
Abstract. Linear coupling of electromagnetic waves in weakly
inhomogeneous non-one-dimensional media is considered as a
manifestation of the polarization degeneracy of the Maxwell
equations. It is shown that the presence of two polarization-
degenerate normal waves imposes strong constraints on the
dielectric tensor components near the interaction region. As a
result, the possible types of linear wave coupling and the corre-
sponding wave equations admit a universal classification, which
is independent of the way in which the linear medium is modeled.

1. Introduction

Linear coupling of electromagnetic waves in weakly inhomo-
geneous media is a very important fundamental process in
plasma physics, crystal optics, electrodynamics of metama-
terials, etc. In each of these fields, the problem of linear
coupling is considered independently, with the specific
properties of the dielectric response in a given medium and,
not infrequently, problem geometry taken into account [1±8].
In this paper, we aim to look at the problem from a different
angle. Namely, we consider a linear nondissipative medium
with a dielectric permittivity tensor of the general form in
order to clarify the conditions that the dielectric response

must satisfy to ensure the existence of effectively interacting
modes in an unbounded weakly inhomogeneous medium.We
proceed from the assumption that linear coupling between
two vector electromagnetic waves can occur only in the
vicinity of polarization degeneracy points with two linearly
independent solutions of the Maxwell equations for a single
wave vector k�o�. This condition, which can actually be
regarded as the definition of linear coupling, is in itself
sufficient to impose strong constraints on the dielectric
tensor components and offer a universal classification of the
possible types of linear wave coupling independent of a
concrete medium model. Moreover, such an approach
permits overcoming a number of difficulties encountered in
the theory of linear coupling of electromagnetic waves in the
case of multidimensional strongly anisotropic and gyrotropic
media.

The modern coupling theory extensively uses the interact-
ing wave approximation [1, 4, 6, 8±12]:

D̂1E1 � ZE2 ; D̂2E2 � Z�E1 ; �1�

where D̂1 and D̂2 are operators describing the propagation of
geometric optical modes with complex amplitudes E1 and E2

in a weakly inhomogeneous medium whose properties only
slightly change over distances of the order of the wavelength,
and Z is the mode coupling constant in the interaction region.
The propagation of the modes outside this region is described
by the equations D̂1E1 � 0 and D̂2E2 � 0. From the physical
standpoint, these equations describe the propagation of two
modes separated in the r- or k-space by a nontransparent
layer whose thickness is proportional to jZj. Wave operators
in a weakly inhomogeneous medium can be associated with
their Fourier transforms D1�o; k� and D2�o; k�, while the
original system of coupled waves corresponds to the disper-
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sion relation

D1�o; k�D2�o; k� � jZj2 : �2�

This relation defines two modes propagating independently
of each other in the framework of the geometric optics
approximation. Far from the interaction region, these
modes continuously pass into `decoupled' modes satisfying
dispersion relations D1�o; k� � 0 and D2�o; k� � 0. The
geometric optics approximation is violated in the bounded
regions of space where wave numbers of both modes become
close to each other, such that the medium is no longer smooth
at the beat wavelength scales, i.e.,

jk1 ÿ k2jL5 2p ;

where L is the medium inhomogeneity scale. This condition is
realized only in the vicinity of the afore-defined polarization
degeneracy points of vector wave equations.1 Inside this
region, the field must be sought by solving the original wave
equations (1) without using the geometric optics approxima-
tion. Far from the region of interest, these exact solutions are
asymptotically given by linear combinations of geometric
optics modes (2) with definite linear couplings between their
amplitudes. Thismeans that the radiation incident in the form
of a single mode passes through the interaction region and/or
reflects from it in the form of two coherent modes propagat-
ing independently far from the interaction region but having a
fixed amplitude ratio depending on the conditions under
which the wave passes through the region where the
geometric optics conditions are violated. It is this process
that is basically meant by linear wave coupling. The pictorial
representation of this process is the `tunneling' of radiation
through a nontransparency zone, equivalent to the transition
of a quantum mechanical particle through a one-dimensional
potential barrier [16].

We are aware of three cases allowing a rigorous
substantiation of the coupled wave model: one-dimension-
ally inhomogeneous media [1, 2, 4], weakly anisotropic
media [5, 6, 8], and conversion of electromagnetic modes
into quasielectrostatic ones, e.g., plasma waves [4, 7, 17].
Clearly, Eqns (1) in inhomogeneous media describe the same
radiation tunneling process through a nontransparency
region as in the one-dimensional case. Taking additional
dimensions into account in the wave operators only yields a
more exact value of the coupling constant (the effective
width of the nontransparency region), which is actually
computed in the framework of geometric optics. But the
Maxwell equations in weakly inhomogeneous anisotropic
and gyrotropic media do not always lead to relations similar

to Eqns (1) for interacting waves. Formally, the cause is the
geometric optical coupling constant Z! 0 for a sufficiently
wide circle of problems. In this case, the coupling constant
must be substituted by a differential operator that accounts
for the essentially non-one-dimensional character of the
linear wave coupling in free space [18±21]. We note that the
wave coupling condition itself does not change, because the
effective interaction is possible only in the vicinity of
polarization degeneracy points. The method described in
this paper allows thoroughly studying the conditions of
applicability of the widely used approximation (1) to the
Maxwell equations in weakly inhomogeneous media and
demonstrating the limitations of this model in many cases
important for applications.

We note that in numerous publications, coupled wave
equations (1) are considered as the starting point for
investigations of the influence of three-dimensional inhomo-
geneity on the linear coupling of electromagnetic waves in the
media where these equations can strictly speaking be
inapplicable [10, 22±29]. The approach used in all these
studies first yields a dispersion relation describing geometric
optical modes, which is thereafter used to restore the wave
equations describing mode coupling. This approach is not
technically flawless even if it gives correct results because the
same dispersion equation may correspond to various differ-
ential problems. Non-one-dimensional inhomogeneous pro-
blems are especially fraught with errors. This is why the
present analysis is focused on the search for degeneracy
points of the original Maxwell vector equations rather than
a simpler scalar dispersion relation.

2. Dielectric permittivity tensor
at the polarization degeneracy point

It this section, we consider an inhomogeneous medium
specified by a dielectric permittivity tensor ei j�o� in a
Cartesian coordinate system x1; x2; x3. For a plane electro-
magnetic waves propagating in this medium,

~E � E exp �ikrÿ iot� ;

the Maxwell equations can be represented as a system of
linear algebraic equations for the Cartesian components of
the electric field Ej:

�k 2di j ÿ kikj ÿ k 2
0 ei j�Ej � 0 ; �3�

where k0 � o=c is the vacuum value of the wave vector
corresponding to the given radiation frequency, k � jkj, di j
is the Kronecker symbol, where indices i and j range from 1
to 3 and denote projections of vector values onto the
corresponding coordinate axes, and the repeated indices
imply summation. The condition for the existence of a
nontrivial solution of system (3) gives rise to the dispersion
equation

det �k 2di j ÿ kikj ÿ k 2
0 ei j� � 0 ;

relating k and o medium eigenmodes. We assume polariza-
tion degeneracy, i.e., the existence of two linearly independent
vectors E [solutions of the system of wave equations (3)] for
certain k�o� satisfying the dispersion relation. We show in
what follows that this condition imposes rather strong
constraints on the dielectric tensor components, the possible

1 For qualitative understanding, such points are convenient to represent as

a result of the intersection of two `noninteracting' dispersion relations

D1�o; k0� � 0 andD2�o; k0� � 0. Indeed, it is easy to see that given a small

enough interaction parameter jZjL5 2p jqD�o; k0�=qkj, the region of

violated geometric optics is localized in the vicinity of the common root

k0 of `noninteracting' dispersion relations. In certain classic studies, the

transformation point is defined as the branching point of the solution of

the dispersion relation [4, 7]; however, this representation depends on the

parameterization of the dispersion relation and therefore lacks univers-

ality. For example, in the well-known case of coupling between ordinary

and extraordinary waves in a cold plasma inhomogeneous along x, the

branching point n 2
x �x� at a constant wave vector across the inhomogeneity

corresponds to the turn of the extraordinary wave rather than a

transformation in the vicinity of plasma resonance [13±15].
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polarization, and the direction of propagation of electro-
magnetic modes.

2.1 Representation in the basis
of medium eigenpolarizations
We assume for definiteness that a medium is dissipation-free.
Then the dielectric permittivity tensor isHermitian and can be
`diagonalized' with the help of a unitary transition matrix:

e di j � Uÿ1im emnUn j �
e1 0 0
0 e2 0
0 0 e3

" #
: �4�

Here, Un j is the transition matrix composed of the eigenvec-
tors of the dielectric tensor,Uÿ1im is the inverse of the transition
matrix, and ei are the eigenvalues of the dielectric tensor. The
columns of the transition matrix can generally be interpreted
as the components of three complex eigenvectors defined in
the initial Cartesian coordinate system as

ei � �U1i; U2i; U3i� ;
where i � 1; 2; 3. Because the transition matrix is unitary, the
complex scalar products of these vectors satisfy the ortho-
normalization conditions eiej � UkiU

�
k j � UkiU

ÿ1
jk � di j.

Thus, the transition matrix diagonalizing the dielectric
permittivity tensor of a nondissipative medium defines the
orthonormalized basis e1; e2; e3. We note that the absence of
dissipation is a sufficient but not necessary condition for the
analysis that follows. Our calculations remain valid for a
dissipative medium once its dielectric tensor can be diagona-
lized in a certain orthonormalized basis because we nowhere
use the property of realness of edi j distinguishing Hermitian
media. Such a dissipative medium is exemplified by a
magnetoactive plasma with collisions (see the example at the
end of Section 2.1).

The analysis of the set of wave equations significantly
simplifies after transition to the field representation in terms
of projections onto the new basis vectors, E � Ej ej or

Ei � Ui jEj ; Ej � U �i jEi :

In what follows, the eigenvectors e1, e2, e3 of the dielectric
permittivity tensors are referred to as the medium eigenpolar-
izations, and the vector

EE � �E1; E2; E3�

as the electric field representation in the eigenpolarization
basis. As is easy to see, multiplication of the complex
eigenpolarization vector by a constant exp �ij� preserving
the normalization reduces the vector to the form ei � a� ib,
where a and b are two orthogonal real vectors satisfying the
condition jaj2 � jbj2 � 1. The vectors a and b determine
elliptic polarization of an electric field with the amplitude Ei.
The real vector ei [or a vector reduced to a real one after
multiplication by a complex constant exp �ij�] corresponds to
linear field polarization, i.e., b � 0.

Wave equation (3) in the medium eigenpolarization basis
takes the form

Di jEj � 0 ; Di j � Uÿ1im �k 2dmn ÿ kmkn ÿ k 2
0 emn�Un j : �5�

We stress that normal mode polarizations defined as
eigenvectors of the matrix Di j generally do not coincide with

medium eigenpolarizations defined as eigenvectors of the
matrix ei j. The wave operator can be represented in a form
invariant with respect to the choice of the initial Cartesian
coordinate system:

Di j�

ÿ
1ÿjk1j2

�
n2ÿe1 ÿn 2k �1k2 ÿn 2k �1 k3

ÿn 2k �2 k1
ÿ
1ÿjk2j2

�
n 2ÿe2 ÿn 2k �2 k3

ÿn 2k �3 k1 ÿn 2k �3k2
ÿ
1ÿjk3j2

�
n 2ÿe3

264
375;
�6�

where n � ck=o is the refractive index of the medium and
kj � ejk=k � Ui jki=k are coefficients of the decomposition of
the unit vector along the wave vector direction in terms of
medium eigenpolarization vectors (i.e., coordinates of k=k in
the new basis). The coefficients ki can take complex values
related by the normalization condition

jk1j2 � jk2j2 � jk3j2 � 1 : �7�

It follows from (5) that the dispersion relation detDi j � 0
can be represented in the symmetrized invariant form

�e2 ÿ n 2��e3 ÿ n 2� e1jk1j2 � �e1 ÿ n 2��e3 ÿ n 2� e2jk2j2

� �e1 ÿ n 2��e2 ÿ n 2� e3jk3j2 � 0 : �8�
In what follows, it is assumed that the solution of this
equation agrees with the finite refractive indices n 2. In this
way, we exclude electrostatic waves corresponding to
n 2 !1 (as a rule, spatial dispersion of the medium becomes
essential for such waves [4, 7, 17]).

As mentioned, the numerical triplet �E1; E2; E3� can
formally be regarded as components of a vector EE. In the
case of polarization degeneracy, there are two linearly
independent vectors EE �1� and EE �2� satisfying linear wave
equations (5). Evidently, any linear combination of EE �1� and
EE �2� is also a solution of the set of wave equations. Hence,
there is a distinguished direction in the case of polarization
degeneracy,

s � � EE �1� EE �2�� ;
such that any vector lying in the orthogonal plane, EE ? s, is a
solution of the wave equation. From the standpoint of wave
equations (5), the three eigenvectors of the medium are
equivalent, which permits fixing one vector projection, e.g.,
t3 � ÿ1. It then follows from the orthogonality condition
EEs � 0 that E3 � t1E1 � t2E2, where t1 and t2 are certain (in
general, complex) constants. Substituting this expression in
system (5), we obtain

�D11 � t1D13� E1 � �D12 � t2D13� E2 � 0 ;

�D21 � t1D23� E1 � �D22 � t2D23� E2 � 0 ;

�D31 � t1D33� E1 � �D32 � t2D33� E2 � 0 :

8<:
These relationsmust be satisfied for any E1 and E2. Obviously,
this is possible if and only if all coefficients of E1 and E2
vanish:

D11 � t1D13 � D12 � t2D13 � D21 � t1D23

� D22 � t2D23 � D31 � t1D33 � D32 � t2D33 � 0 : �9�

It is worth noting that these equalities automatically imply
dispersion equation (8). We consider all situations in which
these equalities can be satisfied.
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Let n 2 � 0. It then follows from definition (6) that all off-
diagonal components of the tensor Di j vanish and from
conditions (9) that the diagonal components also vanish;
moreover, e1 � e2 � e3 � 0. In other words, this case corre-
sponds to complete polarization degeneracy at which all
components Di j � 0; therefore, any field polarization satis-
fies the system of wave equations. We assume below that
n 2 > 0.

Let neither t1 nor t2 be zero. It then follows from the
hermiticity of Di j and conditions (9) that

jt2j2D11 � jt1j2D22 � jt1t2j2D33 � t1t �2D12

� ÿt1jt2j2D13 � ÿt2jt1j2D23 :

The expressions for off-diagonal terms, Di j � ÿn 2k �i kj
�i 6� j �, can be used to deduce relations between polariza-
tion coefficients ki at the polarization degeneracy point,

k1 � ÿt1k3 ; k2 � ÿt2k3 :

With these relations, we find that the relation

Dii � ÿjkij2n 2

is satisfied for all diagonal elements, e.g., D11 �
ÿt1D13 � n 2k �1 �t1k3� � ÿn 2k �1 k1. Hence, e1 � e2 � e3 � n 2,
i.e., the case being considered corresponds to complete
isotropy of the dielectric response of the medium. The
components of this field are related to the polarization
degeneracy condition EE ? s, where s � �k1; k2; k3�. Evi-
dently, s is merely the wave vector k in the eigenpolarization
basis. Therefore, this condition in the original Cartesian
framework is equivalent to the field transversality condition,
E? k, natural for an isotropic medium.

Let either t1 or t2 be nonzero, e.g., for definiteness, t1 � 0
and t2 6� 0. It then follows from (9) that

D21 � D31 � D12 � t2D13 � 0 ; �10�
D11 � D22 � t2D23 � D32 � t2D33 � 0 : �11�

Relations (10) are equivalent to the conditions k �2 k1 �
k �3 k1 � 0 and can be satisfied in two cases, k2 � k3 � 0 or
k1 � 0. We consider the first case. As follows from normal-
ization condition (7), jk1j � 1, i.e., the eigenpolarization
vector must be parallel to the wave vector k. Relations
(11) give e1 � 0 and e2 � e3 � n 2, meaning that Di j � 0, i.e.,
the case of interest corresponds to the complete polarization
degeneracy. In the second case, k1 � 0, expressions (11) can
be rewritten as

n 2 ÿ e1 � 0 ; jk3j2n 2 ÿ e2 � t2n 2k �2 k3 ;

t2
ÿjk2j2n 2 ÿ e3

� � n 2k �3 k2 :

In the last two expressions, we use the relation
jk2j2 � jk3j2 � 1. By eliminating t2, we finally obtain the
conditions

e1 � e2e3
e2jk2j2 � e3jk3j2

� n 2 at k1 � 0 :

We note that in this case, the eigenpolarization vector e1 is
orthogonal to the wave vector k. By determining t2, we find
that the polarization of degenerate normal modes is orthogo-

nal to the vector s � �0; e2k2; e3k3�, EE ? s. Obviously, this
condition in the original Cartesian coordinate system is
equivalent to the relation ei jkiEj � 0 that follows directly
from the Maxwell equation divD � 0.

Finally, let t1 � 0 and t2 � 0. ThenD33 can take any value
and all the other componentsDi j vanish. This is equivalent to
the condition k �2 k1 � k �3 k1 � k �3 k2 � 0 satisfied when any
two of the coefficients vanish. In view of normalization (7),
this means that one of the eigenpolarization vectors ei is
parallel to the wave vector, the corresponding coefficient
being jkij � 1. It can be shown that

e1 � 0 ; e2 � n 2 if jk1j � 1 ;

e1 � n 2 ; e2 � 0 if jk2j � 1 ;

e1 � n 2 ; e2 � n 2 if jk3j � 1 :

We further note that e3 can take any value, thus eliminating
the complete polarization degeneracy considered above.
Polarization of degenerate modes is orthogonal to the
eigenpolarization vector e3.

Up to permutations of indices, we have listed all possible
combinations of parameters at which polarization degener-
acy can occur. To summarize, there are five characteristic
cases in which polarization degeneracy occurs.

2.1.1 Polarization degeneracy under conditions of partial
anisotropic degeneracy. This case is realized when one of the
medium eigenpolarization vectors is codirectional with the
wave vector and the corresponding eigenvalue of the
dielectric permittivity tensor differs from zero, while the
other two eigenvalues coincide:

ei kk ; ei 6� 0 ; ej � ek � n 2 � j 6� k 6� i � : �12�

That the eigenvalue of the dielectric permittivity tensor is
equal to the squared refractive index automatically follows
from the above conditions. Degenerate mode polarizations
are orthogonal to the eigenpolarization vector ei. Strictly
speaking, the condition ej � ek requires not only the
isotropy of the dielectric response in the plane orthogonal
to ei but also the absence of gyrotropy along ei. For brevity,
we use the notion of partial anisotropic degeneracy to also
mean the simultaneous degeneracy of gyrotropy.

2.1.2 Polarization degeneracy in the vicinity of a medium
resonance. Polarization degeneracy without the anisotropy
degeneracy is realized in the vicinity of a medium
resonance when one of the eigenpolarization vectors is
codirectional with the wave vector and the corresponding
eigenvalue of the dielectric permittivity tensor is zero
while the other two eigenvalues are not equal to each
other (with one of them being automatically equal to the
squared refractive index):

ei kk ; ei � 0 ; ej � n 2 ; ek 6� n 2 � j 6� k 6� i � : �13�

Polarizations of degenerate modes are orthogonal to the
eigenpolarization vector ek.

2.1.3 Complete polarization degeneracy. If the wave vector is
codirectional with one of the eigenpolarization vectors, the
corresponding eigenvalue of the dielectric permittivity tensor
is zero (medium resonance), and the other two eigenvalues are
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equal,

ei kk ; ei � 0 ; ej � ek � n 2 � j 6� k 6� i � ; �14�

then the complete polarization degeneracy is realized, with
any field polarization satisfying the system of wave
equations. This case corresponds to only a partial degen-
eracy of anisotropy because the medium reserves the
distinguished direction ei.

2.1.4 Complete degeneracy of medium anisotropy. When all
three eigenvalues of the dielectric tensor are equal,

e1 � e2 � e3 � n 2 ; �15�
polarization degeneracy occurs under conditions of the
complete degeneracy of medium anisotropy. Evidently, this
condition is satisfied in the absence of spatial dispersion for
all wave propagation directions. Polarizations of degenerate
modes are orthogonal to k. In the special case of the medium
resonance at n 2 � 0, complete degeneracy is realized for both
wave polarization and medium anisotropy.

It follows from the above conditions that the wave
vector at the polarization degeneracy point is parallel to a
certain eigenpolarization vector. In the case of propagating
waves with real k, the parallel eigenpolarization vector must
be either real or reducible to a real one. In other words, one
of the eigenpolarizations of the medium must be either
linear or oriented along the degenerate mode propagation
direction. However, this is not the only situation possible.

2.1.5 Wave vector orthogonal to the medium eigenpolarization
vector. Polarization degeneracy can occur without both the
anisotropy degeneracy and medium resonance. In this case,
unlike all preceding ones, the wave vector is orthogonal to one
of the eigenpolarization vectors, while the conditions

ei? k ; ei � ejek
ejjkjj2 � ekjkkj2

� n 2 � j 6� k 6� i � �16�

are imposed on the eigenvalues of the dielectric permittivity
tensor. For a real eigenpolarization vector ei, these condi-
tions define the vector k (the first condition specifies the
plane while the second sets the direction in this plane and the
modulus of k) but do not impose any additional constraints
on the dielectric tensor components and normal mode
polarization, besides the solvability conditions for
Eqns (16). In the general case, the vector ei may not be
reducible to a real one by a complex vector. In that case, the
first condition uniquely defines the direction of the wave
vector kk�Re ei � Im ei� and the second establishes an
additional relation between the dielectric tensor eigenva-
lues. This case is more convenient to study in the representa-
tion of principal optical axes considered in the next section.

2.1.6 Examples of polarization degeneracy in a nondissipative
medium.We consider the most typical cases that can occur in
a nondissipative medium. The medium can have a gyrotropy
axis and be isotropic in the plane across this axis. The most
common type of such a medium is plasma in a magnetic field,
where one of the eigenpolarization vectors is real and is
directed along the gyrotropy axis, while the other two
eigenpolarization vectors are complex. It follows from the
above conditions that the coupling between waves with real k
is possible only when the wave vector is parallel or orthogonal

to the gyrotropy axis.2 If the medium is a uniaxial or biaxial
crystal, all its three eigenpolarization vectors are real and are
directed along the principal optical axes of the crystal. The
linear interaction of propagating waves is possible if the wave
vector is either parallel or orthogonal to one of the principal
optical axes. Finally, if an anisotropic crystal has a gyrotropy
direction that does not coincide with the principal optical axes
(e.g., the one induced by an arbitrarily directed external
magnetic field), then all three eigenpolarization vectors are
complex (not reducible to real ones). Then the only possibility
for propagating waves to interact linearly is realized as in
case 2.1.5 with complex ei. The description of this rather
exotic case requires a somewhat different formalism, dis-
cussed below.

To illustrate applications of the above classification, we
consider the propagation of high-frequency waves in a cold
magnetoactive plasma. If the wave frequency is much higher
than all ion frequencies and the effective collision rate, then
the medium is described by the gyrotropic dielectric permit-
tivity tensor [2, 5, 30]

ei j �
e? ig 0
ÿig e? 0
0 0 ek

24 35 ;
where

e? � 1ÿ o2
pe

o2 ÿ o2
ce

; ek � 1ÿ o2
pe

o2
; g � oceo2

pe

o�o2 ÿ o2
ce�

;

with oce and ope being electron cyclotron and plasma
frequencies. This tensor is written in the Stix coordinate
system where the x3 and x2 axes are directed along the
external magnetic field and across k. The eigenpolarization
vectors of the medium and the corresponding diagonal
elements of the dielectric tensor can be defined as

e1 �
�

1���
2
p ;

i���
2
p ; 0

�
; e1 � e? ÿ g � 1ÿ o2

pe

o�oÿ oce� ;

e2 �
�

1���
2
p ; ÿ i���

2
p ; 0

�
; e2 � e? � g � 1ÿ o2

pe

o�o� oce� ;

e3 � �0; 0; 1� ; e3 � ek :

We note first of all that the plasma is isotropic in the
plane orthogonal to the magnetic field, and the condition
e1 � e2 of partial degeneracy of the anisotropy actually
reduces to the gyrotropy degeneracy condition g! 0. This
condition is realized in three cases: when radiation escapes
into the vacuum �ope 5o; jo� ocej�, at weak magnetiza-
tion �oce 5o�, and in a strong magnetic field �oce 4o;ope�.
In the first two cases, linear wave coupling occurs under
conditions of complete anisotropy degeneracy (case 2.1.4)

2 For definiteness, we assume that e1 2 R is directed along the gyrotropy

axis and e2 and e3 are complex. In then follows from the orthonormality

condition for these vectors that e2 � cos g a� i sin g b and e3 � sin g aÿ
i cos g b, where a, b, and e1 make an orthonormalized triplet of real vectors.

Conditions (12)±(14) can be satisfied only at kke1, i.e., for propagation
along the gyrotropy axis. We assume that condition (16) is satisfied at

k? e2, i.e., at k? a and k? b. Then necessarily kke1, i.e., case 2.1.5

reduces to the case of anisotropy degeneracy 2.1.1. Therefore, without

loss of generality, it suffices to consider case 2.1.5 with k? e1 2 R, i.e.,

propagation across the gyrotropy axis.
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and in the last case, under partial anisotropy degeneracy
(case 2.1.1); radiation must be outside the plasma cut-off
region. Case 2.1.2 is realized in the vicinity of the plasma cut-
off frequency, o! ope, when the transition to complete
polarization degeneracy (case 2.1.3) occurs in a strong
magnetic field �oce 4ope�. It is easy to show by direct
substitution that case 2.1.5 can be realized in a magnetized
plasma only if ope � 0 or oce � 0; in other words, it does not
exist as a separate case. Physically, this situation can be
interpreted as resulting from the impossibility of the intersec-
tion of dispersion branches of the ordinary and extraordinary
waves propagating strictly across the magnetic field. Thus,
the wave vector of interacting modes is always aligned with
the magnetic field except in the case of the complete
anisotropy degeneracy. Taking collisional wave dissipation
[2] into account does not change the picture because the
vectors ei remain unaltered (the effective collision frequency
enters only the diagonal elements ei, thereby making them
complex); the emerging imaginary part of the wave vector is
codirected with the real one.

2.2 Representation in the basis of principal optical axes
In this section, we consider an alternative approach to the
description of polarization degeneracy conditions based on
the field representation in terms of linear polarizations, i.e.,
in a basis of real vectors. Compared with the method in
Section 2.1, this approach looks somewhat more `physically
sound' because it explicitly discriminates between gyrotropic
and anisotropic effects, even if inmost cases this leads tomore
complicated linear interaction equations. Nevertheless, this
approach proves to be more convenient and informative for
the analysis of one special case (namely, 2.1.5) in which the
wave vector is orthogonal to one of the eigenpolarization
vectors.

We divide theHermitian dielectric permittivity tensor into
symmetric and antisymmetric parts,

ei j � e 0i j � ie 00i j ; e 00i j � ei jk gk ;

where e 0i j and e
00
i j are respectively symmetric and antisymmetric

matrices, with real coefficients, ei jk is the antisymmetric unit
tensor, and summation over the index k is implied. In the
second relation, we used the known fact that in a three-
dimensional space, an antisymmetric tensor can be deter-
mined by a three-dimensional vector. In the present case, this
is the real vector g with Cartesian components gk, known as
the gyration vector [16]. The symmetric part e 0i j can be
diagonalized by passing to a new real orthogonal basis e 0i
that determines directions of the principal optical axes of the
medium [16]. The full set of basis vectors forms the transition
matrixU 0i j.We emphasize that the principal optical axes basis,
unlike the eigenpolarization basis considered in Section 2.1, is
always real by construction, i.e., corresponds to linear
polarizations.

We consider wave equations in the basis of principal
optical axes. We represent the electric field in the form of an
orthogonal linear polarization expansion E � E 0j e 0j . In the
new basis, the antisymmetric part of the dielectric tensor is
naturally defined by the same gyration vector g whose
components are Gj � U 0i j gi. As a result, the complete
dielectric tensor in the new basis has the form

U 0 ÿ1im emnU
0
n j �

e 01 iG3 ÿiG2

ÿiG3 e 02 iG1

iG2 ÿiG1 e 03

24 35 :

The corresponding wave operator can be constructed
similarly to (6):

D 0i j �
�1ÿk 0 21 �n 2 ÿ e 01 ÿn 2k 01k

0
2 � iG3 ÿn 2k 01k

0
3 ÿ iG2

ÿn 2k 01k
0
2 ÿ iG3 �1ÿk 0 22 �n 2 ÿ e 02 ÿn 2k 02k

0
3 � iG1

ÿn 2k 01k
0
3 � iG2 ÿn 2k 02k

0
3 ÿ iG1 �1ÿk 0 23 �n 2 ÿ e 03

264
375;

k 0j � e 0j k=k are real coordinates of the unit vector along the
direction of the wave vector in the new basis.

Next, we introduce the vector s � �t1; t2;ÿ1� determining
the plane of polarization of degenerate modes and repeat the
logic of the preceding section. In the system of principal
optical axes, conditions (9) then become

n 2
2 � n 2

3 ÿ e 01 � t1�iG2 � n1n3� ; �17�
n 2
1 � n 2

3 ÿ e 02 � ÿt2�iG1 ÿ n2n3� ; �18�
iG2 ÿ n1n3 � ÿt1�n 2

1 � n 2
2 ÿ e 03� ; �19�

iG1 � n2n3 � t2�n 2
1 � n 2

2 ÿ e 03� ; �20�
iG3 ÿ n1n2 � t2�iG2 � n1n3� ; �21�
iG3 � n1n2 � t1�iG1 ÿ n2n3� ; �22�

where ni � nki are coordinates of the vector k=k0 in the new
basis. The consistency conditions for these equations impose
additional constraints on the polarization, the wave vector,
and the components of ei j at the polarization degeneracy
point. For example, Eqns (21) and (22) define the vector s.
The substitution of this vector in (19) and (20) and elimina-
tion of the factor �n 2

1 � n 2
2 ÿ e 03� yield the consistency

condition for (19)±(22):

n1n2n3�G1n1 � G2n2 � G3n3� � 0 :

Similarly, substituting the vector s in (17) and (18) and setting
the imaginary part equal to zero gives

G1G2G3 � n1n2n3�G1n1 � G2n2 � G3n3� � 0 :

Hence, the wave vector must be orthogonal either to one of the
principal optical axes or to the gyration vector if the
consistency between the above equations is to be achieved.
Moreover, the gyration vector must be orthogonal to one of
the principal optical axes.

Let both t1 and t2 be nonzero. Two cases are possible,
k? e 0i and k? g. For definiteness, we examine the case k? e 01,
i.e., n1 � 0. As follows from Eqn (21), t2 � G3=G2 is a real
quantity. Setting the imaginary part in (18) equal to zero, we
find that G1 � 0, i.e., the gyration vector must be orthogonal
to the same optical axis e 01 as the wave vector. Finding
t1 � ÿiG3=n2n3 from Eqn (22) and eliminating s from the
equations, we arrive at the polarization degeneracy condition
in the form

�n 2 ÿ e 01� n3n2 � G2G3 ;

�n 2 ÿ e 01��n 2
3 ÿ e 02� � G 2

3 ;

�n 2 ÿ e 01��n 2
2 ÿ e 03� � G 2

2 ;

8><>:
where n 2 � n 2

2 � n 2
3 . Solving this set of equations for n2; 3 and

e1 yields the modulus and direction of the wave vector and an
additional condition for the dielectric permittivity tensor:

n 2 � e 0 22 G 2
2 � e 0 23 G 2

3

e 02G
2
2 � e 03G

2
3

; k 02e
0
2G2 � k 03e

0
3G3 � 0 ;

e 01 ÿ n 2 � G 2
2

e 03
� G 2

3

e 02
:
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The first two relations give a condition of the same form
as (16):

n 2 � e 02e
0
3

e 02k
0 2
2 � e 03k

0 2
3

:

The condition for the direction can also be interpreted in
the invariant form as k? ê 0g. We consider the second case,
k? g. One of the Gi components must be zero, e.g., G1 � 0.
Eliminating s from Eqns (17)±(22) and using the orthogon-
ality condition k? g (i.e., G2n2 � G3n3 � 0), we obtain

�G 2
2 � n 2

1 n
2
3 ��n 2 ÿ e 02� � G2n2�G2n2 � G3n3� � 0 ;

�G 2
3 � n 2

1 n
2
2 ��n 2 ÿ e 03� � G3n3�G2n2 � G3n3� � 0 ;

�n 2 ÿ e 01�n2n3 � G2G3 ;

8><>:
where n 2 � n 2

1 � n 2
2 � n 2

3 . Hence, e 02 � e 03 � n 2 and e 01 ÿ n 2 �
G 2

2 =n
2
2 � G 2

3 =n
2
3 . In nongyrotropic media, this case corre-

sponds to complete anisotropic degeneracy (15). It follows
that the two cases considered correspond to (16) with a
complex eigenpolarization vector �k? ei 2 C� because they
completely determine the wave vector and specify one
additional condition for the components of the dielectric
tensor.

Let only t1 or t2 be nonzero, e.g., for definiteness, t1 � 0
and t2 6� 0. It then follows from Eqns (19) and (22) that
G2 � G3 � n1n2 � n1n3 � 0, i.e., e 01 kg and either k? g or
kkg. As follows from the condition e 01 kg, one of the
eigenpolarization vectors of the medium is real and coincides
with the principal optical axis e 01 and corresponds to the
eigenvalue e 01; moreover, G1 � �jgj. In the case k? g, the
consistency conditions reduce to

e 01 �
e 02e
0
3 ÿ g 2

e 02k
0 2
2 � e 03k

0 2
3

� n 2 :

This case corresponds to case (16) with a real eigenpolariza-
tion vector �k? ei 2 R� because it determines only the wave
vector (its modulus and direction). In the case kkg, the
consistency conditions reduce to

e 01 � 0 ; �n 2 ÿ e 02� �n 2 ÿ e 03� � g 2 :

This case corresponds to (13) or, for g! 0, to (14).

Finally, let t1 � 0 and t2 � 0. It then follows from
Eqns (19)±(21) that the medium becomes nongyrotropic,
g � 0; this case reduces either to (12) or to special case (13).

2.3 Comparison of the two representations
We have found some constraints on the dielectric tensor of
the medium at the polarization degeneracy point. The
results of this analysis are summarized in Table 1. It can
be seen that the representation in the basis of principal
optical axes allows obtaining somewhat more detailed
information about the dielectric tensor structure at the
polarization degeneracy point because it is based on a
more detailed model of dielectric response where gyrotro-
pic effects are described by a separate vector g. The next
step is to construct truncated wave equations in the vicinity
of the polarization degeneracy point in a weakly inhomo-
geneous medium. Such an analysis is possible for both field
representations considered above; however, the use of
principal optical axes involves much more cumbersome
calculations than the crude description in terms of medium
eigenpolarizations. The methods of analysis are identical in
both cases. Therefore, we confine ourselves in the next
section to a more demonstrative analysis of wave equations
in the eigenpolarization representation.

3. Reference equations
describing linear wave coupling in the vicinity
of polarization degeneracy points

It is known that polarization degeneracy is removed in
spatially inhomogeneous media. We consider a weakly
inhomogeneous medium without spatial dispersion with the
Hermitian dielectric permittivity tensor ei j�o; r� varying in
space more slowly than the wavelength far from the
interaction region,

k0L4 1 ;

where L is the characteristic scale of variation in medium
dielectric properties. This condition permits distinguishing
normal waves propagating independently in the geometric
optics approach [2, 5, 6]. But this approach tends to be

Table 1. Polarization degeneracy conditions in the representations of eigenpolarizations and principal optical axes. Some (unprimed) quantities in the
right column correspond to the medium eigenpolarization representation. This means that they coincide in both representations. This is possible either at
g � 0 (when the two representations are identical) or at gke 0i (when the unit vectors coincide, ei � e 0i ).

Case Representation in the basis
of medium eigenpolarizations

Representation in the basis of principal optical axes

2.1.1 kkei, ei 6� 0, ej � ek g! 0, kkei, ei 6� 0, ej � ek

2.1.2 kkei, ei � 0, ej 6� ek kke 0i kg, ei � 0, �n 2 ÿ e 0j � �n 2 ÿ e 0k� � g 2

2.1.3 kkei, ei � 0, ej � ek g! 0, kkei, ei � 0, ej � ek

2.1.4 e1 � e2 � e3 g! 0, e1 � e2 � e3

2.1.5 k? ei, ei � ejek
ejjkjj2 � ekjkkj2

k? e 0i ; k? ê 0 g ; g? e 0i ; e 0i �
G 2

j

e 0k
� G 2

k

e 0j
� e 0 2j G 2

j � e 0 2k G 2
k

e 0j G
2
j � e 0kG

2
k

k? g ; g? e 0i ; e 0j � e 0k ; e 0i ÿ e 0j �
G 2

j

e 0j k
0 2
j

k? ei 2 R ; gke 0i ; ei �
e 0j e
0
k ÿ g 2

e 0j k 0 2j � e 0kk
0 2
k
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violated in the vicinity of the polarization degeneracy points
found in Section 2, resulting in the coupling between normal
waves (linear interaction) in a weakly inhomogeneous
medium. In this case, the electromagnetic field distribution
can be described by reference wave equations derived from
the truncated Maxwell equations in the vicinity of polariza-
tion degeneracy points. In this section, we find and classify
such equations.

For this, we diagonalize the tensor ei j�r� at each point in
space as described in Section 2.1. This yields a diagonal
matrix e di j�r� with elements ei�r� and a transition matrix
Ui j�r� composed of medium eigenpolarization vectors ei�r�.
All these quantities have a smooth coordinate dependence
with a characteristic variation scale L that may be different
for ei�r� and ei�r�. For example, a rotation of vectors ei and ej
under anisotropy degeneracy conditions �ei � ej� typically
occurs much faster than ei and ej change. In such cases, L is
set equal to the smallest of the scales. Let there be a point in
space at which one of the polarization degeneracy conditions
found in Section 2.1 for a plane electromagnetic wave with a
certain fixed wave vector k0 is satisfied. We consider a
neighborhood of this point under the assumption that
components of the dielectric permittivity tensor and of the
eigenpolarization vector of the medium are continuous and
do not substantially differ from the corresponding quantities
at the polarization degeneracy point,

Ui j�r� � U 0
i j � dUi j�r� ; jdUi jj5 jU 0

i jj

or

ei�r� � e0i � dei�r� ; jdeij5 je0i j :
The polarization degeneracy pointmay be infinitely distant or
even nonexistent, as in the case where the medium smoothly
passes into the vacuum [2, 5, 8]. But this does not preclude
considering the neighborhood of this point defined as a region
in space where the medium and field parameters almost
satisfy the polarization degeneracy conditions. We stress
that the requirement of continuity of eigenpolarization
vectors makes the choice of these vectors unique in the cases
corresponding to a degeneracy of the medium anisotropy.

As in a homogeneous medium, we seek the wave field in
the eigenpolarization representation,

E�r; t� � E i�r� ei�r� exp �ikrÿ iot� ;
where Ei�r� are slow functions on the wavelength scale. The
equations for slow wave field amplitudes can be derived by
formally substituting a differential operator for the wave
vector in Eqns (5):

k! k̂ � k0 ÿ i
q
qr
:

In the vicinity of the polarization degeneracy point, the
spatial derivative is small compared with the `carrier' wave
vector k0, which allows restricting to first-order terms when
calculating bilinear operators:

k̂1k̂1 � k̂1k̂2 � k̂2k̂2 � 0 ;

k̂1k̂3 � ÿik0n q
qx1

; k̂2k̂3 � ÿik0n q
qx2

;

k̂3k̂3 � k 2
0 n

2 ÿ 2ik0n
q
qx3

:

Here, we have chosen aCartesian coordinate system such that
the x3 axis is parallel to the wave vector k0. The reflective
index n � jk0j=k0 is calculated at the polarization degeneracy
point. As a result, the system of truncated wave equations
takes the form

D̂i jEj � 0 ; D̂i j � U �miK̂mnUnj ÿ k 2
0 e

d
i j ; �23�

where

K̂mn � k0n

k0nÿ 2i
q
qx3

0 i
q
qx1

0 k0nÿ 2i
q
qx3

i
q
qx2

i
q
qx1

i
q
qx2

0

26666664

37777775 :

Evidently, the coordinate derivatives entering the operator
D̂i j act not only on the wave field but also on the components
of medium eigenpolarization vectors defined by the matrix
Un j. However, if we confine ourselves to the terms of the
zeroth and first order in dUi j, then wave operator (23) can be
readily rewritten in the form with the derivatives with respect
to coordinates acting only on the wave field:

D̂i j � U 0 �
mi U

0
njK̂mn ÿ k 2

0 e
d
i j � dDi j ; �24�

dDi j � k 2
0 n

2�dU �mismnU
�
nj U

0 �
mi smndUnj� ;

where smn � dmn ÿ d3md3n. The term dDi j describes the `shear'
part of the wave operator associated with the rotation of the
distinguished directions in the medium, i.e., optical axes or
the gyrotropy axis. This term can be somewhat simplified,
using the orthonormality of the vectors ei�r� at each point in
space. Indeed, it follows from the equality ei�r� ej�r� � di j up
to the first-order terms that U 0

nidU
�
nj � dUmiU

0 �
mj � 0, which

means that the matrix smn in (24) can be replaced by the
simpler matrix smn � ÿd3md3n, in which all elements except
the last element on the diagonal vanish.

There is a clear physical meaning in the fact that
derivatives of medium eigenpolarization vectors (23), unlike
derivatives of electric field components, can be neglected
except in come special cases. Indeed, the terms taken into
account in (23) have the form �xi=L�E j and �kÿ10 q=qxi�Ej,
where L is the inhomogeneity scale of the dielectric response
of the medium. It is easy to see when comparing these terms
that the wave field changes on the characteristic scale
L=

��������
k0L

p
5L, i.e., faster than the dispersive properties of

the medium. The eigenpolarization vectors of the medium
vary on the scale L, and hence their derivatives can be
dropped, in contrast to the first derivatives of the field
amplitude, Ej qUi j=qxk 5Ui j qEj=qxk.

We analyze the cases of polarization degeneracy identified
in Section 2.1. In cases 2.1.1±2.1.3, the condition ei � �0; 0; 1�
is imposed on the medium eigenvector basis because the x3
axis is directed along the carrier wave vector k0. It is easy to
see that the unitary matrixU 0

i j, up to a permutation of indices,
has the general form

U 0
i j�

cos g cosjÿ i sin g sinj sin g cosj� i cos g sinj 0
cos g sinj� i sin g cosj sin g sinjÿ i cos g cosj 0

0 0 1

24 35:
�25�
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The coordinates axes x1 and x2 can always be rotated with
respect to the x3 axis such that j � 0; in this case, the
coordinate axes are directed along the axes of the ellipses of
medium eigenpolarizations in the plane �x1; x2�. The remain-
ing parameter g characterizes the axial ratio of the ellipses of
medium eigenpolarizations. In what follows, we deal with
exactly such a coordinate system, denoted by �x; y; z�, where
the z � x3 azis is directed along the wave vector and is
simultaneously parallel to the real eigenvector of the
medium. After the substitution of the above matrix U 0

i j at
j � 0 in (24), the system of wave equations D̂i jEj � 0 reduces
to the truncated form

D̂11E1 � D̂13E3 � 0 ;

D̂22E2 � D̂23E3 � 0 ;

D̂ �13E1 � D̂ �23E2 � e3E3 ;

8><>: �26�

where

D̂11 � n 2 ÿ e1 ÿ 2inkÿ10

q
qz
;

D̂22 � n 2 ÿ e2 ÿ 2inkÿ10

q
qz
;

D̂13 � n 2�de3x cos gÿ ide3y sin g�

� inkÿ10

�
cos g

q
qx
ÿ i sin g

q
qy

�
;

D̂ �13 � n 2�de3x cos g� ide3y sin g�

� inkÿ10

�
cos g

q
qx
� i sin g

q
qy

�
;

D̂23 � n 2�de3x sin g� ide3y cos g�

� inkÿ10

�
sin g

q
qx
� i cos g

q
qy

�
;

D̂ �23 � n 2�de3x sin gÿ ide3y cos g�

� inkÿ10

�
sin g

q
qx
ÿ i cos g

q
qy

�
:

In deriving these expressions, we used the relations

D̂11 � ÿe3 ; D̂12 � D̂21 � 0 ; D̂31 � D̂ �13 ; D̂32 � D̂ �23 ;

where the asterisk denotes Hermitian conjugation of an
operator. We note that the longitudinal derivative (along the
wave vector) enters only the diagonal operators D̂11 and D̂22,
while all off-diagonal operators contain only transverse
derivatives. We further stress that rotation of eigenpolariza-
tion vectors of the medium contributes to the linear wave
coupling; however, this contribution is determined solely by
transverse perturbations de3 of the distinguished eigenvector
e3 alongwhich the wave vectors of the interacting waves align.
We recall that the component E3 in the above equations
defines the longitudinal electric field Ez � E3, with e03 jj k0.

3.1 Polarization degeneracy under conditions
of partial anisotropy degeneracy (case 2.1.1)
In the case of polarization degeneracy under conditions of
partial anisotropic degeneracy, the following relations are
satisfied in accordance with (12):

jn 2 ÿ e1j 5 1 ; jn 2 ÿ e2j 5 1 :

It follows that all D̂i jEk-like terms in Eqns (26) are small
quantities of the same order. On the other hand, the medium
must be far from the longitudinal resonance; therefore, we
can assume that e3 � 1 or, to be precise, jD̂ �13j; jD̂ �23j5 e3.
Hence, by virtue of the last equation in (26), the longitudinal
electric field is small, E3 5 E1; E2. Disregarding the small
component of the electric field yields a set of two decoupled
equations:

D̂11E1 � 0 ; D̂22E2 � 0 :

In this approximation, two transverse modes with polariza-
tions matching two eigenpolarizations of the medium
propagate independently, in accordance with geometric
optics equations. Physically, this means that the coupling is
due to the disregarded higher-order terms and occurs on
geometric optical scales of the order ofL rather thanL=

��������
k0L
p

,
as in the derivation of the truncated equations. With those
terms included, the equations for interacting geometric
optical modes can be written in form (1),�

d

dl
ÿ ik0n1

�
E1 � ZE2 ;�

d

dl
ÿ ik0n2

�
E2 � Z �E1 ;

8>>><>>>:
where the derivative is taken along the geometric optical path
l, E1; 2 and n1; 2 are the amplitudes and refractive indices of
normal modes, and Z is the coupling coefficient between the
modes. Such equations for coupled modes in weakly aniso-
tropic media were systematically investigated in [6, 8]; we do
not dwell on this well-known issue here. As noted in the
Introduction, mode coupling in the case under consideration
is effectively one-dimensional because the effect `accumu-
lates' as the waves propagate along the geometric optical
path.

3.2 Polarization degeneracy
in the vicinity of the medium resonance (case 2.1.2)
Wave equations have a quite different character in the case of
polarization degeneracy in the vicinity of the medium
resonance. By virtue of conditions (13), one of the diagonal
operators, either D̂11 or D̂22, is not small. For definiteness, let
the following conditions be satisfied in the vicinity of the
polarization degeneracy point:

jn 2 ÿ e1j5 1 ; jn 2 ÿ e2j0 1 ; je3j5 1 : �27�

This means that D̂22 in (25) is not small, while all the
remaining parameters are of the same order and small
compared with D̂22. The component E2 5 E1; E3 can there-
fore be omitted and Eqns (26) take the form

D̂11E1 � D̂13E3 � 0 ;

D̂ �13E1 ÿ e3E3 � 0 :

(
�28�

To the best of our knowledge, equations of this type were
first introduced in [18] in application to gyroropic plasma
electrodynamics; an understanding of the physical meaning
of these equations and their solutionwere obtained in [19] and
independently in [20]. These papers were followed by a large
number of publications devoted to the analysis of wave
processes described by these equations. A detailed discussion
of interaction between ordinary and extraordinary waves can
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be found in [19, 20, 31±36] for a two-dimensionally inhomo-
geneous magnetoactive plasma and in [37] for a three-
dimensionally inhomogeneous plasma. In Ref. [21], the
problem was generalized to a case unrelated to magnetoac-
tive plasma electrodynamics.

The above equations describe a totally new type of wave
coupling that does not comply with the standard picture. This
can be illustrated in the framework of the geometric optics
approach. Formally, this approximation is inapplicable here,
but it gives a clear qualitative insight into the main properties
of the linear interaction in the case of interest. The dispersion
relation corresponding to conditions (28) for propagation
angles kx; ky 5 kz� nk0 can be written as

k 2
x cos

2 g� k 2
y sin

2 g � k 2
0 e3

�
e1
n 2
ÿ 1

�
: �29�

This condition is easy to obtain by setting qx � ikx, qy � iky,
qz � 0, and de3x; y � 0 in the initial equations. Obviously, the
waves described by this dispersion relation can propagate in
the regions where the right-hand side of (29) is positive. The
opposite condition, e3�e1 ÿ n 2� < 0, defines the nontranspar-
ency region for the modes being considered. The third mode
with a nonzero E2 `decouples' and cannot propagate within
this region in principle.

Figure 1 shows the structure of the linear interaction
region in (a) one-dimensional and (b) two-dimensional
cases. The regions of propagation of waves with a fixed
linear wave number are separated by a nontransparent
(evanescent) region with the `radiation cut-off surfaces'
e1 � n 2 and e3 � 0 serving as its boundaries. The mode
nomenclature is introduced such that a mode of some type
propagates on the one side and themode of a different type on
the other side.

In the one-dimensional case, the cut-off surfaces can be
considered parallel in the first approximation, with the width
of the evanescent region depending on the wave number. At a
certain optimal longitudinal wave number n, the cut-off
planes may coincide; then the evanescent region is absent
and the wave propagates perfectly freely, which corresponds
to the case of complete transformation of one mode into
another. In the presence of the evanescent region in the
geometric optics approximation, radiation is reflected back
and no interaction with another mode occurs. However,
tunneling of electromagnetic radiation through the nontran-
sparency region is possible beyond the framework of
geometric optics; for a sufficiently thin layer, it may lead to
an effective transformation [13±15].

The situation in the two- and three-dimensional cases is
topologically different: the cut-off surfaces intersect in space
along a certain line perpendicular to the plane of the figure.
There is no evanescent region for a geometric optical beam
crossing this line, which formally corresponds to complete
transformation. In this case, in contrast to the one-dimen-

sional one, such a beam exist not for a single optimal n value
but for a certain continuous range of values at which the line
intersecting the cut-off surfaces exists. A change of n within
this range results only in a shift of the transformation region
following the intersection line between the cut-off surfaces.

Clearly, the above geometric optical description becomes
incorrect in the mode-coupling region, but a comprehensive
wave analysis of the transformation effect yields a similar
result. Once the cut-off surfaces intersect in a given geometry,
there is an optimal field distribution at which the incident
wave beam passes through the interaction region without
being reflected.

Equations (28) can be conveniently analyzed in the
approximation of planar cut-off surfaces. As is shown
below, these equations describe wave coupling on smaller
scales than the medium inhomogeneity scales. Therefore, in a
localized linear coupling region, we can confine ourselves to
variations of coefficients in Eqns (28) that are linear in
coordinates:

k0�e1 ÿ n 2� � a1x� a2y� a3z ; k0e3 � b1x� b2y� b3z ;

where a1 � k0 qe1=qx, b1 � k0 qe3=qx, etc. are assumed to be
constants. Here, we took into account that rigorous condi-
tions of polarization degeneracy are satisfied at the origin:
e1 � n 2 and e3 � 0. To simplify calculations, we consider the
simplest case of a fixed gyrotropy axis in themediumwhen the
direction of the eigenpolarization vector e3 in the vicinity of
the interaction region can be considered constant (a variable
gyrotropy axis is considered in [37]). As a result, Eqns (28)
become

in

�
cos g

q
qx
ÿ i sin g

q
qy

�
E3�

�
a1x� a2y� a3z� 2in

q
qz

�
E1;

in

�
cos g

q
qx
� i sin g

q
qy

�
E1� �b1x� b2y� b3z� E3 :

8>>><>>>: �30�

An important special case is given by a two-dimensionally
inhomogeneous medium in which all parameters vary across
a distinguished axis parallel to the eigenpolarization vector e3,
i.e., the gyrotropy axis. In such amedium, a3 � 0, b3 � 0, and
q=qz � kz � const. The corresponding wave equations
describe the propagation of independent Fourier harmonics
along z, and the general solution of these equations is
constructed as their superposition. As can be readily seen,
the term with the wave number kz in the above equations can
be taken into account by shifting the origin along the x and
y axes, which results in the same set of equations for each
Fourier harmonic. Rotating coordinate axes and rescaling the
fields, we reduce (30) to the reference equations

ÿ
�
i

q
qx 0
ÿ q
qy 0

�
E 03 � �x 0 cos a� y 0 sin a�E 01 ;

ÿ
�
i

q
qx 0
� q
qy 0

�
E 01 � �x 0 cos aÿ y 0 sin a�E 03 :

8>>><>>>: �31�

The new coordinates are located in the linear interaction
region as shown in Fig. 1b, where x 0 and y 0 axes are
directed along bisectors of the angles formed by the
intersecting vectors ~He1 � �a1 cos g; a2 sin g; 0� and ~He3 �
�b1 cos g; b2 sin g; 0�. The coordinates are normalized to the
characteristic interaction scale

LH �
���
n
p ÿ

k 2
0 j~He1jj~He3j

�ÿ1=4
:

x 0

y 0

b

x
b

e1 � n2e3 � 0

2a

~He1 ~He3
x

He1

He3

e1 � n2

e3 � 0

a

y

Figure 1.Cut-off surfaces e1 � n 2 and e3 � 0 in one- and two-dimensional

cases. The evanescent region is hatched.
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The degree of the problem `non-one-dimensionality' is
determined by the single dimensionless parameter a (half-
angle between ~He1 and ~He3); as a! 0, transition to a one-
dimensional problem occurs.

The above equations admit a complete analytic solution
[19, 21, 31]. They describe linear coupling on the scale
LH � L=

��������
k0L
p

5L that is smaller than the medium inhomo-
geneity scale. This justifies the use of the approximation of
linear variations of wave equation coefficients with respect to
coordinates.We note, however, that in transparentmedia, the
scale LH � l

��������
k0L

p
4 l is large compared with the radiation

wavelength. In the two-dimensional geometry, new effects
absent in the standard one-dimensional model arise, such as
the existence of aperture-limited wave beams undergoing
complete (reflectionless) transformation and the absence of
symmetry between the processes of direct and reverse wave
transformation in gyrotropic media.

In a three-dimensionally inhomogeneous medium,
Eqns (30) can almost always be reduced, with a certain
degree of accuracy, to Eqn (31), which admits a complete
analytic solution. This permits regarding Eqns (31) as a new
standard problem in the wave propagation theory, which
implies a wide range of applicability. Specifically, it can
typically be assumed in solving problems pertinent to
magnetic plasma confinement that the equilibrium plasma
density is rapidly redistributed along magnetic field lines;
therefore, the conditionHe3?B is a good approximation. The
results presented in Section 2.1.6 give reason to suppose that
the z coordinate is directed along the magnetic field, b3 � 0
and g � p=4. Then the substitution

E 01; 3 � E1; 3 exp
�
ikzz� ia3z

2

4n

�
eliminates the coordinate along the magnetic field from the
equations, and the problem becomes two-dimensional:

in

�
q
qx
ÿ i

q
qy

�
E 03 �

���
2
p
�a1x� a2yÿ 2nkz� E 01 ;

in

�
q
qx
� i

q
qy

�
E 01 �

���
2
p
�b1x� b2y� E 03 :

8>>><>>>:
It is easy to see that shifting and rotating coordinates reduces
the problem to reference equations (31).We also note that the
plasma density in strong external fields varies along the
magnetic field; in this context, He3 kB is of interest, i.e.,
b1 � b2 � 0. The substitution

E 01; 3 � E1; 3 exp
�
ÿ iz�a1x� a2y�

2n

�

eliminates the explicit dependence on the transverse coordi-
nates x; y from Eqn (30) and thereby reduces the problem to a
one-dimensional one:

in

�
q
qx
ÿ i

q
qy

�
E 03 �

1

2
�a1 ÿ ia2� zE 03 � 2

���
2
p

in
qE 01
qz

;

in

�
q
qx
� i

q
qy

�
E 01 �

�
1

2
a1 � 1

2
ia2 �

���
2
p

b3

�
zE 03 :

8>>><>>>:
The resultant set of wave equations describes the independent
propagation of Fourier harmonics along x and y in a medium
that is inhomogeneous along z.

The case of an anisotropic nongyrotropic medium
deserves special attention. Such a medium is characterized
by real eigenpolarization vectors and therefore linear polar-
ization of all normal waves. In our notation, without loss of
generality, g � 0. Wave equations (28) corresponding to this
case can be written as�

k0n
2de3x � in

q
qx

�
E 03 �

�
a1x� a2y� a3z� 2in

q
qz

�
E 01 ;�

k0n
2de3x � in

q
qx

�
E 01 � �b1x� b2y� b3z� E 03 :

8>>><>>>:
For generality, we included additional terms responsible for
the change in the direction of the optical axis e3 in the vicinity
of the interaction region; the absence of gyrotropy implies
that de3x � de �3x. As in the preceding cases, we assume that
this direction in the vicinity of the polarization degeneracy
point is subject to linear variation in space, k0de3x �
c1x� c2y� c3z. Then the substitution

E 01; 3 � E1; 3 exp
�
ÿin
�
c1x

2

2
� c2xy� c3xz

�
� ig
4nb1

�
;

x � x 0 ÿ zb3
b1

;

where g � a1b3 ÿ a3b1 ÿ 2n 2b3c3, removes the explicit depen-
dence on the longitudinal coordinate z from the equations:

in
qE 03
qx 0
�
�
�a1 ÿ 2n 2c3� x 0 � a2y� 2in

q
qz
� 2in

b3
b1

q
qx 0

�
E 01 ;

in
qE 01
qx 0
� �b1x 0 � b2y� E 03 :

8>><>>:
Formally, the system of wave equations thus obtained
describes the independent propagation of Fourier harmonics
over z in a medium inhomogeneous along the x 0 axis. The
y coordinate enters these equations as a parameter without
affecting their dimensionality. Hence, wave coupling in
anisotropic media without gyrotropy can always be regarded
as a one-dimensional process in an effective plane-layered
medium. Despite the one-dimensionality of this process, it
cannot be described in terms of geometric optics due to its
small scale, LH 5L.

3.3 Complete polarization degeneracy (case 2.1.3)
We recall that in the case of complete polarization degeneracy
in a homogeneous medium, any field polarization at the
degeneracy point satisfies the Maxwell equations. In an
inhomogeneous medium, in view of (14), the following
conditions are satisfied in the vicinity of the complete
polarization degeneracy point:

jn 2 ÿ e1j 5 1 ; jn 2 ÿ e2j 5 1 ; je3j 5 1 :

It then follows that all terms in Eqns (26) are small quantities
of the same order. Therefore, these conditions describe three
coupled modes, with the field components E1 and E2
transverse to the propagation direction related through the
longitudinal field E3. We do not consider this exotic case.

In the foregoing, we represented wave equations in form
(26) corresponding to eigenpolarization matrix (25). This
representation is inconvenient for characterizing the remain-
ing case 2.1.4, and is inapplicable to the case in 2.1.5.
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3.4 Complete anisotropy degeneracy (case 2.1.4)
Complete anisotropy degeneracy, in which all three ei
components become nearly the same in a certain neighbor-
hood, can be analyzed with the use of equations resulting
from diagonalization of the dielectric permittivity tensor;
however, this implies rather cumbersome calculations.

We consider a simpler approach. By virtue of conditions
(15), the dielectric permittivity tensor at the polarization
degeneracy point has the form ei j � n 2di j in the basis of
eigenpolarization vectors; exactly the same form is preserved
in any other orthogonal basis. We choose the Cartesian
coordinate system �x; y; z� with the z axis directed along the
carrier wave vector. It then follows from the wave equation in
the vicinity of the zeroth-order degeneracy point that Ez � 0;
therefore, this wave field component can be neglected in the
first-order equations for transverse field components. Hence,
it suffices to take into account only the part of the dielectric
permittivity tensor that describes the dielectric properties of
the medium in the plane orthogonal to the wave vector, i.e.,

e 2Di j �r� � exx exy
eyx eyy

� �
:

In a nondissipative medium, this tensor is Hermitian and as
such cannot be diagonalized in a unitary basis e 01�r�, e 02�r� that
varies continuously in a neighborhood of the degeneracy
point. The transverse electric field can be expressed through
the new basis as

E? � E 0i �r� e 0i �r� exp �ikrÿ iot� :

The use of a procedure analogous to that described at the
beginning of this section allows finding truncated wave
equations for the new electric field amplitudes E 0i �r� near the
complete anisotropic degeneracy point. These equations split
into two independent ones:�

n 2 ÿ e 01 ÿ 2inkÿ10

q
qz

�
E 01 � 0 ;�

n 2 ÿ e 02 ÿ 2inkÿ10

q
qz

�
E 02 � 0 :

8>>><>>>:
Hence, the case of complete anisotropy degeneracy is

analogous to case 2.1.1, in which polarization degeneracy
occurs under conditions of partial anisotropy degeneracy. It
differs from 2.1.1 only in that the eigenvalues e 01 and e 02 and
eigenpolarizations e 01 and e 02 are sought not for the full
dielectric permittivity tensor but only for its `transverse' part.

3.5 Wave vector orthogonal to the eigenpolarization vector
of the medium (case 2.1.5)
In conclusion, we consider the last case, in which the wave
vector is orthogonal to one of the eigenpolarizations of the
medium. The general analysis of this problem requires bulky
computations, and we therefore confine ourselves to a
particular case reflecting all of basic physics. In many
applications, at least one of the eigenpolarizations can be
regarded as linear, i.e., corresponding to a real vector ei. As
mentioned, the nontrivial case 2.1.5 is realized only if the
wave vector is orthogonal to a real eigenpolarization vector.
We assume for definiteness that

k0? e01 ; e01 2 R ;

and direct the x axis along e01 and the z axis along the carrier
wave vector k0. Then the unitary matrix U 0

i j in the most
general form is defined by two free parameters and can be
represented as

U 0
i j �

1 0 0
0 exp �ij� cos w exp �ij� sin w
0 ÿ sin w cos w

24 35 :
Substituting this matrix in (24) yields the operator D̂i j and the
corresponding set of wave equations D̂i jEj � 0. For brevity,
we do not write this complicated system containing all three
components of the vector EE. However, the system can be
simplified by singling out coupledmodes.We recall that EE ? s

in the vicinity of the polarization degeneracy point. In the case
under consideration, s? e01 as well; therefore, the wave field
can be decomposed in terms of three orthogonal vectors s, e01,
and u � �s e01�:
EE � E1e01 � Euu� Ets ;

where

e01 � �1; 0; 0� ; u � �0; e3 cos w; e2 sin w� ;
s � �0;ÿe2 sin w; e3 cos w� :

When the field in this form is substituted in the truncated
equations, the Et component is small in the vicinity of the
degeneracy point and can be neglected. The following set of
equations is valid for the remaining two components:�

D1 ÿ 2in

k0

q
qz

�
E1 � Z

�
de �1z ÿ

in

k0

q
qx

�
Eu � 0 ;

Z
�
de1z ÿ in

k0

q
qx

�
E1

�
�
Du � du ÿ 2in

k0

�
q
qz
ÿ Z cosj

e2e3
e1

q
qy

��
Eu � 0 ;

8>>>>>>>><>>>>>>>>:
�32�

where

Z � �e3 ÿ e2�
�

e1
e2e3

�2

sin w cos w ; D1 � n 2 ÿ e1 ;

Du � n 2 ÿ e2e3
e2 sin

2 w� e3 cos2 w
;

du � 2n 2Z
ÿ
e2 sin wRe �de3z� � e3 cos wRe �de2z�

�
:

These equations describe a linear coupling of two modes
that pass into the modes with dispersion relations D1 � 0 and
Du � 0 outside the interaction region. The linear coupling
results from the medium anisotropy across the x axis and/or
gyrotropy along this axis. Indeed, at e2 � e3, the coupling
coefficient Z � 0, and the modes in this approximation
propagate independently; it can be verified that taking the
next orders into account leads to a one-dimensional coupling
described by equations of type (1). Moreover, the mode
coupling disappears at w � 0 or w � p=2, which corresponds
to the case of partial anisotropy degeneracy (case 2.1.1). We
recall that in the interaction region, all coefficients in
Eqns (32) are small quantities smoothly varying in space on
the scale L. For Z 6� 0, the characteristic scale of the linear
interaction region is LH � L=

��������
k0L

p
5L, as in the case of the

interaction in the vicinity of medium resonance (case 2.1.2),
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and the linear coupling can be essentially non-one-dimen-
sional.

As an example, we consider a biaxial crystal with
0 < e2 < e1 < e3. It is easy to verify that the sole possibility
for polarization degeneracy in this case is realized under
conditions (16), which can be satisfied only for k? e1. In a
crystal with a constant direction of optical axes, Eqns (32)
take the form

inZ
qEu
qx
�
�
k0D1 ÿ 2in

q
qz

�
E1 ;

inZ
qE1
qx
�
�
k0Du ÿ 2in

�
q
qz
ÿ Z 0

q
qy

��
Eu ;

8>>><>>>: �33�

where Z 0 � Ze2e3=e1. Expanding in the vicinity of linear
coupling,

k0D1 � a1x� a2y� a3z ; k0Du � b1x� b2y� b3z ;

and substituting

E 01; u � E1; u exp
ixx
2n

; x � �a1 ÿ b1� y

Z 0
� a1z ;

we eliminate the x coordinate from the equations:

Z
�
x
2
� in

q
qx

�
E 0u �

�
a2y� a3zÿ 2in

q
qz

�
E 01 ;

Z
�
x
2
� in

q
qx

�
E 01 �

�
b2y� b3zÿ 2in

�
q
qz
ÿ Z 0

q
qy

��
E 0u :

8>>><>>>:
Considering these equations for an individual Fourier

harmonic with respect to x, we transform them to the form

z 0E 0u �
�
c2y

0 � c3z
0 ÿ ic 02

q
qy 0
ÿ ic 03

q
qz 0

�
E 01 ;

z 0E 01 �
�
d2y

0 � d3z
0 ÿ id 02

q
qy 0
ÿ id 03

q
qz 0

�
E 0u :

8>>><>>>:
Here, we rotated the coordinate axes such that z 0 � x=a1.
Importantly, the differential operators in these equations are
linearly independent at Z 6� 0, i.e., w�c 02d

0
3ÿ c 03d

0
2 6� 0. This

allows the substitution

E 001; u � E 01; u exp
�
i�c 02d2 ÿ c2d

0
2�

y 0z 0

w
� i�c2d 03 ÿ c 03d2�

y 0 2

2w

�
that eliminates the y 0 coordinate from the equations:

z 0E 00u �
�
c 003 z

0 ÿ ic 02
q
qy 0
ÿ ic 03

q
qz 0

�
E 001 ;

z 0E 001 �
�
d 003 z

0 ÿ id 02
q
qy 0
ÿ id 03

q
qz 0

�
E 00u :

8>>><>>>:
The resulting system of equations describes the indepen-

dent propagation of Fourier harmonics along y 0 in a one-
dimensionally homogeneous medium. Therefore, linear wave
coupling in a three-dimensionally inhomogeneous crystal can
be represented as a one-dimensional process in a certain
effective plane-layered medium. Despite the one-dimen-
sional character, this interaction is not of a `geometric
optical' nature because it occurs on a fast scale LH 5L.

It can be readily seen that a change in the direction of the
optical axes in the crystal does not alter the above conclusion

as long as we confine ourselves to linear variations. Indeed, it
follows from (32) that variations de3z are taken into account
additively together with variations of Du and variations of
k0de1z � f1x� f2y� f3z at de1z � de �1z by the quadratic phase
substitution

E 01; u � E1; u exp
�
ÿin
�
f1x

2

2
� f2xy� f3xz

��
;

after which the equations can be reduced to (33). This brings
us back to the conclusion that the non-one-dimensional
character of linear wave coupling can manifest itself only in
gyrotropicmedia. In the case of interest, `non-one-dimension-
ality' occurs because de1z 6� de �1z.

4. Conclusion

We have demonstrated that linear coupling of electromag-
netic waves in unbounded weakly inhomogeneous media
follows two distinct scenarios. In the case of simultaneous
anisotropy and gyrotropy degeneracy (cases 2.1.2 and 2.1.4),
the linear wave coupling is realized on a slow scale L
determined by the scale of parameter variations. This
situation can be interpreted as a scalar coupling of two
geometric optical modes described by equations of type (1).
Because the coupling occurs along the rays, the wave
conversion is a one-dimensional process. In the vicinity of
medium resonances (cases 2.1.2 and 2.1.3) and in the special
case of transverse propagation (case 2.1.5), the fast wave
coupling scenario is realized; in this case, the conversion
occurs on a small scale LH 5L, at which the geometric optics
approximation is no longer valid. Wave coupling in gyrotro-
pic media is typically essentially non-one-dimensional. In
anisotropic media without gyrotropy, it can always be
described as a one-dimensional (small-scale) process in an
effective plane-layered medium.

To summarize, the conclusions in Section 2 concerning
the classification of polarization degeneracy points,
obtained in the approximation of a homogeneous medium,
hold for spatially dispersive media. They are equally
applicable to magnetic media because any linear medium
characterized by dielectric and magnetic susceptibility can
be equivalently described as a `nonmagnetic' medium with
spatial dispersion [5]. These results are of interest for the
rapidly developing electrodynamics of metamaterials. At the
same time, the conclusions in Section 3, where wave
equations in weakly inhomogeneous media were consid-
ered, hold only for spatially dispersionless media and are
therefore inapplicable to magnetic media.

This work was done under state contract
No. 14.740.11.0607 with the Russian Ministry of Education
and Science and supported by the RFBR grants 09-02-00972
and 10-02-00441.
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