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Abstract. The functional Pais equation for scattering phases
with nonzero orbital momenta is solved in the case of low-energy
particles. For short-range screened potentials, in particular,
Yukawa or Thomas—Fermi potentials, the Pais equation is
shown to reduce to transcendental equations. For the potentials
varying ~ r ", n > 0, simple algebraic equations are obtained
for determining the phases J;, / # 0. Possible applications of the
Pais approximation to the problem of finding resonance re-
gimes in the scattering of low-energy particles with nonzero
orbital momenta are discussed.

1. Introduction

Calculating the phases for the scattering of slow particles by a
certain potential (for example, atomic) is a basic problem in
quantum mechanics, for whose solution standard textbook
methods exist (see, for example, Ref. [1]). There are a large
number of computational procedures available for numeri-
cally determining the ¢; phases as a function of the particle
energy k2 (hereinafter, the units of measure based on the
system 7 = 2m = 1, with m being the mass of the particle, are
used). The very problem of calculating the §;, phases with
momentum / # 0 has a reasonable physical meaning when
these phases are not small compared with the d, phase. Such a
situation arises when some / # 0 partial amplitudes exhibit
resonances.
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On the other hand, problems also exist that require a
good approximation for the J; phases, regardless of the
situation with the resonances. Notice, for example, that ¢,
phases enter the Friedel sum rule for alloys, which
determines the valence difference or the excess charge of
the impurity ion relative to the matrix ions. The same phases
are used when calculating the residual resistivity and the
Knight shift. Another point to mention is that a change in
the Fermi density of states due to impurity atoms in the
metal matrix changes the contribution to the heat capacity of
the metal. This is directly related to the energy derivative, at
the Fermi level, of the scattering phases for the perturbing
(impurity) potential. It is well known that localized impurity
atoms in a metal lead to charge density oscillations (so-called
Friedel oscillations) at large distances. The amplitudes and
phases of such oscillations are also functions of scattering
phases with different momentum / [2].

Finally, it is also important to note that in nuclear
scattering problems the phases §; are by no means always
small. All calculations of this type require that the partial
scattering characteristic be available precisely for different /.
It is therefore of interest to find relations, valid near the
possible resonances, which are suitable for describing scatter-
ing phases as functions of collision energy, particle momen-
tum, and potential parameters. In this paper, which is an
essential extension and elaboration of work [3], efficient
methods for calculating §; phases (/ # 0) for slow particles
and for identifying possible resonance situations are dis-
cussed.

Our starting point is the following functional (relative to
the ¢, phase) equation obtained variationally by Pais [4]:

21+1-20;/n bis

20+ 1 —4d;/n o=-3 Jo U(r) Jiy1 jpsgye(kr) rdr . (1)

Here, U(r) is the potential, and k? = E > 0 is the particle
energy. The variational problem addressed by A Pais was that
for the Schrodinger equation on the class of Ji /4
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functions, where J, is the Bessel function of order p, and the
parameter A turns out to be related with the §; phase by the
simple formula: 6, = —(n/2) /.

We will follow Pais’s original work to briefly describe how
integro-functional equation (1) is obtained. The procedure is
reproduced in a quite clear way in Ref. [5] and is basically as
follows. First, we write down the radial Schrodinger equation
for a partial wave with momentum / # 0:

(H) — k) &)(r) = 0. )

The Hamiltonian H, is defined routinely as

& (1+1)
Hl:_m+r—2+l](r). (3)
If U(r) = 0, we can write the exact solution as follows:
®(r) = r' I (k). (4)

Here, J). 1,5 is the Bessel function of half-integer order.

If the potential U(r) is small compared to /(/ 4+ 1)/r? for
r — 00, one can attempt to obtain an approximate solution
for [ # 0 by taking

®F (r) = r' 2Ty oy (kr) (5)

as a trial function. The parameter 1 is obtained here
variationally, and the asymptotics for large r is

®P(r) ~ sin [kr - g I+ ;L)} . (6)

It is from this that we obtain the relationship 6; = —(n/2) A
mentioned above.
Determining A requires the solution of the equation

J O (H —k*)®dfdr=0. (7)
0

It should be noted that, while such a procedure uses the
fact that U(r) is small compared to /(/ + 1)/r?, it places no
constraints on the value of the ratio k2/U, implying that for
the given potential the Pais equation should be valid for both
large and small particle energies.

Tietz [6, 7] obtained Eqn (1) in a way similar to that used in
deriving the usual Born formula. Equation (1) holds for / # 0.
From Pais’s derivation, it clearly follows that the scattering phase
should be normalized so as to satisfy the inequality
0y < (n/2)(I+1). Tietz showed that equation (1) adequately
describes the scattering of a neutron by a proton for neutron
energies larger than the depth of the equivalent potential well. At
the same time, equation (1) should work much better in the
opposite limiting case of £ < |U| (see Ref. [§]). An example
clearly illustrating this point is given in Section 3. An important
feature of equation (1) is the presence of the ¢, phase in the order of
the Bessel function under integral. This prevents functional
equation (1) from being analytically solvable for cases other than
special ones and possibly explains, to some extent, why the Pais
approximation was forgotten and not used for a long time — not
even by Pais himself in its originally intended field of nuclear
particle scattering.

The scattering of slow particles presents a different
situation, in which equation (1) can be solved for a fairly
wide class of potentials, including the screened Coulomb
potential, power-law potentials, and various combinations

of power-law and exponential varieties. For the variational
derivation of equation (1) to be correct, it is necessary that, as
r — oo, the potential U(r) approach zero as fast as or faster
than the centrifugal potential /(/ 4 1) /r2. It is the requirement
which, in essence, specifies the condition for the validity of
equation (1). In this context, there are clearly no strict
constraints on the short-range potentials actually dealt with
in the theory of elementary processes or in solid-state
pseudopotential calculations. Corresponding formulas can
also be obtained for the analytically approximated Thomas—
Fermi potential.

The interesting and informative work [5] addressed
whether the Pais equation allows solutions for particles
other than slow ones. It is easily verified that our results for
the corresponding potentials (including those in Ref. [3]) can
also be obtained by taking the limit of the formulas of Ref. [5]
for small particle energies. Still, it is precisely the scattering of
slow particles that can produce resonance situations and
which we therefore consider the most important.

How such resonances arise can be qualitatively under-
stood, for example, by recognizing that effectively increasing
the depth of a potential well produces in it new levels with
certain / values. These have a near ‘zero’ energy, which is
precisely when scattering resonances can occur.

Such a situation, characteristically encountered in devel-
oping the theory of atomic electron shells (as the nuclear
charge Z increases), is well described by, for example, the
Thomas—Fermi model (see Ref. [1]). Frequently used in
nuclear physics research is the Woods—Saxon potential (see
Section 4); changes in its parameters are also likely to be due
to the appearance of new levels and, hence, to scattering
resonances (shell and optical models of the nucleus). The Pais
approximation enables calculating fairly accurately the
scattering of slow particles, thus allowing energy estimates
for the newly emerging shallow levels. No systematic (let
alone analytical) comparisons appear to have been made for
various potentials for the energies of such levels and for the
parameters of / # 0 resonances.

In fact, the solution to the inverse problem — which is to
find the relationship between the potential parameters and
the energy of the scattered particle, assuming the existence of
aresonance with a specific value of /—is also within the reach
of the Pais approximation. This question is discussed in
Section 6, where a method for constructing ‘resonance’
curves is also presented.

2. Pais approximation approach to calculating
scattering phases for slow particles with nonzero
momenta

The examples discussed below allow us to state that, in many
cases, the Pais approximation effectively works better than
the Born approximation, and sometimes the latter even
fundamentally fails and should be replaced by the former.
Therefore, it is of interest, both practically and methodologi-
cally, to be able to construct analytical formulas for the
scattering phases or to reduce complex integro-functional
equation (1) to simple transcendent or algebraic equations.

2.1 Rectangular well potential
The first example is the potential

U(r) _ {077U07 r<a, (8)

r>a.
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The Bessel function squared appearing in the integrand of
Eqn (1) can be expanded in a series as [9]

nn!

2,U+2’1+ 1)(2/2)2;¢+2n
+n+l)] TQu+n+1)

©)

where z=kr, I'(x) is the gamma function, and p=
/+1/2 —20;/n. Accounting for the boundedness of poten-
tial (8), expansion (9) can, for sufficiently small energies k 2, be
restricted to the first term, resulting, after evaluating the
integral in Eqn (1) and doing some elementary algebra, in the
following formula

@(1,5) = (Upa®) (ka)* ™", (10)
where
B1(Ls) = 227N (14 5)(I s +22)£2i +1)(T(s+1/2))° |
(11)
s=urg=le1=20 (12)

Equation (10) determines, for given /, k2, and the potential
parameters (U and a), the linear-in-phase-d; quantity s.
Expansion (9) can also be of benefit in other cases, in which
more of its terms are included.

2.2 Yukawa and Thomas—Fermi potentials
As a second example, let us consider the Yukawa potential

(13)

The integral 1= Z [ exp (=4r) J;(kr)dr in formula (1) is
expressed in terms of the Legendre function of the second
kind to give

Z
=k O1—(28,/m) <

In our case of small energies, it is assumed that 2%/k? > 1.
The corresponding asymptotic form of the Legendre function

0,(&), when
22
20, 1
=1 1 =]-—=
¢= +2k2>7v [——=nr-3,
can be obtained by using the Laplace integral representation
of this function in the complex plane [10]:

U(r) = —exp (—4r) %

(14)

2242k
2k?2

0.5~ | v
0 [E+ (&= 1) coshy] o
(for noninteger v, the cut along the real axis runs from
£ =—o0to & =+41;if v=n > 0is an integer, the cut along
the same axis extends from & = —1to ¢ = +1). Forreal ¢ > 1,
one has
2 o0 dy
W(&) = , J 5, p=2(v+1).
0,(¢) (25)‘“ o (coshy)’ P ( )

The last integral is expressed in terms of the beta function.
The asymptotics of formula (14) we are concerned with can
now be written, after some standard transformations, as

Z [(K*\' T(s)
_W(P) I(s+1/2)° (15)

The parameter s is defined as above by formula (12). The
equation determining s (and hence the phase J;) can now be
written down as

(I+s)I+1=s) Z (k? I'(s)
-1 \/—k< ) T +1/2)

The constant 4 can be chosen such that the Yukawa and
Thomas—Fermi potentials have the same asymptotics

z VAL z
_X(r )w—exp(—/lr)asr—>0,
r b r

(16)

where y is the Thomas—Fermi functions, A= 1,Z'/3,
b = 0.885, and Ay ~ 1.8. Carrying the factors dependent on s
alone to the left-hand side of formula (16) yields the relation
[cf. Eqn (10)]

k 2s5—1
¢2(17S) :Zz/3<ﬁ> .

A simple procedure exists in which the calculation of s from
Eqn (10) or Eqn (17) can be reduced to nomogram work. The
last formula will serve to illustrate this procedure. After
taking the logarithm of formula (17), the left- and right-
hand sides of the equality contain the function y(s) = f(/,s)
and an expression of the form A(Z) + B(k,Z)(2s—1) =
a(s), respectively. For each /, it is possible to tabulate y;(s)
and to construct a series of corresponding curves in the (s, y)
plane. Then, fixing the parameters Z and k, and plotting
straight lines y,(s) in the same plane, it is an easy matter to
find the intersection points of y; (s) and y,(s). If such a point is
s = sg, then 6; = (n/2)(I+ 1 — s0) for given (/, k, Z). (Notice
that the phases J; are not assumed to be small.) If §; < 1, we
have

2041
5, ~ Dz (K :
1~ U] Zl/3 )

as it must according to the general rules of quantum
mechanics (D; is a constant dependent on /).

In perfect analogy to the procedure just outlined is that
used to calculate scattering phases for the model potential

(17)

Utr) = ~(1+ pr?) exp (~ar) £ (18)
with f=4/32'2p=32 4 =1.59Z'3/b, and b = 0.885. In
the limit as r — 0, this potential also goes over to the
Thomas—Fermi counterpart. The result of calculations for
(k?/Z*3) < 1 and §; < (n/2)(I+ 1) (the latter inequality is,
in fact, a consequence of the r = 0 boundary condition for the
wave function) takes the form [3]

I= Jw(l + Br3?)exp (—ar) Ji(kr) dr
0

R P PSRV P A C))

fgkz ARCE) m
{ 1 N Bo '(2s+3/2) }
Vr 13/222\ I(s)T(s+1/2) )"’

with g = 1.59/b, and 8, = 4/3b />, Similar to formula (17),

we obtain

k 2s5—1
b3(l,s) = 2% (Zl/3> :

(19)
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While the specific form of function @;(/,s) is, of course,
determined by the potential itself, for each class of potentials
function ®;(/,s) constitutes a universal function of the
argument s, which is the exact reason why the calculation of
the §; phases reduces to elementary operations in the (s, y)
plane.

There is another problem that can be solved basically
using formulas like those obtained above: to find those
potentials (in the specified class!) which produce a resonance
level for a particle with momentum / and a given energy
experiencing scattering by the potential. For the model
potentials considered, this problem reduces to that of finding
Z such that, for a given energy k2, the phase ; is exactly or
approximately equal to (n/2)modmn. The fact that /#0
scattering differs from / = 0 scattering by the presence of a
centrifugal potential barrier readily suggests that a resonance
level can, in principle, be quasidiscrete, i.e. positive, as well.

3. Power-law potentials and comparison
with the quasiclassical approximation

Of particular interest are scattering potentials of the form
U(r) = —a/r". We will illustrate this by considering the
important case of the so-called polarization potential, with
n=4. As we will see below, calculations for slow particles
using the Pais method lead to values of the §; phases known
from the exact solution (for the potential ~ r—*, the solution
of the Schrodinger equation is expressed in terms of Mathieu
functions [11]).

The integral on the right-hand side of equation (1) can be
considered as the Mellin transform of the corresponding
integrand function. The condition for applying the Mellin
transform, o; < (n/2)(/ — 1/2), is somewhat more restrictive
than in the examples above: it always holds true for
0;<1(/#0), and for /> 1 it is also valid for J; ~ 1 (note
that the phases are found modulo ). Calculating the Mellin
transform for the potential U(r) = —a/r*, we obtain for small
energies (ak? < 1):

KH%)z—uz}(lf— 1) :%27

instead of equation (1), where, as before, u = [+ 1/2 — 26,/x.
Equation (20) is simply a quadratic equation in u2. The
scattering phases for /=1, 2, 3, 4, 5,... have the respective
forms

(20)

51:Ttockz szckz &Znakz
1-3.5° 3.5-77 7 5.7.9’
5u— nok? - nok?
7-9-11°7 9.11-137 "7~

An entirely similar result follows from the exact (for small
ak?) formula [11]

ok 2
(I+3/2)(I+1/2)(1-1/2) "
It should also be noted that similar results are obtained for
powers 1 # 4. For example, for n = 6 and ak* < 1 (potential

U(r) = —a/r®), the formulas for the phases have the follow-
ing structure:

=g (21)

- 3amk*
1621+ 1) (21— 15/4)(12+1—-3/4) "

5 (22)

The equation that leads to formula (22) has the form

[(I%)Z—uﬂwz—é&)(w—1)—%7«47 (23)

which results from the Mellin transform. The asymptotics of
Eqn (22) for / > 1 is as follows:
3 mak*

T35

Comparing expression (24) with the known quasiclassical
formula reveals that they are identical. Formula (22) [as well
as formula (21)] can, in a sense, be considered an accuracy-
enhanced version of the quasiclassical result.

It is interesting to note that, by formally comparing
formulas like (22) for some potentials with the Born
approximation, it is hopefully possible, using the Pais
method, to construct for the phases J; ‘interpolation’
formulas valid for not too small energies as well—all the
more so given that equation (1) can be considered a ‘general-
ization’ of the Born formula. It is very tempting to be able to
have the phases ‘interpolated’ between the regions of
applicability of the quasiclassical and Born approximations.
However, the corresponding rigorous results are difficult to
obtain analytically, and instead the numerical simulation of
specific problems is required.

5 (24)

4. Scattering by the Woods—Saxon
nuclear potential

Compared to the simple rectangular well or the harmonic
oscillator potential, the Woods—Saxon potential, the third
most discussed in nuclear physics, is more accurate in
describing scattering on atomic nuclei. For light nuclei (with
mass number 4 = 10), the latter is closer to the oscillator
potential, and for heavy ones (4 =~ 200), to the rectangular
well [12].

Let is discuss the particle scattering by the Woods—Saxon
potential in the framework of the Pais approximation. Notice
that this potential looks like a rectangular well but has its
right edge smeared. Let us change the notation of Section 2.1
such that a now denotes the degree of smearing of the
potential right edge, and R is the effective radius of the
potential. Then we can write down the expression for the
potential discussed in the form

— UO
I+exp((r—R)/a]

U(r) = (25)

Notice that variations in the parameters of the potential may
be due to the appearance of new nuclear levels. Resonance
situations could be found by varying not only the potential
itself but also the energy of the particle undergoing scattering.

Applying the Pais equation (1) and again using expansion
(9) (with only the first term retained in view of the U(r)
potential boundedness), the calculation of the right-hand side
of equation (1) reduces to evaluating the integral

00 2u+1 d
| e (26)
o 1+exp(z—2z)/1]
with z = kr, zo = kR, and t = ka.
It should be noted that this type of integral is encountered
in, for example, statistical physics in calculating the heat
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capacity of a degenerate electron gas [13]. Using the formulas
of monograph [13], we obtain (adapting the notation) the
following asymptotic series expansion:

T L
+Et2(2u+l)z§‘

JO@ Z2u+l {4, _ 1 ZZ!H'Z
o 1+expl(z—z0)/1] 2u+27°

In 4 2u-2
+—t"2u+1)2u2u—1) " "+ ...

360 27)

All further terms in formula (27) can be neglected.
As a result, the right-hand side of the starting equation (1)
becomes

e (e o
+% (24 1) (21) (20— ”(zﬂ '

Returning again to expressions in terms of / and
s=14+1-2¢/m (recall that u = [+ 1/2 — 29,/n), we arrive
at

(I+s)(I—s+1)((s+ 1/2))2 _ anz(z())zsl

25— 1 2

2
a2 2 n a :

For a/R < 1, expression (28) reduces to the similar formula
for the rectangular well potential:

(I4s)(I—s+1)(2s+ 1)(T(s + 1/2))2 (kR 25-1
(25 — 1) UyR? = <7> - (29)

In formula (28) we can also make the replacements zy — kR,
Upa® — UyR%(a/R)*, making the limiting transition from
Eqn (28) to Eqn (29) for a/R < 1 totally transparent. Itis now
totally clear that Eqn (28) differs from Eqn (29) by corrections
related to the finite nature of the ratio a/R. However, these
formulas are structurally similar, allowing the application to
formula (28) of the procedure, described above, of taking the
logarithm and finding the scattering phases o; for fixed
parameters (/, k, Uy, a, R).

5. Obtaining quantitative estimates
and some other applications
of the Pais approximation

Reference [5] compares the Pais approximation scattering
phases with the ‘exact’ phases obtained by numerically
solving the Schrodinger equation for partial waves for a
number of potentials.

For example, for the Yukawa potential

U(r) = 4(?) exp (—’§> )

with the parameters A = —10.6 keV, R =0.109 x 1078 cm,
and k = 151.36 x 10% cm™! (k2 is the particle energy), the
appropriate difference does not exceed 2.3% for / =4, 6, 8,
but reaches 12.6% for / = 2. Because the collision energy here
is not too small, it is reasonable to compare the ‘exact’ phases
with those in the Born approximation. Here, the difference
forl = 4,6, 8 varies from 2.5% to 3.9%, and for / = 2 itequals
3.5%.

Analysis of tabulated and graphical results [5] for the
Thomas—Fermi, Gauss, and Woods—Saxon potentials sug-
gests that the Pais approximation is quite satisfactory in
describing scattering, and the larger /, the more close to an
exact result is the Pais phase.

Another example is given in Section 3. For the polariza-
tion potential U(r) = —a/r*, & > 0, even for small phases and
for all /=1, 2, ..., the Pais phases are coincident with the
exact ones (for small ak?) given by formula (21). For the
U(r) = —a/r® potential, the &; phases provide a correct
asymptotic behavior for / > 1 (formulas (22) and (24), where
@k* and the corresponding phases are small).

Additional relevant and useful information can be
obtained by calculating the derivatives of the Pais phases
with respect to the parameters /, k, R, and s (or p) [the
definition of s and u is given by formula (12)].

Reference [5] reports the results of such calculations for some
potentials. Although these results are unfortunately somewhat
unwieldy, they are written down ultimately in terms of special
(and hypergeometric) functions and are suitable for performing
numerical computations over a wide range of parameters (for
example, energy). The derivatives of the scattering phases enter
some sum rules in the problems listed in the Introduction and for
this reason alone are important.

In some cases, it proves convenient to utilize recurrent
relations for special functions, in terms of which the
derivatives of the phases are expressed.

Reference [14] provided further development of the Pais
approximation and of some of its modifications by addressing
the important case with a combination of short-range and
Coulomb potentials. It turns out that the modified Pais
approximation is quite successful in this case, as well.

Other applications of the Pais approach are also discussed
in Ref. [14], among which are scattering of particles in
chemical physics problems (complex model potentials),
scattering by repulsion potentials, and scattering in gravita-
tional fields of Schwarzschield and Kerr black holes

Analysis shows that Pais phases are closer to the ‘exact’
ones for repulsion than for attraction potentials. The reason is
that (taking into account the centrifugal contribution) the
effective potential for repulsion is always nonnegative.

What makes paper [14] especially meritorious is a fairly
complex apparatus of Pais—Coulomb functions, which it
developed and which enables a number of new problems to
be solved, among them those in the presence of resonance
situations.

In Section 6, however, we will return again to more
elementary questions and discuss resonance situations using
a potential well as an example.

6. Resonance situations and resonance curves
in the Pais approximation

In this section, we will consider a formal procedure in which
resonances can possibly arise due to the scattering of zero-
momentum particles on a spherical symmetric rectangular
well of finite but sufficiently large depth. We will follow
Section 2.1 in denoting the radius of the well as a.

In equation (1) for potential (8), the upper limit of the
integral is a, U(r) = —Uy = const, and the integration can be
performed using the well-known formula [10]

J[[Jj(kr)rdr :a—z (30)

0 = (72(ka) Ty (ka) Ty (k)
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In our case, the relationship ¢ =17+ 1/2 — 29;/x holds, and
the particle energy k2 is no longer assumed to be in any sense
small.

By a resonance situation we formally mean one in which
the 6, phase assumes the value of m/2+mn, ne€ Ny=
{0,1,2,...}. Here, we take account of the condition that the
scattering phase for the attraction potential be nonnegative.

It is known that the total scattering cross section for a
particle of energy k? is given by

| &

- (31)

o0
5 Y (214 1) sin* 4,
=0
and that the partial scattering cross section for a particle with
a given orbital momentum / is o; = (4n/k2)(2/+ 1) sin®d.
We do not consider the case of s (/ = 0) scattering. Therefore,
if we ask what the maximum possible value of the partial cross
section (at resonance) with /# 0 is, the answer will be for
6= 6/max SIN°9; = land &, = n/2 4 mn, n € Ny.

In order for the integral on the right-hand side of equation
(1) to converge, the order of the Bessel function should be
non-negative, and hence

1
0 < = (l+2)

The resonance phases that are, in principle, possible can
be written as the following sequence

T n 3n 5w
{(2"1—])5, m:172,3,‘..}:{§7 77 7, }

We shall call the number m of a member of this sequence the
‘type’ of a resonance. For each ‘partial wave’ which is labelled
by the value of the momentum /, inequality (32) yields the
admitted types of resonances. It turns out that for / =1 and
I = 2, the possible resonance type is 1 (i.e. §; = n/2); for/ =3
and / = 4, the possible resonance types are 1 and 2 (n/2 and
31n/2); for [ = 5 and [ = 6, the possible resonance types are 1,
2,and 3 (n/2, 3n/2 and 51/2), etc.

The types of possible resonances increase in number with
increasing /, but for each finite set m =1, 2, ..., my, exactly
two ‘partial waves’ exist with a maximum allowed identical
my.

What we consider next is, in a sense, a certain inverse
problem: for each /, we substitute allowed values of resonance
phases into the Pais equation and find the relation between
the parameters Uya? and ka at these resonances.

In a natural way, one can plot the parameter Uya? of a
family of wells as a function of ka for different / and for
different resonance types. We will call these plots resonance
curves.

Simple examples of calculations in like manner follow.

(1) Let / = 1. In this case, only the first type of resonance,
0y = m/2, is possible.

In the calculations below, we take advantage of expression
(30) and the recurrent formula [10]

(32)

2y

J‘,,l(Z) —|—J‘,+1(Z) :?JV(Z). (33)

The Pais equation takes the form

1= %J]z(k}’)ldl v:%7

and in view of Eqn (30), one finds
4

Toa? = Tip(ka) = J_ y(ka) T3 o (ka) . (34)

Take into consideration that
[2 . /2

Jip(z) = - sinz, J_ip(z) = — cosz.
From Eqn (33) it follows that

J3/2 \/ smz—w cosz
which, when substituted into Eqn (34), yields (z = ka)

4 1 sin 2ka
— = (2- . 35
Upa? mka ( ka ) (35)

The asymptotic behavior of Upa? as a function of ka is easily
found to be

anZ:Z—n for ka<1,
a

Upa® = 2nka for ka> 1.

Clearly, the curve has a minimum and if, for fixed Uya?, one
draws a horizontal straight line Uya? = const above the
minimum, the intersection points determine the resonance
parameters ka for such a fixed class of wells.

(2) Now let / = 2. As with [/ = 1, only the first resonance
type, d; = m/2, is possible.

The Pais equation in this case is written as

4

3= Uy Jo J32/2(kr) rdr.

Performing the integration yields
a a2
[ J32/2(kr) rdr= 5 [Jf/z(ka) — Jy2(ka) J5/2(ka)] .
Jo

Let us write out the Bessel functions involved here. These are
again expressed in terms of sin z, cos z, and powers of z:

“ Sll’lZ—\/ COSZ
J1/2( ) “T[Z Sll’lZ

2 3 . 3
Jsp(z) = E{(;— 1) s1nz—;cosz}.

The function J,>(z) for integer n is calculated by consecu-
tively applying formula (33) or by using the general formula
known from the theory of Bessel functions:

2/1 d\"/sinz
(Va2 2 2 I
Ju1/2(2) = (=1)"z \/;(z dz) ( z >

Using elementary algebra, the Pais equation finally becomes

J32(2)

4 1 {1+Sinkacoska2sin2ka} (36)

3Upa?  mka ka (ka)*
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The asymptotic behavior of Eqn (36) in two limiting cases is

Upa® = for ka<1,

n
a)3

Upa? :gnka for ka>1.
The resonance parameters ka are found in the class of
potentials with a fixed Uya?, as was the case with / = 1.

An important point to note when working in the space of
resonance points is that it is not only different (/, m) pairs but
also real resonances in different potential wells may corre-
spond to the possible intersection of resonance curves at the
point (Upa?, ka). The reason is that the condition
Upa® = const corresponds not to separate potential wells
but to an entire class of sufficiently deep spherical rectangu-
lar wells.

Below, we present general expressions for the asymptotics
of resonance curves for ka < 1 and ka > 1 for any (/, m) pairs.
We shall also give a simple rule for finding the intersection
points of resonance curves in the (Upa?, ka) plane.

The asymptotic behavior of resonance curves for ka < 1
and ka > 1 for a rectangular well potential is uncovered
directly from equations (1) and (30). Because the situation
under discussion deals with a resonance, we let
or=02m-1)n/2, I+1/2-20;/n=pu=101+4+3/2—-2m>0,
z = ka. Next, we calculate the left-hand side of equation (1).
The integral in equation (1) containing the square of the
Bessel function will be evaluated using formula (30) and
substituting to it the z — 0 asymptotic values:

_ Y
MO =rarn

v=pu—1,u, u+ 1. This asymptotic behavior follows directly
from the definition of the Bessel function [10]

i | k( /2)2A+;t
= KTk e+ 1)
After some elementary manipulations with a simple expres-
sion containing a gamma function, we obtain

Usa® (ka)™ = o(l,m), (37)
u =1+ 3/2 —2m. The function ¢(/,m) can be calculated in a
straightforward and accurate way. (The result, though, is
somewhat too cumbersome to display here.) Thus, formula
(37) provides the asymptotic behavior of a resonance curve
for ka < 1. The asymptotics of the resonance curve for ka > 1
is obtained in a similar manner.

Having evaluated integral (30), we can substitute into it
the asymptotics

forz — co. Asabove,v=u—1, u, u+ 1.
The Pais equations in this case can be written down in a
perfectly simple form

20+1-28/n
20+ 1—46/n

7EU0a2
"2 nka

Making the replacement 6; — (2m — 1) n/2, we finally obtain
2(l+1—-m)(2m—1)
2[4+ 3—4m '

Upa® = mtka (38)
This is exactly the required asymptotics of the resonance
curve for ka > 1.

The final point that remains to be discussed is how to find
the possible intersection points of the resonance curves.
Computer analysis shows that such intersection points are
not at all something exotic. Let us assume that different
resonance curves intersect in the (Upa?, ka) plane. Let us draw
though the intersection point a horizontal straight line
corresponding to the class of potentials with a fixed para-
meter Upa?. Let us then write down the Pais equations for
these curves assuming, in doing so, that they are specified by
the pairs of numbers (/, m) and (/, m), respectively. The
integrals on the right-hand side of equation (1) are again
taken using formula (30). We then arrive at a system of
equations, the first of which is

204+ 1—-m)(2m—1)
2[4+ 3 —4m
U°" (T2 (ka) = T (ka) Ty (ka) }

The second equation has the same form to within the
replacements [ — [, m — m, u — [i.

Dividing these two equations by one another, we obtain
an equation for determining the parameter ka at the
intersection point of the resonance curves. After calculating
the corresponding ka, its value can be substituted into any of
the two starting equations to determine the value of Uya? at
the intersection point. While this essentially elementary
procedure requires numerical computations, it gives a
conclusive answer as to whether different resonance curves
can intersect. Situations in which resonance curves do not
intersect are, of course, also possible.

7. Conclusions

It may come as a surprise that in the phase theory of scattering
in quantum physics, undoubtedly a ‘classical’ field of study,
problems still arise that can and need to be solved. These
include, in particular, finding scattering phases for particles
with nonzero momenta in the vicinity of possible resonances.
Clearly, this implies computational methods that go beyond
the Born approximation which does not at all allow analyzing
resonance situations in higher partial waves.

The Pais approximation and the Pais integro-functional
equation for calculating phases J; (including those for
resonance cases) are unfortunately little known to specialists
and to teachers in quantum mechanics. It is with this
recognition that we thought it worthwhile to write this paper
and to highlight the new possibilities that are emerging in this
field.

Notice once again that, in our view, a very important
problem still remains unsolved: that of the relationship
between shallow bound states and the appearance of
resonances in the scattering of low-energy particles (with
I #0). Still, ideas about the existence of this relationship
have been around in the serious scattering theory literature
(see, for example, Ref. [15, Chapter 13]). Also, numerical
calculations for some ‘popular’ potentials are indicative of an
evident correlation between bound states and resonances.
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With all due credit to modern numerical methods in
quantum mechanics, it is worth emphasizing that more often
than not they are based on the perturbation theory. This is
also true, of course, of calculations in the Born approxima-
tion.

Under the assumption of small scattering phases J;
(I #0), the Pais approximation goes over into the Born
approximation. On the other hand, the Pais approximation
can also yield (at least in some cases) quasiclassical results.
This is to a large extent due to the extension of the class of
functions for which variational problems are formulated and
solved. It is precisely such a program that produced new
results on changing from half-integer order Bessel functions
standardly used in quantum mechanics to arbitrary order
Bessel functions. Clearly, other possible extensions of the
class of variation functions are also of interest.

The problem of calculating scattering phases for particles
with nonzero moments and arbitrary energies and potentials
cannot, of course, be solved in the general case by numerical
methods alone, and qualitative, analytical, and semi-analy-
tical methods remain, of course, relevant and useful. While
only a relatively few examples have been considered above,
the very methods with which they were treated give rise to the
hope of considerably extending the range of problems that are
encountered in atomic, nuclear, and molecular physics and
which can be approached using Pais type approximations.
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