
Abstract. Taking magnetostatic surface wave diffraction as an
example, this paper theoretically investigates the 2D diffraction
pattern arising in the far-field region of a ferrite slab in the case
of a plane wave with noncollinear group and phase velocities
incident on a wide, arbitrarily oriented slit in an opaque screen.
A universal analytical formula for the angular width of a
diffracted beam is derived, which is valid for magnetostatic
and other types of waves in anisotropic media and structures
(including metamaterials) in 2D geometries. It is shown that the
angular width of a diffracted beam in an anisotropic medium
can not only take values greater or less than k0=D (where k0 is
the incident wavelength, andD is the slit width), but can also be
zero under certain conditions.

1. Introduction

Waves of different physical natures propagating through
various media and structures, as is well known, obey
common physical laws (see, for instance, books [1±4]). In
particular, the application of momentum and energy con-
servation laws in the first-approximation description of the
propagation, reflection, and refraction of waves in homo-
geneous isotropic and anisotropic media permitted revealing

several common laws: the laws of geometrical optics for
isotropic media (see, for instance, review [5]) and, for
anisotropic media, the laws determined by the mathematical
properties of the wave isofrequency dependence,1 e.g., the
inherence of mathematical attributes like symmetry axes,
asymptotes, inflection points, and extreme points in the
dependence (for more details, see Ref. [5]).

In the description of spatially limited wave processes and
diffraction phenomena in homogeneous isotropic media, it
has also been possible to reveal several laws common for
waves of different physical natures. Among the best known
results undoubtedly is the formula describing the diffracted
beam angular width in the incidence of a plane wave on a slit
in an opaque screen as the ratio of the initial wavelength l0 to
the slit width D. As is commonly known, the l0=D ratio
defines the Rayleigh resolution criterion which plays an
important role in estimation calculations and interpretation
of physical effects in isotropic media (see, for instance,
monograph [1]). Naturally, this brings up the question: Is it
possible to derive a similar universal formula for describing
the diffracted beam angular width, at least for two-dimen-
sional geometries 2 of anisotropic media?

Diffraction phenomena in anisotropic media have been
studied primarily by the examples of electromagnetic waves in
plasmas (see monograph [2, Chapters 7 and 8] and references
cited therein), light in optical crystals [2, 6, 7], acoustic waves
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isofrequency surface (for more details, see Ref. [5]).



[8±10], and dipole spin waves (see Refs [11±13] and references
cited therein), which are usually referred to as magnetostatic
waves (MSWs) [14]. To date, however, an analytical depen-
dence for the far-field diffracted beam angular width has not
been obtained for any of these waves.

In this paper, an attempt is made to fill in this gap. In
Sections 2±9, in particular, by the example of an MSW
propagating in a ferrite slab, a theoretical investigation was
made of the two-dimensional far-field diffraction pattern
emerging in the incidence of a plane MSW on a wide slit in
an opaque screen in the most general case, when the group and
phase velocities of the initial wave are noncollinear and the
orientation of the screen is arbitrary.

MSWs, which are efficiently excited and propagate in
different ferrite structures, are a rather convenient subject
both for theoretical and for experimental investigations of
diffraction phenomena in anisotropic media. Owing to the
low phase velocity of MSWs, their wavenumber k at
microwave frequencies is on the order of 10ÿ104 cmÿ1

(wavelength � 10ÿ104 mm), which is many times greater
than the wavenumber k0 of an electromagnetic microwave
wave in a vacuum (k4 k0 � o=c � 1 cmÿ1). This circum-
stance permits describing the MSW characteristics in the
magnetostatic approximation [14] (neglecting the terms
� q=qt in the Maxwell equations and applying the equations
of magnetostatics). This makes it possible to analytically
investigate the properties and dispersion of these waves in
different structures for an arbitrary propagation direction of
a wave with noncollinear group and phase velocities.

Historically, the investigation of diffraction phenomena
in the propagation of MSWs sprang from several experi-
mental and theoretical papers concernedwithMSWpropaga-
tion through periodic inhomogeneities produced by different
methods in a ferrite slab (see, for instance, Refs [12, 13, 15±
21]).3 More recently, papers have appeared which formulate
diffraction problems for MSWs [25, 26], which are concerned
with the methods for the solution of the parabolic equation
[27±30], and which investigate the diffraction of an MSW
beam limited in width and excited by a finite aperture radiator
[11, 12, 31±36]. In the last-named studies, investigations were
primarily made of the case in which an exciting linear
transducer of finite length was oriented parallel to one of the
symmetry axes of the MSW isofrequency dependence.4

An analysis of the literature, therefore, shows that the far-
field diffracted beam parameters in the diffraction from a
wide slit in an opaque screen have so far remained unexplored
for a plane MSW with noncollinear group and phase
velocities.

2. Basic relations describing the propagation
of a magnetostatic wave through a ferrite slab

Consider an infinite plane-parallel ferrite slab (or film) 2
(Fig. 1) of thickness s, which is magnetized to saturation by a
tangent uniform magnetic field H0 and surrounded by
vacuum half-spaces 1 and 3. The fields in media 1±3 or their
parameters will be marked with the corresponding subscripts

j � 1; 2; 3. We introduce a Cartesian system of coordinates
SD � fx; y; zg with the z-axis parallel to vector H0, and with
the x-axis perpendicular to the slab surface. In the description
of the wave processes which depend on the time as
� exp �iot�, the ferrite slab in the selected coordinate system
is characterized, as is well known, by permeability tensor m2

 !

with diagonal and off-diagonal components m and n, whose
dependences on the electromagnetic oscillation frequency
o � 2p f, the magnitude ofH0, and the ferrite slab saturation
magnetization 4pM0 can be found in Refs [12, 14, 37]. The
half-spaces 1 and 3 will be assumed to have permeabilities
m1; 3 � 1.

Since the problem of the MSW propagation in a ferrite
slab has been repeatedly solved [12, 14], belowwe only outline
briefly the information and relations required for the
subsequent discussion.

In the solution to this problem, we shall apply the
Maxwell equations in the magnetostatic approximation:
rot h � 0, and div b � 0. By introducing the magnetic poten-
tial Cj for each of the media � j � 1; 2; 3� in accordance with
relationship h j � gradCj and proceeding from the continuity
conditions for the magnetic potential and the normal
component of magnetic induction b at the media interfaces,
it is possible to derive the differential equations for the
potential inside and outside the ferrite slab, find the
coordinate dependences of the magnetic potential:

C1� C exp �ÿk1xxÿ ikyyÿ ikzz� ;
C2�

�
G exp �k2xx�� B exp �ÿk2xx�

�
exp �ÿikyyÿ ikzz� ; �1�

C3� F exp �k3xxÿ ikyyÿ ikzz� ;
and obtain the dispersion relation5 describing the propaga-
tion of a magnetostatic surface wave (MSSW) in the ferrite
slab plane:

m 2k 2
2x ÿ n 2k 2

y � k 2
1x � 2mk1xk2x coth �k2xs� � 0 ; �2�

where k1x, k2x, k3x, ky, and kz are the wave vector components
along the coordinate axes (k1x, k2x, and k3x are positive
numbers), which are given by the relations

k1x �
����������������
k 2
y � k 2

z

q
;

k2x �
����������������
k 2
y �

k 2
z

m

s
; �3�

k3x � k1x :
3 Recently, investigations of MSWs in spatially periodic structures termed

magnonic or photonic crystals have received a new impetus in connection

with the emergence of interest in the properties of metamaterials [13, 22±

24].
4 Exceptions are provided by Refs [31, 33], in which measurements were

made of the near-field profile of an MSW beam excited by an arbitrarily

oriented (relative to the external magnetic field) limited-length radiator.

y
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x � s

H0
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3 0

Figure 1. Arrangement of a ferrite slab in a Cartesian system of

coordinates SD associated with the field H0: 1 and 3 are vacuum half-

spaces, 2 is the ferrite slab.

5 A more detailed derivation of the dispersion relation for an MSSW can

be found in Refs [12, 14, 37], the notation employed in Ref. [37] coinciding

with the notation of our work. A table with dispersion relations for

different structures can also be found in paper [37].
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In the ferrite slab plane, we also introduce a polar
coordinate system Sp � fx; r;jg corresponding to the Carte-
sian systemSD, so that anglesj aremeasured from the y-axis,
which is the axis of collinear propagation for an MSSW. In
this case, it is assumed that positive angles are counted
counterclockwise. The coordinates of the Sp and SD systems
are related through the equalities y � r cosj, and z � r sinj.
The wavenumbers k1x, k2x, ky, and kz used in the SD system
are related to the modulus of the wave vector k used in the Sp

system as follows:

ky � k cosj ; �4�
kz � k sinj ;

k2x � ak ; �5�
k1x � k ;

where

a �
�������������������������������
cos2 j� sin2 j

m

s
�

�������������������������������������
�mÿ 1� cos2 j� 1

m

s
: �6�

Substituting expressions (4), (5) into coordinate depen-
dences (1), it is possible to write, with the inclusion of the time
dependence � exp �iot�, the expressions for the magnetic
potential Cj inside and outside the film in the coordinate
system Sp in the following form

Cj � Cj x exp �iotÿ ikr� ; �7�
whereCj x are the x-dependent amplitudes of the potential in
the jth medium.

In view of expressions (4)±(6), the dispersion relation (2)
in the polar coordinate system takes on the form (see paper
[37])

1

m
� m? cos

2 j� sin2 j� 2a coth �aks� � 0 ; �8�

where m? � �m 2 ÿ n 2�=m.
In addition to the polar angle j describing the orientation

of theMSSWwave vector k, we introduce another polar angle
in the ferrite slab planeÐan angle c, which describes the
orientation of the MSSW group (ray) velocity vector V. As is
well known, the vector V is perpendicular to the isofrequency
curve at the point corresponding to the wave vector k (see, for
instance, Refs [5, 12]). Finding the angle c from the known
dispersion relation represents a cumbersome procedure,6 but
not a sophisticated task. We do not reproduce it here and
consider the dependence c�j� to be known.

3. Formulation of diffraction problem

We now address the investigation of diffraction phenomena.
We shall highlight the diffraction pattern when a plane

MSW is incident on a slit of width D in an infinitely thin
screen, which is opaque for the MSW. Let the incident wave
have a frequency o0 � 2p f0, a wave vector k0, and a group
velocity vector V0, k0 and V0 being noncollinear vectors
(hereinafter such a wave will be termed noncollinear)
arbitrarily oriented relative to the slit line (Fig. 2).

A typical isofrequency dependence for an MSSW with
frequency f0 in the plane of wave numbers is given in Fig. 3
(curves 1 and 2), which also shows the point S corresponding

to the initial noncollinearMSSW. Also shown are the vectors
k0, V0 and the corresponding angles j0 and c0, which
describe the orientation of these vectors in the coordinate
system SD. The vector k0 is inclined to the vector V0 by an
angle w0 defined by the formula

w0 � j0 ÿ c0 : �9�

Below, we shall also use the Cartesian S 0D � fx; y 0; z 0g
and polar S 0p � fx; r;j 0g coordinate systems, which are
rotated about the x-axis by the angle y (see Figs 2 and 3)
relative to the systems SD and Sp, so that the y 0-axis is
perpendicular to the slit line. The angles j 0 and c 0, which
define the orientation of an arbitrary wave vector k and a
group velocity vector V in the system S 0p, are related to the
similar angles j and c in the system Sp by the expressions
j 0 � jÿ y and c 0 � cÿ y. In accordance with the Huygens
principle, it will be assumed that the incidence of a noncol-
linear planeMSWon the slit gives rise to secondary point-like
MSW sources along the slit line, and that estimating their
action at a distant point requires integrating (i.e. calculating
the superposition of) the contributions from all infinitely
small elements (secondary MSW sources) located on the slit.

Since the magnetic potential C of an MSW is a scalar
quantity and all curves of theMSW isofrequency dependence
describe waves of the same polarization, to calculate the
resultant field of the secondary sources at a distant point of
observation one simply needs to sum up the magnetic6 This procedure is described at length, for instance, in Refs [12, 38].
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y
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k�j0�l sinj0

k0l sinj 00

l � Dl � 0 j 00

c 00
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Figure 2. General geometry of the incidence of a plane MSSW on a slit in

an opaque screen. The dashed lines depict the wave fronts of the initial

wave. Indicated for an arbitrary elementary slit portion dlwith coordinate

l are the phase incursion k�j 0�l sinj 0, which arises due to the difference

between the distances rl and r1, and the phase incursion k0l sinj 00, which is

due to the fact that the initial wave does not simultaneously reach the

elementary exciters with coordinates 0 and l. The corresponding geometry

in the wavenumber plane is illustrated in Fig. 3. As one can see from this

figure, the direction j 0 � 12� �j � 32�� to the point Pk corresponds to a

direction c 0 � ÿ72� �c � ÿ52�� to a point PV (if the corresponding

vectors k and V are plotted in the isofrequency dependence).
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potentials of the perturbations at this point caused by all
secondary MSW sources located along the slit line.

It should be emphasized that we are always dealing with
two directions, j and c (or j 0 and c 0 in the coordinate
systems S 0D and S 0p), which define the respective orientations
of the wave vector k and the group velocity vector V of the
wave. This distinguishes the problem under consideration
from the similar diffraction problem for isotropic media. In
this case, the conditions that define the constructive inter-
ference of secondary MSW sources will be written for their
wave vectors, i.e., for the direction j (or j 0), but the wave
energy transfer in the event of this constructive interference
will be effected not in the direction j (or j 0), but in the
direction c (or c 0) of the corresponding group velocity
vector. Therefore, to describe the diffraction problem under
investigation, we introduce two points sufficiently distant
from the slit: Pk and PV, such that the direction to the point
Pk will coincide with the orientation j of the wave vectors of
the secondary MSW sources, while the direction to the point
PV will be aligned with the orientation c of the corresponding
group velocities of the secondary MSW sources.

To facilitate our consideration, the dependences k�j� and
c�j� are assumed to be unique (i.e., a single ordinate value
corresponds to every value of the argument). Our treatment
will be performed by the example of anMSSWpropagating in
a free ferrite slab. Such a wave is always characterized by
unique dependences k�j� andc�j�, with the k�j� dependence
for this wave being explicitly expressed from dispersion
relation (8) written in the polar coordinate system. From the
single-valued character of the c�j� dependence, it follows
that a single point PV will correspond to every point Pk. For
the sake of simplicity we also assume that the inverse
relationship j�c� is also single-valued, i.e., a single point Pk

corresponds to every point PV. We note that in what follows it

will be possible to abandon the assumption of the single-
valued behavior of the dependences k�j� and c�j�, as well as
of the dependence j�c�, and to consider the consequences of
the ambiguity of these dependences (see Section 7).

As is well known, to precisely calculate the direction of
electromagnetic wave energy transfer requires finding the
Poynting vector. However, in those cases when calculating
the Poynting vector is a very arduous task (as with a
noncollinear MSW), this calculation can be performed with
sufficiently high accuracy by taking advantage of the group
velocity vector. The notion of group velocity is fully
applicable to an MSW propagating in a free ferrite slab,
because the conditions of small damping and sufficiently weak
dispersion are fulfilled for these waves (formore details on this
issue, see Lektsii po Nekotorym Voprosam Teorii Kolebanii
(Lectures on Some Issues of the Theory of Oscillations) by
Mandelstam in book [39]). Furthermore, in several papers it
was confirmed that the calculated direction of the group
velocity corresponded to the measured direction of MSW
energy propagation [31, 40±47]. It is noteworthy that a similar
correspondence was also established in the investigation of
noncollinear acoustic wave propagation (see, for instance,
Refs [48, 49]). Therefore, it is safe to say that the direction of
the group velocity vector adequately describes the direction of
propagation of the wave power flux.

4. Expression for the total magnetic potential
arising when a plane magnetostatic wave
is incident on a slit

For simplicity of reasoning, we temporarily fix the x-
coordinate when considering the two-dimensional problem
in the �y 0; z 0� plane on that surface of the ferrite slab near
which the initial MSSW is localized.

We introduce an auxiliary coordinate l along the slit line,
so that l � 0 at the left slit edge, and l � D at the right one,
where D is the slit length. We divide the slit line into a set of
equal elementary portions of length dl, each of which may be
treated as a secondary wave source producing an elementary
magnetic potential dCj. All elementary sources radiate with
different phases, since the initial MSSW is inherently noncol-
linear and its phase fronts, which are shown with dashed lines
in Fig. 2, are not parallel to the slit line. Furthermore, since
the medium is anisotropic, every direction j 0 corresponds to
its ownwavenumber k, because k is a function of the anglej 0:
k � k�j 0�.

So then, let us find the total magnetic potential Cj at
an arbitrary 7 distant point PV, which corresponds to a
polar angle c 0. This potential is the result of the
interference of all secondary waves whose wave vectors
are oriented in the j 0 direction to a distant point Pk

(which corresponds to the point PV and the angle c 0) and
is the sum of the secondary potentials dCj, with every slit
element dl exciting a potential dCj with an amplitude
C�r;j 0�=D � C�r�C�j 0�=D � CrCj=D. To calculate the
Cj�c 0� dependence, one must first find the dependence
Cj�j 0� and then put the value of c 0 in correspondence to

k1

j
0
1

j0

c0

y

w0

S

1

2 kz, cmÿ1

z

z 0

k0

ky, cmÿ1yy
0

V0

k0pr

c1

V1
0

400

ÿ400

800

1200

ÿ1200

ÿ800

ÿ400

0

400

800 H0

j1

j
0
0

Figure 3.General geometry in the wavenumber plane for the incidence of a

noncollinear MSSW on a screen.

7 We emphasize that the arbitrary manner of selecting the point PV or

directionsc andc 0 in the case under consideration (when the isofrequency
dependence of the wave has cutoff angles) is limited: thec (orc 0) direction
must be such that it can be aligned with the group velocity vector of at least

one point S lying in the isofrequency curves, because the energy transfer in

other directions c is evidently impossible, and for them we must put

Cj � 0.
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every value of j 0. This order of calculations is convenient,
because the quantity c 0 does not enter directly into the
dispersion relation (8) and is not an independent variable;
in this case, c 0�j 0� is, as a rule, an implicit function,
which also has to be calculated. Assuming that the above
reasoning is true for every value of x, the total potential
Cj in the j th medium � j � 1; 2; 3� may be written out, in
accordance with expression (7), in the form

Cj �
�
dCj �

� D

0

1

D
Cj xCrCj

� exp
ÿ
io0t� ib1� ik0l sinj 00ÿ ik�j 0�r1ÿ ik�j 0�l sinj 0� dl :

�10�

Here, all terms (except io0t) in the exponent describe the
phase incursions that emerge as the MSSW propagates (see
Fig. 2): b1 characterizes the phase with which the initial
wave arrives at the first elementary source of secondary
waves on a slit with coordinate l � 0; the quantity k0l sinj 00
describes the phase difference between the elementary
secondary source with an arbitrary coordinate l and the
elementary secondary source with coordinate l � 0 (this
phase difference emerges due to the fact that the initial
MSSW does not simultaneously reach all elements of the
slit); the quantity ÿk�j 0�r1 ÿ k�j 0�l sinj 0 stands for the
phase incursion occurring over the distance rl between the
point Pk and the arbitrary elementary secondary source dl on
a slit with coordinate l, with the first term, ÿk�j 0�r1,
describing the phase incursion between the point Pk and the
elementary secondary source with coordinate l � 0, and the
second term describing the phase incursion due to the
difference between the distances rl and r1. The phase
incursions listed above should be calculated with the inclu-
sion of the signs of angles j 00 and j 0.

Introducing the designation

x � k0 sinj 00 ÿ k�j 0� sinj 0 ; �11�
expression (10) can be represented in the form

Cj � 1

D
Cj xCrCj exp

ÿ
io0t� ib1 ÿ ik�j 0�r1

� � D

0

exp �ixl � dl :
�12�

We calculate the integral on the right-hand side of expression
(12):� D

0

exp �ixl � dl � 1

ix
exp �ixl �

���D
0
� ÿ i

x

�
exp �ixD� ÿ 1

�
� ÿ i

x
exp

�
ixD
2

�
2i sin

�
xD
2

�
� exp

�
ixD
2

�
sin �xD=2�

x=2

� D exp

�
ixD
2

�
sinF
F

; �13�

where F denotes (in view of the relation k0 � 2p=l0) the
following quantity:

F � 1

2
Dx � 1

2
D
ÿ
k0 sinj 00 ÿ k�j 0� sinj 0�

� p
D

l0

�
sinj 00 ÿ

k�j 0�
k0

sinj 0
�

� p
D

l0

�
sin �j0 ÿ y� ÿ k�j�

k0
sin �jÿ y�

�
: �14�

Substituting expression (13) into formula (12), in view of
designation (11), we obtain the following expression for Cj:

Cj� Cj xCrCj
sinF
F

exp
ÿ
io0t� ib1ÿ ik�j 0�r1

�
exp

�
ix

D

2

�
� Cj xCrCjA exp

ÿ
io0t� ibÿ ik�j�r� ; �15�

where A is the modulated amplitude of the total magnetic
potential Cj:

A � sinF
F

; �16�

r is the distance of point Pk from the slit center:

r � r1 � 1

2
D sinj 0 ; �17�

and the quantity

b � b1 �
1

2
Dk0 sinj 00 �18�

is the wave phase of the center of a slit with length D, or the
phase of the central elementary slit exciter (see Fig. 2).

So then, the final expression (15) describes the dependence
Cj�j� �orCj�j 0��, and now, to find the dependenceCj�c� �or
Cj�c 0��, every value of j (or j 0) must be put in correspon-
dence to the value of c (or c 0), thus representing the angle j
in formulas (14) and (15) as aj�c� dependence. Furthermore,
in going from the conventional observation point Pk to the
true observation point PV, we must replace in the final
formula (15) the distance r (of the point Pk from the slit
center) by the corresponding distanceR (of the corresponding
point PV from the slit center) using the formula8 r � R cos w,
so that the factor exp �ÿik�j�R cos w� will describe the phase
of the wave beam excited by the slit at the point PV. In
expressions (14)±(16), the function k�j� is defined by the
dispersion relation (8); Cj x � Cj x�x� describes, according to
relations (1), the dependence of magnetic potential Cj on the
x-coordinate inside and outside the ferrite slab � j � 1; 2; 3�;
Cr � Cr�r� stands for the dependence of the potential Cj on
the coordinate r; and the factor Cj and the modulated
amplitude A define the dependence of the potential Cj on
the polar angles j and c (or j 0 and c 0).

Our further concern is only with the dependence of the
magnetic potential on the polar angles, and therefore a
comment about the factor Cj in expression (15) is in order.
This quantity is physically similar to the Kirchhoff factor for
isotropic media (see, for instance, Ref. [6, æ 38]) and describes
how the amplitude induced by every auxiliary source depends
on the polar angles j and c. For an MSSW, this dependence
will evidently be more complicated9 than the Kirchhoff

8 The quantities r andR in Fig. 2 and in Fig. 4, which appears in Section 5,

do not satisfy the relationship r � R cos w owing to the limitation of the

drawing size.
9 Calculation of the Kirchhoff factor for a specific anisotropic medium is

beyond the scope of the present paper. Evidently, for anisotropic media

the polar angle dependence of the amplitudes of auxiliary sources will be

more complicated than the function � �1� cosj 0�=�2l� describing the

Kirchhoff factor for isotropic media (see, for instance, Ref. [6, æ 38]).

However, since the MSSW wave vector k cannot be oriented at angles j
that lie in the intervals jcut1 < j < jcut2 and jcut3 < j < jcut4 (where

jcut1, jcut2, jcut3, and jcut4 are the wave vector cutoff angles aligned with

the asymptotes of isofrequency curves 1 and 2 in Fig. 3), factors Cj and,

therefore, Cj will evidently be equal to zero for these intervals of angle j
(and the corresponding intervals of angle c).
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factor. But similar to the case of isotropic media, the factor
Cj may be treated (in comparison with the rapidly oscillating
modulated amplitude A � sinF=F) as being practically
constant in the small interval of the values of angle j between
two zeroes of the function sinF=F nearest the principal
maximum [this interval is very narrow when D=l0 4 1, for
which expressions (14)±(16) were obtained]. That is why in the
calculation of the diffracted beamwidth onemay assume that
Cj � const and analyze only the dependences A�j�c�� or
A�j 0�c 0��.

It should be emphasized that everything set forth in this
section and Section 3 is true not only for an MSSW
propagating in a free ferrite slab, but also for MSWs of other
types in different structures, because the wave characteristic
enters into the final expressions (14)±(16) only in the most
general formÐ in the form of the dependences k�j� andc�j�
[or j�c�].

5. Diffraction patterns arising in a ferrite slab

We consider now typical diffraction patterns emerging when
an MSSW is incident on a wide slit in an opaque screen.

For the geometry wherein the wave vector k0 of the initial
MSSW is normal to the slit line,10 expression (14) for the
phase function F becomes simpler. In this case, the angle
j 00 � j0 ÿ y � 0 and, therefore, y � j0, while expression (14)
assumes the form11

F � 1

2
Dk�j 0� sinj 0 � 1

2
Dk�j� sin �jÿ y� ; �19�

where j 0 and j are the dependences j 0�c 0� and j�c�.
The geometry wherein the wave vector k0 and the group

velocity vector V0 of the initial wave are collinear and
perpendicular to the slit line (Fig. 4) is the most simple,
because, in this case, j0 � c0 � w0 � 0, the coordinate
systems Sp and S 0p coincide (i.e., j

0 � j and y � 0), and F is
expressed as

F � 1

2
Dk�j 0� sinj 0 � 1

2
Dk�j� sinj : �20�

As is easily seen, formula (20) for k�j� � const � k0 � 2p=l0
coincides with the well-known similar formula for isotropic
media 12 (see, for instance, Refs [1, æ 9.6; 6, æ 39]).

The results of numerical calculations of the modulated
amplitude A for the geometry depicted in Fig. 4 are given in
Fig. 5 in the polar coordinate system (curve 1).13 In the
execution of these calculations, we assumed a magnitude
H0 � 300 Oe of the external uniform magnetic field; the
ferrite slab possessed the parameters used most frequently: a

thickness s � 10 mm and a saturation magnetization 4pM0 �
1750 G; an initial MSSW frequency f0 � 2900 MHz, and
l0=D � 0:1.

Shown for comparison in Fig. 5 is the similar dependence
of the modulated amplitude for an isotropic medium and the

10 This geometry is easy to imagine if Fig. 3 and the vectors k0 and V0 in

Fig. 2 are rotated counterclockwise in the plane of the drawing so that the

vector k0 turns out to be vertically oriented and perpendicular to the line of

the screen.
11 The minus sign in front of expressions (19) and (20) was omitted,

because the ratio sinF=F remains unchangeable under the replacement

F! ÿF. Notice that the minus sign in front of k�j 0� in expression (14) is

due to describing the traveling MSW in the form exp �iotÿ ikr� [see
expression (7)], while the traveling waves, for instance, in Ref. [1] are

described in the form exp �ikrÿ iot�. As is well known, both these

descriptions are equivalent.
12 Notice that 2p enters in lieu of p in the formula forF in Ref. [1], since the

latter makes use of the ratio sin �F=2�=�F=2� rather than sinF=F.
13 Shown in Fig. 5 is only that part of the behind-screen diffraction pattern,

which corresponds to the angular interval ÿ56:5� < c < 56:5�.
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Figure 4. Geometry of MSSW incidence on a screen in the case of

y � j0 � c0 � 0, i.e., the wave vector k0 and the group velocity vector

V0 of the initial MSSW are normal to the screen (k0 andV0 are collinear in

that event). The dashed lines exhibit the wave fronts of the initial wave.

From the isofrequency curve of the initial MSSW with f � 2900 MHz

shown in the inset, it is possible to determine, for instance, that the

direction j � 12� to a point Pk corresponds to the direction c � ÿ30� to a
point PV.
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Figure 5. Far-field diffraction pattern occurring when an MSSW with

collinear vectors k0 and V0 is normally incident on a slit (curve 1). Initial

MSSW and geometry parameters are as follows: f0 � 2900 MHz,

l0 � 138:9 mm (k0 � 452:5 cmÿ1), y � c0 � j0 � 0, and l0=D � 0:1
(only the diffraction pattern behind the screen is displayed, i.e., the

pattern for angles jc 0j4 90�). Shown for comparison is the diffraction

pattern occurring in isotropic media under normal wave incidence on the

slit (curve 2).
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same ratio l0=D � 0:1 (curve 2). As is clear from the
comparison of curves 1 and 2 in Fig. 5, the width of the
principal maximum for curve 1, which describes MSSW
diffraction, is approximately three times broader 14 than the
corresponding peak of curve 2.

Next, let us calculate the modulated amplitude A by
formulas (16) and (14) for the most general geometry shown
in Figs 2 and 3, when the vectors k0 and V0 of the initial wave
are noncollinear and arbitrarily oriented relative to the
screen. The A�c 0� dependence in the case of such a geometry
is plotted in Fig. 6a, the coordinate systems in Figs 2, 3, and 6a
being equally oriented. Figure 6b depicts the A�c 0� depen-
dence for the geometry in which the initial noncollinear wave
with the same parameters is normally incident on the screen
(the vector V0 is perpendicular to the screen).15 The upper
half-planes in Fig. 6, on which jc 0j < 90�, correspond to the
diffraction pattern emerging behind the screen, and the lower
half-planes, jc 0j > 90�, correspond to the diffraction pattern
emerging in front of the screen (which corresponds to
reflection from the slit).

Below, we note several differences and common features
characteristic of the dependences A�c 0� and A�c� in Figs 5
and 6.

(1) All A�c� dependences in Figs 5 and 6, like the
isofrequency MSSW dependence in Fig. 3, are undefined in
the same polar angle intervals ccut2 < c < ccut1 and
ccut4 < c < ccut3 of the coordinate system Sp. This situation
takes place owing to the fact that the isofrequency MSSW
dependence resembles a hyperbola, and, therefore, the angle
j describing the direction of thewave vector kmay not belong
to the intervals jcut1 < j < jcut2 and jcut3 < j < jcut4, and
the group velocity vector V may not possess a direction
corresponding to the above-indicated c angular intervals
[for the isofrequency dependence of the MSSW with a
frequency f � 2900 MHz (see Fig. 3), the k vector cutoff
angles, which are defined by the asymptote directions, are as
follows: jcut1 � 33:5�, jcut2 � 146:5�, jcut3 � ÿ146:5�, and
jcut4 � ÿ33:5�, while the corresponding V vector cutoff
angles are ccut1 � ÿ56:5�, ccut2 � ÿ123:5�, ccut3 � 123:5�,
and ccut4 � 56:5�].

(2) As is clear from the changes in A�c� dependences
shown in Fig. 6, two beams always emerge in this example of
plane MSSW diffraction from a slit.16 The amplitude of the
transmitted beam emerging behind the screen always peaks at
j � j0 and c � c0 � 43:7�. In this case, since the incidence
geometries in Figs 6a and 6b are different, the angle c 0 values
corresponding to the highest beam amplitude are also
different: c 0 � 23:7� in Fig. 6a, and c 0 � 0 in Fig. 6b. The
reflected beam emerges in front of the screen; in this case, the
peak in the A�c� dependence corresponding to the reflected
beammay lie in curve 2 (Fig. 6a), as well as in curve 1 (Fig. 6b).

(3) The two maxima of the A�c� dependence in Fig. 6
possess the same amplitude due to the fact that our treatment
disregarded the factor similar to the Kirchhoff factor (see
Section 4). It was believed that this factor may be considered
as having a constant value in a narrow interval of values of
angle c 0 (or c) between the two zeroes nearest some
maximum of the dependence A�c� � sinF�c�=F�c�. There-
fore, the assumption made permits us to find the position and
angular width of each of the maxima of theA�c� dependence,
but does not enable comparing the amplitudes of different
maxima of theA�c� dependence (which was not our intention
in this paper).

(4) The diffraction patterns displayed by curves 1 and 2 in
Fig. 6 correspond to excitation, by secondary sources, of
waves localized, respectively, near the upper and lower (in
Fig. 1) ferrite slab surfaces (curves 1 and 2 in Fig. 3 also
correspond to the waves localized near the upper and lower
ferrite slab surfaces). Since the initial MSSW itself is localized
at the upper slab surface (a point S corresponds to the initial
MSSW in curve 1 in Fig. 3), the excitation, by secondary
sources, of waves localized at the opposite surface (the wave
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Figure 6. Far-field diffraction pattern occurring when l0=D � 0:1 for an

arbitrary (a) and normal (b) incidence on the slit for an MSSW with

noncollinear vectors k0 and V0 for the following parameters:

f0 � 2900 MHz, c0 � 43:7�, j0 � ÿ22:6�, l0 � 96:3 mm, and k0 �
652:7 cmÿ1 (the wave parameters correspond to the point S in the

isofrequency curve 1 in Fig. 3). The values of polar angle c 0, which is

measured from the normal to the screen, are indicated. The screen normal

orientation is y � 20� in Fig. 6a, and y � 43:7� in Fig. 6b. The incidence

geometry corresponding to Fig. 6a is illustrated in Fig. 2.

14 A physical explanation of this fact is provided in the discussion of the

corresponding geometry in Section 9.
15 This geometry is not given in the drawings, but it is easily imagined if,

without changing the screen orientation, the entire Fig. 3 and the vectors

k0 and V0 in Fig. 2 are rotated clockwise through an angle of 23.7� (to
make V0 oriented vertically, normally to the screen).
16 The A�c� dependence in Fig. 5, which corresponds to the geometry of

Fig. 4, also possesses, strictly speaking, twomaxima (the peak correspond-

ing to the reflected beam emerges at j � c � 180�). However, if it is

assumed, as for isotropic media, that the secondary waves with wave

vectors oriented in the direction j � j0 � 180� (in opposition to the

vector k0 of the initial MSSW) are not excited, this maximum may be

disregarded.
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vectors of such waves terminate in curve 2 in Fig. 3) will
evidently be quite inefficient. Therefore, a portion of theA�c�
dependence described by curves 2 in Fig. 6 must have
amplitudes which will be one±two orders of magnitude
lower than the amplitudes of the other portion of the A�c�
dependence described by curves 1 in Fig. 6. For the purpose of
clarity, however, we plotted curves 2 in Fig. 6 neglecting this
factor (i.e., on the scale presented in Fig. 6, curve 2, unlike
curve 1, in reality must virtually coincide with the circumfer-
ence complying with the zero amplitude).

6. Physical meaning
of phase function U from the standpoint
of the momentum conservation law

An analysis of theA�c� dependences displayed in Figs 5 and 6
brings up the natural question of what determines the highest-
amplitude diffracted beam directions and how many dif-
fracted beams may arise from the diffraction of a certain
wave by a slit.

To answer these questions, we turn to the analysis of
expressions (14) and (16), which describe the quantitiesF and
A. As is evident from expression (14), F is, as regards the
dimensionality and substance, a phase function, and the
values of angle j, whereat F � 0 and A � sinF=F! 1,
have the following physical meaning: these are the directions
of secondaryMSWwave vector orientations whereby construc-
tive interference of the waves of all secondary sources occurs.
For other wave vector directions j, secondary MSW sources
also interfere, but the interference in these directions is not
constructive, and the inequality A < 1 is always fulfilled.

By putting F � 0 in expression (14), we can obtain the
following equations

k�j 0� sinj 0 � k0 sinj 00 ; or k�j� sin �jÿy�� k0 sin �j0ÿy�:
�21�

Evidently,j 0 � j 00 (orj � j0) are always the solutions of
these equations. Since k�j 00� � k�j0� � k0, equations (21) at
j 0 � j 00 (or j � j0) turn into an identity. The beam which
emerges for the j � j0 orientation of the wave vectors of
secondary sources and possesses amaximum amplitude in the
c � c0 direction (in the direction of vector V0 of the initial
wave) will be referred to as principal, because it always
emerges (when vector V0 is directed at the screen, of course)
and is characterized by the values of j and c, corresponding
to the initial wave parameters.

How many other directions j 0 or j satisfying Eqn (21)
emerge for some given geometry?

As is clear from Fig. 3, which complies with the general
geometry of MSSW incidence on a slit, the product k0 sinj 00
on the right-hand side of Eqn (21) represents the projection
k0pr of the initialMSSWwave vector k0 onto the slit line or on
the screen (on the z 0-axis). That is why the left-hand side of
equation (21) will be satisfied by those values of j 0 (or j)
whereto correspond wave vectors k also having projection
k0pr (with due regard to the sign) onto the slit line.

Evidently, when finding all vectors k possessing projec-
tion k0pr onto the slit line, one must draw a normal to the z 0-
axis through the tip of vector k0 and find all points of
intersection of this normal with isofrequency curves. On
completing this construction, we will find, apart from point
S0, another intersection point S1 lying in isofrequency curve 2.
This point corresponds to wave vector k1 directed at an angle

j1 � ÿ147�, and to a group velocity vector V1 directed at an
angle c1 � 125� (see Figs 3 and 6a). Thus, two diffracted
beams emerge in the geometry considered in Fig. 3Ð the
principal transmitted beam, and the reflected beam posses-
sing a maximum amplitude in the c1 direction.

It is evident that the parameters of the reflected beam
depend heavily on the geometry of incidence of the initial
MSSW. For instance, if a similar construction is made for the
geometry wherein the initialMSSWwith the same parameters
is normally incident on the screen (vector V0 is oriented
normally to the screen), then point S1, which corresponds to
the reflected beam, will lie on the left end of isofrequency
curve 1 and will have the parameters j � 32� andc � ÿ56:5�
(which is evident from Fig. 6b, which shows the A�c�
dependence for this geometry).

Therefore, in searching for the answer to the question
about the directions of diffracted beams, we arrive at the
following conclusion.

Equation F � 0 or equations (21) are, in essence, one of the
forms of writing down the momentum conservation law, which
establishes the equality between the projection k0 sinj 00 of the
wave vector of the initial wave and the projections of the wave
vectors of secondary sources onto the slit line in the emergence
of constructive interference (for instance, this equality has the
form k1 sinj 01 � k0 sinj 00 for the geometry of Fig. 3). There-
fore, the orientation j of the wave vectors of the secondary
sources, whereat constructive interference occurs, and the
direction c, in which the amplitude of the diffracted beam goes
through a maximum, can be calculated on the basis of the
momentum conservation law in the framework of geometrical
optics.

7. Peculiarities of diffraction from a slit
for a magnetostatic wave with an isofrequency
dependence of arbitrary form

Relying upon the conclusions drawn in Section 6, it is possible
to provide an answer to the question about the number of
emerging diffracted beams.

Since the condition F � 0 for the emergence of diffracted
beams is equivalent to the momentum conservation law, to
find all diffraction beams in the general caseÐ for an
arbitrary isofrequency dependence k�j� and an arbitrary
beam incidence geometryÐ it is evidently convenient to
apply the well-known methods and rules of geometrical
optics for two-dimensional anisotropic geometries, which
are described at length in review [5].

By taking advantage of these rules, it is easy to ascertain
that two diffracted beams always emerge in the example of
MSSW diffraction from a slit under consideration. An
exception is provided by the geometries in which the normal
to the screen is aligned with one of the asymptotes of the
isofrequency dependence: in these geometries, only the
principal diffracted beam emerges, while the reflected
diffracted beam is nonexistent. Evidently, the geometries
wherein the reflected diffracted beam does not emerge may
also be realized in the MSW diffraction in other anisotropic
structures whose isofrequency dependences satisfy the
requirements stated in Ref. [5, Section 8.5].

Let us consider the consequences of abandoning the
single-valued character of the condition for the j�c�
dependence, which was introduced in Section 3. Let the
c�j� dependence corresponding to the initial MSSW be
single-valued, and the inverse dependence j�c� be ambig-
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uous. Calculations suggest that this situation is typical of
MSSWs with relatively low frequencies lying near the initial
frequency in the spectrum, for instance, of an MSSW with a
frequency f � 2200 MHz, for which the c�j� dependence is
described by curve 1 in Fig. 7a. With reference to this
drawing, for this curve there is an interval of angles
ca1 < c < ca2 wherein, to every value of c, there corre-
sponds one j 0 value lying in the interval ja1 < j 0 < ja2

and one more j 00 value lying in the interval ja2 < j 00 < ja3.
Consider a geometry example in which the initial MSSW

incident on the slit possesses parameters j0 and c0 such that
the value of angle j0, which defines the orientation of vector
k0, lies in the intervalja1 < j0 < ja2 and, therefore, the value
of anglec0, which specifies the orientation of vectorV0, lies in
the interval ca1 < c0 < ca2. As is easily seen, the energy
transfer in this case, for instance, in the direction c0, will be
effected not only by constructively interfering secondary
waves with wave vectors k0 oriented at an angle j0, but also
by other secondary waves with wave vectors k 00 oriented at
some angle j 00 (belonging to the interval ja2 < j 00 < ja3),
which the value c0 also corresponds to. If the result of
interference of the secondary waves is nonzero, two waves of
the same frequency but different amplitudes and wavelengths
will propagate in the c0 direction. Evidently, both of these

waves will interfere throughout their propagation path,
somewhere adding up in phase and somewhere out of phase,
with the like interference pattern of the two waves observed
not only in the directionc � c0, but also in other directionsc
from the interval ca1 < c < ca2. Therefore, a spatially
nonuniform diffraction pattern will be observable in the
angular interval ca1 < c < ca2: in every direction c from
this interval, the resultant amplitude A�c� will not simply
decrease with distanceR of the observation point PV from the
slit, but depend on R in a complicated manner (becoming
alternatively higher and lower).

Now let us consider briefly several features of MSW
diffraction occurring for arbitrary k�j� and c�j� depen-
dences. In this case, not only one or two, but also several
transmitted or reflected diffracted beams may emerge for a
certain geometry of initial wave incidence on the slit (see
Ref. [5, Section 8.6]). For instance, when the isofrequency
dependence has inflection points, as in a ferrite±insulator±
metal structure (see, for instance, curve 2 in Fig. 10 ofRef. [5]),
one reflected and two transmitted beams emerge for a certain
slit orientation and a specific selection of initial MSW
parameters in accordance with the momentum conservation
law.17 Similarly, several transmitted or reflected diffracted
beams will emerge if we abandon the single-valuedness
condition for the k�j� and c�j� dependences, which was
introduced in Section 3 for ease of treatment. Evidently, the
k�j� and c�j� dependences may then consist, for instance, of
several k1�j�; k2�j�; . . . ; km�j� . . . curves.18 In this case, for a
certain geometry, each mth mode, described by the curve
km�j�, will give a reflected beam and a transmitted one owing
to diffraction, whose maxima will be oriented in directions
specified by the momentum conservation law. Furthermore,
the c-angle ranges corresponding to each isofrequency curve
overlap, as a rule, for multivalued dependences k�j� and
c�j�. Therefore, a spatially nonuniform diffraction pattern
also emerges in the overlap intervals of the c values (see
above), when a multitude of waves of the same frequency but
different amplitudes and wave numbers will add up in every
direction c.

8. Formula for the angular width
of diffracted beams

As is clear from Figs 5 and 6, the width Dc of the maxima of
the A�c� dependence (or the angular width of diffracted
beams) may vary greatly depending on the geometry of
wave incidence and parameters of the initial MSSW. Of
interest to us is elucidating at what parameters of the medium
and geometry the quantityDc turns out to be greater than the
corresponding angular beam width in isotropic media, and at
what parameters it turns out to be smaller. For this purpose,
we will obtain an expression describing the angular width Dc
of the diffracted beam.

Let there be some structure in which an MSW is
characterized by the isofrequency dependence k�j�, and let
a plane initial MSWwith parameters k0, j0,V0, c0, and f0 be
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Figure 7. Dependences c�j� (a) and dc�j�=dj (b) calculated at

H0 � 300 Oe, 4pM0 � 1750 G, and s � 10 mm. Curves 1±6 correspond

to an MSSW with a frequency f taking the following values: 2200, 2330,

2500, 2700, 2900, and 3100 MHz.

17 In particular, for a horizontal orientation of the slit line in Fig. 10 of

Ref. [5] and a selection of the initial MSW with parameters such that its

wave vector projection kb onto the abscissa axis lies between the kb1 and

kb2 values.
18 As is the case, for instance, with amagnetostatic backward volumewave

(MSBVW), which comprises a set of an infinite number of modes [14]. The

isofrequency curves and c�j� dependences for BBMSW modes may be

found, for example, in Refs [5; 12, æ 5.3].
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incident on an arbitrarily oriented slit (see Fig. 2). Let us next
assume that diffraction gave rise to a certain number of
reflected and transmitted diffracted beams, none of them
lying in the angular sector where a nonuniform diffraction
pattern may exist (see Section 7). Each nth diffracted beam
emerges for an orientation of the wave vectors of secondary
sources in the direction j � jn, and has a maximum
amplitude in the direction c � cn �n � 0; 1; . . . ;N�, with the
directions j � j0 and c � c0 �n � 0� attributable to the
principal transmitted diffracted beam.

Mathematically, as discussed in Section 6, the emergence
of the nth diffracted beam signifies that, forj � jn, the phase
function is equal to zero, F � 0, i.e., jn satisfy equation (21)
and, therefore, the following equality holds true:

k0 sin �j0 ÿ y� � k�jn� sin �jn ÿ y� : �22�

As is well known from mathematics, for any function
c�j� differentiable in the neighborhood of some point
j � jn, the increment Dj of argument and the increment
Dc of the function itself are approximately related as

Dc � dc
dj
�j � jn�Dj : �23�

We select the value of Dj in such a way that the phase
function F is equal to p for the argument value of j �
jn � Dj, i.e., the value j � jn � Dj corresponds to one of
the two modulated amplitude zeroes nearest the principal
maximum: A�jn � Dj� � sin p=p � 0. Therefore, the argu-
ment increment Dj may be thought of as corresponding to
about half of the angular separation of the two zeroes nearest
the principal maximum or to the angular width Dc of the
diffracted beam at a level of 0.5. Proceeding from this and
from formula (14), we can write down the relationship

p � p
D

l0

�
k�jn � Dj�

k0
sin �jn � Djÿ y� ÿ sin �j0 ÿ y�

�
:

�24�

With reference to the last relation, the greater the ratio
D=l0, the smaller is the increment Dj required to change the
value F � 0 of the phase function to F � p (recall that the
expression in brackets on the right-hand side of relationship
(24) is equal to zero at j � jn). That is why forD=l0 4 1 it is
safe to say that Dj is rather small. By expanding the sine of
the sum of angles jn ÿ y and Dj and assuming that
cosDj � 1 and sinDj � Dj owing to the smallness of Dj,
we can represent relationship (24) as

2p
D
� k�jn � Dj��sin �jn ÿ y� � Dj cos �jn ÿ y��
ÿ k0 sin �j0 ÿ y� : �25�

We replace the last term in expression (25) in accordance
with equality (22) and divide both parts of expression (25) by
Dj to obtain

2p
DjD

� k�jn � Dj� ÿ k�jn�
Dj

sin �jn ÿ y�

� k�jn � Dj� cos �jn ÿ y� : �26�

Since Dj is small when D=l0 4 1, the ratio
�k�jn � Dj� ÿ k�jn��=Dj is the value of the derivative
dk=dj at the point j � jn, and it can be assumed that

k�jn � Dj� � k�jn� in the second term on the right-hand
side of expression (26). As a result, the expression forDj takes
on the form19

Dj � 2p
D

�
dk

dj
�jn� sin �jn ÿ y� � k�jn� cos �jn ÿ y�

�ÿ1
: �27�

Substituting expression (27) into relation (23), we find that
the angular width Dc of the nth (emerging at j � jn and
c � cn) diffracted beam at a level of 0.5 is expressed as20

Dc �
�����2pD dc

dj
�jn�

�
dk

dj
�jn� sin �jnÿ y�� k�jn� cos �jnÿ y�

�ÿ1�����
� ln

D

�����dcdj �jn�
�

1

k�jn�
dk

dj
�jn� sin �jnÿ y� � cos �jn ÿ y�

�ÿ1����� ;
�28�

where ln designates the wavelength for j � jn, i.e.,
ln � 2p=k�jn�.

For the principal transmitted diffracted beam (which
corresponds to n � 0, and therefore the relations jn � j0,
k�jn� � k�j0� � k0, and ln � l0 hold true), formulas (27)
and (28) assume the form

Dj � l0
D

�
1

k0

dk

dj
�j0� sin �j0 ÿ y� � cos �j0 ÿ y�

�ÿ1
� l0

D

�
1

k0

dk

dj
�j0� sinj 00 � cosj 00

�ÿ1
; �29�

Dc � l0
D

����� dcdj �j0�
�
1

k0

dk

dj
�j0� sin �j0ÿ y� � cos �j0ÿ y�

�ÿ1�����
� l0

D

����� dcdj �j0�
�
1

k0

dk

dj
�j0� sinj 00 � cosj 00

�ÿ1����� ; �30�

where, it will be recalled, angle j 00 � j0 ÿ y describes the
orientation of the vector k0 of the initialMSSW relative to the
normal to the screen in the coordinate system S 0p.

A brief note is in order. If we abandon the assumption
made at the beginning of this section and consider the case
when some diffracted beam lies in the angular sector where
there is a spatially nonuniform diffraction pattern (if many
diffracted beams emerge, the angular intervals in which there
are other diffracted beams do not overlap with the angular
interval containing the diffracted beam under investigation),
it makes sense to speak only about the angular width Dcav of
this beam averaged over an extended portion of its trajectory.
Evidently, the average angular width Dcav can also be
calculated using formula (28).

9. Variation of the angular width
of the principal diffracted beam
for different incidence geometries

Let us consider how formulas (29) and (30), which describe
the parameters of the principal diffracted beam, are trans-

19 If we put k�jn � Dj� � k�jn� directly in relation (24), the expression for
Dj will produce significant errors in calculations.
20 The angular beamwidth Dcmay be both positive and negative, because

its determinant quantities dc=dj, dk=dj, sin �jn ÿ y�, and cos �jn ÿ y�
may be of any sign. However, Dc, like distances, is conveniently described
by positive numbers, and, therefore, we introduce the modulus sign in

formulas for Dc.
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formed for the most commonly encountered geometries of
incidence of initial MSWs.

When the wave vector k0 of the initial MSSW is oriented
normally to the slit line (for an arbitrary orientation of V0),
i.e., at j 00 � j0 ÿ y � 0, formulas (29) and (30) take on the
form

Dj � l0
D
; �31�

Dc � l0
D

���� dcdj �j0�
���� : �32�

Mathematically and physically, this geometry is equiva-
lent to the geometry of MSW excitation by means of a linear
transducer 21 of length D, if two conditions are simulta-
neously fulfilled at the MSW excitation frequency: (i) the
transducer is much longer than the MSW wavelength,
D=l0 4 1, and (ii) the transducer is much shorter than the
electromagnetic wavelength at the corresponding frequency,
D=lEMW 5 1, because only in this case can the entire
transducer aperture be treated as being in-phase. As is easily
seen, in microwaves, where lEMW � 3ÿ30 cm, and l0 �
0:05ÿ1 mm, it is almost always possible to satisfy both of
these conditions 22 by selecting D � 2ÿ10 mm.

For the simplest geometry, wherein a wave with collin-
early oriented vectors k0 andV0 is normally incident on the slit
(see Fig. 4), the quantity Dj is described by formula (31) as
before, and the expression for Dc may be derived from
formula (32) by putting j0 equal to zero:23

Dc � l0
D

���� dcdj �j � 0�
���� : �33�

In isotropic media, where the isofrequency dependence of a
wave is fitted by a circle and vector k and the corresponding
group velocity vector V are always collinear, the c�j�
dependence has the form c � j, and hence dc=dj � 1 in all
cases. For isotropic media, expression (33) transforms,
therefore, to the well-known formula

Dc � l0
D
: �34�

Now, relying on formulas (33) and (34), it is possible to
provide a physical explanation for the results of the numerical
calculations given in Section 5. In particular, one can see from
formula (33) that the factor defining, at the same l0=D ratio,
the angular beam width Dc is the value of the derivative
dc=dj at j � 0. Therefore, in the discussion of the diffrac-
tion pattern emerging when a collinear MSSW with a
frequency f0 � 2900 MHz is normally incident on the slit
(see Figs 4 and 5), it is easily seen that dc=dj � ÿ3 for this
geometry and j � 0 (see curve 5 in Fig. 7b), while for an
isotropic medium dc=dj � 1 in all cases. That is why the
angular width of the principal maximum of MSSWs with a
frequency f0 � 2900 MHz turns out to be three times greater

than the angular width of the principal maximum for waves
propagating in isotropic media at the same l0=D ratio.

For a difference j0 ÿ y � j 00 � �p=2, i.e., for a geometry
wherein the wave vector k0 of the initial MSSW is parallel to
the slit line (this diffraction regime is impossible to realize in
isotropic media), formulas (29) and (30) are also simplified to
assume the form

Dj � � 2p
D

�
dk

dj
�j0�

�ÿ1
; �35�

Dc � 2p
D

����� dcdj �j0�
�
dk

dj
�j0�

�ÿ1����� � 2p
D

���� dcdk �j0�
���� : �36�

As may be inferred from formulas (28), (30), (32), (33),
and (36), the angular width Dc of the nth diffracted beam
�n � 0; 1; . . . ;N� is defined in anisotropic media not only by
the ratio ln=D (or l0=D for the principal beam), but also by
the value of the derivative dc=dj atj � jn (which defines the
orientation of the wave vectors of the secondary sources),
whereat constructive interference occurs to give rise to the nth
beam. And so we will consider briefly how the c�j�
dependence and the dc=dj derivative vary in the case of an
MSSW24 in a ferrite slab located in a free space (see Fig. 7).

Since dc=dj � 1 for isotropic media, the value of
derivative dc=dj is conveniently compared with unity. As
may be seen from Fig. 7b, the inequality jdc=djj > 1 is
always fulfilled for MSSWs with frequencies lying in the
upper part of the spectrum (curve 6). With a decrease in
MSSW frequency (curves 3±5), a progressively broadening
interval of j values appears in which jdc=djj < 1, while for
the frequencies lying in the initial part of theMSSW spectrum
(curves 1 and 2), such j values even appear at which
dc=dj � 0. As is clear from formulas (28) and (30), if jn

and j0 turn out to be equal to the j value whereat
dc=dj � 0, the angular width Dc of the appropriate nth
diffracted beam will also be equal to zero!

In anisotropic media, it is convenient to calculate not the
quantity Dc itself in degrees, but the ratio s between the
angular width Dc (in radians) and l0=D (the angular width of
the diffracted beam in an isotropic medium in radians):

s � Dc
l0=D

: �37�

From the physical standpoint, s may be termed the
relative angular width of the principal diffracted beam: when
s turns out to be smaller (greater) than unity, this signifies
that Dc is smaller (greater) than in isotropic media.

We now turn to calculating the relative angular width s of
the principal diffracted beam. These calculations will be
performed in two ways: directly with formula (37), and
applying numerical methods, first determining the A�c�
dependence from formulas (16) and (14) and then finding
from this dependence the angular width Dc at a level of 0.5
and the corresponding s value. Comparing the results of
calculations done by the two methods makes it possible to
elucidate how precisely formulas (30) and (37) (which were
derived under certain assumptions) describe the quantitiesDc
and s.

Figure 8 depicts the calculated dependences of s on w0 (on
the angle between k0 and V0) in two cases: (i) the wave vector

21 Neglecting excitation effects at the transducer ends.
22 To investigate the case when the transducer aperture may not be

considered as being in-phase, it is possible to use the geometry wherein

the vector k0 of the initial MSSW is inclined to the slit line by some angle.
23 In the example of an MSSW in a ferrite slab, as in the description of

waves in the majority of other anisotropic structures, the j angles are so

reckoned that the collinear wave corresponds to a value of j � 0.

24 The c�j� dependences for an MSSW and other waves are discussed in

greater detail, for instance, in Refs [5, 12, 38].
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k0 of the initial MSSW is oriented normally to the screen
(Fig. 8a), and (ii) the group velocity vector V0 of the initial
MSSW is oriented normally to the screen (Fig. 8b). Varying
the w0 angle of the initial MSSW from ÿ90� to 90�

corresponds to a displacement of point S from one end of
the isofrequency curve 1 to the other one, the screen
orientation simultaneously changing in such a way that the
normal to the screen (the y 0-axis) remains aligned with the
vector k0 in the former case, and aligned with the vector V0 in
the latter case. The s�w0� dependences in Fig. 8 were
calculated for two frequencies of the initial MSSW:
f0 � 2900 MHz, and f0 � 2330 MHz; for the latter fre-
quency,25 as is clear from Fig. 7b, a situation is realized with
the derivative dc=dj � 0 (!) at jw0j � 73� (at jj0j � 45�).

When discussing the s�w0� dependences given in Fig. 8,
first of all we note that, even at l0=D � 0:01, curves 1 and 4
calculated by formula (37) agree closely with curves 2 and 5,
respectively, calculated by numerical methods from the
A�c� dependence. At the same time, only approximate
agreement is observed between the respective curves (curves
1, 4 and curves 3, 6) at l0=D � 0:1.

Also, it is easily seen that the s�w0� dependence presented
in Fig. 8a is, in fact, the inverted dc=dj dependence, which
was depicted in Fig. 7b, for the appropriate frequencies: when
the wave vector k0 of the initialMSSW is oriented normally to
the screen, Dc is described by formula (32), whence follows
the relation

s �
���� dcdj �j0�

���� : �38�

When the group velocity vector V0 of the initial MSSW is
oriented normally to the screen (Fig. 8b) and the s�w0�
dependence is defined by the general formula (37), an
appreciable effect on the magnitude of s is also exerted by
the derivative dk=dj: near the collinear y-axis (see Fig. 3),
where k changes only slightly, the value of the derivative
dk=dj is small, but near the asymptotes 26 of the isofrequency
curves (as jw0j ! 90�) this derivative, which appears in the
denominator of formula (37), becomes rather large, which
explains why all the curves in Fig. 8b tend to zero when
jw0j ! 90�.

As suggested by our calculations, at j0 � 0, c0 � 0, and
w0 � 0, i.e., when an MSSW with collinearly oriented vectors
k0 and V0 is normally incident on the slit, the angular beam
width always turns out to be greater than in isotropic media
(see Fig. 8). In this case, the quantity s always remains greater
than unity, although it decreases with decreasing frequency
(at j0 � 0 and w0 � 0, the quantity s is described by formula
(38) and, as is clear fromFig. 7b, one has jdc=djj > 1:3 for all
the curves at j � 0, i.e., always greater than unity). It should
be emphasized that it does not transpire from this fact that in
the normal incidence of a collinearMSWon a slit the primary
diffracted beam always possesses a greater angular width than
a similar beam in isotropic media: this situation occurs for an
MSSW in a free ferrite film, but for an MSW in other
structures or for another type of MSW the situation may be
different 27 Ð everything depends on the magnitude of
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Figure 8. Relative angular width s of the principal diffracted beam as a

function of w0 (the angle between vectors V0 and k0 of the initial MSSW):

the normal to the screen (the y 0-axis) coincides (a) with the vector k0, and

(b) with the vector V0. Curves 1±3 were obtained for f0 � 2900MHz, and

curves 4±6 for f0 � 2330MHz; curves 1, 4were calculated by formula (37),

curves 2, 5 are the results of numerical calculations at l0=D � 0:01, and 3,

6 are the results of numerical calculations at l0=D � 0:1.

25 To dispel doubt concerning the validity of the calculations at a

frequency f0 � 2330 MHz, which is close to the origin of MSSW

spectrum (the doubt arising from the circumstance that the magnetostatic

approximation may be invalid), we present the additionally calculated

parameters of the MSSW at this frequency: k0 � o=c � 0:488 cmÿ1, the
minimal value of thewave vectormodulus kmin � k�j � 0�� � 52:47 cmÿ1,
and k � 140 cmÿ1 for jjj � 45�. That is, for an MSSW with

f0 � 2330 MHz, the inequality k4 k0 is fulfilled for all orientations of

the wave vector. Furthermore, it was earlier shown that the MSSW

characteristics calculated proceeding from the complete system of Max-

well equations and in the magnetostatic approximation hardly differ even

for k0 3 cmÿ1 (compare curves 1 and 2 in Fig. 1 of Ref. [50]).
26 Strictly speaking, the results of calculations presented here are not exact

near the asymptotes of the isofrequency curves, because a more accurate

calculation of the isofrequency dependence itself is required in this

domain. Indeed, the isofrequency dependence is fitted by curves 1 and 2

in Fig. 3 only forMSWs (to state it in other words, for the waves with wave

numbers k � 10ÿ104 cmÿ1). However, near the asymptotes of the MSW

isofrequency dependence (where k!1 and the values of k are beyond the

specified range), one has to take into account exchange interaction in the

calculation of dispersion dependences even for k � 105, i.e., the isofre-

quency dependence will deviate from the asymptotes to transform to the

isofrequency dependence of exchange spin waves.

27 Evidently, for another type of MSW or in other structures the

dependences of c and dc=dj on j will be different from those in Fig. 7,

and the cases where dc=dj < 1 or even dc=dj5 1 will be possible for a

collinear MSW. For instance, the MSW isofrequency dependences for a

metal±ferrite±magnetic-wall structure in the neighborhood of j0 � 0 are

quite close to a straight line (see Fig. 6 in Ref. [37]), i.e., dc=dj5 1 for a

collinear MSW in this structure, and s5 1 in the case of normal incidence

of a collinear MSW on a slit.
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jdc=djj for the value of j corresponding to a wave of
collinear nature.

As is clear from Fig. 8, the angular beam width gradually
decreases as the absolute values of w0 increase, with the
angular beam width decreasing to zero for those frequencies
lying in the initial region of the spectrum. Specifically, for
instance, at f0 � 2330MHz the quantity s � 0 for jj0j � 45�

and jw0j � 73�, because dc=dj � 0 at jj0j � 45� (see curve 2
in Fig. 7). Physically, this signifies that the beam transmitted
through the slit does not expand and retains its absolute width
for the given parameters of the initial MSSW.28

Figure 9 presents the results of s calculations in the case
where the initial MSSW wave vector k0 is oriented parallel to
the slit line and to the screen. For definiteness, we assumed in
the calculations that the vector k0 is directed from the left slit
edge to the right one. Evidently, the group velocity vector V0

of the initial MSSWwill then be directed towards the slit only
for those waves in which the angle w0 between the vectors V0

and k0 adopts negative values from the interval
ÿ90� < w0 < 0 (the vector V0 will not be directed to the slit
for waves with positive angles w0). The s�w0� dependences in
Fig. 9 were calculated for the same two frequencies of the
initial MSSW as in Fig. 8.

With reference to Fig. 9, curves 1 and 4, which were
calculated by formula (37), nearly perfectly coincide with the
corresponding curves 2 and 5, which were calculated using
numerical methods from the A�c� dependence for
l0=D � 0:01. On the other hand, curves 1 and 4 show a less
exact coincidence with curves 3 and 6 calculated by numerical
methods for l0=D � 0:01. For angles w0 close to ÿ90�, the
behavior of s�w0� dependences in Figs 9 and 8b is identical,
because the geometry of wave incidence in both cases is such

that the vector k0 of the initial MSSW is parallel or almost
parallel to the slit line, and the vector V0 is normal or almost
normal to the slit line. However, the value of s in Fig. 9 rises
sharply with a decrease in w0, and for w0 � 0 the s�w0�
dependence looses its meaning, because the vectors V0 and
k0 of the initial MSSW become collinear in this case (w0 � 0,
j0 � 0, andc0 � 0), and the wave is no longer incident on the
slit, propagating parallel to the screen. The growth of s for w0
close to zero is easily explained by formula (36) which
describes the angular beam width for the k0 vector orienta-
tion along the line slit: the closer w0 andj0 to zero, the smaller
is the quantity dk=dj appearing in the denominator of
formula (36). We also note that the values of s for a
frequency f0 � 2330 MHz in Fig. 9, same as in Fig. 8,
approach zero at jw0j � 73� (see curves 4±6 in Fig. 9).

Figure 10 demonstrates the calculated values of s when
parametersj0,c0, and w0 of the initialMSSWare fixed, while
the screen normal orientation y changes relative to the vector
V0 of the initialMSSW in such away that the value of y differs
from c0 by no more than 90� (i.e., the angular difference
yÿ c0 plotted on the abscissa axis varies from ÿ90� to 90�).
Curves 1 and 2 in Fig. 10 serve to illustrate the s�yÿ c0�
dependence for the initial MSSW with collinear vectors V0

and k0 (w0 � 0, j0 � 0, and c0 � 0), and, therefore, the value
of s coincides at yÿ c0 � y � 0 with the corresponding s
values for similar geometries of incidence in Fig. 8 (at w0 � 0).
With an increase in the absolute values of jyÿ c0j � jyj, the s
values rise steeply in about the same way as in the right part of
Fig. 9 (because the limiting cases w0 ! 0 in Fig. 9, and
jyj ! 90� for curves 1 and 2 in Fig. 10 correspond to the
same geometries of incidence). As is clear from Fig. 10, the
greater the absolute value jw0j of the angle between the vectors
k0 andV0 of the initialMSSW, the lower lie the corresponding
dependences s�yÿ c0�: in particular, for curves 7 and 8,
which correspond to w0 � ÿ87:9�, s < 1 for almost any
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Figure 9. Relative angular width s of the principal diffracted beam as a

function of angle w0 between vectors V0 and k0 in the initial MSSW in the

case where the wave vector k0 of the initialMSSW is parallel to the slit line

(to the screen). Curves 1±3 were obtained for f0 � 2900 MHz, and curves

4±6 for f0 � 2330 MHz. Curves 1, 4 were calculated by formula (37),

curves 2, 5 resulted from numerical calculations for l0=D � 0:01, and
curves 3, 6 came from numerical calculations for l0=D � 0:1.

28 It seems likely that in experiment the MSSW beam angular width may

turn out to be not exactly equal to zero at dc=dj � 0, because in an actual

ferrite slab the angular beam width may be affected by different factors

(for instance, an insufficiently small l0=D ratio, or some nonuniformity of

an external magnetic field H0 or of ferrite magnetization 4pM0 in the

region of beam propagation). It is nevertheless evident that, in a real

medium, s and Dc will assume the smallest possible values at dc=dj � 0.
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Figure 10. Relative angular width s of the principal diffracted beam for

fixed parameters of the initial MSSW with f0 � 2900 MHz and different

slit orientations y relative to the orientation c0 of the vector V0 of the

initial MSSW (the angular difference yÿ c0 on the abscissa axis varies in

the interval ÿ90� < yÿ c0 < 90�). Curves 1, 2 were obtained at j0 � 0

(c0 � 0, w0 � 0); 3, 4 at j0 � ÿ10� (c0 � 26:3�, w0 � ÿ36:3�); 5, 6 at

j0 � ÿ22;6� (c0 � 43:7�, w0 � ÿ66:3�), and 7, 8 for j0 � ÿ33�
(c0 � 54:9�, w0 � ÿ87:9�). Curves 1, 3, 5, and 7 were calculated with

formula (37), and curves 2, 4, 6, and 8 were calculated by numerical

methods for l0=D � 0:01.
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screen orientation (i.e., the angular beam width is smaller
than in isotropic media). We note, however, that the position
of the s�yÿ c0� curves may also vary nonmonotonically with
parameter w0, because s is determined largely by the values of
dc=dj and dk=dj at j � j0. For instance, the dependences
s�yÿ c0� for f0 � 2330MHz (not plotted in the drawing) will
vary as follows: initially, with an increase in jw0j, the
dependences s�yÿ c0�, as in Fig. 10, shift progressively
closer to the abscissa axis. However, even at j0 � ÿ45�,
c0 � 28�, and w0 � ÿ73�; the s�yÿ c0� dependence is hardly
different from the abscissa axis [since dc=dj � 0 for
j � j0 � ÿ45� (see curve 2 in Fig. 7b)], and next, on a
further increase in jw0j, the s�yÿ c0� dependences will shift
upwards and then downwards again.

Finally, Fig. 11 exhibits the calculated values of s in the
case where the screen orientation is fixed, and the parameters
j0, c0, and w0 of the initial MSSW (with a frequency
f0 � 2900 MHz) are varied (the position of point S, which
defines the parameters j0, c0, and w0 of the initial MSSW,
varies from one end of the isofrequency curve 1 in Fig. 3 to
the other). Under this variation of the position of the point
S, the direction c0 of the group velocity of the initial wave
will vary within the interval ÿ56:53� < c0 < 56:53�, and,
therefore, for jyj > 90� ÿ 56:53� � 33:47� (i.e., when the
screen angle of inclination y to the y-axis exceeds 33:47�)
the vector V0 of the initial wave for some values of c0 may
turn out to be directed away from the screen rather than
towards it. And so the s�w0� dependences corresponding to
the values of jyj < 33:47� (curves 1±6) are located in the
entire interval of possible values of w0 in Fig. 11, while the
s�w0� dependences, which correspond to jyj > 33:47� (curves
7±14), occupy only a part of the interval of possible values of
w0. In this case, the greater jyj, the broader is the interval of
w0 values in which diffraction does not occur (simply because
the vector V0 of the initial wave is not directed towards the
screen). Similar dependences for the initial MSSW with a
frequency f0 � 2330 MHz (not shown in the drawing) vary
overall like the s�w0� dependences in Fig. 11. The only
difference is that, for f0 � 2330 MHz, the value of s

becomes equal to zero for jj0j � 45�, jc0j � 28�, and
jw0j � 73� (i.e., when dc=dj � 0).

10. Discussion of results and summary

Evidently, by analogy with the calculations of the angular
width of theMSSW principal diffracted beam cited above for
different geometries, it is also possible to calculate the angular
width of other MSW diffracted beams for various ferrite
structures (containing, for instance, ferrite, dielectric, metal,
and magnetic wall layers).

As with other relationships common for waves in general,
the results of our treatment, which was carried out using the
example of an MSSW propagating in a ferrite slab, will
hopefully permit performing calculations of the angular
diffracted beam width not only for the slit diffraction of
other MSWs in different structures, but also for the slit
diffraction of waves of other natures that propagate through
different anisotropic media and structures (for two-dimen-
sional geometries). In particular, since the results obtained in
this paper are based on (i) the momentum conservation law,
(ii) the Huygens principle, and (iii) the proposition that the
direction of the group velocity vector adequately describes the
direction of propagation of the wave power flux, these results
may also be employed for determining the angular width of
the diffracted beams of other waves (waves of another nature)
that obey the listed physical regularities.

Consider, for instance, the two-dimensional case of plane
light wave diffraction from a slit in amedium characterized by
an ellipse type isofrequency dependence. As in the case with
anMSW, the momentum conservation law will determine the
direction of the amplitude maximum of the principal
diffracted beam, i.e., this direction will coincide with the
orientation of the group velocity vector of the initial wave.
Unlike the MSW field, the light wave field cannot be
described by a scalar function, and the electric field vectors
of the light field will have different orientations in different
directions owing to the anisotropy of the medium. However,
when the absolute angular width of the diffracted beam is
small enough (this is always possible to achieve by taking the
value of l0=D to be sufficiently small), the electric vectors of
the light field will be almost collinear in the very narrow angular
interval contained between the two zeroes closest to the
diffraction maximum, and, therefore, their magnitudes may
be summed. In this way, we can énd the light amplitude
distribution (the diffraction pattern) in some narrow angular
interval, which is quite sufficient for the subsequent determi-
nation of the angular width of the diffracted beam by the
method identical to that employed for isotropic media and
MSWs.

To apply the resultant formulas in the investigation of
diffraction of another type of wave (possessing another
nature), one actually has to evaluate, proceeding from the
dispersion relation describing the propagation of this wave,
the dependences k�j� andc�j� and calculate their derivatives
dk=dj and dc=dj at j � jn Ðthe value of j corresponding
to the nth diffracted beam (or, at j � j0, when an investiga-
tion is made of the parameters of the principal diffracted
beam).

For instance, by applying the results of our investigation
to the analysis of the possible angular beam width in two-
dimensional geometries of uniaxial optical crystals (in which
the isofrequency dependence for the extraordinary wave is an
ellipse), it is possible to conclude from the form of the c�j�
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Figure 11. Relative angular width s of the principal diffracted beam as a

function of w0 (the angle between vectors V0 and k0 in the initial MSSW)

for different parameters j0, c0, and w0 of the initial MSSW with

f � 2900MHz and a fixed screen orientation y. Curves 1, 2were obtained
at y � 0; curves 3, 4 at y � 20�; 5, 6 at y � 32�; 7, 8 at y � 40�; 9, 10 at

y � 45�; 11, 12 at y � 70�, and 13, 14 at y � 120�. Curves 1, 3, 5, 7, 9, 11,
and 13were calculated by formula (37), and curves 2, 4, 6, 8, 10, 12, and 14

were obtained by numerical methods for l0=D � 0:01.
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dependence for an ellipse (see curve 2 in Fig. 3a in Ref. [5])
that the derivative dc=dj may not be equal to zero and,
furthermore, it is also easy to establish that the derivative
dk=dj may never tend to infinity in the case of an ellipse.
Consequently, the angular beam width in the two-dimen-
sional geometries of uniaxial optical crystals may never be
equal to zero. At the same time, when analyzing the
isofrequency dependences of acoustic waves, for instance, in
paratellurite and rutile (the general form of these `four-lobe'
dependences can be found in book [51]), it is easily seen that
there are points in these dependences at which dc=dj � 0.
Therefore, for acoustic waves propagating through such
crystals a situation is possible whereat the angular beam
width is equal to zero.

The formula obtained for the angular width of the
diffracted beam may supposedly be employed in the investi-
gation of metamaterials, because the latter (which comprise
various periodic structures) may be characterized by isofre-
quency dependences, too (see Refs [52±54]).

Experimental research on the diffraction of MSWs and
other types of waves in different anisotropic media and
structures (for two-dimensional geometries) takes on added
importance for verifying the theoretical results obtained
above.

11. Conclusions

Employing the example of MSSWs, a theoretical investiga-
tion was made of the far-field diffraction pattern in a ferrite
slab, emerging when a plane wave is incident on a wide slit
in an opaque screen; the investigation was carried out for
the most general case wherein the group and phase
velocities of the initial MSSW are not collinear and the
screen orientation is arbitrary (see Fig. 2). The problem of
MSW diffraction was analytically solved in the magneto-
static approximation with the use of a method similar to
those employed for isotropic media. In this case, by the far-
field of secondary sources was meant the total magnetic
potential of the set of MSW elementary secondary sources
located along the slit line.

It was established that the far-field action of the set of
MSW secondary sources is described, as for isotropic media,
by the function of the form sinF=F. However, the phase
function F, unlike that in isotropic media, is defined by a
more complex expression (14), into which enter not only the
parameters of the initial MSW and the slit, but also the
isofrequency dependence k�j� of the wave in the polar
coordinate system.

It was found that the slit diffraction of a planeMSSW in a
ferrite slab located in a free space gives rise to one
(transmitted) or two (transmitted and reflected) diffracted
beams. In the general case, the number of reflected and
transmitted beams was shown to depend on the geometry of
incidence, the initial wave parameters, and the mathematical
properties of the isofrequency dependence k�j� (multivalu-
edness, the existence of inflection points, etc.).

Mathematically, the emergence of each nth diffracted
beam signifies that the phase function is equal to zero,
F�j � jn� � 0, when the wave vectors of the secondary
sources are oriented in the direction j � jn �n � 0;
1; . . . ;N�, and that the modulated amplitude passes through
a maximum in this case: A � sinF=F! 1. The equation
F � 0 is, in essence, one of the forms of writing down the
momentum conservation law, which establishes the equality

between the projection of the initial wave vector and the
projections of the wave vectors of the secondary sources onto
the slit line on emergence of the constructive interference.
Therefore, jn can be calculated proceeding from the
momentum conservation law in the framework of geome-
trical optics. Owing to the anisotropy of the medium,
however, the amplitude of each nth beam is a maximum not
in the directionj � jn, but in the directionc � cn defined by
the orientation of the group velocity, and the c�j� depen-
dence may be calculated from the known isofrequency
dependence k�j� of the wave. The principal transmitted
beam (which corresponds to n � 0) is characterized by the
values of j � j0 and c � c0, which correspond to the initial
wave parameters.

A universal analytical formula was derived for evaluating
the angular width Dc of each MSW diffracted beam. It was
established that the angular width Dc of the nth diffracted
beam described by formula (28) is defined by the widthD and
orientation y of the slit, as well as by the parameters of the
isofrequency dependence of the wave (ln, dc=dj, and dk=dj)
at the point corresponding to the value of j � jn. The
angular widths Dc calculated by the resultant formula are in
perfect agreement with those obtained by numerical simula-
tions of Dc from diffraction patterns for l0=D � 0:01. It was
found that the angular width Dc of the MSW nth diffracted
beam not onlymay be greater or smaller than the correspond-
ing beam width in isotropic media, but may also turn out to
equal zero under certain conditions. Physically, this signifies
that the emergent beam retains constant absolute width in the
course of its propagation. This situation takes place when a
given nth beam corresponds to a value of j � jn such that
dc=dj � 0. For the geometry wherein the wave vector k0 of
the initial MSW is oriented normally to the slit line, the
formula for the angular width Dc of the principal diffracted
beam assumes the simplest form and consists of two multi-
pliers: l0=D, and the value of dc=dj at j � j0. Therefore,
howmany times the value of dc=dj is greater or smaller than
unity, so many times the width Dc of the principal beam is
greater or smaller than the similar beam width in isotropic
media. The resultant formulas may be employed in the
calculation of the angular width of the diffracted beams for
not only different types of MSWs, but also waves of other
natures in various anisotropic media and structures (includ-
ing metamaterials).

When the c�j� dependence corresponding to the initial
wave is single-valued and the inverse dependence j�c� is
ambiguous, an interval of polar angles was shown to emerge
in themedium (in the structure), wherein two or several waves
of the same frequency but with different amplitudes and wave
numbers propagate in every direction c. That is, a spatially
nonuniform diffraction pattern is observed in this interval, in
which the amplitude angular distribution A�c� depends on
the distance of the observation point from the slit.
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