxy clusters.

In the commonly accepted model of the Universe, the
initial spectrum of perturbations is such that dark halos, in
turn, move coherently by concentrating along super-

pancakes and super-filaments, such that the edges and
faces of the structure at this stage occur as regions with an
enhanced concentration of dark halos with various masses.
Such a scenario of the evolution of the large-scale structure
is characteristic for the present-day matter distribution in
the standard cosmological model. The initial spectrum of
perturbations in this model is shown in Fig. 5, and the
power density spectrum of the initial gravitational potential
is obtained by multiplying the density spectrum by k—*.
Super-pancakes and super-filaments can be identified in the
AM framework with a smoothed initial potential [88]. The
mass flow from the inner volume of cells to faces, from faces
to edges, and from edges to vertices remains, as a whole, the
same as in the first stage, which is confirmed by observa-
tions [21, 22].

In the currently recognized model of the Universe
(ACDM), as the expansion rate accelerates at small z, the
linear increase of perturbations slows down: for example, at
z = 0.6 and at the present time, the respective linear function
of perturbation growth is about 90% and 75% of that in the
Einstein—de Sitter model at the corresponding epochs. In a
short time (on the cosmological scale), the linear perturbation
growth should almost stop and structures that have reached
virial equilibrium will evolve as independent island universes
that run away with exponentially increasing velocities. The
modern structure of the Universe has therefore almost
reached the largest scale and will not grow in the future.

Numerical simulations of the present-day structure of the
Universe typically have the resolution corresponding to
masses of sufficiently large galaxies, whose redshifts can be
measured in large sky surveys like SDSS and compared with
the results of simulations. In such numerical models, the
structure is inevitably ‘smoothed’ on small scales. In parti-
cular, the dark matter density field in dark voids with no
galaxies turns out to be unrealistically smooth or exactly zero
after all particles have been engulfed by dark halos.

The adhesion model predicts that the dark matter density
distribution in voids has a hierarchical cellular structure in
which large cells contain cells of smaller sizes, in which there
are even smaller cells, and so on, down to the smallest cells,
from which the structure formation began (see [95]).

The important question of the fraction of matter in the
hierarchy structures remains open. Modern numerical calcu-
lations definitely show that the mass fraction decreases quite
rapidly with the structure scale, but there is no quantitative
answer to this question yet. The mass fraction contained in
different elements of the cosmic web [19] mentioned in the
introduction is not final. First, definitions of the structure
elements in calculations have several parameters, which can
change in the future. Second, the definitions themselves are
not yet commonly accepted and can be changed. And third,
the results depend on the smoothing scale of the initial
spectrum used in numerical models, as well as on the size of
the region used in simulations.

For example, the structure in paper [19] was modeled in a
cube 150/4~! Mpc in size, which is about 214 Mpc for the
assumed cosmological parameters. In other words, the model
region amounts to about 1/50 of the size or 107 of the
volume of the observed Universe. This means that some part
of the initial spectrum with waves longer than 214 Mpc is
absent in the model, which mostly affects the initial potential,
because it depends on the long-wavelength part of the
spectrum more strongly than the initial density and velocity
perturbations. The adhesion model predicts that the structure
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strongly depends on the initial potential, and hence the results
of calculations of regions comparable to the size of the
Universe can be significantly different.

Nevertheless, the adhesion model, which was proposed
about a quarter of a century ago [20, 36, 37], continues
developing [43, 82-94, 97] and is now used as an efficient
theoretical approach that helps understand and predict
specific features of complicated processes, including the
formation of galaxies [120-122], interstellar medium turbu-
lence [123], and the large-scale structure of the Universe [21,
22,31, 40, 41, 124].
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