
Abstract. A new methodological approach to the study of
relativistic space-time properties is proposed based on the 20th
century's vast experimental research on relativistic accelerator
and cosmic ray particles. This approach vividly demonstrates
that relativistic effects are the manifestation of fundamental
space-time properties and refutes the false notion that relativ-
ity is only of relevance to light phenomena.

1. Introduction

The special theory of relativity (STR), created more than a
hundred years ago, is one of the most difficult areas of physics
to comprehend. Difficulties in perceiving the main ideas of
spacetime, the kinematics and dynamics of motion with
velocities close to the speed of light, seem to be related to the
absence of any educational experimental base and of
possibilities to observe motions with such velocities. Ordin-
ary daily experience gives rise to doubt in the authenticity of
relativistic effects and even causes aversion to them.

Traditional STR exposition is based on the postulate of
the speed of light being constant and on the relativity
principle. Such an approach was the sole argument in favor
of STR presented by its creators at the beginning of the 20th
century. Therefore, the first encounter with STR often results
in the false notion that relativistic effects are exclusively
related to light signals, since the speed of light serves as a
fundamental quantity in the Lorentz formulae. The situation
is also aggravated by abstract clocks and rulers, traveling at
near-light velocities, being `used' in the exposition of STR
fundamentals and by frequent reference to thought experi-
ments that cannot be performed in real-life conditions.

In this initial familiarization with the fundamentals of
relativity, it is not quite clear either how to imagine a clock
traveling with a very high velocity, comparable to the velocity
limit. Moreover, such a clock covers a typical laboratory
distance l � 1 m in t � l=c � 3 ns, so the possibility of
measuring time intervals on the order of 1 nsmust be ensured.

As to the Lorentz contraction of `ruler' lengths (by the
way, what do such rulers look like?), it is better not to even
mention it. Readers perceive with a considerable degree of
suspicion the picture in the remarkable book [1] by EFTaylor
and J AWheeler showing a runner with a pole 20meters long,
which is kept in a 10-meter long shed.

From time to time, the discoveries are announced of
objects traveling with velocities exceeding the conventionally
adopted speed of light in a vacuum. As usual, `scientific
studies' are issued, the authors of which reveal `errors' in the
calculation of interferograms in Michelson±Morley experi-
ments and provide `proofs' of the existence of ether and, thus,
of STR not being valid.
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Even quite recently (only some 25±30 years ago), discus-
sions were under way concerning the fundamental concepts of
`mass' and `energy' in relativity theory. To our knowledge, the
most consistent and logical interpretation of these concepts is
given by L B Okun in Ref. [2].

Long-term teaching experience at the Moscow State
University Department of Physics has profoundly convinced
the author of this note that the exposition of STR funda-
mentals requires a novel approach, based on the large amount
of experimental results accumulated in the 20th century and
in no way related to measurement of the speed of light.

These are, first of all, experiments performed with
relativistic particles from accelerators and with cosmic rays
[3]. The evidential base for proving the validity of STR will
also certainly be reinforced by experiments involving atomic
clocks on board cosmic vehicles, in particular, satellites used
in GPS (Global Positioning System) and GLONASS (Global
Navigation Satellite System), including recent experiments on
direct measurement of the propagation velocity of synchro-
tron radiation pulses [4] and for establishing the independence
of the speed of light from the velocity of its source [5]. Within
this approach, the speed of light serves as a fundamental
physical constant defining the propagation velocity limit of an
interaction.

The purpose of this article is to describe a new methodo-
logical approach to studying spacetime properties within
STR. Since the issues of relativistic dynamics are expounded
well in numerous textbooks and tutorials, including the
aforementioned review by L B Okun [2], it makes sense to
concentrate on the essentials of time and coordinate measure-
ments and to deal only with kinematics in the case of motion
with relativistic velocities.

In writing this note, no attempt was made to totally avoid
repeating well-known facts and methodological approaches.
Different methods complement each other and only facilitate
a deeper understanding of the STR foundations. Thematerial
presented in the article is adapted for a very broad audience of
readers.

2. Lorentz transformations

The history of STR creation deserves a brief digression.
In 1898, a philosophical journal published an article by

Jules Henri Poincar�e, ``The measurement of time'' [6], dealing
with issues of simultaneity. This work contained practically
all the main STR stipulations. Hermann Minkowski, a close
friend of Poincar�e and Professor at the Zurich Technological
Institute, was familiar with this article, and he recommended
his student, Albert Einstein, to study the work. Nearly 7 years
later, in 1905, Einstein published the article ``On the
electrodynamics of moving bodies'' [7], in which STR was
presented in its modern form. However, no reference to the
work of Poincar�e was presented.

As is known, Hendrik Antoon Lorentz tried to find such
transformations of coordinates and time, under which the
Maxwell equationswould be invariant in the case of transition
from one inertial reference system (IRS) to another. He
derived these transformations in 1904. While delivering
lectures to his students, Minkowski found a mistake in them
and corrected it, and in publishing a synopsis of his lectures he
called them Lorentz transformations.

Lorentz had established that in transition to a frame of
reference K0, moving with respect to a frame of reference K
with a velocity V along the x-axis (the other axes are aligned

similarly) (Fig. 1), the coordinates and time of an event
change in accordance with the following relationships:

x 0 � g�xÿ Vt� ;
y 0 � y ;

z 0 � z ;
�1�

t 0 � g
�
tÿ V

c 2
x

�
:

Later on, in 1905, Poincar�e called these relations Lorentz
transformations and demonstrated their fundamental char-
acter. Then, in 1905, Einstein derived them from the
constancy postulate of the speed of light and from the
relativity principle.

The scale factor

g � 1��������������
1ÿ b 2

q �2�

was termed the Lorentz factor. Here, b � V=c. Evidently, at
small velocities (V5 c) and small coordinate values
(x5 tc 2=V ) formulae (1) turn into Galilean transformations.

At relativistic velocities (V4 c), Lorentz transformations
differ essentially from Galilean transformations and result in
absolutely new effects. Thus, for example, the factor g being
present in them `gives rise' to a slowing down of time and
contraction of length, while the term �V=c 2� x is responsible
for a violation of synchronism in the rates of clocks situated at
different points in space.

If expressions (1) are resolved with respect to the variables
x, y, z, t, the inverse Lorentz transformations are obtained:

x � g�x 0 � Vt 0 � ;
y � y 0 ;
z � z 0 ; �3�
t � g

�
t 0 � V

c 2
x 0
�
:

The inverse transformations can also be obtained from the
direct ones taking advantage of the relativity principle,
according to which the velocity of the frame of reference K
with respect to theK0 frame isÿV. Therefore, if the sign of the
velocity V in Eqn (1) is changed and the variables in the left-
hand parts of all the equalities of the set are stripped of their
primes, which are, then, assigned to the variables in the right-
hand parts, one obtains relations (3). From expressions (1) it

y
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Figure 1. Motion of reference system K0 with velocity V with respect to

reference system K along the x-axis.
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is seen that, if V � 0, then g � 1, and that, when V! c, the
factor g!1. It is also clear that the velocity V cannot equal
the speed of light c, or exceed it, since in this case either the
denominator turns to zero or a negative number will appear
under the root sign.

From a physical point of view, the condition V < c
signifies that no objects have been revealed (and a moving
reference system can only be attached to such objects) with
velocities equal to or exceeding the speed of light in a vacuum.
A propagation speed limit of interactions also exists.

3. A limit speed of propagation of interactions

On the basis of the results of experiments performed in the
20th century, it is not at all difficult to arrive at the conclusion
that there is a finite speed of propagation of interactions.
Indeed, in all accelerators, when the energy of charged
elementary particles increases, their velocity tends toward
the limit c � 3� 108 m sÿ1. Nobody has ever observed
particles with velocities exceeding this limit. For example,
electrons in SLAC (Stanford Linear Accelerator Center)
(USA) move in an electric field across a region under a
difference of potentials DU � 2:3� 1010 V. According to
Newton's classical mechanics, the velocity of such electrons
at the end of their acceleration path should amount to
v � 9:9� 1010 m sÿ1, i.e., about 300 (!) times more than the
aforementioned limit. However, the actual velocity of
electrons at the end of their acceleration path is 0.075 m sÿ1

less than the limit c.
In cosmic rays, particles, presumably protons, are

encountered that have energies E � 5 J. The velocity of such
particles, estimated indirectly, is also inferior to the limit c,
contrary to the fantastically large computed value of
v � ������������

2E=m
p � 2:4� 1014 m sÿ1(!).
Note that the limit velocity of particles, c, coincides with

the speed of light (of a flux of photons) in a vacuum. The latter
has been measured over and over again, and its present value
is conventionally considered to be c � 299792458 m sÿ1.

On the 24 February 1987, astronomers observed a very
rare event: a flash of light due to the supernova outburst in the
Large Magellanic Cloud, which is a small galaxy close to our
Galaxy. Since the Kepler Star (1604), this happened to be the
first supernova outburst visible to the naked eye. The distance
from the Large Magellanic Cloud is about 1:6� 1021 m.
Evidently, the time that passed after the burst occurred till it
was registered on Earth was t � 5:4� 1012 s. In a time
Dt � 104 s before the burst occurred, a flux was registered of
neutrinos, the production of which, according to available
theory, preceded the burst itself by approximately the same
time. This observation signifies that the velocity cn of
neutrinos equals the speed of light within a relative uncer-
tainty of jcn=cÿ 1j < 10ÿ8.

Thus, all modern measurements confirm the conclusion that
there is a particle's velocity limit.

In modern physics, fundamental interaction is interpreted
as an exchange of appropriate particles. For example, strong
interaction between the quarks inside nucleons (protons and
neutrons) is realized by an exchange of gluons, the carriers of
such an interaction. So-called electroweak interactions are
due to an exchange of vector bosons.

If interactions are interpreted as the exchange of particles,
the existence of a particle's velocity limit c also imposes a
restriction on the speed of propagation of interactions.
Consequently, the following assertion is absolutely natural:

the speed of propagation of fundamental interaction or, in
conventional wording, the signal velocity does not exceed the
limit c � 3� 108 m sÿ1.

4. Measurement of time intervals

For the measurement of small time intervals, it is possible to
make use of the decay phenomenon of nonstable particles
(pions, kaons, muons, and others). Such particles traveling
with high velocities are produced in accelerators as a result of
proton interactions with the nuclei of target atoms.

The main stages in the generation of nonstable particles
are the following. First, it is necessary to accelerate protons.
To avoid their collision with nuclei of the atoms of air,
the protons are accelerated in a vacuum chamber (with a
residual pressure of about 10ÿ9 Torr)Ða pipe about 10 cm
in diameter. Since, in a time of about several seconds
of acceleration (an acceleration cycle) up to velocities
practically indistinguishable from the speed of light, protons
cover enormous distances, the pipe must obviously be made
circular. The radius of such a ring amounts to several
kilometers.

For protons to travel along a circle, they must be under
the action of a magnetic field, the value of which during the
acceleration process increases up to several tesla. Themagnets
(most recently made of current-carrying devices using super-
conducting alloys cooled to liquid-helium temperatures)
creating the magnetic field are situated along the perimeter
of the ring. Powerful high-frequency electric field sources are
installed at certain segments of the ring for accelerating the
protons up to energies on the order of 1012 eV owing to the
protons repeatedly passing through these segments. For this
to take place, the protons must happen to be within these
particular segments in phase with the high-frequency electric
field.

The conditions under which protons are accelerated were
formulated by the Russian physicist V I Veksler. These
conditions require the protons not to be distributed uni-
formly along the ring, but to be concentrated in bunches
with longitudinal dimensions varying for different accelera-
tors from several meters down to several centimeters, while
their transversal dimensions amount to several micrometers.
The number of protons in a bunch may amount to several
billion, while the number of bunches in a ring varies between
several dozen up to several thousand. Special magnets direct
the accelerated protons toward the target (Fig. 2).

The interaction of a sole proton with any single nucleus of
a target atom results in the production of a large number (10±
100 per interaction) of nonstable secondary particles (mainly
pions and kaons). These secondary particles are separated by
a magnetic field according to their sort and velocity and are

Proton bunch

Pion bunch

Accelerator
ring

Transport
channel

Magnets

Magnets

Target

Figure 2. Schematic representation of the motion of proton bunches inside

a segment of an accelerator ring.
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directed toward different beam transport channels, which in
the case of nonstable particles are sometimes called decay
channels. Since protons hit the target in bunches, the non-
stable particles are also produced in bunches. These bunches
travel inside a transport channel with a constant velocity. In
the most general terms, such is the formation scheme of a
beam (a sequence of bunches) for various nonstable particles.

Thus, for example, in the Large Hadron Collider, bunches
are formed, each of which contains a number on the order of
108 protons accelerated up to velocities V � 0:999999991c.
The length of a bunch varies from 3 to 5 cm, and its transverse
size is about 16 mm. About 3000 bunches are present in the
ring simultaneously, and they undergo 6� 108 collisions per
s. If the channel is considered to be 27 km long, the average
distance between bunches amounts to about 90 m.

The particle decay phenomenon can be used for measur-
ing time. Let us associate the frame of reference K0 with the
moving particles (particle bunch). We shall call this inertial
reference system the proper reference system, and the time t 0

in it proper time. Time in the laboratory system K, in which
the accelerator and the transport channels are at rest, will be
denoted by t. The probability dP for a single particle to decay
in time dt 05 t is determined by the relationship

dP � dt 0

t
; �4�

where the constant t is the average proper lifetime of the
particle (in the frame of reference, where it is at rest). This
constant can be measured in various experiments, and it can
also be calculated on the basis of radioactive decay laws. Its
value for different nonstable particles varies within extremely
broad limits (from 10ÿ16 up to 103 s), If we consider a bunch
ofN�t 0� nonstable particles, a change in this number by dN in
a time dt 0 is determined by the product of the number of
particles and the decay probability of a single particle:

dN � ÿN�t 0� dP � ÿN�t 0� dt 0

t
: �5�

The minus sign here signifies a decrease in the number of
particles. It is easy to integrate equation (5) and to determine
the average number N�t 0� of particles in the bunch at any
instant of time t 0:

N�t 0� � N�0� exp
�
ÿ t 0

t

�
; �6�

where N�0� is the number of particles in the bunch at t 0 � 0.
Measurements of the quantities N�0� and N�t 0� also

permit resolving the inverse problem: to calculate the proper
time t 0 from formula (6):

t 0 � t ln
N�0�
N�t 0� : �7�

To avoid the significant influence of the fluctuations in
random decay phenomena on the accuracy of time measure-
ments, it is necessary to deal with bunches containing a large
number N of particles.

Thus, if a known number of particles,N�0�, is formed and
their number N�t 0�, which decreases owing to decays, is
determined, relationship (7) permits measuring the proper
time t 0 in inertial reference system K0, i.e. a bunch of
nonstable particles can play the part of a clock moving with
a velocity close to the speed of light.

5. Slowing of the rates of moving clocks

Evidently, it is possible to compare the readings of a moving
clock at various instants of time with the readings of different
clocks at rest. Therefore, the rate of a moving clock can be
controlled in the following way.

Let there be, in the laboratory frame of referenceK, a set of
synchronized clocksat rest,whichmeasure time t in this system
(see Fig. 3 in Section 7) and that are situated on the x-axis
along the transport channel of the accelerator at equal
distances l0 � const from each other. We associate the inertial
reference system K0 with the bunch of particles moving inside
this channelwitha constant velocityV. Let the coordinate axes
of both reference systems be directed likewise, and let their
origins coincide at the instant of time t � t 0 � 0. When the
bunch passes the next-in-turn clock at rest number i (we shall
call this instant the ith event), the clock will show the time

ti � Li

V
; �8�

where Li � il0, i � 1, 2, 3, ....
In the reference system K0, associated with the bunch, the

times of these very events are t 0i . It is obvious that to determine
a concrete value of t 0i from formula (7) measurements are
required of the numbers of particles, N�0� and N�t 0i �. Thus,
knowledge of the readings of laboratory clocks for certain
events and measurements of the amounts of particles in a
moving bunch at respective moments of time permit deter-
mining whether the rate of a moving clock differs from the
rates of clocks at rest or not.

In one of the numerous experiments carried out at the
European Organization for Nuclear Research (CERN) in
Geneva, a beam of N�0� � 1:5� 107 (from the results of
measurements) positively charged ultrarelativistic pions, the
Lorentz factor of which amounted to g � 857, was guided
into a transport channel of length L0 � 100 m. The velocity
of these pions coincided with c to the sixth decimal place. The
time the pions travelled through the transport channel was

t � L0

c
� 102

3� 108
s � 3:33� 10ÿ7 s : �9�

A pion can decay into a muon and neutrino inside the
transport channel. Therefore, from measurements of the
number of muons produced, Nm, it is possible to determine
the number of pions that decayed. Measurements revealed
Nm � 2:27� 105 at the end of the transport channel. Conse-
quently, the number of pions at the end of the channel equaled
N�t 0� � N�0� ÿNm � 1:477� 107. Since the pion proper
lifetime t � 2:56� 10ÿ8 s, we obtain from formula (7) the
following estimate for t 0:

t 0 � t ln
N�0�
N�t 0� � 3:90� 10ÿ10 s : �10�

From estimates (9) and (10) we find the following value for
the ratio t=t 0 characterizing a slowing of the rates of moving
clocks:

t

t 0
� 854 ; �11�

which coincides with the above value of g � 857 with an error
of 0.35%. Thus, it is believed that

t

t 0
� g ; �12�
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or for time intervals

Dt
Dt 0
� g : �13�

The latter relationship is often represented in the form

Dt 0 �
��������������
1ÿ b 2

q
Dt : �14�

In a great number of experiments performed at accel-
erators in many countries, for instance, at the largest
accelerators in Russia (at the Institute for High Energy
Physics in Protvino), in the USA [at the Fermi National
Accelerator Laboratory (Fermilab) in Chicago], and at
CERN, the length L0 of the transport channel varied from
several meters up to several kilometers, while the factor g
varied from several units up to several thousand. Experiments
were performed with different nonstable particles, the proper
lifetimes of which changed within very broad range (from
10ÿ16 up to 2:2� 10ÿ6 s). None of the experiments revealed
any deviations from dependence (13).

Formula (13) has actually become the basis of engineering
calculations in designing transport channels for any non-
stable particles. We note that in the high-precision experi-
mental studies of muon decays occurring in a storage ring,
performed by F Combley, F Farley, and E Picasso (CERN),
relationship (13) was satisfied with a relative error amounting
to �0:9� 0:4� � 10ÿ3 [8].

Historically, the first experiments for testing (13) were
performed by B Rossi in the USA (1939±1941) [9]. In these
experiments, the decrease in the number of muons (at the
time, they were called mesotrons) traveling through the
atmosphere was studied. The interaction of cosmic rays with
atomic nuclei at large altitudes in the atmosphere results in
the production of pions. These pions decay quite rapidly into
muons and neutrinos. The lifetime proper of muons is
relatively small: t � 2:2� 10ÿ6 s. If the muon lifetime tm
measured by laboratory clocks were equal to their proper
lifetime, then, in the direction toward Earth, muons would
have covered, on the average, a distance

l0 � ctm � ct � 660 m: �15�

Assume the number of muons at a certain point in the
upper atmosphere to be equal to N�0�. Since muons
practically travel at the speed of light, the distance l covered
by them on the way towards Earth by the instant of time twill
amount to

l � ct : �16�

If there were no slowing down of time (i.e., if equality t 0 � t
were satisfied), the following dependence of the number of
muons on the distance l would result from formula (6) with
account of expressions (15) and (16):

N�l � � N�0� exp
�
ÿ tc

tc

�
� N�0� exp

�
ÿ l

l0

�
; �17�

i.e., the number of muons would decrease by a factor of e
along a distance l0 � 660 m. If the slowing does take place
[see formula (12), then, instead of muon descending depen-
dence (17), we find

N�l � � N�0� exp
�
ÿ l

gl0

�
; �18�

i.e., a decrease by e times takes place along a distance l � gl0,
which is significantly larger (by a factor of g) than l0.
Measurements of the numbers of muons were performed in
Chicago (at a height of 180 m above sea level) and in the
mountains of Colorado at heights of 1600, 3240, and 4300 m.
These measurements revealed a decrease in the number of
muons by a factor of e along a distance on the order of several
kilometers. From the performed estimation of the muon
energy, it followed that the Lorentz factor was g � 5; hence,
the distance l � gl0 � 3 km, which is consistent with the
results of direct measurements, as presented above.

Modern studies of cosmic rays reveal that formula (13)
also holds valid at very large values of the Lorentz factor,
g � 1010ÿ1011.

Besides charged pions and other particles, the interactions
of primary particles of the cosmic radiation with atomic
nuclei high up in the atmosphere result in the production of
neutral pions, the proper lifetime of which is very small:
t � 0:8� 10ÿ16 s. Therefore, such neutral pions decay practi-
cally instantaneously. However, at very high cosmic ray
energies, the Lorentz factor of these pions can reach the
aforementioned values and the distance l along which their
number, owing to decays, decreases by a factor of e becomes
larger:

l � gtc � 2:4� 103 m: �19�

In this case, neutral pions have time to undergo interaction
with atomic nuclei in the atmosphere. Indirect measurements
show that in the region of ultrahigh energies neutral pions,
indeed, do not decay, but interact with atomic nuclei, i.e.,
formula (13) is satisfied also in the case of g � 1010.

After the appearance of precise atomic clocks, the
possibility also arose of testing formula (12) for the slowing
down of time at a low velocity V, for example, in airplane
flights, when V � 103 km hÿ1, b � V=c � 10ÿ6, and, corre-
spondingly, g exceeds unity by a very small value on the order
of 10ÿ12.

In the experiments performed by Hafele and Keating [10]
on board commercial airliners, there were four sets of cesium
atomic clocks. The airplanes flew round the globe twice, first
eastward, then westward, upon which the readings were
compared of the clocks that had been `flying' and of the
similar clocks that remained at the U.S. Naval Observatory in
Washington. The clocks on board the airplane were behind
the terrestrial ones by �59� 10� ns when the airplane flew
eastward, and were fast by �273� 70� ns if it flew westward.
The error in testing formula (12) amounted to 10%.
Theoretical estimates of these quantities were: �40� 23� ns
and �275� 21� ns, respectively. In later experiments per-
formed by Alley et al. [11] in 1980, the error was lowered to
1%.

Thus, the set of experimental data obtained for the
interval of values of the Lorentz factor g from 1 up to 1011

permits making the following conclusion: the rate of a sole
moving clock compared with the readings of a set of clocks
situated at different points in the frame of reference at rest
slows by a factor of g.

Such a slowing of the rate of moving clocks has been
termed Lorentzian, since formula (13) follows from the
Lorentz transformations. Indeed, a clock moving in the
laboratory frame has corresponding to it a fixed value of the
coordinate x 0w � const in the frame of reference, where it is at
rest. Therefore, on the basis of expressions (3) we have the
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following for two instants of time, t1 and t2, in the laboratory
frame of reference:

t1 � g
�
t 01 �

V

c 2
x 0w

�
;

t2 � g
�
t 02 �

V

c 2
x 0w

�
;

�20�

where t 01 and t 02 are the respective instants of proper time.
Subtracting the first equality in time dependences (20) from
the second one and introducing the notation Dt � t2 ÿ t1 and
Dt 0 � t 02 ÿ t 01, we arrive at relationship (13).

To conclude the discussion of this issue, we note that
atomic clocks installed in navigational satellites traveling at
altitudes of about 20,000 km with velocities V � 4000 m sÿ1

will lag behind in 24 hours (Dt � 8:64� 104 s) by

Dt 0 �
�
1ÿ

��������������
1ÿ b 2

q �
Dt � 1

2

�
V

c

�2

Dt

� 1

2

�
4

3

�2

10ÿ10 � 8:64� 104 s � 7:7 ms :

6. Longitudinal length contraction
of moving bodies

The frame of reference in which a body is at rest is termed
proper for this body. The length of a body (a rod, a ruler)
measured in such a frame of reference is termed proper length.
To study the length of a body at rest is no problem. For
example, let there be in the laboratory frame of reference K a
motionless rod placed along the x-axis. The length L0 of the
rod is determined as the difference between the coordinates of
its right (r) and left (l) ends xr and xl, respectively:

L0 � xr ÿ xl: �21�

Here, it is irrelevant at which instants of time t, shown by
clocks in the laboratory frame of reference, the coordinates
are measured.

An alternative definition of length is also possible, and its
advantages will become clear below. Imagine an accelerator
transport channel of length L0 to be a certain rod. Consider a
bunch of particles moving at a constant velocity V from the
left end of the channel to the right end. Then, if at the instant
of time t1, shown by the clock in the laboratory frame of
reference, this bunch happens to be at the left end of the rod
and at the instant of time tr it happens to be at the right end,
the proper length L0 of the transport channel (which for
reasons of brevity will further be called a rod) will be equal to
the distance covered by the bunch:

L0 � V�tr ÿ tl� : �22�

In measuring the length L of a moving body (rod), it is
necessary to have the coordinates of both its endsmeasured at
one and the same instant of time t, shown by the clocks in that
frame of reference, in which this length is determined:

L � xr�t� ÿ xl�t� : �23�

An accelerator transport channel moving with a velocity
close to the speed of light with respect to the frame of
reference associated with a bunch of particles can serve as an

example of a rapidly moving rod. In this case, its length

L � x 0r�t 0� ÿ x 0l �t 0� �24�

is determined by the coordinates x 0 fixed at one and the same
instant of time t 0. It is easy to see, however, that the
determination of length by formula (23) or (24) is extremely
difficult, since it is necessary to establish beforehand clocks at
both ends of the moving rod, the length of which is to be
measured. A better way is to take advantage of an alternative
method [formula (22)], based on application of the law of
motion. If in the frame of reference K0 (associated with a
bunch of particles) a bunch of particles is, first, overtaken by
the left end of the rod at the instant of time t 0l and, then, at the
instant t 0r by the right end, then the length of the moving rod
will be

L � V�t 0r ÿ t 0l � : �25�

In applying formula (25) for practical estimation of times t 0l
and t 0r , it is necessary tomeasure the number of particles in the
bunch at those instants of time when the bunch enters the
transport channel and when it leaves it.

From a comparison of formulae (25) and (22), it is
immediately clear that the length L of a moving body differs
from its proper length L0. If the time differences are denoted
asDt � tr ÿ tl andDt 0 � t 0r ÿ t 0l , then, with account of the rate
of moving clocks slowing down, we obtain the relationship
between the length L0 and the length L of a moving body:

L0

L
� g : �26�

Thus, we arrive at the following conclusion: the longitudinal
dimensions of moving bodies undergo contraction by a factor
of g.

For example, in the aforementioned experiment at
CERN, the proper time of motion of the pion bunch
amounted to t 0 � 3:90� 10ÿ10 s [see estimate (10)], while for
the length L of a moving rod (the entire transport channel) we
obtain

L � Vt 0 � 11:7 cm ; �27�

which is 857 times smaller than L0.
The contraction of longitudinal dimensions of moving

bodies is termed Lorentzian, since it also follows from the
Lorentz transformations. Indeed, let a body be at rest in the
laboratory frame of reference; then, in accordance with the
inverse Lorentz transformations, at one and the same instant
of time t 0 in the frame of reference K0, with respect to which
the body moves, we have

x1 � g�x 01 � Vt 0� ; �28�
x2 � g�x 02 � Vt 0� : �29�

Let us denote the distances by L0 � x2 ÿ x1 and L � x 02 ÿ x 01.
From formulae (28), (29) it follows that L0=L � g, which
coincides with formula (26).

The transverse dimensions of moving bodies do not
change. Such a conclusion can be made on the basis of
experiments at accelerators with colliding beams. Imagine
two proton bunches moving toward each other. We shall
determine the total number of proton collisions. At high
energies, one can neglect the Coulomb interaction of
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particles. As to nuclear forces, they are effective only at
distances comparable to particle radii, so in the case dealt
with protons can be considered spheres of finite radius.

It is obvious that two spheres will collide only when the
distance between their centers does not exceed the sum of
their radii, r1 � r2. This sum determines the so-called
interaction cross section s � p�r1 � r2�2. If the spheres are
travelling inside a pipe of radius R and they are distributed
randomly across the pipe, the probability of a single collision
occurring is P � �r1 � r2�2=R 2. Clearly, if the bunches
contain n protons each, the total number of collisions

N � n 2 �r1 � r2�2
R 2

: �30�

If the transverse dimensions of particles (the radii r1 and r2)
were to change during motion, the total number of collisions
in the experiment would differ from the estimate (30). Since
this does not occur, one can draw the conclusion that the
transverse dimensions of moving bodies remain unchanged.
This also follows from the Lorentz transformations for
coordinates, the axes of which are perpendicular to the
direction of motion.

Thus, the implication of the above analysis is that the
transverse dimensions of moving bodies are invariant.

7. A violation of synchronism in the rates of sets
of moving clocks

As follows from the Lorentz transformations, an observer in
the frame of reference K will note nonsynchronicity of the
rates of sets of clocks moving with respect to him in the frame
of reference K0, and vice versa.

For a quantitative estimate of this nonsynchronicity, we
turn to the example involving particle bunches moving at a
velocity V in the transport channel of an accelerator (Fig. 3).

Let there be synchronized clocks located at equal
distances l0 from each other in this channel, and let them
show the same time t � 0, when the first bunch-clock flies past
the clock that is at the origin of the frame of reference. One
can agree to set the proper time, shown at this instant by this
clock, equal to zero, as well: t 0 � 0. Obviously, when the
bunch-clock flies past the laboratory clock number i, the
latter will show the time ti [see formula (8)].

In the frame of reference K0 associated with the bunches,
the distance between the laboratory clocks, owing to
Lorentzian contraction, will be

l � l0

��������������
1ÿ b 2

q
: �31�

Therefore, in the frame of reference K0 this event by the
bunch-clock should take place at the instant of time

t 0i �
il

V
�

il0

��������������
1ÿ b 2

q
V

�
Li

��������������
1ÿ b 2

q
V

: �32�

In the frame of reference K0, the ith clock moves toward the
bunch with a velocity V. From the point of view of an
observer in the frame of reference K0, the rate of the moving
laboratory clocks should slow by the factor g. Therefore,
according to clocks in the frame of reference K, this observer
can expect the event considered to take place at the instant

t expi � t 0i
g
� Li�1ÿ b 2�

V
: �33�

The difference between the expected time t expi (33) and the
actual time ti (8) can only be interpreted in a single way: the
laboratory clocks numbers 0 and i moving in the frame of
reference K0 are not synchronized. The difference di in the
readings of the clocks amounts to

di � ti ÿ t expi � Li

V
ÿ Li�1ÿ b 2�

V
� Lib

2

V
: �34�

From the point of view of an observer in the frame of
reference K0, the clock number i shows a later time than the
fixed clock number 0. In accordance with formula (34), this
difference in the readings is larger, the farther the clocks are
located from each other.

An illustration of the slowing down phenomena of the
rates of clocks moving relative to other clocks, of a violation
of synchronism of their rates, and of the contraction of
distances between moving clocks can be represented by
Fig. 4, in which the itemized (numbers in squares) laboratory
clocks (indicated by circles) are installed at a distance
l0 � 30 m from each other along the transport channel
(x-axis in the laboratory frame of reference K). The bunch-
clocks (enclosed in oval lines) travel along this channel with a
relativistic velocity, for which g � 10. In the frame of
reference K0, which is proper for the bunches, the distance
between them is also equal approximately to 30 m. The
laboratory clocks, as shown in the figure, move with respect
to the bunch-clocks with a velocityV from right to left. At the
instant t 0 � 0 (shown by the bunch-clocks), the origins of
both coordinate systems coincide (Fig. 4a). The laboratory
clock number 0, located at point x � 0, also shows time t � 0.

Two facts are of interest here. First, in accordance with
formula (34), the readings of the laboratory clocks differ (the
time is indicated inside the circles and ovals in nanoseconds;
for convenience, the readings of all the clocks are rounded
off): clock number 2 is d � 99 ns fast with respect to the
neighboring clock, and it, in turn, shows a time 99 ns superior
to the reading of clock number 0, and so on. Second, in the
frame of reference K0, the distance between the laboratory
clocks is Dx 0 � 3 m, i.e., 10 times less than in the frame of
reference K. After a time Dt 0 � 10 ns passes (Fig. 4b), clock
number 1, showing a time of 100 ns, will be opposite the
bunch at point x 0 � 0. The difference in the readings of
neighboring laboratory clocks is still 99 ns, as before, and
the readings of all the laboratory clocks have increased by
Dt � 1 ns. In a time Dt 0 � 20 ns, laboratory clock number 2,
showing a time 200 ns (Fig. 4c), will be opposite the bunch,
while Dt � 2 ns. The situation illustrated in Fig. 4d is realized
after the passage of Dt 0 � 100 ns, when the laboratory clock

0 l0 2l0 il0 x

V � c

x0

Figure 3. Schematic picture of a bunch of particles moving with respect to

synchronized clocks located at equal distances along the transport channel

of an accelerator.
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number 0 happens to be near the next bunch, and for it
Dt � 10 ns.

We shall now discuss the issue of the slowing of the rate of
a clock. Since the laboratory clocks and the bunch-clocks are
in relative motion, this slowing down is peculiar to clocks of
both types. If one follows the readings of one and the same
laboratory clock, for instance, clock number 1, when
comparing the situations presented in Figs 4a and 4b, then
one can see that during the time Dt 0 � 10 ns (by the bunch-
clock) its reading has increased by Dt � 100ÿ99 � 1 ns,
which signifies a 10-fold slowing down of their rate as
compared to the rate of the bunch-clocks. On the other
hand, by comparing the readings of one and the same
bunch-clock (which is at point x 0 � 0) with the readings of
different laboratory clocks that happened to be near the
bunch, it is readily seen (Fig. 4b) that the time according to
the bunch-clock is 10 ns, while clock number 1 shows 100 ns,
in Fig. 4c the bunch-clock shows 20 ns, while clock number 2
shows 200 ns, and the bunch-clock in Fig. 4d shows 100 ns,
while laboratory clock number 10 shows 1000 ns. This
signifies a 10-fold slowing of the rate of bunch-clocks.

Similar reasoning can be performed making use of the
next bunch-clock located at the point x 0 � ÿ30 m. Compar-
ing, for instance, Figs 4a and 4d, we arrive at the conclusion
that, when 100 ns passes (according to the bunch-clock), the
time interval measured with the aid of different laboratory
clocks but which happen to be close to the bunch, amounts to
10ÿ �ÿ990� � 1000 ns.

Finally, we shall also point out the relativity of simulta-
neity: events that take place simultaneously in one frame of
reference will not be simultaneous in another coordinate
system. Indeed, consider that bunches with coordinates
x 01�ÿ30 m and x 02�0 m at the instant of time t 0 � 20 ns
(Fig. 4c) `caused damage' to the laboratory clocks that were
nearby. Their hands `stopped' respectively at the readings
t1�ÿ790 ns and t2 � 200 ns. Consequently, for an experi-
mentalist working at the accelerator, the damage to the clocks
was caused in sequence with a time interval of 990 ns.

8. Nonsynchronicity
and the equivalence principle

Albert Einstein, having taken into account that both forces
due to inertia and forces due to gravity are proportional to the
masses of the bodies involved, proposed a simple thought
experiment. Assume there is an observer shut inside a tightly
closed elevator cabin. If the elevator cabin is at rest on Earth,
the observer will see usual manifestations of the forces of
gravity: all bodies will fall with the same acceleration.

In an elevator moving with a constant acceleration g
directed toward the ceiling in a space without the forces of
gravity, the observer will also find the accelerations of all the
bodies falling onto the floor of the cabin to be the same.
Therefore, these two cases can be distinguished from each
other by phenomena occurring within the cabin, only if the
cabin is sufficiently large. Indeed, owing to the field of gravity
being inhomogeneous, it is possible to observe an insignif-
icant change in the distance between two falling bodies, while
this change will not be noticed in the field of inertial forces.
However, it is always possible to choose such a local frame of
reference in which the action of forces of inertia and of gravity
will be indistinguishable. This assertion is known as Einstein's
famous equivalence principle. On the basis of this principle,
Einstein developed the general theory of relativity (GTR).

One of the main effects of GTR, namely, the red shift in a
gravitational field, is explained with the aid of the equivalence
principle. Consider a facility containing a source of photons
with frequencyo and a receiver that can absorb these photons
and is situated at a height H above the receiver (Fig. 5).

Consider photons moving upward in Earth's gravita-
tional field, which we shall consider to be homogeneous.
The effect consists in the fact that the frequency registered by
the receiver is smaller than o by Do. The following equality
holds valid in the first approximation:

Do
o
� ÿ gH

c 2
; �35�

where c is the speed of light.
Let us analyze this effect in the frame of reference attached

to the elevator (see Fig. 5) when it falls freely with respect to a
facility with an acceleration g. Gravity is absent in the
elevator, so there is no reason for the photon frequency to
change. If at the instant of time t � 0, the velocity of the
elevator is v � 0, and at the same instant of time a photon of
frequency o is emitted, then at the instant t � H=c this
photon will arrive at the receiver, which in the frame of
reference associated with the elevator will have a velocity

v � gt � gH

c
; �36�

directed upward. Thus, the photon will be catching up with
the receiver. But, in this case, there must be a manifestation of
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Figure 4. Illustration of the slowing down of clock rates, a violation of

synchronism in their rates, and of contraction of the distance between

moving clocks.
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the Doppler effect. In accordance with this effect, the
frequency registered by the receiver will be smaller than o
by Do:

Do
o
� ÿ v

c
: �37�

If the velocity v (36) is substituted into formula (37), we obtain
formula (35), predicted in GTR. From the aforementioned, it
is clear that the frequency of the photon o remains
unchanged, while the effect is due to motion of the receiver.

We shall now consider what causes Do to appear in the
gravitational field. According to GTR, the frequencyo of the
photon does not change with the height H in a static
gravitational field. Consequently, the only possible explana-
tion of the appearance ofDo can be the difference between the
rates of clocks located near the photon source and near the
receiver.

The rate of clocks indeed increases as they rise in the
gravitational field. If, for example, clocks on Earth `measure'
a time t, clocks lifted to a height H will be fast by

Dt � t
gH

c 2
: �38�

Straightforward experiments with precise clocks, one of
which was in an airplane at a certain altitude, while the
other one remained on Earth, confirmed this effect, first,
with an error of� 10% (experiments performed by JCHafele
and R E Keating) [10], and then with an error of � 1%
(experiments performed by C O Alley et al.) [11].

In 1976, R Vessot and M Levine from the Smithsonian
Astrophysical Observatory of Harward University, together
with their colleagues from NASA, installed an atomic clock
with a precision of one trillionth of a second per hour [12] on
the Scout D rocket launched fromWallops Island in Virginia.
The readings of two atomic clocks were compared with the
aid of a reciprocal exchange of microwave signals. It was
established that by the time the rocket reached the maximum
altitude of 10,000 km, the atomic clock in it was four
billionths of a second faster than the clock that remained on
Earth. The difference between the experimental data and the
results of theoretical calculations amounted to less than
0.01%.

When an atomic clock rises in the gravitational field, the
spacing between the energy levels of electrons in the atom
increases, while in the case of nuclear clocks it is the spacing
between nuclear levels that increases. When the difference in
energies between levels in an atom (nucleus) increases, the
emission frequency also increases, and the oscillation period
decreases. This means that the rate of such atomic (nuclear)
clocks will increase.

In one case, the photon frequency is measured by a `fast'
clock that is high up, and in the other case by a `slow' clock
that is at the bottom. In the first approximation, it is precisely
formula (35) for the red shift Do that is obtained. Evidently,
Do is just the difference between frequencies that arises when
measurements are performed with clocks exhibiting different
rates.

Owing to the presence of gravity, in 24 hours the readings
of atomic clocks on board navigational satellites will become
fast by the quantity

Dt � t
gH

c 2
� t

DU
c 2

; �39�

where DU is the change in the gravitational potential:

DU � ÿGM
�

1

R�H
ÿ 1

R

�
:

For H � 3R � 19;200 km and t � 8:6� 104 s, the quantity
Dt � 46 ms.

Thus, with account of the relativistic lag, the difference
between the readings of clocks on board a satellite and of
clocks on Earth reached in 24 hours will amount to Dt0 �
Dtÿ Dt 0 ��46ÿ7:7� ms�38:3 ms. If this difference were not
taken into account, the error in determining the distance
between a satellite and an object on Earth would be Dr �
cDt0 � 11:5 km.

In 1960, R Pound and G Rebka confirmed formula (35)
with an error of � 10% (later in 1964, Pound and J Sneider
lowered the uncertainty to � 1%) [13] in experiments with
gamma rays emitted by nuclei of the iron isotope 57Fe. The
photons were emitted upward (in another series of experi-
ments they travelled downward) in a tower 22 m high. The
observed shift in frequency amounted to a very small
magnitude, Do=o � 10ÿ15. The high measurement precision
was achieved owing to theM�ossbauer effect: when a photon is
emitted, the recoil is not felt by the sole emitting atom, but by
the whole crystal. Since the mass of the crystal is large, its
recoil velocity is small. Therefore, the photons emitted
(absorbed) are extremely monochromatic, which is precisely
what permitted achieving a high measurement precision.

We shall nowturn toaviolationof synchronism in the rates
of clocks moving at a velocityVwith respect to an observer in
the frame of reference K. Before attaining the velocity V, the
frame of reference K0 must move with acceleration. Consider
the initial stage of acceleratedmotion of the frame of reference
K0 (g � 1) and assume the acceleration a of the frame of
reference to remain constant during a small time interval t.
Then, it will attain the velocity V � at at the end of this time
interval t. In agreement with the equivalence principle, in the
frame of reference gathering speed, the readings of clocks
located at a distance L from each other in the direction of
motionwill, from the point of viewof anobserver at rest in this
coordinate system, differ, according to formula (39), by

Dt � t
aL

c 2
� VL

c 2
: �40�
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Figure 5. Illustration of the equivalence principle for explaining the

gravitational red shift.
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To eliminate this difference, and thus synchronize the clocks
in the frame of reference K0, the observer in this coordinate
system must `turn backward the hands' of the clocks that
became fast. An observer in the frame of reference K will
register the above event as the appearance of nonsynchroni-
city: a successive decrease in the readings of clocks located one
after another in the direction of their motion.

9. Minkowski space

The manifold of variables x, y, z, ct forms the Minkowski
space. The cause±effect relationships between events in the
simplest case of their occurring at different points on the
x-axis are conveniently analyzed, taking advantage of the so-
called Minkowski plane (Fig. 6). The variables x and ct serve
as the Cartesian coordinates in this plane. An event taking
place on the x-axis in the frame of reference K is mapped as a
point onto the Minkowski plane. If a flash of light occurs at
the origin at the instant t � 0, the coordinates x of the
wavefront are determined by the relation

x � �ct : �41�

In the Minkowski plane, the law of motion (41) is mapped by
the two bisectors of the angles between the coordinate axes
(dashed straight lines). In the case of two spatial coordinates
(x and y), instead of lines there will be a cone, called the light
cone. For three spatial coordinates, the notion of a `light
cone' is also introduced, even though it cannot be represented
graphically. For an observer at the origin at the instant t � 0
(note that any point on the x-axis can be chosen as the origin),
the light cone partitions Minkowski space into three parts.
The region inside the upper cone is called the `future', and the
region inside the lower cone is the `past'. The remaining part is
the `neutral' region. Obviously, any events mapped by points
onto the surface of the light cone are related to each other by
timelike intervals:

DS 2 � �cDt�2 ÿ Dx 2 ÿ Dy 2 ÿ Dz 2 � 0 : �42�

Events from the regions future, P2, or past, P1, are related to
the `zeroth' event at point O by timelike intervals DS 2 > 0.

An arbitrary event P1 from the past region took place
earlier than the zero event and may be the cause of the latter,
while any event P2 in the future occurs later than the zero
event and can, therefore, be a consequence of it. Thus, for an
observer at point x � 0 all the events from the lower cone

took place in the past, while the events from the upper cone
will happen in the future.

Any events from the neutral region (points D1 and D2 in
Fig. 6) are related to the event at pointOby spacelike intervals
(DS 2 < 0). Clearly, no cause±effect relationships are possible
between these and the zero events.

The x coordinate axis and all possible straight lines
parallel to it (for instance, the line a1a2) are so-called lines of
simultaneity in the frame of reference K (Fig. 7). Any two
events belonging to these lines (for example, events M1 and
M2 on the straight line a1a2) are simultaneous, i.e., they take
place at the same instant of time t0 by the clock in the frame of
reference K, but at different points of space x1 and x2. These
events are clearly related by a spacelike interval and, there-
fore, no cause±effect relationships between them are estab-
lished.

All events occurring at one and the same point in space,
but at different instants of time, are mapped either onto the
ordinate axis (x � 0) or onto all other possible straight lines
x � const parallel to it (for example, the line b1b2). Any two
events mapped onto points belonging to these straight lines
are characterized by one and the same coordinate, but by
different instants of time (for example, events N1 and N2 on
the line b1b2 occurred at the same point with the coordinate
x0, but at different instants of time, t1 and t2). It is clear that
these events are related by a timelike interval, and that cause±
effect relationships between them are possible. Obviously, the
event that took place earlier could be the cause, while the
events that occurred later are the effect.

In the Minkowski plane, it is possible to map not only
events, but also the motions of particles. For example,
particles at rest residing at different points x are mapped by
straight lines x � const. These straight lines are called `world'
lines of particles at rest. The motion of a particle traveling
with a velocity V is mapped onto this plane by a straight line,
the angle of which to the ct-axis does not exceed 45�. Such
lines are called world lines of moving particles. For example,
if a particle at the instant t � 0 is at the origin of the frame of
reference, its world line d1d2 passes through the past and
future regions. The equation describing such a line is
determined by the following expression

ct � x

b
; �43�

where b � V=c.
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Figure 7. Mapping of the motion of a particle onto the Minkowski plane.

December 2012 On special relativity teaching using modern experimental data 1223



If the velocity V of a particle is variable, its world line is
mapped by a certain curve OP, the equation of which is as
follows:

ct � f �x� : �44�

The angle y between the tangent to this curve at any point and
the ordinate axis is such that

tan y � b : �45�

Since V4 c, then y4 45�.

10. Velocity transformations

According to STR, the velocity addition law following from
Galilean transformations is not obeyed for motion at
relativistic velocities. We shall consider one of the experi-
ments carried out at the CERN accelerator by T Alv�ager,
F Farley, J Kjellman, and L Wallin [14] in 1964.

Protons were accelerated using a variable electric field of
frequency n��9:53220� 0:00005�MHz. For the protons to
undergo acceleration, they must happen to be within the
acceleration segment in phase with the electric field. There-
fore, the proton bunches in the accelerator ring must follow
each other with the same frequency. For a fixed length of the
ring, the neighboring proton bunches were at a distance
s � 31:45 m from each other (Fig. 8). The length l of each
bunch was approximately 1 m.

Interactions of the accelerated protons with nuclei of the
target atoms resulted in the production of various secondary
particles, including neutral pions p0. Since the protons
impinged upon the target in bunches with a frequency of n,
the neutral pions were also produced in bunches with the
same frequency. Upon production, the neutral pions moved
with a velocity V � c along the tangent to the circular ring of
the accelerator toward the detectors D1 and D2, which were
also located at a distance s � 31:45 m from each other, while
all the charged particles were deflected with the aid of
magnets. Neutral pions are unstable particles with an
average lifetime t � 0:83� 10ÿ16 s that decay into two
gamma quanta at a distance l � gVt � 1:1� 10ÿ6 m
(g � 45), i.e., close to their production point. In the experi-
ment, such gamma quanta were selected that travelled in the
same direction as the pions having velocities V > 0:99975c
(the Lorentz factor g > 45). Thus, the bunches of neutral
pions that moved with a velocity V along the x-axis and
followed each other in succession with a frequency n gave rise
to bunches of gamma quanta, which followed each other in
succession with the same frequency and the velocities of
which were equal to the speed of light with respect to the
pions.

If the Galilean transformations are valid, the velocity of
the gamma quanta with respect to the detectors should be
expressed as

vg � V� c : �46�

In this case, two neighboring bunches of gamma quanta that
are at a distance sg � vg=n from each other will not arrive at
the detectors at the same time, but will be separated by the
time interval

Dt � sg ÿ s

vg
� 1

n
ÿ c

nvg
� 1

n

�
1ÿ c

vg

�
� 1

n
d ; �47�

where d � 1ÿ c=vg. The experiment revealed that Dt �
ÿ�0:005� 0:013� ns; therefore, within the limits of experi-
mental error, d � ÿ4:7� 10ÿ5, and

vg � �2:9977� 0:0004� � 108 m sÿ1; �48�

which coincides with the speed of light.
Thus, new laws for velocity transformation are necessary,

instead of formula (46). They can be readily obtained on the
basis of the Lorentz transformations (1). The differentials of
the left-hand and right-hand parts of these transformations
have the form

dx 0 � g�dxÿ V dt� ;
dy 0 � dy ;

dz 0 � dz ;
�49�

dt 0 � g
�
dtÿ V

c 2
dx

�
:

We divide the left-hand and right-hand parts of the first
three equalities (49) by the respective left-hand and right-
hand parts of the last equality and take into account the
kinematic definitions of velocity projections in the frames of
reference K and K0. As a result, we obtain the sought-after
transformations of velocity projections onto the coordinate
axes:

v 0x �
vx ÿ V

1ÿ vxV=c 2 ; v 0y �
����������������������
1ÿ V 2=c 2

p
1ÿ vxV=c 2 vy ;

v 0z �
����������������������
1ÿ V 2=c 2

p
1ÿ vxV=c 2 vz :

�50�

Relations (50) are known as the Lorentz transformations of
velocity projections. In the case of small velocities (v5 c,
V5 c), they transform into the Galilean velocity transforma-
tions.

Resolving expressions (50) with respect to vx, vy, and vz,
one can obtain the inverse transformations of velocity
projections:

vx � v 0x � V

1� v 0xV=c 2
; vy �

����������������������
1ÿ V 2=c 2

p
1� v 0xV=c 2

v 0y ;

vz �
����������������������
1ÿ V 2=c 2

p
1� v 0xV=c 2

v 0z :
�51�

Let us apply the transformations found for determining the
velocities of gamma quanta in the experiment considered
above. Since neutral pions move with a velocity
V � 0:99975c, and the gamma quanta with the speed of

Proton bunch

Bunches
of g-quanta

Target

s

s

D1 D2

x

sg
l

Figure 8. Layout of an experiment performed at the CERN accelerator.
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light, v 0x � c, then the first of formulae (51) in this case gives

vg � c� 0:99975c

1� c 0:99975c=c 2
� c ; �52�

which is in total agreement with the result of measurements
(48).

The relativistic formulae (50) and (51) for the velocity
transformation have been confirmed by all relevant experi-
ments, without any exceptions. In Sections 11±13, we shall
examine a few important examples.

11. Accelerators with colliding particles

The physical result of collisions of elementary particles
depends on their energy in their center-of-mass system, in
which the sum of the relativistic momenta is equal to zero.
The higher this energy, the richer is the spectrum of new
phenomena.

Let us now consider the collision of two identical particles
moving toward each other with a velocity v0, to which a
Lorentz factor g0 corresponds. In this case, the center-of-mass
system is at rest, and the energy of each of the particles is
proportional to g0. The collision of these particles can also be
considered in a frame of reference attached to one of them. In
this case, the entire spectrumof phenomena remains the same;
however, the Lorentz factor g corresponding to the relative
velocity v of particles approaching each other will be
significantly larger than g0. Indeed, setting vx � v0, V � ÿv0
in formulae (50), we obtain the following for the relative
velocity v � v 0x:

v � 2v0
1� v 2

0 =c
2
: �53�

The relativistic factor g is expressed as

g � 2g 20 ÿ 1 : �54�

For example, when g0 � 10, we obtain g � 200, and when
g0 � 103, the factor g becomes 2000 (!) times greater. Hence
follows an extremely important conclusion: in order to obtain
the same effect as in a collisionwith a particle at rest (a target),
it is much more advantageous to deal with collisions of
particles moving toward each other with velocities to which
comparatively low values of the Lorentz factor g0 correspond.

Such an idea is realized in accelerators, in which two
beams of particles moving toward each other with relativistic
velocities collide. For example, to achieve values of g � 106,
the dimensions of an ordinary accelerator (with a fixed target)
may have to exceed Earth's radius, which makes its construc-
tion impossible. As to accelerators with colliding beams, their
dimensions (for a given magnetic field induction) and,
consequently, cost will be g=g0 � 2g0 times less. Still another
advantage of such accelerators consists in the symmetry of the
spatial recession of secondary particles. The idea of such an
accelerator was first put forward by G A Budker, and one of
the first accelerators was constructed near Novosibirsk.

12. Jets of particles

The collision of a relativistic particle with a target at rest
results in the production of new (secondary) particles moving
inside a narrow cone, the axis of which is oriented along the

velocity vector of the primary particle, while its opening angle
depends on the Lorentz factor g (the larger g, the smaller the
angle). Secondary particles form so-called jets and, when the
opening angle of the cone is small, they are barely detectable,
since they are very close to each other. In this case, it becomes
very difficult to distinguish one particle from another.

Particle collisions are conveniently examined in the
center-of-mass system (CMS), in which the secondary
particles lie within cones with large opening angles, since
g0 < g. Therefore, the problem of detection and identification
of secondary particles is significantly facilitated at accelera-
tors with colliding beams.

The directions of motion of particles forming jets can be
calculated using the velocity addition law. Consider primary
particles moving in the frame of reference K0 (CMS) toward
each other along the x 0-axis, and after the collision let one of
the secondary particles have a velocity v 0 directed at a zenith
angle y 0 to the x 0-axis (Fig. 9a).

The velocity projections of this secondary particle are

v 0x � v 0 cos y 0 ; v 0y � v 0 sin y 0 : �55�

The frame of reference K0 (CMS) moves with respect to the
frame of reference K, in which one of the particles is at rest,
with a certain velocity V. The velocity projections of the
secondary particle in the frame of reference K, in accordance
with the velocity addition law, are as follows:

vx � v 0 cos y 0 � V

1�v 0V cos y 0=c 2
; vy �

����������������������
1ÿ V 2=c 2

p
1� v 0V cos y 0=c 2

v 0 sin y 0 :

�56�

If these projections are written down as

vx � v cos y ; vy � v sin y ; �57�

we obtain the following for the zenith angle y (Fig. 9b):

tan y � vy
vx
� 1

g
v 0 sin y 0

v 0 cos y 0 � V
; �58�

where g � �1ÿ V 2=c 2�ÿ1=2. Hence, it is seen that in the
ultrarelativistic case, when g!1, the zenith angle y! 0,
whatever the value of y 0. Thus, at large values of g nearly all
secondary particles move within a very narrow cone.

13. Stellar aberration

If a star is seen at an angle y to the x-axis of the frame of
reference K, then, in another frame of reference K0 moving
along this axis with a velocity V, the angle will be different
(Fig. 10). The projections of the velocity vector of a light wave

O0

y 0

v 0y

v 0x

y0

v 0

K0

x 0

a y

O

y

vy

vx

v

K

x

b

Figure 9.Directions of motion of particles forming jets in different frames

of reference.
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in the frame of reference K (Fig. 10a) are

vx � ÿc cos y ; vy � ÿc sin y : �59�

According to the transformation formulae of velocity projec-
tions, in the frame of reference K0 we have

v 0x �
ÿc cos yÿ V

1� V cos y=c
; v 0y � ÿ

����������������������
1ÿ V 2=c 2

p
1� V cos y=c

c sin y : �60�

At the same time, we note that �v 02x � v 02y �1=2 � v 0 � c. Since,
according to Fig. 10b, these velocity projections are also given
by

v 0x � ÿc cos y 0 ; v 0y � ÿc sin y 0 ; �61�
we can write the following for the sought-after angle y 0:

tan y 0 � v 0y
v 0x
� sin y

g�V=c� cos y� : �62�

In the case of ultrarelativistic velocities, when g!1, a star,
whatever its position, will seem to be situated at a very small
angle to the direction of motion of the frame of reference K0.

If the angle d 0 � p=2ÿ y 0 is introduced, which is used in
astronomy for characterizing the aberration of starlight, we
obtain from formula (62) for a star at the zenith (y � p=2) the
relationship

sin d 0 � V

c
; �63�

which, in the case of relativistic velocities, differs essentially
from the classical formula

tan d 0 � V

c
: �64�

Note that the phenomenon considered is related to the change
of direction from which a light wave propagating from a
distant star arrives. Let us examine how the wavefront is
oriented in different coordinate systems.

Consider, for reasons of simplicity, a star that is at the
zenith (y � p=2) in the frame of reference K. Then, the flat
front a1a2 will reach points O and P on the x-axis
simultaneously (Fig. 11a). An observer will register (visually
or with the aid of an optical device) the star's position in the
direction of motion of the wave, which is perpendicular to its
front.

In the frame of reference K0 (Fig. 11b), light will arrive at
point O 0 later than at point P 0. If the length of the segment
OP � L, then, in accordance with the formula for time
transformation (1), such retardation will be equal to

Dt 0 � g
V

c 2
L : �65�

An observer in the frame of reference K0 will find the normal
to the wavefront to be inclined at an angle d 0 to the y 0-axis. In
a time Dt 0, light will cover the distance M 0O 0 � cDt 0. The
distance between points O 0 and P 0 in the frame of reference
K 0, in accordance with the Lorentz transformations for
coordinates, is L0 � gL. Hence, one obtains

sin d 0 � O 0M 0

O 0P 0
� cDt 0

L0
� V

c
; �66�

which coincides with formula (63).

14. Acceleration transformations

In the case of Galilean transformations, acceleration is an
invariant quantity under transition from one inertial refer-
ence system to another. When moving with a relativistic
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Figure 10.Directions of propagation of a light beam from a star at the zenith in different frames of reference.
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Figure 11. Position of the flat wavefront of a light wave arriving from a star at the zenith in different frames of reference.
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velocity, the acceleration projections ax, ay, az cannot
evidently remain constant in different inertial reference
systems, since neither the differentials of velocity projections
nor the time differential dt is an invariant of the Lorentz
transformations. From formulae (51) one can find the
differentials of velocity projections:

dvx � dv 0x
g 2�1� v 0xV=c 2�2

;

dvy � 1

g

dv 0y
1� v 0xV=c 2

ÿ 1

g

v 0yV=c
2

�1� v 0xV=c 2�2
dv 0x ; �67�

dvz � 1

g
dv 0z

1� v 0xV=c 2
ÿ 1

g
v 0zV=c

2

�1� v 0xV=c 2�2
dv 0x ;

and the time differential:

dt � g
�
dt 0 � V

c 2
dx 0
�
: �68�

If the left-hand and right-hand parts of the three equalities
(67) are divided by the respective left-hand and right-hand
parts of expression (68), we obtain the following transforma-
tions of the acceleration projections:

ax � a 0x
g 3�1� v 0xV=c 2�3

;

ay � 1

g 2
a 0y

�1� v 0xV=c 2�2
ÿ 1

g 2
v 0y�V=c 2� a 0x
�1� v 0xV=c 2�3

; �69�

az � 1

g 2
a 0z

�1� v 0xV=c 2�2
ÿ 1

g 2
v 0z�V=c 2� a 0x
�1� v 0xV=c 2�3

:

The noninvariance of acceleration is readily illustrated with
the aid of formulae (69) by taking advantage of a simple
example. If a particle moves uniformly in the frame of
reference K0 along a straight line perpendicular to the x 0-axis
(v 0y 6� 0, v 0z 6� 0, a 0y � 0, a 0z � 0), and with an acceleration a 0x
along the x 0-axis, in the frame of reference K it attains
accelerations ay and az differing from zero.

15. Co-moving frame of reference

Let us introduce the important concept of a co-moving
inertial frame of reference K0c traveling along the x-axis of
the laboratory frame of reference K. Its velocity V is
determined by the condition that the velocity projection v 0x
be zero (v 0x � 0).

In the case of a particle motion with acceleration along the
x-axis, the velocity V of the co-moving frame of reference K0c
at different instants of time should be various:

V � vx ; �70�

since the velocity vx is variable. In particular, we stress that
the system K0c is an inertial reference system and must move
with a constant velocity, V � const. Condition (70) can only
be satisfied by a set of reference systems K0c moving with
different velocities, and at each instant of time t it is necessary
to make use of one of the systems for which at this instant
V � vx.

With account of v 0x � 0, the acceleration projections in the
reference system K and in the system K0c, moving at the given

instant with velocity V, are related by simple relationships:

ax � a 0x
g 3
; ay �

a 0y
g 2
ÿ v 0y

V

c 2
a 0x
g 2

; az � a 0z
g 2
ÿ v 0z

V

c 2
a 0x
g 2

:

�71�
We recall that the velocity V of the frame of reference K0c is
determined in formulae (71) from condition (70).

If the velocity and acceleration of a particle in the co-
moving frame of reference K0c are directed along the x 0-axis
(v 0y � v 0z � 0, a 0y � a 0z � 0), only the projection ax differs from
zero in the laboratory frame of reference:

ax � a 0x
g 3
: �72�

For an example, we shall consider the motion of an
elementary particle in a constant electric field E directed
along the x-axis. The velocity of the particle in the frame of
reference K increases under the action of the field; however,
the motion will not be uniformly accelerated. Indeed, a
particle of charge q in the co-moving frame of reference is
under the action of a force f � qE, since the field strength
along the x-axis is the same in all IRSs. In this frame (v 0x � 0),
the particle's acceleration can be found from the classical
equation of motion

a 0x � a0 � qE

m
� const : �73�

Returning to formula (72), we note that, as g increases, the
acceleration ax ! 0, although the force f � const. From
formula (72) with account of formula (73), one readily
obtains the time dependence of the velocity vx and the law of
motion x�t� of the particle. Indeed, we rewrite formula (72) as

ax � dvx
dt
� a0

�
1ÿ

�
vx
c

�2�3=2
; �74�

where equality (70) was taken into account. Separating
variables vx and t, we obtain

dvx�
1ÿ �vx=c�2�3=2

� a0 dt : �75�

If we assume that at the instant t � 0 the velocity vx � 0,
integration of equality (75) results in the relationship

vx�����������������������
1ÿ �vx=c�2

q � a0t : �76�

Further expressing vx, we obtain the velocity increase law for
vx:

vx � a0t�������������������������
1� �a0t=c�2

q � ct=t0����������������������
1� �t=t0�2

q ; �77�

where t0 � c=a0 is a characteristic time scale. Upon substitu-
tion of formula (77) into (74), we have

ax � a0
1�

1� �t=t0�2
�3=2 : �78�

The time dependences (77) and (78) are shown in Fig. 12. The
acceleration of the particle is seen to decrease steadily, while
its velocity tends asymptotically to its limit value equal to c.
We note that ax � a0 in Newton's mechanics, and the particle
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velocity would increase without limits, so already in time t it
would have reached the value equal to the speed of light.

Of practical interest is the time tb which it takes a particle
to be accelerated up to a given relative velocity b � vx=c.
From expression (77) it follows that

tb � bgt0 : �79�

Since b � 1, the time tb is g times greater than the character-
istic time t0. For example, the international project TESLA
(TeV-Energy Superconducting Linear Accelerator) foresees
the acceleration of electrons up to the velocity at which the
Lorentz factor reaches the value g � 106 at a0 �3�
1018 m sÿ2. Because under these conditions t0 � 10ÿ10 s, the
time tb may comprise � 10ÿ4 s.

Integrating expression (77), we obtain the law of motion

x �
� t

0

vx dt � ct0

 �����������������������
1�

�
t

t0

�2
s

ÿ 1

!
; �80�

where it was taken into account that x � 0 at t � 0. It is not
difficult to see that, for t5 t0, one finds

x � ct 2

2t0
� a0t

2

2
; �81�

which coincides with the classical law of uniformly acceler-
ated motion. However, for t4 t0, the increase in the
coordinate x with time is approximately linear. The asymp-
tote of the law of motion is a straight line (Fig. 13), and its
equation has the form

x � c�tÿ t0� : �82�

As follows from Eqns (79) and (80), the particle will cover in
time tb the distance

xb � ct0�gÿ 1� : �83�

Thus, for instance, at t � 10ÿ4 s, required for achieving the
value of g � 106, an electron will cover the distance
xb � 30 km. Naturally, the cost of constructing such a long
linear accelerator is enormous, and therefore TESLA is an
international project.

Let us find the dependence of the proper time t
(determined by the clock associated with the particle) on
time t in the laboratory frame of reference. With account of
expression (77), this dependence takes the form

t�
� t

0

��������������
1ÿ b 2

q
dt�

� t

0

dt����������������������
1� �t=t0�2

q � t0 arsinh
t

t0
: �84�

At large times of motion, t4 t0, one obtains

t � t0 ln
2t

t0
: �85�

Here, use has been made of the well-known representation of
the inverse hyperbolic sine, namely

arsinh z � ln
�
z�

�������������
1� z 2

q �
:

For electrons participating in the process of their acceleration
considered above, when t � 10ÿ4 s, the proper time
t � 1:45� 10ÿ9 s, i.e., five orders of magnitude less.

The enormous effect of time slowing down essentially
permits accelerating nonstable particles, as well. For example,
in the case of muons, which are about 200 times heavier than
electrons, the characteristic time t0 will also be 200 times
longer: t0 � 2� 10ÿ8 s. To reach the value of g � 106 during
the time of acceleration tb � 2� 10ÿ2 s, muons will cover a
path xb � 6000 km. In accordance with formula (85), the
proper time will amount to

tb � t0 ln

�
2tb
t0

�
� 3� 10ÿ7 s; �86�

i.e., will happen to be an order of magnitude smaller than the
muon proper lifetime. In this case, the accelerator must be
circular.

16. Twin paradox

Consider twin brothers, one of whom has taken part in a
space flight from Earth to a distant planet and then returned.
From the point of view of the brother who stayed at home,
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Figure 12. Time dependences of velocity and acceleration of a relativistic particle under the action of a constant force.
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Figure 13. The law of motion of a relativistic particle under the action of a

constant force.
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owing to the Lorentzian contraction of time due to themotion
of the rocket, when the cosmonaut returned, he was younger
than his brother.

However, such reasoning should also mean that the
brother-cosmonaut would be justified in expecting the ageing
of his brother who had stayed at home to slow down, since the
latter first `flew away' together with Earth and then returned
to the rocket. Precisely this is the twin paradox, which is due to
incorrect application of the relativity principle.

Indeed, the brother who stays at home is always in the
same inertial reference system (IRS) associated with Earth.
Contrariwise, the reference system associated with the rocket
is noninertial (NIRS) during the stages of speeding up and
rocket drag, while along the path of uniform movement
toward the distant planet, and then back to Earth, one
should speak of two different IRSs traveling in opposite
directions with the velocity of the rocket.

In Fig. 14a, the world line of a rocket (WLR) traveling
with a velocityV � c to a planet at a distanceL0 fromEarth is
presented in the Minkowski plane. Within the sections of
speeding up and slowing down, which may occupy a small
time as compared with the time of uniform motion, the world
line is distorted. The world line of Earth (WLE) coincides
with the ordinate axis. The dashed straight line indicates the
light line coinciding with the bisectrix of the right angle
between the coordinate axes.

We shall perform a most simple calculation of the flight
duration, taking advantage of the Lorentz formula for time
transformation:

t 0 � g
�
tÿ V

c 2
x

�
: �87�

We shall neglect the time (read by a clock on Earth) spent for
speeding up and slowing down the rocket, and we shall
represent the world line of the rocket as two straight lines,
OA and AP (Fig. 14b). Obviously, the flight duration t0
measured by a clock on Earth will amount to

t0 � 2L0

V
: �88�

The clock on board the rocket that returned will show less
time

t 00 �
t0
g
: �89�

Thus, the brother-cosmonaut will age less. To him, there is
nothing to be surprized at in this shorter time, since, owing to
the Lorentzian contraction of length, Earth, in a time t 00, will
have `flown' with a velocityV through a distance 2L0 �2L0=g.
He may, however, make an incorrect conclusion concerning
the time t0 if he considers the time ~t0 on Earth, which had
slowed down compared to t 00 by the factor g, owing to Earth's
motion, to represent the total time:

~t0 � t 00
g
� t0

g 2
: �90�

The error in the cosmonaut's conclusion consists in ~t0 being
only a small part of the time that passed on Earth during his
flight mission. When the cosmonaut approached the planet
and was in the frame of reference K01, moving away from
Earth, AB1 was the simultaneity line, while, when he started
returning to Earth, AB2 became the simultaneity line. The
actual time ~t0 � �OB1 � B2P�=c. Thus, the cosmonaut had
not taken into account the time interval B1B2=c.

For estimating this time interval, we make use of formula
(87), in which we set t 0A1

� t 00=2. At this instant, the rocket is at
point A1, as close as possible to the turning point A. In our
reasoning, point A1 is used to reflect the fact that the rocket
was still in the frame of reference K01 moving away from
Earth. Then, from formula (87) follows the equation for the
straight line B1A1:

ct � ct 00
2g
� Vx

c
: �91�

All the events on this straight line take place simultaneously at
the instant t 0 � t 00=2 (from the cosmomaut's point of view).
Obviously, the readings of clocks in the IRS associated with
Earth will be different for these events. For example, clocks
on Earth will show for event B1 the time

tB1
� OB1

c
� t 00

2g
� 1

2
~t0 � 1

2

t0
g 2

; �92�

which follows from formula (91) at x � 0, while for event A1

(x � L0), clocks on Earth will show the time tA1
� t0=2.

Upon transferring to another frame of reference K02, the
clock of the cosmonaut shows t 0A2

� t 0A1
. At the same time as

event A2, events will occur in this frame that lie on the dashed
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Figure 14. Illustration of the twin paradox in the Minkowski plane.
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straight line B2A2. In the IRS associated with Earth, clocks
will show differing times for these events. Thus, for example,
in the case of happening the event B2, time on Earth is

tB2
� OB2

c
: �93�

In order to calculate this time, we shall obtain the equation for
the simultaneity line B2A2.

From reasons of symmetry, it is obvious that at instant
t � t 0 � 0 the origin of the frame of reference K02 was at a
distance x � 2L0 from point O (Earth). Therefore, the
coordinate xmust be replaced in formula (87) by the quantity
xÿ 2L0. We also recall that the velocity V of the frame of
reference K02 is directed toward Earth. Then, one has

t 0 � g
�
t� V

c 2
�xÿ 2L0�

�
: �94�

From the last formula we obtain for the simultaneity line
B2A2 (again we assume t 0 � t 00=2 � t0=2g):

ct � ct0
2g 2
ÿ V

c
�xÿ 2L0� : �95�

Thus, for example, for event A2 infinitely close to A (x � L0),
from formula (95) we find tA2

� t0=2, and for event B2

(x � 0), the time on Earth is

tB2
� t0

2g 2
� 2

V

c 2
L0 � t0 ÿ t0

2g 2
: �96�

Thus, for the aforementioned time B1B2=c, we obtain

B1B2

c
� tB2

ÿ tB1
� t0 ÿ t0

g 2
: �97�

If this time is added to time (90), we will have

t � t0
g 2
� t0 ÿ t0

g 2
� t0 ; �98�

which will give rise to no objections from the inhabitants of
Earth.

Let us note the peculiarities of the flow of time during
starts from Earth and from the planet and two landings.
During the start from Earth, the rocket speeds up in a short
time interval dt5 t0 and, by the end of acceleration of the
rocket, the cosmonaut will perceive clocks on Earth and on
the planet in the IRS of Earth to be no longer synchronized
(clocks on the planet will show greater time) by the quantity

Dt � VL0

c 2
� b 2 t0

2
: �99�

Therefore, during the approach to the planet at instant
t0=2 (readings by clocks on the planet), clocks on Earth will
show the time

t0
2
ÿ Dt � t0

2g 2
� tB1

: �100�

During the launch of a rocket from the surface of the
Earth, the simultaneity line, which at the beginning coincided
with the x-axis, will turn and occupy the position OB4

(Fig. 14b), while during the space flight it will move in
parallel to itself to position B1A. When landing on the
planet, the end of the simultaneity line AB1 (point B1) will

start, during a time dt5 t0, to displace upwards (the
nonsynchronicity will decrease), and, at the instant of time
the rocket stops, the simultaneity line AB3 will be parallel to
the x-axis. This means that clocks on Earth and on the planet
will show the same time, equal to t0=2 (while the cosmonaut's
clock will show a time t0=2g).

During the start of the rocket from the planet, non-
synchronicity will again arise, but the clocks on Earth will
already be fast by the quantity (99), and during the start
time dt the simultaneity line will move from position AB3 to
position AB2. During the space flight toward Earth, this
line will move in parallel to itself to position PB5. In landing
on Earth, which takes time dt, the simultaneity line will
turn, having occupied position PB6, and once again it will
become parallel to the abscissa axis. The clocks on Earth
and on the planet register the same flight time, equal to t0,
while the cosmonaut's clock will show the time t0=g. Thus,
from the point of view of the cosmonaut, it was acceleration
of the rocket's motion (two starts and two landings) that
occupied most of the time that passed on Earth during the
flight.

We shall once more note that both twins (both on Earth
and on board the rocket) will feel the natural (uniform) course
of time.

It is interesting to see how the traveller will perceive radio
signals sent from Earth in identical time intervals, according
to clocks on Earth, and how similar signals sent from the
rocket will be perceived on Earth. FromFig. 14b, in which the
radio signals sent out are indicated by arrows, it is seen that on
the way to the planet the traveller will register only a small
part of all the signals sent to him, while on the return trip he
will register amuch larger part. On Earth, the signals from the
rocket will be registered in very long time intervals practically
during the whole trip, and only during the period of the very
short final stage in short intervals.

Naturally, even an inexperienced reader will understand
that in reality it would be impossible to carry out such an
experiment. First, for the rocket to achieve such velocities it
would be necessary to spend an enormous amount of energy,
which could not be `stored' on board the rocket. Second, to
achieve such velocities in a time comparable to the life span of
human beings would require such large accelerations that the
overloads would be essentially superior to the limit level
compatible with life. And, finally, a flight at sublight
velocities is incompatible with the possibilities of radiation
safety owing to the presence of interstellar gas (hydrogen and
much heavier ions).

17. Conclusion

The approach presented in this methodical note is certainly
not to be considered universal and comprehensive: it should
be perceived as a possible version of the exposition of STR
fundamentals. If one abides by the main didactic principle of
achieving maximum accessibility and clarity, this seems to
have been sufficiently provided for by the description of real
experiments, the results of which exhibit clear physical
content and unquestionable reliability.

In this article we have deliberately dealt as little as possible
with `light' experiments confirming the validity of STR. This
has permitted us to avoid speculation concerning the existence
of ether and etheric wind, as well as `sensational' announce-
ments of measured values of the speed of light exceeding the
conventional one.
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