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Russian Academy of Sciences (RAS), entitled ``Spintronics
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conference hall of the Lebedev Physical Institute, RAS.
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nanostructures'';
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Magnetic states and transport properties
of ferromagnetic nanostructures
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1. Introduction

There are at least twomotivating factors for research interests
in the transport properties of ferromagnetic nanostructures.
First, conducting ferromagnets, which are the ones to be
discussed below, have their current carriers spin-polarized.
Their energy spectra are split into two subbands, in one of
which the occupying electrons align their spin projections
parallel and, in the other, antiparallel to the magnetic
moment of the sample. The spin `splitting' compares to the
Curie temperature of these materials to an order of magni-
tude. It may be considered that in ferromagnets there is a
colossal `exchange' field of strength H � kBTc=mB �
106ÿ107 Oe (kB is the Boltzmann constant, and mB is the

Bohr magneton). Prior to the discovery of giant magnetore-
sistance [1±2] (see also Ref. [3] on the tunneling version of the
effect), such an `exchange' field had not manifested itself in
the transport and optical properties of ferromagnets, which
were determined by the relatively weak spin-orbit interaction
[4] rather than the Coulomb interaction. This discovery has
greatly stimulated renewed efforts to study spin-dependent
transport effects.

Second, nanostructure formation methods, which have
been the subject of intense development in recent years, are an
effective tool for controling the magnetic state of a ferro-
magnet. It is known [5] that the magnetization distribution in
a ferromagnetic sample is determined by competition among
the magnetic anisotropy, the exchange interaction, and the
magnetostatic interaction. The magnetic domain structure
that results from this competition is not universal, but rather
depends on the sample shape and dimensions. Nanostructure
patterning allows one to control these parameters and, hence,
magnetization distribution in the most important nanometer
range. As far as this range is concerned, the important special
feature of ferromagnets is the presence in them of two
characteristic scales: the domain wall thickness and the
exchange length, both measuring tens of nanometers for
transition metal ferromagnets.

Thus, the search for new transport and optical effects of
an `exchange' nature in ferromagnetic nanostructures con-
stitutes a topical and exciting task. This report briefly reviews
the relevant research that has been done at the Institute for
Physics of Microstructures, RAS.

2. `Exchange' versions of the Hall
and diode effects

Let us start by examining phenomenologically the possibility
of transport effects of an exchange nature in inhomogeneous
ferromagnets.

In a conducting medium under the influence of a constant
electric field E, an electric current density j arises in the
following form

ji � sikEk � gi j kEjEk � . . . �1�
where the linear and quadratic conductivity tensors depend
on the sample's magnetic moment and its spatial derivatives.
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The problem that faces us consists in determining these
dependences. Restricting the discussion to nondissipative
processes in media with a center of inversion, we conclude
that the linear and nonlinear conductivity tensors contain
terms of odd powers in the magnetic momentM, with the sik
and gi j k tensors having terms with even and odd powers of
spatial derivatives, respectively. Assuming the exchange
interaction to be responsible for the effects we are looking
for, let us require that the expression for the current (1) be
invariant under the coherent rotation of the sample's
magnetic moment [5, 6]. This means that conductivity
tensors must not comprise convolutions of `spatial' indices
with `magnetic' ones).With all of the above requirementsmet,
the following equation is derived for the electric current
flowing in an inhomogeneously magnetized conducting ferro-
magnet [7, 8]:

ji � s
�
M

�
qM
qxi
� qM
qxk

��
Ek

� g
�
M

�
qM
qxi
� q 2M

qxj qxk

��
EjEk � . . . ; �2�

where s, g are the scalar constants (we confine ourselves to
studying media with isotropic or cubic crystalline structures).
The linear conductivity tensor, which is antisymmetric,
describes the contribution of an exchange nature to the Hall
effect, whereas the second term on the right-hand side of
equation (2) is responsible for the rectifying properties of the
ferromagnet. Both tensors found are nonzero only in those
ferromagnetswhere themagneticmoment vectors do not lie in
the same plane, i.e., in samples with noncoplanar magnetiza-
tion distribution. To see that this is indeed the case, note that
expressions for the conductivity tensors can be readily
obtained by expanding the mixed productM1�M2 �M3� in a
Taylor series, where M1;2;3 are the magnetic moments at the
neighboring points in the sample. If the linear conductivity
tensor is different from zero in systems with a nonone-
dimensional distribution of the magnetic moment, it follows
that a sample with a one-dimensional noncoplanar magneti-
zation distribution should also have rectifying properties.

Two examples of noncoplanarmagneticmoment distribu-
tion are worth considering. Suppose a ferromagnet has a
magnetization distribution of the form

M�ÿsin y�r� cos �nj�j0�; sin y�r� sin �nj�j0�; cos y�r�
�
;

�3�
where j, r are cylindrical coordinates, n is an integer, and j0

is a (constant) phase shift. Substituting Eqn (3) into expres-
sion (2) yields

j � E� Beff ;

Beff � s
�
M

�
qM
qx
� qM

qy

��
� sn

1

r
q cos y
qr

;
�4�

implying that a vortex (n � 1, j0 � �p=2) or an anti-
vortex (n � ÿ1, j0 � 0; p) noncoplanar magnetic moment
distribution can be expected to provide an additional
contribution to the Hall effect. For a distribution in the form
of a conical magnetic spiral, namely

M�z� � ÿm cos�qz� ; m sin�qz� ; mz

�
;

M 2 � m 2 �m 2
z ;

�5�

the result of such a substitution reduces to

jz � gq 3mz�1ÿm 2
z �E 2

z ; �6�
suggesting the existence of diode properties in such a
structure. A classical model proposed in Ref. [9] deduces the
`exchange' contribution to the Hall conductivity from the
noncollinearity between the magnetic moment of a moving
particle and the external field and can be used as a basis to
explain, at least in part, the microscopic mechanism of the
effects being discussed.

3. Optical and neutron-optical effects

To describe conduction electrons in ferromagnets, the
simplest quantum-mechanical approach is to apply the
Vonsovskii±Zener s-d model, in which the problem reduces
to that of finding the eigenfunctions and eigenvalues of the
Schr�odinger equation

ÿDC�r� ÿ JM�r� r̂C�r� � EC�r� ; �7�

where r̂ is the Pauli matrix vector, J is the exchange
interaction constant between the conduction s and localized
d electrons, and M is the unit vector in the direction of the
magnetic moment. Note the analogy between the s-d model
description of conduction electrons in ferromagnets and the
description of neutrons for which the magnetic moment
vector in equation (7) should be replaced by the magnetic
induction vector B, and the exchange constant by the Bohr
nuclear magneton [10]. This analogy provides a common
framework for discussing the transport and optical properties
of conducting ferromagnets, on the one hand, and neutron
scattering by inhomogeneous magnetic systems, on the other
hand.

For the case of a magnetic spiral defined by formula (5),
equation (7) can be solved exactly [11] to yield the following
expressions for the spectrum and eigenfunctions of the
system:

E� � k 2 � p 2 �
�
q

2

�2

�
������������������������������������������
q 2k 2 � J 2 ÿ 2mzJqk

p
; �8�

C�� 1�������������������
1�d��k�

p d��k� exp
�
ÿ iqz

2

�
exp

�
iqz

2

�
0BB@

1CCA exp �ikz� exp �ipq� ;

d� � mzJÿ qk�
������������������������������������������
q 2k 2 � J 2 ÿ 2mzJqk

p
J�1ÿm 2

z �1=2
; �9�

where k, p are the electron quasimomenta along and
perpendicular to the spiral axis, respectively.

From expression (8) it follows that the spectrum of
current carriers in a conical (mz 6� 0) spiral is not an even
function of quasimomentum. Thus, the electrons moving to
the left along the spiral axis have different group velocities
from those moving to the right. In a macroscopic system, this
difference does not produce an electric current because it is
exactly compensated for by the difference in the number of
opposite-moving equilibrium electrons. In mesoscopic sys-
tems, howeverÐ such as small ferromagnetic rings with a
noncoplanar distribution of the magnetic momentÐ the
removal of Kramers degeneracy and the quantization of
quasimomentum can lead to the appearance of predicted
[12, 13] persistent electric currents.
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In a conical magnetic spiral, spectral asymmetry is
responsible for the occurrence of the diode effect, with `easy'
current flow direction being determined by the sign of the
spiral wave number (left±right spiral) and by where the
perpendicular magnetic moment component mz is directed
[see formula (6)]. The important point is that, as can be seen
fromEqn (9), the wave function componentsÐand hence the
expectation value of the electron's intrinsic magnetic
momentÐdepend on the quasimomentum component
along the spiral axis. This results, in particular, in electron
scattering by nonmagnetic impurities becoming asymmetric,
thus adding to the diode effect [7]. Similar effects (asymmetry
in both the group velocity and the scattering rate by
nonmagnetic impurities) are responsible for the peculiarities
in the spatial dispersion of the dielectric constant. For a
conical magnetic spiral, the expansion of the dielectric
constant may contain an additional term of the form [14]

eii � Kii

�
M

�
qM
qz
� q 2M

qz 2

��
kz ; �10�

where kz is the spiral axis component of the electromagnetic
wave vector.

Of special note is that the electric component of an
electromagnetic wave can induce transitions between spin
subbands in noncollinear and noncoplanarmagnetic systems.
Using the wave functions of Eqn (9), the probability of
electric dipole transitions between spin subbands in a
magnetic spiral is readily found to be [15]

W�
k; k 0 �

2p
�h

�
JeEzq

2mo 2

�2

�1ÿm 2
z � d�kÿ k 0� dÿDE �kz� ÿ �ho

�
;

�11�

where o is the electromagnetic wave frequency, DE is the
energy spacing between the spin subbands, and d�x� is the
delta function. In noncollinear systems, these transitions
make an additional contribution to radiation absorption, as
analyzed in detail in paper [16]. In a noncoplanar magnetic
system (such as a conical magnetic spiral), the electric dipole
transitions (11) give rise to a constant electric current, i.e., to
the photogalvanic effect [15].

Let us consider some features of neutron scattering by
noncoplanar magnetic systems. It is known [10] that the
interaction between cold neutrons and a magnetic field is
sufficiently weak for the scattering cross section to be
representable as a power series in the magnetic induction B.
The only factor determining the interaction between a
magnetic field and a neutron spin is the angle between them.
Hence, the total scattering cross section (summed over the
spin polarizations of the incident and scattered neurons)
should be invariant with respect to coherent rotation of the
magnetic field at any point in space. Given the above, the
scattering cross section can be expressed as

s
ÿ
k; k 0;B�r�� � s0�k; k 0�
�
�
Q1�k; k 0; r1; r2�

ÿ
B�r1�B�r2�

�
dr1 dr2

�
�
Q2�k; k 0; r1; r2; r3�

ÿ
B�r1�

�
B�r2��B�r3�

��
dr1 dr2 dr3�. . . ;

�12�

where k, k 0 are the incident and scattered neutron wave
vectors, and Q1;2 are the scalar functions. Because the

scattering cross section should obey the reciprocity theorem
s
ÿ
k; k 0; fB�r�g��s

ÿÿ k 0;ÿk; fÿB�r�g�, it follows that the
last term in Eqn (12) describes the `nonreciprocal' contribu-
tion, due to the noncoplanar nature of themagnetic induction
distribution. Note that calculating this contribution requires
going beyond the Born approximation commonly used in the
calculation of the cold neutron scattering cross section. See
Refs [17, 18] for a discussion of how the nonreciprocal
features in the scattering of neutrons manifest themselves in
noncoplanar magnetic structures.

Thus, based on the theoretical discussion above, a whole
series of new and interesting effectsÐ transport, optical and
neutron-opticalÐare likely to occur in ferromagnetic nanos-
tructures with a noncoplanar, specifically, vortex and spiral,
magnetization distribution. Sections 4 and 5 describe meth-
ods for creating and experimentally investigating ferromag-
netic nanostructures with chirally distributed magnetization.

4. Ferromagnetic nanostructures with vortex
distribution of magnetization

The vortex distribution of magnetization [n � 1, j0 � �p=2
in formula (3)] is the ground state of a ferromagnetic disc,
provided that the radius and height of the disc are larger than
the exchange length lex �

�������������
J=M 2

s

p � 20 nm [19]. The techni-
ques we used to create such particles involved magnetron
sputtering and electronic lithography (Supra 50Vmicroscope
with a lithographical attachment ELPHY Plus) [8, 20, 21]. To
effectively control the magnetic state of a nanostructured
sample requires that both the geometric dimensions of the
sample and its crystalline structure be controlled. For our
purposes, polycrystalline samples with a crystallite size of
� 20 nm and a sufficiently low (� 20ÿ30 Oe) coercive force
are suitable. Magnetization curves of ferromagnetic films
were measured magnetooptically before the lithography
process began. The magnetic states of the particles were
investigated by magnetic-force microscopy (Solver-HV
vacuum probemicroscope). The details of the probemeasure-
ments performed are presented in Refs [8, 20±22]. Using this
method, the vortex state in elliptic ferromagnetic particles was
studied in detail, as was the possibility of utilizing the
magnetic tip of a probe microscope to control these states.

In symmetrically shaped particles, the magnetic vortex
state is degenerate with respect to the vorticity direction,
making the particles with left- and right-rotating vortices
(j0 � �p=2) equal in number [23]. For asymmetrical (for
example, triangular) particles (see Fig. 1a), if the magnetic
field is applied along the triangle bases, it takes different field
strengths to produce `left' and `right' vortices [24], thus
allowing for a lattice of particles with the same sign of
vorticity to be created. Shown in Fig. 1b is a magnetic-force
image of the remanent state of a lattice of triangular particles.
It is seen that all the particles have the same sign of vorticity
which can be controlled by changing the direction of the
demagnetizing magnetic field. What makes this system
remarkable is the presence of a macroscopic toroidal
magnetic moment T��1=N �Pi �ri�Mi� 6� 0, a fact which
should, in turn, lead to nonreciprocality in light diffraction by
such a lattice. Our recent experiments [25] completely
confirmed this prediction.

It seems of interest to fabricate a nanostructure with the
antivortex distribution of magnetic moment [n � ÿ1,
j0 � 0; p in formula (3)]. For such a distribution, the Hall
voltage reverses sign relative to that in the vortex system [see
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formula (4)]. The integer n is a topological charge of the
soliton [26, 27]. The direct proportionality between the Hall
voltage and the topological charge of the magnetization
distribution justifies naming this effect the `topological' Hall
effect [28]. That the antivortex state is difficult to realize is
explained by the presence of excess (relative to the vortex
state) magnetostatic energy proportional to the particle
volume [8].

Our way to still achieve the goal was to make a lattice
of cross-shaped ferromagnetic particles (Fig. 2a) with a
feature of increased width on two of the four sides of the
cross. The external magnetic field was applied at an angle of
45� to the sides of the cross-shaped particle, as shown by the
arrow in Fig. 2a. The remanent states of the system following
magnetization in external fields of 1 kOe and 250 Oe are
shown in the respective Fig. 2b and 2c, corresponding,
respectively, to the quasiuniform magnetic state of the
crosses and to the antivortex state of the particles, the latter
manifesting itself in that, close to the cross edges, the

distribution of `magnetic charges' changes its symmetry from
dipole to quadrupole.

5. Ferromagnetic nanostructures
with a spiral magnetization distribution

Anoncollinear state can form in amultilayered ferromagnetic
nanoparticle due to themagnetostatic interaction between the
layers, the stability of the state being determined by the shape
of the particle [29].

Let us consider three homogeneous magnetized magnetic
discs with dielectric interlayers between them. The magneto-
static interaction between the layers is antiferromagnetic in
character, resulting, as shown theoretically [30, 31], in the
ground state of the system being spiral (provided that the
interaction energy between the discs is much higher than the
energy of anisotropy due to, for example, the disc shape). The
magnetic state of a multilayered particle can be analyzed
experimentally by examining the dependence of its electrical
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Figure 1. (a) Electron microscopic image of a lattice of triangular particles. (b) Magnetic-force image of the remanent state of this lattice following

magnetization in a strong magnetic field applied along the triangle bases.
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Figure 2. (a) Electron microscopic image of a lattice of cross-shaped particles. (b) Magnetic-force image of the remanent state of this lattice following

magnetization in a 1-kOe external field applied in the direction shown by the arrow in Fig. 2a. (c)Magnetic-force image of the remanent state of the lattice

of particles following the application of a 250-Oe field.

1258 Conferences and symposia Physics ±Uspekhi 55 (12)



resistance on the external magnetic field. Assuming that the
field dependence is due to effects of an exchange nature and
proportional to the scalar product of the layer magnetic
moments [32], we have

R � R01 � R02 ÿ R1 cos y12 ÿ R2 cos y23 ; �13�

where y12�y23� is the angle between the magnetic moments of
the first and second (second and third) discs,R01;R1 �R02;R2�
is the resistance of the first (second) tunnel junction for the
disc magnetic moments oriented parallel, and y12 � y23 � 0.
Alternatively, the magnetic states of multilayered particles
can be investigated by magnetic-force microscopy, but the
fact that the signal to measure is dominated by the contribu-
tion from the upper magnetic layer [30] makes this approach
difficult to apply.

Figure 3 depicts a schematic of a multilayered magnetic
particle built into a thin-film electrode system connected to a
measuring device. The magnetic particle was prepared from a
Co�10 nm�=AlOx�2 nm�=Co�5 nm�=AlOx�2 nm�=Co�10 nm�
thin-film structure. We give elsewhere [29] a detailed descrip-
tion of the preparation method.

Figure 4a shows, for a circular particle � 250 nm in
diameter, the measured relative change in resistance, r�H � �

�R�H � ÿ R�H!1��=R�H!1�, as a function of the
externally applied magnetic field (directed as shown by the
arrow). The multilayered particle possesses a minimum
resistance in large magnetic fields, jHj > 400 Oe, and a
maximum resistance in low fields, jHj < 200 Oe. When the
external magnetic fields are large, all the discs have their
magnetic moments aligned and, according to formula (13),
the resistance of the system is a minimum. As the magnetic
field is decreased in magnitude, the layer magnetic moments
dissalign, leading to increased resistance.

It is the region of small magnetic fields which is of
particular interest. After reaching a maximum, the resistance
of the system again decreases, and in a zero field its relative
change is r�0� � 0:75 rmax, where rmax is the value of r at a
maximum. Changing the direction of the external magnetic
field results in a dramatic increase in the sample's resistance
(segment A±B in Fig. 4a). As the field is increased further, the
resistance reaches a maximum again. This resistance versus
external magnetic field behavior suggests the layermagnetiza-
tions are distributed in a noncollinear fashion in a zero
external field.

Suppose that the magnetic moment distribution corre-
sponding to the resistance maximum is collinear `antiferro-
magnetic', and that in the absence of a field the symmetric
noncollinear state y12 � y23 � y is realized. Then, using
formula (13) and the experimental value r�0� � 0:75 rmax

yields y � 120�. Computer simulation results confirm this
scenario.

As the particle anisotropy increases, the angular phases
become unstable, resulting in the fact that the resistance
versus magnetic field dependence has a number of features
that correspond to transitions between collinear phases. The
multilayered particles prepared had the same layer thickness
as the first sample, but the layer lateral size was taken to be
100� 200 nm. The ferromagnetic layers were taken to be
CoFe films whose coercivity exceeded that of Co films but
which allowed achieving the higher values of r�H �.

Figure 4b plots the relative change in the resistance of this
sample as a function of the external field strength applied
along the long axis of the particle. One does indeed see jumps
in resistance which correspond to transitions between the

Pt
Cu

CoAlOx

Ta2O5

Ta

Si substrate

Figure 3. Schematic of a multilayered magnetic particle built into a thin-

film electrode system.
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Figure 4. (a) Experimental r�H � data for a circular particle 250 nm in diameter for layer thicknesses Co�10 nm�=AlOx�2 nm�=Co�5 nm�=
AlOx�2 nm�=Co�10 nm�; the arrow shows the direction of the change in the outer magnetic field. (b) The same for an `elliptic' particle with lateral

dimensions of 200� 100 nm for layer thicknesses CoFe�10 nm�=AlOx�2 nm�=CoFe�5 nm�=AlOx�2 nm�= CoFe�10 nm�; the magnetic field is directed

along the long axis of the particle.
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collinear states marked in the figure. Using experimental
data, we find that the `magnetically dependent' parts of
transition resistances R1;2 (see formula (13)) differ by 20%
or less. There are two points to note from the results of this
experiment. First, the two tunneling junctions in series that
make up the structure under study share a sufficiently high
degree of identity. Second, anisotropy plays a fundamental
role in the formation of noncollinear states.

6. Conclusion

To summarize, this paper
Ð predicts new transport, optical, and neutron-optical

effects for ferromagnetic systems with a noncoplanar magne-
tization distribution;

Ð develops nanolithography and probe microscopy
techniques that create vortex, antivortex, and spiral magne-
tization distributions in ferromagnetic nanostructures;

Ð establishes that, in multilayered ferromagnetic parti-
cles of anisotropic shape, stable collinear states of different
resistance exist, making these systems promising for applica-
tion in information storage and processing devices.

While there has been some success in the study of
inhomogeneously magnetized ferromagnetic structures, thus
far none of the predicted `exchange' effects have been
observed. Noting also that many relevant topics are left
unaddressed in this paper [including those related to the
magnetoelectric effect in inhomogeneous magnets [33, 34],
to phenomena in nonstationary and inhomogeneous mag-
netic structures (see, for example, Ref. [35]), etc.], it is safely
concluded that the topic is far from exhausted and further
research remains to be done.
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Nonlinear wave processes in a deformable
solid as in a multiscale hierarchically
organized system

V E Panin, V E Egorushkin, A V Panin

1. Introduction

In this report, we theoretically and experimentally substanti-
ate the conception of a multiscale description of a deformable
solid as a nonlinear hierarchically organized system. The
surface layers and all internal interfaces are considered as an
independent planar functional subsystem with a short-range
order. The channelled plastic flow in the planar subsystem is
primary. It is responsible for the formation and emission of all
types of strain-induced defects into the crystalline subsystem.
This process is developed through the mechanism of non-
linear waves which determine the law of self-consistency of
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