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and nanomagnetism”, was held on 25 April 2012 at the
conference hall of the Lebedev Physical Institute, RAS.

The agenda of the session announced on the RAS Physical
Sciences Division website www.gpad.ac.ru included the
following reports:
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(National Research University ‘Moscow State Institute of
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“Magnetic states and transport properties of ferromagnetic
nanostructures’’;

(3) Panin V E, Egorushkin V E, Panin A V (Institute of
Strength Physics and Materials Science, Siberian Branch of
the Russian Academy of Sciences, Tomsk) ““Nonlinear wave
processes in a deformable solid as in a multiscale hierarchi-
cally organized system”.
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Magnetic states and transport properties
of ferromagnetic nanostructures

A A Fraerman

1. Introduction

There are at least two motivating factors for research interests
in the transport properties of ferromagnetic nanostructures.
First, conducting ferromagnets, which are the ones to be
discussed below, have their current carriers spin-polarized.
Their energy spectra are split into two subbands, in one of
which the occupying electrons align their spin projections
parallel and, in the other, antiparallel to the magnetic
moment of the sample. The spin ‘splitting’ compares to the
Curie temperature of these materials to an order of magni-
tude. It may be considered that in ferromagnets there is a
colossal ‘exchange’ field of strength H ~ kpTc/ug ~
10°—107 Oe (kg is the Boltzmann constant, and ug is the
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Bohr magneton). Prior to the discovery of giant magnetore-
sistance [1-2] (see also Ref. [3] on the tunneling version of the
effect), such an ‘exchange’ field had not manifested itself in
the transport and optical properties of ferromagnets, which
were determined by the relatively weak spin-orbit interaction
[4] rather than the Coulomb interaction. This discovery has
greatly stimulated renewed efforts to study spin-dependent
transport effects.

Second, nanostructure formation methods, which have
been the subject of intense development in recent years, are an
effective tool for controling the magnetic state of a ferro-
magnet. [t is known [5] that the magnetization distribution in
a ferromagnetic sample is determined by competition among
the magnetic anisotropy, the exchange interaction, and the
magnetostatic interaction. The magnetic domain structure
that results from this competition is not universal, but rather
depends on the sample shape and dimensions. Nanostructure
patterning allows one to control these parameters and, hence,
magnetization distribution in the most important nanometer
range. As far as this range is concerned, the important special
feature of ferromagnets is the presence in them of two
characteristic scales: the domain wall thickness and the
exchange length, both measuring tens of nanometers for
transition metal ferromagnets.

Thus, the search for new transport and optical effects of
an ‘exchange’ nature in ferromagnetic nanostructures con-
stitutes a topical and exciting task. This report briefly reviews
the relevant research that has been done at the Institute for
Physics of Microstructures, RAS.

2. ‘Exchange’ versions of the Hall
and diode effects

Let us start by examining phenomenologically the possibility
of transport effects of an exchange nature in inhomogeneous
ferromagnets.

In a conducting medium under the influence of a constant
electric field E, an electric current density j arises in the
following form

Ji = 0L + yijkEiEe + ... (1)

where the linear and quadratic conductivity tensors depend
on the sample’s magnetic moment and its spatial derivatives.
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The problem that faces us consists in determining these
dependences. Restricting the discussion to nondissipative
processes in media with a center of inversion, we conclude
that the linear and nonlinear conductivity tensors contain
terms of odd powers in the magnetic moment M, with the o
and y;;; tensors having terms with even and odd powers of
spatial derivatives, respectively. Assuming the exchange
interaction to be responsible for the effects we are looking
for, let us require that the expression for the current (1) be
invariant under the coherent rotation of the sample’s
magnetic moment [5, 6]. This means that conductivity
tensors must not comprise convolutions of ‘spatial’ indices
with ‘magnetic’ ones). With all of the above requirements met,
the following equation is derived for the electric current
flowing in an inhomogeneously magnetized conducting ferro-
magnet [7, 8]:

. oM oM
Ji= 6<M{6x,- % ka}) Ei

M M
+“/(M[axl_X—axjakaEjEkJr---, e

where g, y are the scalar constants (we confine ourselves to
studying media with isotropic or cubic crystalline structures).
The linear conductivity tensor, which is antisymmetric,
describes the contribution of an exchange nature to the Hall
effect, whereas the second term on the right-hand side of
equation (2) is responsible for the rectifying properties of the
ferromagnet. Both tensors found are nonzero only in those
ferromagnets where the magnetic moment vectors do not liein
the same plane, i.e., in samples with noncoplanar magnetiza-
tion distribution. To see that this is indeed the case, note that
expressions for the conductivity tensors can be readily
obtained by expanding the mixed product M;[M; x M3]in a
Taylor series, where M 3 are the magnetic moments at the
neighboring points in the sample. If the linear conductivity
tensor is different from zero in systems with a nonone-
dimensional distribution of the magnetic moment, it follows
that a sample with a one-dimensional noncoplanar magneti-
zation distribution should also have rectifying properties.

Two examples of noncoplanar magnetic moment distribu-
tion are worth considering. Suppose a ferromagnet has a
magnetization distribution of the form

M= (sin0(p) cos (vp-+@y), sin 0(p) sin (vo+@,), cos 0(p)),
3)

where ¢, p are cylindrical coordinates, v is an integer, and ¢,
is a (constant) phase shift. Substituting Eqn (3) into expres-
sion (2) yields

i=E x B,
oM M 1 Ocosf )
Bgr=0(M X — =0V — ,
ox Oy p  Op
implying that a vortex (v =1, ¢, = £n/2) or an anti-
vortex (v =—1, ¢, = 0,m) noncoplanar magnetic moment

distribution can be expected to provide an additional
contribution to the Hall effect. For a distribution in the form
of a conical magnetic spiral, namely

M(z) = (m cos(gz) , m sin(qz) , m.),

MZ:m2+m_,2,

the result of such a substitution reduces to

Jo=¢’m.(1 —=m?) EZ, (6)

suggesting the existence of diode properties in such a
structure. A classical model proposed in Ref. [9] deduces the
‘exchange’ contribution to the Hall conductivity from the
noncollinearity between the magnetic moment of a moving
particle and the external field and can be used as a basis to
explain, at least in part, the microscopic mechanism of the
effects being discussed.

3. Optical and neutron-optical effects

To describe conduction electrons in ferromagnets, the
simplest quantum-mechanical approach is to apply the
Vonsovskii—Zener s-d model, in which the problem reduces
to that of finding the eigenfunctions and eigenvalues of the
Schrodinger equation

—AYP(r) —JM(r)6 ¥ (r) = EV(r), (7)

where 6 is the Pauli matrix vector, J is the exchange
interaction constant between the conduction s and localized
d electrons, and M is the unit vector in the direction of the
magnetic moment. Note the analogy between the s-d model
description of conduction electrons in ferromagnets and the
description of neutrons for which the magnetic moment
vector in equation (7) should be replaced by the magnetic
induction vector B, and the exchange constant by the Bohr
nuclear magneton [10]. This analogy provides a common
framework for discussing the transport and optical properties
of conducting ferromagnets, on the one hand, and neutron
scattering by inhomogeneous magnetic systems, on the other
hand.

For the case of a magnetic spiral defined by formula (5),
equation (7) can be solved exactly [11] to yield the following
expressions for the spectrum and eigenfunctions of the
system:

2
Ei:k2+p2+<g> +/q2k2 +J% = 2m.Jgk (8)

o (e (—%)

Y, =——— . exp (ikz) exp (ipp) ,
SR (MIZ) p (ikz) exp (ipp)
exp | —

2

m.J — gk £/q*k? + J> — 2m.Jqk
0t = ; )

J(1 - m})l/2

where k, p are the electron quasimomenta along and
perpendicular to the spiral axis, respectively.

From expression (8) it follows that the spectrum of
current carriers in a conical (m. # 0) spiral is not an even
function of quasimomentum. Thus, the electrons moving to
the left along the spiral axis have different group velocities
from those moving to the right. In a macroscopic system, this
difference does not produce an electric current because it is
exactly compensated for by the difference in the number of
opposite-moving equilibrium electrons. In mesoscopic sys-
tems, however—such as small ferromagnetic rings with a
noncoplanar distribution of the magnetic moment— the
removal of Kramers degeneracy and the quantization of
quasimomentum can lead to the appearance of predicted
[12, 13] persistent electric currents.
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In a conical magnetic spiral, spectral asymmetry is
responsible for the occurrence of the diode effect, with ‘easy’
current flow direction being determined by the sign of the
spiral wave number (left-right spiral) and by where the
perpendicular magnetic moment component m, is directed
[see formula (6)]. The important point is that, as can be seen
from Eqn (9), the wave function components — and hence the
expectation value of the electron’s intrinsic magnetic
moment —depend on the quasimomentum component
along the spiral axis. This results, in particular, in electron
scattering by nonmagnetic impurities becoming asymmetric,
thus adding to the diode effect [7]. Similar effects (asymmetry
in both the group velocity and the scattering rate by
nonmagnetic impurities) are responsible for the peculiarities
in the spatial dispersion of the dielectric constant. For a
conical magnetic spiral, the expansion of the dielectric
constant may contain an additional term of the form [14]

M _’M
&ii = Kii<M{§ X 6272}> k-,

(10)
where k is the spiral axis component of the electromagnetic
wave vector.

Of special note is that the electric component of an
electromagnetic wave can induce transitions between spin
subbands in noncollinear and noncoplanar magnetic systems.
Using the wave functions of Eqn (9), the probability of
electric dipole transitions between spin subbands in a
magnetic spiral is readily found to be [15]

_2n ( JeE.q

Wik ==
k™ 1\ 2maw?

>2(1 —m?)d(k — k') §(AE (k.) — ho),
(11)

where w is the electromagnetic wave frequency, AE is the
energy spacing between the spin subbands, and d(x) is the
delta function. In noncollinear systems, these transitions
make an additional contribution to radiation absorption, as
analyzed in detail in paper [16]. In a noncoplanar magnetic
system (such as a conical magnetic spiral), the electric dipole
transitions (11) give rise to a constant electric current, i.e., to
the photogalvanic effect [15].

Let us consider some features of neutron scattering by
noncoplanar magnetic systems. It is known [10] that the
interaction between cold neutrons and a magnetic field is
sufficiently weak for the scattering cross section to be
representable as a power series in the magnetic induction B.
The only factor determining the interaction between a
magnetic field and a neutron spin is the angle between them.
Hence, the total scattering cross section (summed over the
spin polarizations of the incident and scattered neurons)
should be invariant with respect to coherent rotation of the
magnetic field at any point in space. Given the above, the
scattering cross section can be expressed as

o(k,k’,B(r)) = oo(k,k’)

+ JQl(k,k’;rl,rz)(B(rl) B(l’z)) dl‘] dl‘2

+J Qz(k,kl;l'hl'z, 1'3)(B(l'1) [B(l’z) XB(l‘3)]) drydrydrs+.. .,
(12)

where k, k’ are the incident and scattered neutron wave
vectors, and Q). are the scalar functions. Because the

scattering cross section should obey the reciprocity theorem
o(k, k', {B(r)})=c(—k’,—k,{—B(r)}), it follows that the
last term in Eqn (12) describes the ‘nonreciprocal’ contribu-
tion, due to the noncoplanar nature of the magnetic induction
distribution. Note that calculating this contribution requires
going beyond the Born approximation commonly used in the
calculation of the cold neutron scattering cross section. See
Refs [17, 18] for a discussion of how the nonreciprocal
features in the scattering of neutrons manifest themselves in
noncoplanar magnetic structures.

Thus, based on the theoretical discussion above, a whole
series of new and interesting effects — transport, optical and
neutron-optical — are likely to occur in ferromagnetic nanos-
tructures with a noncoplanar, specifically, vortex and spiral,
magnetization distribution. Sections 4 and 5 describe meth-
ods for creating and experimentally investigating ferromag-
netic nanostructures with chirally distributed magnetization.

4. Ferromagnetic nanostructures with vortex
distribution of magnetization

The vortex distribution of magnetization [v = 1, ¢, = +n/2
in formula (3)] is the ground state of a ferromagnetic disc,
provided that the radius and height of the disc are larger than
the exchange length lex ~ \/J/M2 ~ 20 nm [19]. The techni-
ques we used to create such particles involved magnetron
sputtering and electronic lithography (Supra 50 V microscope
with a lithographical attachment ELPHY Plus) [8, 20, 21]. To
effectively control the magnetic state of a nanostructured
sample requires that both the geometric dimensions of the
sample and its crystalline structure be controlled. For our
purposes, polycrystalline samples with a crystallite size of
~ 20 nm and a sufficiently low (=~ 20—30 Oe) coercive force
are suitable. Magnetization curves of ferromagnetic films
were measured magnetooptically before the lithography
process began. The magnetic states of the particles were
investigated by magnetic-force microscopy (Solver-HV
vacuum probe microscope). The details of the probe measure-
ments performed are presented in Refs [8, 20-22]. Using this
method, the vortex state in elliptic ferromagnetic particles was
studied in detail, as was the possibility of utilizing the
magnetic tip of a probe microscope to control these states.

In symmetrically shaped particles, the magnetic vortex
state is degenerate with respect to the vorticity direction,
making the particles with left- and right-rotating vortices
(¢9 = £m/2) equal in number [23]. For asymmetrical (for
example, triangular) particles (see Fig. 1a), if the magnetic
field is applied along the triangle bases, it takes different field
strengths to produce ‘left’ and ‘right’ vortices [24], thus
allowing for a lattice of particles with the same sign of
vorticity to be created. Shown in Fig. 1b is a magnetic-force
image of the remanent state of a lattice of triangular particles.
It is seen that all the particles have the same sign of vorticity
which can be controlled by changing the direction of the
demagnetizing magnetic field. What makes this system
remarkable is the presence of a macroscopic toroidal
magnetic moment T=(1/N) >, [r;xM;] #0, a fact which
should, in turn, lead to nonreciprocality in light diffraction by
such a lattice. Our recent experiments [25] completely
confirmed this prediction.

It seems of interest to fabricate a nanostructure with the
antivortex distribution of magnetic moment [v= —1,
@y = 0,m in formula (3)]. For such a distribution, the Hall
voltage reverses sign relative to that in the vortex system [see
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formula (4)]. The integer v is a topological charge of the
soliton [26, 27]. The direct proportionality between the Hall
voltage and the topological charge of the magnetization
distribution justifies naming this effect the ‘topological’ Hall
effect [28]. That the antivortex state is difficult to realize is
explained by the presence of excess (relative to the vortex
state) magnetostatic energy proportional to the particle
volume [8].

Our way to still achieve the goal was to make a lattice
of cross-shaped ferromagnetic particles (Fig. 2a) with a
feature of increased width on two of the four sides of the
cross. The external magnetic field was applied at an angle of
45° to the sides of the cross-shaped particle, as shown by the
arrow in Fig. 2a. The remanent states of the system following
magnetization in external fields of 1 kOe and 250 Oe are
shown in the respective Fig. 2b and 2c, corresponding,
respectively, to the quasiuniform magnetic state of the
crosses and to the antivortex state of the particles, the latter
manifesting itself in that, close to the cross edges, the

distribution of ‘magnetic charges’ changes its symmetry from
dipole to quadrupole.

5. Ferromagnetic nanostructures
with a spiral magnetization distribution

A noncollinear state can form in a multilayered ferromagnetic
nanoparticle due to the magnetostatic interaction between the
layers, the stability of the state being determined by the shape
of the particle [29].

Let us consider three homogeneous magnetized magnetic
discs with dielectric interlayers between them. The magneto-
static interaction between the layers is antiferromagnetic in
character, resulting, as shown theoretically [30, 31], in the
ground state of the system being spiral (provided that the
interaction energy between the discs is much higher than the
energy of anisotropy due to, for example, the disc shape). The
magnetic state of a multilayered particle can be analyzed
experimentally by examining the dependence of its electrical

Figure 1. (a) Electron microscopic image of a lattice of triangular particles. (b) Magnetic-force image of the remanent state of this lattice following

magnetization in a strong magnetic field applied along the triangle bases.

Figure 2. (a) Electron microscopic image of a lattice of cross-shaped particles. (b) Magnetic-force image of the remanent state of this lattice following
magnetization in a 1-kOe external field applied in the direction shown by the arrow in Fig. 2a. (c) Magnetic-force image of the remanent state of the lattice
of particles following the application of a 250-Oe field.
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Figure 3. Schematic of a multilayered magnetic particle built into a thin-
film electrode system.

resistance on the external magnetic field. Assuming that the
field dependence is due to effects of an exchange nature and
proportional to the scalar product of the layer magnetic
moments [32], we have

R = Ro1 + Rypy — Ry cos Oy — Rycos 03, (13)
where 015(023) is the angle between the magnetic moments of
the first and second (second and third) discs, Roi1, R (Roz2, R2)
is the resistance of the first (second) tunnel junction for the
disc magnetic moments oriented parallel, and 6,, = 6,3 = 0.
Alternatively, the magnetic states of multilayered particles
can be investigated by magnetic-force microscopy, but the
fact that the signal to measure is dominated by the contribu-
tion from the upper magnetic layer [30] makes this approach
difficult to apply.

Figure 3 depicts a schematic of a multilayered magnetic
particle built into a thin-film electrode system connected to a
measuring device. The magnetic particle was prepared from a
Co(10 nm)/AlO,(2nm)/Co(5nm)/AlO,(2nm)/Co(10nm)
thin-film structure. We give elsewhere [29] a detailed descrip-
tion of the preparation method.

Figure 4a shows, for a circular particle ~ 250 nm in
diameter, the measured relative change in resistance, r(H ) =

(R(H) — R(H — o0))/R(H — ), as a function of the
externally applied magnetic field (directed as shown by the
arrow). The multilayered particle possesses a minimum
resistance in large magnetic fields, |H| > 400 Oe, and a
maximum resistance in low fields, |H| < 200 Oe. When the
external magnetic fields are large, all the discs have their
magnetic moments aligned and, according to formula (13),
the resistance of the system is a minimum. As the magnetic
field is decreased in magnitude, the layer magnetic moments
dissalign, leading to increased resistance.

It is the region of small magnetic fields which is of
particular interest. After reaching a maximum, the resistance
of the system again decreases, and in a zero field its relative
change is (0) = 0.75 rmax, wWhere rpax is the value of r at a
maximum. Changing the direction of the external magnetic
field results in a dramatic increase in the sample’s resistance
(segment A-B in Fig. 4a). As the field is increased further, the
resistance reaches a maximum again. This resistance versus
external magnetic field behavior suggests the layer magnetiza-
tions are distributed in a noncollinear fashion in a zero
external field.

Suppose that the magnetic moment distribution corre-
sponding to the resistance maximum is collinear ‘antiferro-
magnetic’, and that in the absence of a field the symmetric
noncollinear state 6, = 0,3 = 6 is realized. Then, using
formula (13) and the experimental value r(0) = 0.75 rmax
yields 0 = 120°. Computer simulation results confirm this
scenario.

As the particle anisotropy increases, the angular phases
become unstable, resulting in the fact that the resistance
versus magnetic field dependence has a number of features
that correspond to transitions between collinear phases. The
multilayered particles prepared had the same layer thickness
as the first sample, but the layer lateral size was taken to be
100 x 200 nm. The ferromagnetic layers were taken to be
CoFe films whose coercivity exceeded that of Co films but
which allowed achieving the higher values of r(H).

Figure 4b plots the relative change in the resistance of this
sample as a function of the external field strength applied
along the long axis of the particle. One does indeed see jumps
in resistance which correspond to transitions between the
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Figure 4. (a) Experimental r(H) data for a circular particle 250 nm in diameter for layer thicknesses Co(10 nm)/AlO(2 nm)/Co(5 nm)/
AlO,(2 nm)/Co(10 nm); the arrow shows the direction of the change in the outer magnetic field. (b) The same for an ‘elliptic’ particle with lateral
dimensions of 200 x 100 nm for layer thicknesses CoFe(10 nm)/AlO,(2 nm)/CoFe(5 nm)/AlO,(2 nm)/ CoFe(10 nm); the magnetic field is directed

along the long axis of the particle.
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collinear states marked in the figure. Using experimental
data, we find that the ‘magnetically dependent’ parts of
transition resistances R;» (see formula (13)) differ by 20%
or less. There are two points to note from the results of this
experiment. First, the two tunneling junctions in series that
make up the structure under study share a sufficiently high
degree of identity. Second, anisotropy plays a fundamental
role in the formation of noncollinear states.

6. Conclusion

To summarize, this paper

— predicts new transport, optical, and neutron-optical
effects for ferromagnetic systems with a noncoplanar magne-
tization distribution;

— develops nanolithography and probe microscopy
techniques that create vortex, antivortex, and spiral magne-
tization distributions in ferromagnetic nanostructures;

— establishes that, in multilayered ferromagnetic parti-
cles of anisotropic shape, stable collinear states of different
resistance exist, making these systems promising for applica-
tion in information storage and processing devices.

While there has been some success in the study of
inhomogeneously magnetized ferromagnetic structures, thus
far none of the predicted ‘exchange’ effects have been
observed. Noting also that many relevant topics are left
unaddressed in this paper [including those related to the
magnetoelectric effect in inhomogeneous magnets [33, 34],
to phenomena in nonstationary and inhomogeneous mag-
netic structures (see, for example, Ref. [35]), etc.], it is safely
concluded that the topic is far from exhausted and further
research remains to be done.
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Nonlinear wave processes in a deformable
solid as in a multiscale hierarchically
organized system

V E Panin, V E Egorushkin, A V Panin

1. Introduction

In this report, we theoretically and experimentally substanti-
ate the conception of a multiscale description of a deformable
solid as a nonlinear hierarchically organized system. The
surface layers and all internal interfaces are considered as an
independent planar functional subsystem with a short-range
order. The channelled plastic flow in the planar subsystem is
primary. It is responsible for the formation and emission of all
types of strain-induced defects into the crystalline subsystem.
This process is developed through the mechanism of non-
linear waves which determine the law of self-consistency of
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plastic flow in hierarchically organized systems. The fracture
is related to a wave-like structural phase decomposition of the
material.

The science of plasticity and strength of solids is going
through a stage of replacing a paradigm. For a long time, the
description of plastic deformation and fracture of solids was
developed in terms of linear approximations of the mechanics
of continuum media (macroscale level) and of the physics of
strain-induced defects in a loaded solid (microscale level).
However, it has become obvious in recent decades that a
deformable solid represents a multiscale hierarchically orga-
nized system which should be described in terms of nonlinear
mechanics and nonequilibrium thermodynamics [1].

At present, mechanisms of deformation on the nano-,
micro-, meso-, and macroscale levels are being widely
discussed in the literature. Unfortunately, the classification
of scales reduces in most cases to only the size factor, retaining
within the single-level approach. The problems of a multiscale
self-organization and allowance for the nonlinearity of a
hierarchically organized system have so far remained unde-
veloped.

A fundamentally new proposition in the multiscale
approach is the conception of classification of surface layers
and all internal interfaces as functional nonlinear planar
subsystems in which translational invariance is absent [3-5],
rather than as planar defects in crystals (according to the
approach accepted, e.g., in monograph [2]).

The primary plastic shears emerge not in a translationally
invariant crystal but rather in planar strongly excited
subsystems in the form of nonlinear waves of channelled
local structural transformations. Upon such wave fluxes
propagating in a planar subsystem, strain-induced defects of
various types are generated. A periodic emission of defects
into the crystalline subsystem is developed as a nonlinear
wave process. The thermodynamic stability of the crystalline
subsystem in the course of plastic deformation decreases
continuously, causing a nonlinearity of the behavior of the
deformable solid.

This paper is devoted to a theoretical and experimental
substantiation of the fundamental importance of the role of
nonlinear waves in the plastic deformation and fracture of
solids.
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Figure 1. Dependence of the Gibbs thermodynamic potential F(}') on the
molar volume V" with allowance for local zones of hydrostatic tension of
various scales, in which defect structures arise. The regions of different
states are as follows: A, hydrostatic compression; B, mesosubstructures of
various structural scale levels; By, nano-sized structures, C, nanostruc-
tured states, and D, the emergence of porosity and fracture.

2. Nonlinear waves of channelled local structural
transformations in a planar subsystem as the
main mechanism of generating strain-induced
defects. Law of plastic deformation flow
self-consistency at various structural scale levels

Figure 1 illustrates the thermodynamic foundations of the
evolution of the nucleation of strain-induced defects as local
structural transformations by the example of the curve
tracing the dependence of the Gibbs thermodynamic poten-
tial F = F(V') on the molar volume ¥ which is considered as a
generalized thermodynamic parameter [3]. It follows from the
expression F=U— TS+ PV — 3, 4;C; that with increas-
ing F in a deformable solid body, due to the presence of the
terms U and PV, local minima can appear caused by the
production of entropy and a redistribution of alloying
elements (or impurities). In accordance with the nonequili-

-1

Figure 2. A ‘chessboard’ deformation profile on the surface of a deformable material; elasticity modulus of the surface layeris Eg = 0.5E}, (where Ey, is the
appropriate elasticity modulus of the material’s bulk). The thickness of the substrate was assumed to be infinitely large as compared to the thickness of the

surface layer [7].
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brium thermodynamics [6], zones of nonequilibrium states
arise in a deformable crystal with increasing V" because of the
appearance in it of an inhomogeneous mechanical field. In
these states, the entire set of strain-induced defects is formed,
i.e., dislocations, disclinations, and mesobands and macro-
bands of localized plastic deformation. Finally, for V' > V,,
when the potential F( V) becomes positive, the crystal in local
zones of strongly nonequilibrium states loses thermodynamic
stability and undergoes a structural phase decomposition.
Cracks (or pores) are formed in such zones because of the
excess molar volume.

The treatment of a deformable solid as a nonlinear
multiscale system made it possible to establish the mechan-
isms of the formation of local zones of strongly nonequili-
brium states, in which strain-induced defects of various scale
levels are nucleated [3]. The necessity of self-consistency of
shears at different structural-scale levels and the ‘chessboard’
character of the distribution of tensile and compressive
normal stresses at the interfaces of structural subsystems
(Fig. 2) [7] is responsible for the propagation of nonlinear
waves of channelled local structural transformations in a
solid under deformation. The appearance of zones of none-
quilibrium states is associated with such nonlinear waves,
with relaxation of these states occurring as a result of the
generation of strain-induced defects in the crystalline sub-
system. The effect of channeling fluxes of local structural
transformations on mesoscale levels is a necessary condition
for the propagation of multiscale nonlinear waves with
allowance for the dissipative process of dislocation motion
at the microscale level.

The multiscale development of nonlinear waves of plastic
flow was predicted in our theoretical work [8—10]. The results
of experimental investigations of such processes were general-
ized in Refs [3, 11-19].

In Refs [12-14, 18], the nonlinear waves of channelled
plastic flow have been studied in the course of uniaxial tension
in nanostructured surface layers of planar metallic samples
and in thin films deposited onto a substrate. In all cases,
nonlinear waves in the form of double spirals have been
revealed (Figs 3, 4). Their quantitative treatment made it
possible to compare the experimental data with the results of
the scaling theory of nonlinear waves [10], which is described
in Section 3.

3. Gauge theory of nonlinear waves
of channelled local structural transformations

The introduction of dislocations and disclinations into the
mechanics of a deformable solid is performed on the basis of
the gauge theory of defects [20-22]. In papers [8-10], we
suggested considering, as a group of gauge transformations, a
simple nine-parameter group of transformations of a real
three-dimensional space, GL(3, R); we also introduced
sources of Yang—Mills fields— quasielastic microdistor-
tions. The wave equations obtained, when analyzed with
allowance for the nonequilibrium thermodynamics of dis-
crete subsystems, make it possible to substantiate, in terms of
the multiscale approach, both the wave nature of the
channelled plastic deformation and the dissipative process
of motion of strain-induced defects on a common structural
scale level.

One of the particular cases of wave equations derived in
paper [10] concerns the equations for the dimensionless
quantities of the flux J and the density « of linear defects
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Figure 3. Double spirals of the extruded material in the mesobands of
channelled deformation on the surface of planar samples of ferritic—
martensitic steel with a nanostructured surface layer subjected to various
tension &: (a) ¢ = 17%, the layer thickness is 100 pm; (b) ¢ = 16%, the
layer thickness is 200 um, and (c) ¢ = 10%, the layer thickness is 300 pm.
The temperature reaches 293 K [14]. (d) Linear dependence of the width of
the mesoband on the wavelength of double spirals.
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Figure 4. (a) Nonlinear waves in the form of double spirals on the surface of a sample of commercial titanium VT1-0 subjected to tension ¢ = 16% at
T =293 K after preliminary ultrasonic treatment and electrolytic hydrogenation for 1 h. The micrographs were obtained using scanning tunneling
microscopy [18]. (b) Linear dependence of the thickness of extruded lamellae of various scales on their length.
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where v, = 0lnu, /0t is the rate of the elastic deformation of
the medium with defects; ¢ = dlnu,/0x; (C};/E) are the
elastic stresses in such a medium; ¢ and ¢ are the speed of
sound and the speed of propagation of the plastic disturbance
front, respectively; P#(x, 7) is the plastic part of the distortion;
€uyo 1s the Levi—Civita symbol, and, finally, C o’(‘g are the elastic
constants.

Equations (1)—(5) have the following meaning: (1) is the
equation of the continuity of the medium with defects, from
which it follows that the source of the plastic flow is the rate of
the rearrangement of defects; (2) is the condition of the
compatibility of plastic deformation [it is fundamentally
important that the change in the density of the medium in
time is determined in this case by the operation rot of the flux
(i.e., by its spatial inhomogeneity), rather than by the
operation div]; (3) is the condition of the continuity of
defects, which reflects the absence of charges of the vortex
component of a field of plastic deformation («f = ¢,,, 8, P/);
(4) is the constitutive equation for a medium with plastic flow,
and (5) is the equation of the quasielastic equilibrium, which
in fact is an equation known in continuum mechanics, but
here contains in its right-hand part, apart from the term
responsible for elastic deformation, a term that describes
plastic distortions, which in fact reflects the generation of
strain-induced defects in local zones of hydrostatic extension
produced by the stress concentrator.

Equation (4), which is inherent only in a medium with
plastic flow, relates the temporary changes in the plastic flux
to the anisotropic spatial changes in the densities of defects
(40 00§ /0x,) and sources (g — PI'C}/ E). The difference of
equations (4) and (5) and the corresponding equations of the
theory of elasticity lies in the fact that the change in the rate of
plastic deformation with time is determined by the stresses
themselves rather than by the derivatives 605 /0x, as in the
elastic case. In addition, the right-hand part of equation (4)
contains, as a source, the plastic distortion PF(x,7) itself,
which indicates the dual nature of the defects as field sources.

From the set of equations (1)—(5), we can derive wave
equations for the dimensionless quantities of the flux density

J and the defect density o:
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under the condition of the compatibility of the sources:

oN, oM,

a_:+8”ln1a—)Q:07 (8)
where M stands for the right-hand side of Eqn (6), N is the
right-hand side of Eqn (7), and u(x,t) are the inelastic
displacements in the inelastic localized strain wave.

The right-hand side of equation (6) characterizes the
sources of the defect flux, which are determined by the rate
of the quasielastic deformation, 9/t (E;E — EFClp) (1/E),
where E; and E? are the spherical and deviator components
of the strain tensor, respectively, and EE — EfC;‘ﬁ‘ is the
difference in the internal stresses of compression—tension and
shear, which are related to the distribution of stresses in the
zone of the stress concentrator. The relaxation processes of
the defect rearrangement (of the type of clusters of various
atomic configurations or their conglomerates) are repre-
sented in equation (6) by the term PFC¥ [; /E.

The right-hand side of equation (7) characterizes the
source of the strain-induced defect density, which is repre-
sented by the vorticity &,,50/0x (Ef — PP) (C}3/E) of the
shear deformation caused by the relaxation of shear stresses
upon the generation of strain-induced defects in local zones of
hydrostatic tension.

The character of the wave fluxes of strain-induced defects
is determined by the right-hand side of equations (6) and (7).
The plastic distortion P#(x, 1) plays a fundamentally impor-
tant role here.

Prior to the interpretation of equations (1)—(7), note that
the wave equations of the plastic flow in solids have also been
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obtained in papers [20-22], but they have not been interpreted
there as plastic waves. The conclusion on the wave character
of the propagation of a disturbance in a medium is always
connected with the problem of the disturbance group
velocity. In the absence of a dispersion of the group velocity,
a wave is well defined. The inhomogeneity of a single-scale
medium leads to a dispersion and the splitting of a wave
packet. Therefore, in terms of the single-scale approach, no
plastic waves can arise at all.

However, the conclusion on the existence of nonlinear
plastic and fracture waves obtains convincing substantiation
when a deformabile solid is considered as a multiscale system,
with allowance for the presence of planar subsystems in the
form of surface layers and internal interfaces. Moreover, it is
impossible to ensure beyond the scheme of nonlinear waves
the reproduction of stress concentrators upon the propaga-
tion of plastic shears as local structural transformations.

Let us consider a localized flux of defects in a planar
structure where the deformation along the direction L is
developed as channeling between two layers of a crystalline
material. Let us choose the common coordinate system so
that the z-axis is oriented along L, while the x and y
coordinates are varied within the thickness of the deformable
layer. According to paper [10], the distribution of the plastic
flux in the local (r < L) region has the form

b —hy
T 4n

J %(s, 1) b(s, tn)<ln 2TL - 1) - Vf, 9)

where b is the vector of the binormal in the local
coordinate system (perpendicular to the normal to a turn
of the wave spiral and to its tangent); y is the change in the
curvature of the region (the change in the curvature of the
axis of the region) caused by the external load; t, is the
tangent; s is the current value of the region length; by, b,
are the moduli of the so-called Burgers vector of the bulk
translational and subsurface or rotational incompatibility,
respectively, and Vfis the gradient part of the flux caused
by foreign sources.

Let us determine the change in the shape of the region of
the localized deformation flux of length L with the initial
dimensions J. The space—time changes in the shape of E(s, 1)
in the process of deformation can be found from the
equation

OE(s, 1)

J=— (10)

Using the expressions for J and making a replacement ¢/ —
t(by — by)/(4m)[In (2L /r) — 1], we arrive at

OE(s, 1) 4n :
o b= (by — by)[In (2L/r) — 1] v/

(11)

The first term on the right-hand side of equation (11)
describes the curvature of the defect flux (its vorticity). By
solving equation (11) simultaneously with the equation
OE/0s = t and with Frenet equations [23], it can be shown
that the change in the shape of the region under consideration
is described as follows:

2 .
E.(s,t)=— BO D) {sech [2B(s + 4vr)] sin [2B(s + 4vt)]
— sech (8Bvt) sin (8Bvur)}, (12)
Ey(s, 1)=— m {sech [2B(s + 4vr)] cos [2f(s + 4vt)]
— sech (8vt) cos (8Bvut) }, (13)
E.(s,0)=5— m {tanh [2f(s + 4vr)| — tanh (8fvr)} .

(14)

Equations (12)—(14) govern the change in the shape of the
region whose axis is a spiral curve with a constant torsion
7 = 2v. In these equations, v = —v/f}, where v characterizes
the velocity of the displacement of local structural transfor-
mations in the region of the spiral curve along the direction L,
and the parameter f is related to the curvature y as follows:

x(s, 1) = 4B sech [2B(s + 4vr)] . (15)

The curvature y of the spiral is an important parameter of
the channelled wave propagation of the localized plastic flow.
The influence of this parameter on the shape of the spiral and
on the local velocity v of the transverse change in the shape of
the deformable region is illustrated in Fig. 5. As is seen from
Fig. 5a, the velocity v of the transverse change in the shape is
small at a slight curvature y, and the spiral suffers a weakly
pronounced torsion with a large transverse wavelength. Such
a picture is observed when the plastic shear is developed under
strongly nonequilibrium conditions, e.g., in nanostructured
surface layers. With increasing curvature y, the transverse
wavelength decreases sharply, and the rates of the transverse
shape changes increase (Fig. 5b). This is a very important
effect, since in the zones of strong curvature a sharp increase is
observed in the local effective potential U(V,«) in the
expressions for the nonequilibrium Gibbs thermodynamic
potential F(V,a) = F(V)— U(V,a), where o characterizes
the field of disturbances caused by the local violation of the
translational invariance of the crystal [6]. This leads to a
decrease in |F(V, )|, an increase in the molar volume V in the
zone of curvature, and an increase in the rates of all types of
atomic redistributions. After the condition V > V. is

Figure 5. Dependences of the shape and rate of localized plastic deformation on the curvature y of the region under deformation; y; < 5.
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reached, a structural-phase decomposition of the crystalline
state occurs in the zone of strong curvature, and the material
undergoes fracture. The manifestation of this effect is widely
known in engineering practice.

4. Experimental verification of predictions
of the gauge theory of nonlinear waves
of channelled plastic deformation

Figure 3 displays nonlinear plastic waves that were chan-
nelled in nanostructured surface layers of planar samples of a
ferritic-martensitic steel under conditions of uniaxial tension
[14]. The observation of these waves makes it possible to
perform an experimental verification of the predictions of the
gauge theory of wave deformation in planar subsystems. A
change in the thickness of the nanostructured surface layer
leads to a change in both the nonlinear wavelength A and the
width ¢ of the spiral channelled flux. From formula (9), an
expression that relates J to / can easily be obtained.
According to paper [10], one has

4n(V/b) } '

x(by — by) (16)

5:Lexp{—

At a given counter field V£ from the side of the crystalline
substrate, we obtain a scalar product V/b = 0if V/ L b. This
condition corresponds to the double spirals of the extruded
material shown in Fig. 3. This statement is especially well
illustrated by the structure of nonlinear waves in titanium
samples with a surface layer enriched in hydrogen [18]. The
mechanism of extrusion of the surface layer material in a
nonlinear wave has been investigated in Ref. [18] in the course
of a uniaxial tension of planar samples of polycrystalline
titanium whose surface layers were nanostructured and
enriched in hydrogen. Titanium has a very low shear stability
(a stacking-fault energy of only 10 mJ m~2). The nanostruc-
turing and hydrogenating of a surface layer additionally
reduce this shear stability.

The use of scanning tunneling microscopy permitted us
[18] to reveal the mechanism of the extrusion of the material in
a channelled nonlinear wave. It is seen from Fig. 4 that the
wave extrusion of the material occurs as a result of the mutual
displacements of individual lamellae, with each lamella being
extruded via mutual displacements of even finer transverse
lamellae. The binormal to each lamella is perpendicular to the
sample’s plane and, consequently, to the direction of the
counter field Vf from the side of the crystalline substrate.
These data indicate a hierarchically organized structure of the
nonlinear wave of the extrudible material. Correspondingly, a
linear dependence should exist between the quantities 6 and 4
at each scale level. This is indeed confirmed experimentally.

Figure 3d displays the 0 = (A1) dependence calculated
from the data of Ref. [14] for a ferritic-martensitic steel. This
dependence corresponds to a straight line 6 = kA with a
coefficient k£ =0.75. The three scales of nonlinear waves
shown in Fig. 4 are also described by a linear dependence
0 = kA (Fig. 4b) if the length of the lamella is assumed to be
1/27, and its thickness to be 6. The coefficient k; = 0.17 is a
factor of 4.4 less than the coefficient k for steel. This means
that in titanium with its low shear stability a mesoband of a
given power at a distance equal to its wavelength A is capable
of traveling a distance that is a factor of 4.4 greater than an
analogous mesoband at a distance equal to its wavelength in
high-strength steel. This regularity is also confirmed by the

characteristics of nonlinear waves in nanostructured surface
layers of other materials.

A good agreement between the predictions of the gauge
theory of nonlinear waves of channelled structural transfor-
mations in planar subsystems and the experimental data
indicates the validity of the conception of the authors of this
paper focused on the necessity of representation of surface
layers and internal interfaces as the leading functional
subsystem in a deformable solid. The theoretical and
experimental investigations of nonlinear waves of channelled
plastic flow in planar subsystems with allowance for the well-
developed theory of strain-induced defects in crystals opens
the way for constructing a general theory of a deformable
solid as a nonlinear hierarchically organized system [4].

5. Nonlinear wave processes of fracture

In general, the fracture of a solid constitutes a dissipative
process. A crack represents a rotation deformation mode on a
macroscale level. According to the law of conservation of
angular momentum, this mode should be equal to the sum of
rotation modes at lower scale levels. In a continuum medium,
this is a dissipative process.

However, if we create conditions for a channelled
propagation of a crack and maximally localize the dissipa-
tion effects, the crack will propagate via a nonlinear wave
mechanism. This follows from the nonequilibrium thermo-
dynamics of its propagation. The opening of a crack is caused
by the structural phase decomposition of the material ahead
of'its tip, and this is a threshold process. The propagation of a
crack is related to the relaxation of the stress concentrator in
its tip. The growth of a crack should periodically cease for the
restoration of the stress concentrator and the establishment of
the state of structural phase decomposition in a new zone of
the material. This is a typical nonlinear wave process which
can be described by equation (6) if we neglect the term
PPCl/E in it. An increase of the term 0lnu,(x,1)/0x,
related to normal stresses will be periodically compensated
for by quasielastic forces that are represented by the second
term, (0lnup/0x,) Cj’g /E. This will cause a nonlinear wave
character of the propagation of the crack with periodic stops.
Naturally, the rate of change of the right-hand part of Eqn (6)
should be small for revealing such wave processes, i.e., the
nonlinear fracture waves should be slow.

Such wave processes of a channelled fracture were
described in paper [17] for the case of the propagation of
fatigue cracks in two-layer composites. At first, zigzag
mesobands of localized plastic deformation developed at the
interface of unlike media in the course of their cyclic alternate
bending. Then, a channelled fatigue crack of shears—rotations
propagated as a nonlinear wave process in one of the
mesobands.

In recent work [24], the channeling of fractures and the
minimization of dissipation processes were realized in the case
of tension of planar samples of submicrocrystalline titanium
with a chevron notch (Fig. 6a). Under the conditions of
uniaxial tension, an opening mode crack was nucleated in
the tip C of a thin planar layer in the form of a chevron notch,
which propagated in a channeling mode along the long-
itudinal section of the sample. The high degree of departure
from thermodynamic equilibrium of the submicrocrystalline
state caused rapid structural phase decomposition of the
material in the region ahead of the crack tip. Further in this
region, a transverse fracture wave propagated, which shifted
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L

Figure 6. Nonlinear waves on the fracture surface after tensile test of a sample with a chevron notch [24]: (a) shape of the sample; (b) periodic white
transverse bands of the material which underwent structural phase decomposition, and (c) porous nanostructure of a transverse band of the material. The

micrographs were obtained using scanning electron microscopy.

the decomposition products of the crystalline material toward
the periphery of this region (Fig. 6b). The porous nanos-
tructure of the material that underwent a structural phase
decomposition and was rejected by the fracture wave to the
periphery of the transverse band is demonstrated in Fig. 6c.
This material exhibits secondary-electron emission and can
thus easily be detected. These results are of important value
for the explanation of the fracture mechanism in solids.

Such nonlinear fracture wave processes are characteristic
of many nanostructured objects (multilayer nanostructured
coatings, thin-film structures in microelectronics, nanostruc-
tured surface layers of a functional designation in materials
science, etc.). These wave processes can be controlled on the
basis of the theory developed in paper [10].

6. Conclusions

It is suggested that a deformable solid be treated as a
nonlinear hierarchically organized system consisting of two
self-consistent subsystems. The deformation of a three-
dimensional translationally invariant crystalline subsystem
is described on the basis of the theory of strain-induced
defects. In this case, local structural transformations in the
cores of the strain-induced defects and an increase in the
magnitude of departure from thermodynamic equilibrium of
the deformable crystal should be taken into account. The
surface layers and all internal interfaces should be considered
as an independent planar nonlinear subsystem with a
disrupted translational invariance rather than as planar
defects in a three-dimensional crystal. The primary plastic
shears in a loaded solid are related to the nonlinear waves of
channelled structural transformations in a planar subsystem
rather than to dislocations. The propagation of nonlinear
channelled waves is accompanied by a periodic generation of
strain-induced defects in the zones of strong curvature, whose
emission into the crystalline subsystem provides a plastic
change of its shape.

A theoretical and experimental substantiation of the
conception developed is given. It is shown that the theory of
nonlinear waves of channelled plastic deformation developed
in paper [10] satisfactorily describes the regularities of the
development of nonlinear wave processes which determine
the law of self-consistency of plastic flow in multiscale
hierarchically organized systems. The violation of such self-
consistency leads to the fracture of a loaded solid. The

nonequilibrium thermodynamics of fracture is related to the
structural phase decomposition of the condensed state of a
solid in regions where the Gibbs thermodynamic potential
proves to be positive. The channelled propagation of cracks in
multiscale systems is also developed as a nonlinear wave
process.
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