
Abstract. In this methodological note, we consider, in a weak-
field limit, the relativistic linear motion of two particles with
masses of opposite signs and a small difference between their
absolute values: m1; 2 � ��l� Dl�, l> 0, jDlj5l. In 1957,
H Bondi showed in the framework of both Newtonian analysis
and General Relativity that, when the relative motion of par-
ticles is absent, such a pair can be accelerated indefinitely. We
generalize the results of his paper to account for the small
nonzero difference between the velocities of the particles.
Assuming that the weak-field limit holds and the dynamical
system is conservative, an elementary treatment of the problem
based on the laws of energy and momentum conservation shows
that the system can be accelerated indefinitely, or attain very
large asymptotic values of the Lorentz factor c. The system
experiences indefinite acceleration when its energy-momentum
vector is null and the mass difference Dl4 0. When the
modulus of the square of the norm of the energy-momentum
vector, jN 2j, is sufficiently small, the system can be acceler-
ated to very large c / jN 2jÿ1. It is stressed that, when only
leading terms in the ratio of a characteristic gravitational
radius to the distance between the particles are retained, our
elementary analysis leads to equations of motion equivalent to
those derived from relativistic weak-field equations of motion
by Havas and Goldberg in 1962. Thus, in the weak-field
approximation it is possible to bring the system to the state
with extremely high values of c. The positive energy carried by
the particle with positive mass may be conveyed to other
physical bodies, say by intercepting this particle with a tar-
get. If we suppose that there is a process of production of such

pairs and the particles with positive mass are intercepted, while
the negative mass particles are expelled from the region of
space occupied by the physical bodies of interest, this scheme
could provide a persistent transfer of positive energy to the
bodies, which may be classified as `perpetual motion of the
third kind'. Additionally, we critically evaluate some recent
claims regarding the problem.

1. Introduction

In 1957, Bondi [1] pointed out that in the Newtonian
approximation two particles with opposite signs of masses
at rest with respect to each other accelerate indefinitely in an
inertial frame. This process is allowed by the conservation
laws, since the kinetic energy and angular momentum of such
a system are conserved, being exactly zero, while the potential
energy only depends on the relative distance between the
particles. In the same paper, he generalized this result by
finding an appropriate static accelerated solution in General
Relativity and discovered that a uniformly accelerated pair of
particles with masses of opposite signs must have a mass
difference determined by the fact that constant-in-time
particle accelerations must be different to keep them static
with respect to each other.

It is trivial to show that, in the Newtonian approximation
(see Section 2), when the two particles with opposite signs of
masses have a relative velocity, its value is approximately
conserved. As a result, the acceleration period is finite and the
pair as a whole, being initially at rest, attains a finite velocity.
We also show that when the initial relative velocity of the
particles is sufficiently small, the pair can be accelerated to a
relativistic speed.

In Section 3 we consider the problem in the relativistic
setting and generalize Bondi's analysis, considering pairs of
particles with masses of opposite sings and a small difference
between their absolute values: m1; 2 � ��m� Dm�, m > 0,
jDmj5 m and having an initial relative velocity vin in a fixed
lab frame where the pair as a whole is initially at rest. We
assume that gravitational interaction is weak and, therefore,
Gm=�c 2Din�5 1, where Din is the initial distance between the
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particles. Also, for simplicity, it is assumed in the relativistic
treatment that the orbital angular momentum of the system is
equal to zero, and the motion is linear.

We analyze this situation by elementary means. The
equations of motion are obtained from the laws of energy
and momentum conservation. It is assumed that the energy
and momentum of a system in a Lorentz frame instanta-
neously comoving with the motion of the pair are given by the
Newtonian expressions, and that they form time and spacial
components of a local four-vector. This energy±momentum
vector is then projected onto the lab frame. Since energy and
momentum in the lab frame are conserved under the
assumption that gravitational radiation from the system is
insignificant, we get two first-order equations in time fully
describing the dynamics of the system. We also show how to
derive an equivalent pair of second-order equations consider-
ing Newton's law of gravity in a frame accelerating with the
particles.

It is shown that the pair as a whole always has a positive
acceleration, with its asymptotic value being either zero or a
nonzero constant, depending on initial conditions. The
relative distance between the particles can either have a
turning point or increase monotonically. The system accel-
erates indefinitely when the mass difference Dm4 0 and the
norm of the energy±momentum vector

N �
������������������������������������������������������
2Dmc 2 � Gm 2

Din

�2

ÿ m 2v 2in

s
� 0 ;

and, accordingly, the energy±momentum vector is null. In
this case, the relative distance increases monotonically.
When N 2 is sufficiently small, for the initial conditions
corresponding to the monotonic behavior of the relative
distance, the acceleration period is finite, but the asymptotic
value of the Lorentz gamma factor is large, being propor-
tional to jN 2jÿ1.

Such pairs can play a role in the realization of a
hypothetical effect, which we call `perpetual motion of the
third kind' [2], hereafter PMT. In its most general formula-
tion, this effect is the possibility of a persistent energy transfer
from a subsystem having negative energy to a subsystem with
positive energy in classical theories, where negative energy
subsystems are possible. Indeed, the positive mass particle
can, in principle, be used to transfer positive energy to other
physical bodies after the pair has been accelerated to high
values of the Lorentz factor. Iterating this process as many
times as we need, we can extract asmuch positive energy as we
wish. Note, however, that this is not the only `working model'
of PMT, and that, in principle, in order to make PMT, we
need systems with neither negative rest mass nor gravitational
interactions. As is shown in Ref. [2], it suffices to have a
medium violating the weak energy condition with certain
additional properties and mere hydrodynamical interaction
`to construct a PMT'.

Additionally, we comment on several statements in paper
[3], where the Kepler problem for a binary with opposite signs
ofmasses has been considered andwhichmay, in our opinion,
lead to a misunderstanding of the problem.

2. Newtonian treatment of the problem

First, let us consider the problem in the Newtonian approx-
imation, where mutual gravitational accelerations acting on
particles of masses m1 and m2 are given by conventional

expressions

�r1 � ÿGm2

jDj3 D ; �r2 � Gm1

jDj3 D ; �1�

where ri are position vectors of particles with subscripts
i � 1; 2 and D � r1 ÿ r2. Setting m � Gm1 � ÿGm2, we
obtain from equations (1):

_V � m

jDj3 D ; _v � 0 ; �2�

where V � �_r1 � _r2�=2, and v � _D. It follows from equation
(2) that, when v � 0 at some moment of time, it remains zero
in the course of evolution of the system. Thus, in this case, the
interparticle distanceD does not change during the evolution,
and the system constantly accelerates as a whole, with the
acceleration vector

a � _V � m

jDj3 D �3�

being constant. The conservation laws are nonetheless
respected, since the kinetic energy and momentum of the
system are precisely zero, while the potential energy depends
only on the relative separation distance.1

When v�t � 0� � vin 6� 0, the absolute value of the relative
distance changes with time. Accordingly, the absolute value
of the acceleration changes, as well, and eventually decays
provided that Dinvin 6� ÿjvinjjDinj,2 where Din � D�t � 0�.
We have

D � vint�Din ; �4�
and, thus, integrating equation (3) we obtain

��V�t��� � 1��������������
1ÿ a 2
p m

Dinvin

������������������������������������
2

�
1ÿ E 1=2 � at

D

�s
; �5�

where we introduced the dimensionless time

t �
��������
m
D 3

in

r
t ; Din � jDinj ; vin � jvinj ;

E � m
Dinv 2in

; a � vinDin

vinDin
; D �

���������������������������������
E� t 2 � 2aE 1=2t

p
:

Note that, when the system moves along a straight line with
an increasing value of jDj and, accordingly, a � 1 equation (5)
yields��V�t��� � m

Dinvin

t
E 1=2 � t

: �6�

In the limit t!1, we get from equations (5) and (6) the
asymptotic velocity

V1 �
��V�t!1��� � ������������

2

1� a

r
m

Dinvin
: �7�

1 Note that it is easy to show that the same motion can be realized in a

system containing N particles provided that the total mass of the system

M �P i�N
i�1 mi � 0 and the positions of the particles are chosen in a special

way. For instance, for a system containing three particles, their relative

positions must form an equilateral triangle.
2 Clearly, the particles collide when Dinvin � ÿjvinjjDinj.
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It follows from formula (7) that, when

vin < vcrit �
������������

2

1� a

r
m

Dinc
; �8�

the asymptotic value of the velocity of the system, V1,
formally exceeds the speed of light, c. Clearly, a relativistic
approach to the problem is to be used in this situation.

3. Relativistic treatment

3.1 Derivation of dynamical equations
In order to keep our study as simple as possible, let us
consider in the relativistic case only motion along a straight
line with increasingD �a � 1�. Additionally, in this section we
use natural units, setting the speed of light and the gravita-
tional constant to unity. However, unlike the Newtonian
case, here we would like to consider particles having a small
mass difference: m1; 2 � ��m� Dm�, where it is assumed that
m > 0 and jDmj5 m.

It is useful to introduce two local frames of reference and
the associated coordinate systems: (1) a fixed lab frame with
global Lorentzian coordinates �x; t�, and (2) a local Lorent-
zian frame instantaneously comoving with the motion of the
point R�t� � �x1�t� � x2�t��=2, where x1�t� and x2�t� are
positions of the particles in the lab frame, with associated
Lorentzian coordinates �x com; t com�. It is assumed that at
some particular moment of time t � t�, the coordinates of the
event �t�;R�t � t��� in the comoving coordinate system are
equal to �t; 0�, where t is the proper time associated with the
world line �t;R�t��. Hereafter, the world line �t;R�t�� is
referred to as the `reference world line'.

When t com � t, the positions of particles are given by
x com
1; 2 �t com�, and their velocities are v com1; 2 � dx com

1; 2 =dt
com. Let

us also introduce the relative position and velocity in the
comoving coordinate system: D � x com

1 ÿ x com
2 , v com �

dD=dt com. Without loss of generality, we assume hereafter
that D com > 0. When the interparticle distance remains
sufficiently small along the reference world line, we have
x com
2 � ÿx com

1 .
In the global coordinates at the time slice t � t�, the

velocity of motion of the system as a whole is given by
V � �1=2��dx1=dt� dx2=dt��t � t��, while the relative posi-
tion and velocity of the relative motion are Dlab �
x1�t�� ÿ x2�t�� and v � dD=dt.

Introducing the Lorentz gamma factor g � 1=
���������������
1ÿ V 2
p

associated with the reference world line, we may write in the
limit of small separations:

D�t com� � gDlab ;
dt

dt com
� g ; �9�

and, accordingly, for the velocity

v com � g
d

dt
�gDlab� � g 2v� g

dg
dt

Dlab : �10�

Supposing below that, on the one hand, the relative
distance D4 m, and, therefore, a weak-field approximation
holds and, on the other hand, it is not too large for the local
Lorentzian coordinates to be adequate and, respectively, for
equations (9), (10) to be valid, we can use the Newtonian
expression for the energy, Ec, and momentum, Pc, of the

system in the comoving frame at the instant of time t com � t:

Ec � 2Dm� m 2

D
; Pc � m _D ; �11�

where the dot stands for differentiation with respect to the
proper time t.

In the same limit, Ec and Pc represent the time and spacial
components of a local four-vector, and, therefore, their values
in the lab frame, E and P, respectively, can be obtained from
formula (11) by the standard Lorentz transformation. We
have

E � g
�
2Dm� m 2

D
� Vm _D

�
;

�12�
P � g

�
m _D� V

�
2Dm� m 2

D

��
;

where it is assumed that the velocity of the systems as a whole,
V, is a function of the proper time t. Since energy and
momentum in the lab frame are obviously conserved,
equations (12) fully describe the dynamics of our system.
They should be solved subject to the condition that the system
is initially at rest with respect to the lab frame: when t � 0, we
have V � 0, and

E � Ein � 2Dm� m 2

Din
; P � Pin � mvin ; �13�

where Din and vin are the initial interparticle distance and the
relative velocity, respectively. It is assumed below that
vin > 0.

Although our derivation of dynamical equations (12) may
look somewhat heuristic, it is worth mentioning that when
terms next to the leading order in m are discarded they can be
derived from the precise weak-field equations of reference [4]
in the limit of small separations, and jDmj5 m .

It is convenient to transform equations (12) into another
form using their linear combination Eÿ VP and calculating
the square of the norm of the energy±momentum vector,
N 2 � E 2 ÿ P 2. Then, we get

Eÿ VP � gÿ 1

�
2Dm� m 2

D

�
; �14�

N 2 �
�
2Dm� m 2

D

�2

ÿ m 2� _D�2 : �15�

We also obviously haveN 2 � �2Dm� m 2=Din�2 ÿ m 2v 2
in. Note

that, contrary to the usual situation, the energy±momentum
vector can be null, time-like, or space-like, depending on
initial conditions.

Equations (12) are first-order integrals of two dynamical
equations of second order in time. One of these equations can
be obtained from formula (15) by differentiating it over twith
the result

�D � ÿ 2Dm
D 2
ÿ m 2

D 3
; �16�

and the second one by differentiating either of equations (12)
and using equation (16):

g 2 _V � m
D 2

: �17�
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Equations (16) and (17) can be obtained from other
independent qualitative arguments. The derivation of the
second-order dynamical equations, which relate dynamical
variables with different values of time coordinates, is not,
however, convenient in the local Lorentzian coordinates
introduced above, since these coordinates are defined with
respect to some particular event on the reference world line
and, therefore, the definition is different for different events
along this world line. It is much more convenient to use a
coordinate system where the proper time t plays the role of
coordinate time. To do so, let us consider another one, the so-
called local Fermi±Walker coordinate system �t; y� (see, e.g.,
monograph [5]), where the proper time t is the coordinate
time, and the unit vector in the spatial direction y is always
perpendicular to the four-velocity along the reference world
line. The coordinates of the reference world line in this
coordinate system are simply �t; 0�.

At the time slice t com � t, the local Lorentz coordinates
and the Fermi±Walker coordinates coincide: x com

1; 2 � y1; 2, but
the Fermi±Walker coordinate system accelerates with respect
to the local Lorentz coordinate system with an acceleration
g�y�. Clearly, g�y � 0� must coincide with the modulus of
four-acceleration of the reference world line with respect to
the lab frame. The equations of motion in the Fermi±Walker
coordinates are assumed to be determined by the Newton's
law (1) with an added acceleration term ÿg, which accounts
for the fact that this coordinate system is not inertial:

�y1; 2 � m� Dm
D 2

FW

ÿ g ; �18�

where DFW � y1 ÿ y2, and we took into account that the
acceleration term depends on the coordinate y (see, e.g.,
Ref. [5]): g � a� a 2y. For the average distance Y �
�y1 � y2�=2 to be at rest, Y�t� � 0, the acceleration term a
must be balanced by the gravity term m=D 2

FW:

a � m
D 2

FW

: �19�

Taking into account that in the lab frame the spatial
coordinate of four-acceleration is related to a as ax � ga, we
arrive at

_U x � g 3 _V � ga ; _V � m
g 2D 2

FW

: �20�

It is clear that the last relationship coincides with equation
(17).

The dynamical equation for the relative distance DFW

directly follows from expressions (18) and (19):

�DFW � ÿ 2Dm
D 2

FW

ÿ a 2DFW � ÿ 2Dm
D 2

FW

ÿ m 2

D 3
FW

: �21�

It coincides with equation (16).
The last term on the right-hand side of Eqn (21) is due to

the nonuniform acceleration force appearing in the Fermi±
Walker coordinates. Because this term is / m 2, technically, it
is a post-Newtonian term. Since we are considering the
gravitational force in the Newtonian approximation in
Eqn (21), it is important to check whether or not post-
Newtonian corrections to the gravitational force are compar-
able with the acceleration term in Eqn (21). In fact, as is
described in standard textbooks (see, e.g., Ref. [6]), the post-
Newtonian corrections are either proportional to Dm or _y1; 2.

The mass difference and velocities are assumed to be small
and, therefore, the terms in Eqn (21) arising from the post-
Newtonian corrections appear to be small compared to the
terms taken into account.

From Eqn (21) it follows that when the mass difference is
negative andDFW � 2jDmj the particles are at rest with respect
to each other. In this case, the Fermi±Walker coordinate
system locally coincides with the Rindler one, and the
particles accelerate indefinitely. Thus, unlike the Newtonian
case considered in Section 2, particles accelerating indefinitely
and at rest with respect to each other must have a small mass
difference. This effect was first noted byBondi [1] in 1957. It is
obviously due to the nonuniform character of the acceleration
term.

3.2 Solution of dynamical equations
Since equation (14) contains onlyV andD, it can be employed
to express V in terms of D:

V � EP

E 2
c � P 2

�
1� Ec

EP

������������������
E 2
c ÿN 2

q �
; �22�

whereEc is expressed throughD in equation (11), andE andP
are given in equation (13). As discussed above, we assume that
at the initial moment of time t � t � 0 we have V � 0. This
means that initially we have to choose the �ÿ� sign in formula
(22). However, under certain conditions discussed below the
direction of motion of the particles relative to each other and,
accordingly, _D, changes sign. At the turning point _D � 0, we
have N 2 � E 2

c . Since velocity V must grow monotonically
according to equation (17), we must take the ��� sign in
formula (22) beyond the turning point.

On the other hand, equation (15) contains only D and its
derivative with respect to time t, and, therefore, it can be
integrated to yield the dependence ofD on time. Explicitly, we
have� D

Dmin

xdx����������
R�x�p � t

m
; �23�

where

R�x� � �m 2 � 2Dmx�2 ÿN 2x 2 : �24�

The integral in formula (23) can be evaluated by a standard
substitution to give an explicit relation between t and D.
However, the final expressions are rather cumbersome, and
we do not present them here. Instead, in general, we analyze
qualitatively solutions to equation (15) based on an analogy
between this equation and one describing the motion of a
particle in a potential well.

For that, we put equation (15) into a standard form:

_D 2

2
�U�D� � E ; U�D� � ÿ 2Dm

D
ÿ m 2

2D 2
; �25�

where

E � 4Dm 2 ÿN 2

2m 2
� v

2
in

2
ÿ 2Dm

Din
ÿ m 2

2D 2
in

: �26�

Introducing natural units ~U � �m 2=Dm 2�U and ~D �
�jDmj=m 2�D, we can express ~U in terms of ~D in a very simple
form: ~U � �2= ~Dÿ 1=�2 ~D 2�, where the sign ÿ (�) corre-
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sponds toDm > 0 �Dm < 0�. The dependence ~U� ~D� is shown in
Fig. 1.

First, let us consider in detail an important case of the zero
norm of the energy±momentum vector, N 2 � 0, and set,
accordingly, P � E. A simple analysis of equation (22)
shows that, in this case, there are no turning points, the
relative separationD grows with time, and the value of V � 1
can be achieved in the asymptotic limit, t!1. Therefore,
the system may accelerate in this case indefinitely.

When N 2 � 0, equation (22) simplifies to

V � E 2 ÿ EcjEcj
E 2 � E 2

c

; g � E 2 � EcjEcj
2EEc

; �27�

and from equation (23) we get

t � 1

4Dm 2

�
2Dm�DÿDmin� ÿ m 2 log

m 2 � 2DmD
m 2 � 2DmDmin

�
: �28�

From equation (27) it follows that when Ec > 0, indefinite
acceleration is possible only if Ec ! 0 when t!1, and
from the expression (11) for Ec it is seen that the mass
difference Dm must be then negative. We consider below
only this case in detail. When jDmj 6� 0, Ec ! 0 provided
that D! Dcrit � m 2=�2jDmj�. Equation (28) tells us that the
logarithm on the right-hand side diverges, when D! Dcrit.
That means that this limit does correspond to the limit
t!1. Let us estimate the dependence of the Lorentz factor
g on time in this case.

To do so, let us introduce a new variable, D � Dcrit ÿD,
and substitute it into expression (28) assuming that this
variable is small. Then, we get

t � m 2

4Dm 2
log

m 2 ÿ 2jDmjDin

2jDmjD �29�

and, substituting this result into equation (27), we obtain

g � m 2

4jDmjDin
exp

4Dm 2

m 2
t : �30�

Equation (30) tells us that, when D � Dcrit, acceleration is
exponentially fast.

The degenerate case Dm � 0 must be analyzed separately.
In this case, from expression (28) we have

t � 1

2m 2
�D 2 ÿD 2

min� ; �31�

and the distance D increases indefinitely with time. From
equation (27) it follows that

g � m
2Dmin

�����
2t
p

: �32�

Now let us turn to the general case of N 2 6� 0. Setting
_D � 0 in the first equation (25), we get a general equation for
the turning points:

D1; 2 � Dm
E

 
ÿ1�

�������������������
1ÿ m 2E

2Dm 2

s !
� Dm
E
�
ÿ1�

�������
N 2
p

2Dm

�
: �33�

Equation (33) shows that the turning points exist only when
N 2 > 0. Their number depends on the signs of E and Dm.
WhenDm > 0, the potentialU�D� is negative (see Fig. 1), and,
therefore, the relative motion is finite for E < 0 with one
turning point:3

D1 � Dm
jEj
�
1� N

2Dm

�
: �34�

In the opposite case, E > 0, and, accordingly, N < 2Dm, the
motion is unbound, and the relative distance D grows
indefinitely with time.

When Dm < 0, the potentialU�D� acquires positive values
forD > m 2=�4jDmj� (see Fig. 1). It tends to zero whenD!1
and has a maximum at D � Dcrit. Note that, from the
condition U�Dcrit� � E � 2Dm 2=m 2, we get there N 2 � 0.
The character of the relative motion depends on whether E
is negative, belongs to the interval 0 < E < 2Dm 2=m 2 corre-
sponding to 0 < N < 2jDmj, or E > 2Dm 2=m 2 and, accord-
ingly, N 2 < 0. When the energy E is negative, the motion is
bound with one turning point:

D1 � jDmjjEj
�
ÿ1� N

2Dm

�
: �35�

In the intermediate region, 0 < E < 2Dm 2=m 2, there are two
turning points

D� � jDmjE
�
1� N

2Dm

�
: �36�

When Din < Dÿ the motion is bound, while for Din > D�, D
grows indefinitely. Finally, whenN 2 < 0 themotion is always
unbound.

When the motion is bound, the velocity _D changes sign
after passing the turning point and, in this case, we should use
the ��� sign in formula (22). Taking into account that D
decreases beyond the turning point and thatEc / Dÿ1, we see
from formula (22) that the velocityV! 1. Then, the particles
tend to collide. However, our assumption that D4 m breaks
down in this case, and we cannot describe the motion on
scales D � m within the framework of our formalism. Note
that we consider in this study only pairs of particles with

ÿ1
ÿ2
ÿ3
ÿ4
ÿ5
ÿ6
ÿ7
ÿ8
ÿ9
ÿ10

�m
2
=
D
m2
�U

10ÿ1 100 101 102�jDmj=m2�D

3

2

1

0

Figure 1. The dependence of the potential U on the spatial coordinate D.

The solid curve corresponds to the case of Dm > 0, while the dashed one is

for the case of Dm < 0.

3 Let us remember that we are considering only positive values of D.
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strictly zero angular momentum. In the situation where the
particles have a small but nonzero angular momentum, they
would miss each other, and at a certain moment of time the
distance D would become negative. In this case, the analysis
given in this paper can be repeated without any major change
for negative values of D, and one would conclude that for
such parameters ofmotion there is another symmetric turning
point at negative values of D. Thus, the relative motion of a
pair of particles with small but nonzero orbital momentum
would be periodic, very similarly to the case of ordinary
particles with positive masses.

Now let us consider the case of unbound motion and
estimate the maximal value of the Lorentz gamma factor the
system can reach. As follows from our previous discussion,
when N 2 6� 0, the distance D grows indefinitely. This means
that the energy in the comoving frame of reference, Ec, must
tend asymptotically to 2Dm. Note that when Dm < 0, the
asymptotic value of Ec is also negative. We have from
formula (22), setting there Ec � 2Dm, the following relation-
ship

V � 1

4Dm 2 � E 2 ÿN 2

�
E
������������������
E 2 ÿN 2
p

ÿ 2Dm
�����������������������
4Dm 2 ÿN 2

p �
:

�37�

Equation (37) shows that when Dm > 0, the last term in the
parentheses is negative, and the asymptotic value of velocity is
smaller than 1. Large values of V can be achieved in the
opposite case, Dm < 0, assuming jN 2j5Dm 2. In this case, we
expand expressions in Eqn (37) in the Taylor series in
jN 2j=Dm 2 to obtain

V � 1ÿ N 4

32Dm 2E 2
; �38�

and, accordingly, one finds

g � 1�������������������
2�1ÿ V �p � 4jDmE j

jN 2j : �39�

Equation (39) tells us that, for fixed values of E and Dm < 0,
the gamma factor can be made arbitrarily large by choosing
arbitrarily small values of jN 2j. This conclusion is in
agreement with our previous finding that the system accel-
erates indefinitely, when N 2 � 0.

4. Methodological comments

Here, I would like to comment on several methodological
issues related to the problem.

(1) At first glance, the fact that the `average' position of
the pair �x1 � x2�=2 always grows with time may seem to
contradict the law of conservation of the center of mass of the
system. This contradiction is resolved by the observation that,
for a system containing particles of opposite masses, the
position of the center of mass, R, is determined by a
difference of positions of particular particles. For example,
in the Newtonian approximation, we have R �
m1x1 �m2x2 � �m� Dm�x1 ÿ �mÿ Dm�x2. In the relativistic
case, the situation is analogous for systems with N 2 > 0. In
the opposite case, the notion of center of masses is ill defined.
Indeed, introducing the velocity of a coordinate system,
where the center of mass is at rest, in a standard way as
Vcm � P=E [6], we see that, whenN 2 � 0, Vcm � 1, and when

N 2 < 0, Vcm formally exceeds the speed of light. It is obvious
that the notion of the center of mass is redundant in both
cases.

(2) In the Introduction to their paper, the authors of
review [3] claim that the conception of PMT put forward by
the author of this paper is related to the problem of indefinite
acceleration of two gravitationally interacting particles. This
statement needs, in my opinion, clarification. First, let me
note that, as discussed above, even when only a finite
acceleration of particles is attained, PMT is still possible in a
situation where production of such pairs is provided by some
physical mechanism. Second, the conception of PMT, in
general, does not rely on gravitation interactions at all. In
particular, I considered in paper [2] a model where there is a
continuous flow of positive energy from some spatial regions
having negative energy to other regions with positive energy
provided by hydrodynamical effects. In this model, space±
time is assumed to be flat and gravitational interactions are
absent. Moreover, in order to construct a PMT, it is not
necessary to invoke objects having negative rest masses; it is
enough to consider a medium with positive comoving energy
density violating the weak energy condition [2]. Additionally,
there are ways of constructing a PMT, where gravitational
interaction plays a totally different role, say, transferring the
energy from a nonstationary system having negative mass to
gravitational waves, as, for example, in the model of a
rotating relativistic string connected by two negative mass
monopoles [2, 7]. The effects related to the dynamics of free
negative mass particles are clearly irrelevant to such systems.

(3) The authors of Ref. [3] claim that it is impossible to
obtain, in principle, an indefinite acceleration of a system
containing two particles with masses of opposite signs. One
may think that this clearly contradicts Bondi's result [1] and
the conclusions of this paper. The conundrum is resolved by
the observation that the authors of Ref. [3] consider only
relative motions, while Bondi's analysis, as well as that
presented in this paper, also deal with the motion of the pair
of particles as a whole with respect to an inertial frame of
reference.

5. Conclusions

In this paper, we show by elementary means that in the weak
limit approximation a pair of particles having opposite values
of masses can be accelerated indefinitely provided that the
energy±momentum vector characterizing the system is null.
The system can also be accelerated to arbitrarily large Lorentz
factors when the mass difference Dm < 0 and the norm of the
energy±momentum vector is sufficiently small.

Assuming that there is a process of production of such
pairs and that the positive mass particles are intercepted by a
target, while the negative mass particles are flying away, it is
possible to transfer any desired amount of energy to the
target. In a more natural situation, one can also consider a
theory where the positive and negative mass particles interact
differently with conventional matter. A general situation of
this kind where there is a persistent transfer of energy from a
subsystem with negative or almost zero energy (like this pair
of particles) to a subsystem with positive energy was dubbed
by us `perpetual motion of the third kind' (PMT) [2]. Note,
however, that it is just a classical analog of the well-known
instability of a quantum system with a number of negative
energy states unbound from below.
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The question of whether the existence of PMT or
constantly accelerating pairs of particles is a paradox
depends, in our opinion, on the definition of what a paradox
is. On the one hand, for example, W B Bonnor stated in 1989:
``I regard runaway (or self-accelerating ) motion... as so
preposterous that I prefer to rule it out by supposing that
inertial mass is all positive or all negative'' [8]. Clearly, the
existence of PMT can also be classified as a kind of runaway.
On the other hand, no laws of physics are broken in such
systems. We believe that the existence of runaways of these
kinds in theories is dangerous for them. To exemplify, an
indefinite concentration of energy of different signs in
spatially separated regions could lead to a highly inhomoge-
neous space±time hardly compatible with the presence of any
life. Therefore, such theories should be ruled out, though
some additional study of them in General Relativity may be
of a certain interest.

Since in our approximation only linear metric perturba-
tions and one next-to-the-leading order term determined by
the acceleration of the pair as a whole are taken into account,
it is interesting to estimate what kind of corrections can be
obtained by considering other higher-order terms quadratic
in metric perturbations. For a nonrelativistic motion with
V5 c, one can use for this purpose the well-known Einstein±
Infeld±Hoffmann equations of motion (see, e.g., book [6]). In
this way, it is convenient to consider particles with a large
mass difference, as well as systems with nonzero angular
momentum. There are, however, many corrections, which are
absent in such a treatment, notably the emission of gravita-
tional waves. Therefore, a self-consistent relativistic treat-
ment of the problem in the next-to-the-weak-field approx-
imation must be based on the second-order formalism of
Havas and Goldberg from 1962. Such an approach is left for
possible future work.

Although we consider in this paper only particles with no
internal structure, our analysis may also be valid for a pair of
extended objects with total energies of opposite signs,
provided that they have a sufficiently large interparticle
distance and that their relative velocities are sufficiently
small. For example, Deser and Pirani [9] considered the
behavior of systems with all possible inertial/gravitational
mass signs and noted that a pair of geons having opposite
signs of their total energies would behave as a pair of point
particles in the appropriate limit.

It is also interesting to point out that the notion of
`perpetual motion of the third kind' was introduced in the
context of thermodynamical systems having negative tem-
peratures, where one can withdraw heat from a negative
temperature reservoir and convert it completely to work
(see, e.g., book [10], p. 176). Since thermodynamical systems
with negative masses of their components should have
negative temperatures (see, e.g., paper [11]), there is a link
between the thermodynamical properties of such systems and
the ones discussed in this paper. In particular, a runaway
process occurring in a thermodynamical system having two
subsystems involving particles with masses of opposite signs
has been discussed in paper [12]. It has been mentioned that
this process is analogous to the self-acceleration of a pair of
particles with opposites signs of their masses.
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