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Abstract. The magnetic structure and magnetization dynamics
of systems of plane frustrated Ising chain lattices are reviewed
for three groups of compounds: CazCo0,04, CsCoCl;, and
Sr;Rh4Og;. The available experimental data are analyzed and
compared in detail. It is shown that a high-temperature mag-
netic phase on a triangle lattice is normally and universally a
partially disordered antiferromagnetic (PDA) structure. The
diversity of low-temperature phases results from weak interac-
tions that lift the degeneracy of a 2D antiferromagnetic Ising
model on the triangle lattice. Mean-field models, Monte Carlo
simulation results on the static magnetization curve, and results
on slow magnetization dynamics obtained with Glauber’s theo-
ry are discussed in detail.

1. Introduction

Magnetic frustrated systems have been extensively studied
both theoretically and experimentally for a long time [1-3]. In
this review, we will concentrate on a special class of magnetic
compounds formed by frustrated Ising chain lattices. The
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magnetic structure of such systems is determined by a
complex hierarchy of magnetic interactions. The strongest
of them act along Ising chains, which are treated as basic
elements of the magnetic structure. When the chains are
oriented along one of the crystallographic axes and are
packed into a two-dimensional, most often triangular, lattice
in a plane perpendicular to the chain direction, weak
antiferromagnetic (AFM) interactions between magnetic
ions in adjacent chains lead to frustration. In addition, it is
shown that very weak long-range interactions also strongly
affect the phase diagram and magnetization dynamics.

We will study systems with triangular Ising chain lattices
by the example of three groups of substances. The Ca;Co,04
compound has attracted great attention in the last decade,
and therefore a considerable part of the review is devoted to it.
One of the most remarkable results obtained for Caz;Co,0g is
the low-temperature magnetization curve, in which a
sequence of steps equidistant in the magnetic field was
found. The number of these steps depends on both tempera-
ture and the rate of changing an external magnetic field. In
addition, the relaxation of the magnetic moment in
Ca3Co0,04 occurs unusually extremely slowly, with the
relaxation time reaching a few hours or even days. To explain
such an unexpected behavior, various theoretical models have
been constructed, including the stochastic dynamics and
quantum tunneling of the magnetic moment.

To describe the magnetization dynamics in systems with a
strong uniaxial anisotropy, it is necessary to go beyond the
framework of the static Ising model. At very low tempera-
tures, the quantum nature of magnetism is manifested, and,
therefore, the Ising system is treated either as a strongly
anisotropic Heisenberg magnet [4] or an open quantum
system [S]. Moreover, there is a broad region of moderate
and high temperatures, in which the magnetization dynamics
is stochastic.
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In 1963, Roy J Glauber proposed the stochastic theory of
the magnetization dynamics in an Ising chain [6]. Later, this
theory was extended to two-dimensional and three-dimen-
sional systems and, in particular, was applied to explain the
magnetization dynamics in Ca3;Co,04 compound. Glauber
was awarded the Nobel Prize in Physics 2005 “for his
contribution to the quantum theory of optical coherence”
[7]. We will see below that he has also managed to solve
elegantly ‘incoherent’ problems such as the stochastic
dynamics in the Ising model.

Monte Carlo simulations of the ground state and static
magnetization curve of Caz;Co,0¢ developed dramatically.
Earlier work on numerical two- and three-dimensional
simulation was performed with the help of the standard
Metropolis algorithm. It was then found that this algorithm
on a frustrated triangular lattice leads to qualitatively
incorrect results, and the new Wang-Landau algorithm
should be used for correct calculations.

Apart from Ca3zCo,04, we will discuss two other groups
of compounds. CsCoCl;, CsCoBrj3, and their related com-
pounds were probably the first frustrated systems with
triangular Ising chain lattices to have been studied. By now,
their properties have been investigated in detail. In addition, a
new complex SrsRh4O,; compound, which can be assigned to
the third group, was recently synthesized and studied. Note
that the magnetic behavior of substances belonging to these
three groups has both common features and considerable
differences. Because of this, one of the main goals of the
review was the development of a unified theoretical model of
the magnetic phase diagram.

We consider a few possible practical applications of
compounds with a triangular Ising chain lattice. In particu-
lar, a thin nanostructured Ca3;Co,0g film is concerned as a
possible medium for superdense magnetic data recording [8§].
Ca3Co0,04 and its related compounds have a very high
Seebeck coefficient and good thermal conduction [9, 10],
and are treated as promising materials for thermoelements
[11]. The only factor preventing their application in this field
is too high a specific resistance [10]. The magnetoelectric
effect was found in a solid Ca;Co,_,Mn,Og solution [12], and
its application is being extensively discussed at present [13].

The layout of the review is as follows. Section 2 is devoted
to experimental results. First, we very briefly discuss magnetic
systems with isolated Ising chains. Then, we analyze in detail
the static and dynamic properties of systems with triangular
Ising chain lattices. In Section 3, we consider models of rigid
chains and the effective field for a magnetic structure.
Section 4.1 contains an introduction to the Glauber theory
of the Ising chain dynamics. Then, the Glauber dynamics is
applied for numerical two- and three-dimensional simula-
tions of the magnetization dynamics in Ca3;Co0,0¢. The
results of Monte Carlo simulation of static magnetization
curves are the concern of Section 5. In the conclusion, the
results and unsolved problems are formulated.

2. Experimental studies
of frustrated Ising chain lattices

2.1 Isolated Ising chains

Before proceeding to an analysis of the properties of
frustrated Ising chain lattices, it is useful to briefly discuss
the behavior of an individual chain. Recent progress in the
synthesis of organic magnetic compounds has opened up

opportunities for detailed experimental studies of the
magnetic properties of isolated low-dimensional elements,
including Ising chains. Investigations of molecular magnet-
ism started in the 1980s [14] after the development of
theoretical approaches to the fabrication of magnets based
on organic compounds [15]. It is remarkable that the
presence of organic ligands in compounds often leads to
the formation of isolated oligomers, wheel-like structures,
and molecular clusters. The role of organic components is
reduced in this case to the screening of interactions between
magnetic centers.

Researchers became aware of the reality of molecular
magnetism early in the 1990s, when the hysteresis in
molecular magnetization, tunneling of the magnetic moment,
and other very interesting phenomena were revealed in the
[Mn]2012(CH3COO)16(H20)4] . 2CH3COOH -4H20 com-
pound [16, 17]. It was found that the unusual behavior of
this compound is explained by the combination of a strong
‘easy-axis’ anisotropy and weak intermolecular interactions
[18] preventing the passage of a zero-dimensional system to
3D ordering. In this connection, the term ‘single-molecule
magnet’ was proposed.

Later on, based on organic compounds, isolated magnetic
structures of different dimensionalities were fabricated,
including one-dimensional (1D) systems. In 2001, the team
led by D Gatteschi reported the first observation of the slow
relaxation of magnetization in a 1D {Co(hfac),[NIT(CsH,p-
OMe)]} compound (CoPhOMe) [19]. An individual chain of
this compound has the ferrimagnetic structure and behaves as
a whole as a superparamagnetic nanowire. Within a year, the
[Mn!(saltmen),Ni'!(pao),(py),](ClO4), compound was
synthesized, which consisted of ferromagnetic chains [20].
At present, there are a few dozen compounds [21] which can
be called ‘single-chain magnets’ (SCMs). Because chains in
these substances do not virtually interact with each other, and
a strong uniaxial anisotropy manifests itself, the term
‘isolated Ising chain’ is also applicable.

A slow relaxation of the magnetization is observed in
ferromagnetic (FM) [20, 22], ferrimagnetic [19], and noncol-
linear antiferromagnetic [21] Ising chains. In the absence of a
noncollinear structure, relaxation in AFM chains is also
possible if a chain contains an odd number of spins [23]. One
should, however, take into account that SCM materials
generally consist of irregular chains, i.e., a few exchange
interaction parameters and several sublattices can be
required for their description. The relaxation of magnetiza-
tion in Ising SCMs is successfully interpreted in terms of the
Glauber dynamics [23].

The specific features of the magnetic structure of a single
chain can be highlighted by analyzing the temperature
dependence of the magnetic susceptibility y(7) [21]. For
example, it is expected that y oc 772 for an isotropic
Heisenberg chain of classical spins with the ferromagnetic
exchange interaction between nearest neighbors. In the case
of the Ising model or anisotropic Heisenberg model, the
longitudinal susceptibility diverges exponentially with
decreasing temperature: exp (4:/kgT )/ T, whereas the trans-
verse susceptibility at low temperatures remains constant and
much smaller than the longitudinal susceptibility. The
quantity A; has the physical meaning of the domain wall
energy. Depending on the relation between anisotropy and
exchange interaction parameters D and J, respectively, the
domain wall can be subclassified into sharp (|]D/J| > 1) or
extended.
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Such a drastic difference in the behavior of the above-
mentioned models arises from the nature of magnetic
excitations allowable in each of them. The spectrum of
excitations in the Heisenberg model is continuous, whereas
low-energy excitations in the Ising 1D model represent
extended ordered domains separated by sharp domain walls
and exhibit a discrete energy spectrum.

At temperatures close to absolute zero, the magnetization
relaxation time can reach a few hours. The temperature
dependence of the relaxation time has an activation nature
and obeys the Arrhenius equation t(7") = tgexp (4,/ksT)
[21]. The energy 4. is determined by the domain wall and
anisotropy energies 4 and 4,, respectively, and by the
relationship between the correlation length & and the chain
segment size L: at high enough temperatures, 4, = 4, + 24,
the segment is divided into domains, and new domains are
generated inside old ones. On the other hand, ordering occurs
inside the entire segment in the low-temperature limit, while
the generation of new domains is displaced to its boundaries,
A, = A, + A¢. Thus, the presence of defects in the system give
rise to a break in the plot of the temperature dependence of
the relaxation time in In (t) and 1/7 coordinates, resulting in
a change in the straight line slope. The break corresponds to a
crossover between the above-mentioned formation modes of
new domains. By analyzing the temperature dependences of
the susceptibility and relaxation time, we can numerically
estimate characteristic interactions inside the system
(exchange interaction and anisotropy parameters) and also
the chain segment length between two defects.

The uniqueness criteria for the magnetization relaxation
mechanism are the Cole—Cole plots [21] representing the
dependence of the imaginary part y” of the magnetic
susceptibility on its real part y’. It was found experimentally
that the Glauber dynamics in certain SCMs, which will be
discussed below, comprises the only relaxation process.

In ferromagnetic single-chain systems [21, 24] residing in
an external magnetic field applied along the anisotropy
direction, broad hysteresis loops with a large coercive force
(up to 2.75 T at temperatures below 0.4 K) are observed. The
area of hysteresis loops increases with decreasing temperature
and upon increasing the field change rate. In specific cases,
hysteresis loops can exhibit steps [19].

Detailed information and comprehensive references can
be found in reviews devoted to the strategy of synthesis of
these compounds [25], the adjustment of the intermolecular

interaction [23], theoretical and experimental descriptions of
the magnetization dynamics [21], and the general develop-
ment of studies in this field [14].

2.2 CazCo0,04¢: the electronic structure

Although the Ca;Co,04 compound has been known for quite
some time [26], systematic studies of its low-temperature
magnetic properties were initiated only in the middle of the
1990s [27-30]. The crystalline structure of this compound is
formed by Co,0¢ chains oriented along the crystallographic
c-axis (Fig. 1). Calcium ions are located between chains and
are not involved in magnetic interactions. Cobalt ions in
chains are resided in two alternating positions: at the centers
of octahedra (Col) and trigonal prisms (Coll) formed by
oxygen ions and sharing faces with each other. The Co,0g
chains are packed into a regular triangular lattice in the
ab plane. Here, we should point out that adjacent chains are
displaced relative to each other along the c-axis by 2/3 of the
cell size (Fig. 1b), resulting in a complex topology of the
Ca3Co0,04 magnetic subsystem. The strongest bonds between
cobalt ions in adjacent chains are realized via oxygen bridges,
with the minimal bond length between oxygen ions, as shown
in Fig. 1b. Such bonds between chains form double spiral
paths along the c-axis in the magnetic subsystem of the
compound.

The valent and spin states of cobalt ions in Caz;Co0,0q
have been discussed for a long time. For example, it was
assumed that cobalt can be tetravalent and bivalent in
positions Col and Coll, respectively [27]. However, it has
now been reliably established by the methods of X-ray
photoemission spectroscopy [31], X-ray magnetic circular
dichroism (XMCD) and X-ray absorption spectroscopy
(XAS) [32], and nuclear magnetic resonance (NMR) [33]
that the cobalt ion is trivalent (Co’*) in both positions.

Neutron diffraction studies of a polycrystalline sample
[27] showed that the spin states of cobalt ions are different: the
magnetic moment is 0.08 £ 0.04 uz and 3.00 £ 0.05 g (ug is
the Bohr magneton) in Col and Coll positions, respectively.
Later on, the presence of magnetic and nonmagnetic cobalt
was confirmed by XMCD, XAS [32], and NMR [33] data.
However, the detailed analysis by XMCD and XAS methods
gave a higher estimate of the total magnetic moment in the
Coll position amounting to 5.3 uz. Simultaneously, the
orbital part of the magnetic moment proved to be anom-
alously large (1.7 ug).

Figure 1. (See in color online). Ca3;Co,0g crystal structure: (a) view along the c-axis (solid and dashed lines show the rhombic cell and hexagonal cell,
respectively, and (b) adjacent Co,Og cells (cross section along the long diagonal of the rhombic cell), solid and dashed lines show two types of interactions

between Coll ions in adjacent chains.
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The resistivity of Ca3;Co,0O¢ has the semiconducting
nature and decreases from 5 x 10> Qcm at T = 4.2 K [34] to
8 x 1073 Qcm at T = 1073 K [35] in single-crystal samples as
a current flows along chains (along the c-axis). Mobile current
carriers are assumed to be localized on Co®" ions. At low
temperatures (7' < 25 K), the exponent v in the temperature
dependence of the resistivity p(T) = pyexp (To/T)" is 0.5,
which is interpreted as the result of the Efros—Shklovskii
variable range hopping type conduction mechanism [34]. In
the range of room temperatures, the exponent increases to
va 1 because of the probable involvement of various
conduction mechanisms, for example, the activation of the
mobility edge, the increase in the hopping range, etc. [34].
Also, a strong difference between the conductivities of single
crystals along the c-axis and polycrystals, which reached two
orders of magnitude at room temperature, was pointed out
[35]. This effect is probably related to the strong conduction
anisotropy and resistance at grain boundaries in polycrystals.
Measurements of the optical spectrum give the band gap
estimate of 1.35 eV [36].

The high-temperature magnetic susceptibility obeys the
Curie-Weiss law y(T) = C/(T — 0) [27] with temperature
0 = 28 £+ 3 K, which means that the interaction is predomi-
nantly ferromagnetic. This gave the estimate of the magnetic
moment of the Coll ion as 5.7 & 0.02 ug. On the other hand,
the low-temperature saturation magnetic moment is about
5ug per formula unit [37, 38]. As a whole, the magnetic
moment values of the Coll ion measured from the magnetiza-
tion saturation, from the Curie-Weiss dependence, and by the
XMCD and XAS methods well agree with each other,
whereas the estimate made from neutron diffraction measure-
ments [27] seems understated. Below 100 K, a small deviation
from the Curie-Weiss dependence is observed, and Ca;Co, O
passes to the magnetic ordered state at T¢; = 24 K. In the
paramagnetic phase, extremely strong uniaxial magnetic
anisotropy is observed: the ratio of the longitudinal and
transverse magnetic susceptibilities at temperatures below
50 K reaches 100 [39]. Therefore, it is obvious that
Ca3Co0,04 is a pronounced Ising system. The anisotropy
energy estimated from the low-temperature dependence of
the magnetic susceptibility is D =~ 200 K [39, 40].

Before proceeding to a discussion of the properties of
Ca3Co0,04 in the ordered phase, it is useful to discuss
theoretical models of the electronic structure of this com-
pound. Earlier calculations of the electronic structure were
performed by the methods of the density functional theory
(DFT) with the employment of the local spin density
approximation (LSDA) and generalized gradient approxima-
tion (GGA) [41-44]. All these methods gave an erroneous
semimetallic or metallic ground state. In particular, it was
stated that this compound could be the first 1D ferromagnetic
semimetal. The Fermi level in LSDA calculations lay in a
narrow (1 eV) band formed by the 3d electrons of the Coll
ion. As a result, taking into consideration of the subatomic
Coulomb interaction in the LSDA+U and GGA+U approx-
imations led to the passage to a state of a Mott—Hubbard
insulator with a band gap of ~ 1 eV, consistent with
experimental data [36, 44, 45]. Optical measurements have
shown that the Hubbard energy of the intrasite interaction
approaches 5.6 eV [36].

Of most interest in model calculations are studies of the
charge and spin states of cobalt ions and of magnetic
interactions between them. The distance between the cation
and ligands in the Col octahedral position is 191.6 pm, while

Cq (dxz )25 dzz )

Figure 2. Structure of the 3d levels of the Co’* ion in Ca3Co,04
compounds: (a) in the octahedral crystal field (Col), and (b) in the
trigonal prism field (Coll).

this distance for Coll is noticeably greater (206.2 pm) [27].
For this reason, the crystal field on the Col ion proves to be
strong but is weak on the Coll ion [27]. The octahedral field
splits the 3d level into the ty, (dyy,d,d,.) triplet and e,
(dy2_y2,d.2) doublet. Six electrons in the strong crystal field
occupy the ty, states and produce the nonmagnetic config-
uration of the Col ion with the total spin S = 0, as shown in
Fig. 2a.

A more complicated and interesting situation is observed
with the triangular surrounding of the cobalt ion in the Coll
position. The expected structure of the 3d levels in a trigonal
prism should be as follows [27, 46, 47]: the lowest-lying level
should be the d.» level, the d2_;2,d,, doublet is located
slightly higher, and the highest-lying energy level is the
strongly split off d..,d,. doublet. LDA calculations confirm
this picture as a whole, although the d.. level and the
d,>_,2,dy, doublet are interchanged (Fig. 2b) [46, 47]. The
crystal field proves to be weak, i.e., in accordance with the
first Hund rule, at first five electrons occupy all the spin-up
levels, while the remaining sixth spin-down electron remains
in the lower orbital. It was pointed out in paper [45] that,
although this picture is consistent with experimental data, it
does not answer two important questions: what are the
reasons for the strong Ising anisotropy and the great orbital
contribution? It was shown [45, 48] that the inclusion of the
spin—orbit interaction in the LDA+U calculations (the
LDA+U+SOC method) gives the answer to these questions.
The spin—orbit interaction splits the d,>_,>,dy, doublet into
d; and d_; levels, as shown in Fig. 2b. Then, the sixth spin-
down electron is found in the lower d, orbital, which leads to
the total Coll spin S =2 and the total orbital momentum
L = 2. The value of the orbital momentum agrees well with
the value 1.7 up presented above. Some decrease in the
experimental value of the orbital momentum is explained by
the cation-ligand hybridization. It is important that the spin—
orbit splitting energy (70 meV) in the LDA+U+SOC
calculations proved to be much smaller than the gap between
the group of d.»,d,>_,2,d,, levels and the d..,d,. doublet,
which was on the order of 1 eV. As a result, the d; — d; type
transitions can be neglected, and terms /,§_ +/ §, in the
spin—orbit interaction Hamiltonian can be excluded, which
finally leads to the strong Ising anisotropy [45]. Other
theoretical schemes of the d-orbital splitting in cobalt were
also studied, in particular, taking into account the mixing of
Col and Coll states [9].
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Two mechanisms of interaction of magnetic Coll ions via
nonmagnetic Col along chains are possible: either due to a
direct exchange between Col and Coll ions or due to the
exchange between Col and Coll ions via oxygen ions. The
relative strength of these interactions is estimated variously
by different authors [45-47]. In paper [45], the anomalously
strong cobalt—oxygen hybridization in Ca3zCo,0y is pointed
out, which suggests that the second mechanism dominates. As
a whole, the theoretical estimates of the exchange interaction
parameter in both cases well agree with the magnetic
susceptibility [28] and thermal capacity [49] data, and the
temperatures of transition, 17 K [45] and 23 K [46], to the
ordered phase.

Recent detailed NMR studies of the Co nucleus [50]
have given an unexpected result contradicting the mechan-
isms of exchange along chains under discussion: it was found
that the hyperfine level splitting of Col nuclei does not
contain contributions from the direct or indirect exchange
interaction with Coll ions. This was interpreted by the
authors as evidence that Col ions are not involved at all in
the exchange interaction along chains. It should be noted that
this conclusion was made by comparing experimental and
calculated magnetic field strengths on the nucleus of the Col
ion. A certain error in calculations could appear, inter alia,
because the magnetic moment was assumed to be located on
Coll ions, and the weak magnetic moments of oxygen ions
appearing due to their hybridization with Coll were ignored.

Weak interactions between Coll ions in adjacent chains
occur via Co—O—0—Co oxygen bridges [42, 46]. There are
two types of such bonds, which are illustrated in Fig. 1b. Note
that in the case of bonds shown by dashed straight lines, the
distance between oxygen ions is much greater than that for
bonds depicted by solid straight lines, and these bonds are
often neglected. The interchain bonds form a complex
topology with helicoidal paths over the lattice, which will be
discussed in Sections 2.3 and 3.3.

2.3 CazCo0,0¢: the magnetic structure and phase diagram
The most interesting experimental results for Ca;Co,Og were
obtained in the study of magnetization curves in a magnetic
ordered phase [27, 30, 37-39, 51-53]. Below the transition
temperature Tc; = 24 K, curves with a pronounced plateau
at a level of 1/3 of the saturation magnetization were
observed. This fact cannot be called unusual for triangular
lattice AFM systems [54—56]. Such plateaus appear not only
in Ising but also in Heisenberg systems [54, 56]. This is
explained by the fact that a triangular lattice can be divided
into three identical triangular sublattices embedded into each
other. Then, the ferromagnetic interaction between next-to-
nearest neighbors in some or even zero magnetic field can
produce a ferrimagnetic structure in which two sublattices are
aligned in the same direction, while the third lattice is oriented
in the opposite direction (Fig. 3a). It is this structure that
possesses magnetization corresponding to the plateau at a
height of 1/3. Curves with the plateau were observed only
when the magnetic field was changed slowly enough, which
can also be readily explained because we are dealing with a
distinct Ising system. Notice also that a step in the zero
magnetic field is related to the so-called AFM (PDA) or cell
structure, which is displayed in Fig. 3b. The PDA ordering
was discussed for the first time in papers [57, 58].

As temperature is further decreased (below T, = 12 K),
two new steps appear in magnetization curves (Fig. 4a) [37,
38], which are located equidistantly over the magnetic field
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Figure 3. Types of periodic structures entering the ground state of the 2D
AFM Ising model on a trigonal lattice: (a) ferrimagnetic, (b) PDA, and
(¢) AFM stripe structures. The arrows indicate nearest-neighbor (solid
arrow) and next-to-nearest-neighbor (dashed arrow) interactions, and
numbers show a division into three sublattices. Grey circles are attributed
to the sites of a trigonal lattice in which the spin direction is arbitrary:
either ‘spin up’ (dark circles) or ‘spin down’ (white circles).

with a spacing of 1.2 T. Such a shape of the magnetization
curve is quite unusual for a bulk long-range-order system.
The specific feature at 12 K is also manifested in some other
experiments. On the one hand, the spin—lattice and spin—spin
relaxation times drastically changed in NMR experiments
[33], which led the authors of this paper to the assumption
about a possible phase transition in this region. On the other
hand, careful measurements of the heat capacity revealed no
traces of phase transitions in the 7, region [49] (Fig. 5).
The magnetization curve exhibits at 2 K four magnetiza-
tion steps and a broad hysteresis (Fig. 6) [37]. Moreover, the
weak traces of three other steps are observed in magnetic
fields above 3.6 T. These steps are separated by the same
spacing of 1.2 T, as shown in the inset to Fig. 6. This result is
absolutely unique; however, it does not exhaust all the
unusual features of the Ca3;Co,0¢ magnetic behavior. At
temperatures below T¢,, the shape of a magnetization curve
depends on the magnetic field variation rate (Fig. 4b). When
this rate is ‘high’ (~ 1 T min~! for Ca3;Co,0g), the magnetiza-
tion curve exhibits four steps. As the magnetic field variation
rate is decreased to 0.01 T min~!, two additional steps on the
1/3 plateau gradually decrease and almost disappear, and the
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Figure 4. Change in the magnetization curve shape in Ca;Co,04: (a) with
increasing temperature (2, 3, 4, 5, 10 K; the arrows show the order of
curves) at a constant field growth rate of 0.1 T min~!, and (b) at a constant
temperature of 4 K and changing field growth rate [1 Tmin~! (solid curve),
0.1 Tmin~' (dashed curve), 0.01 T min~" (dotted curve) [38]; f.u.: formula
unit.
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Figure 5. Magnetic component of the heat capacity of Ca;Co0,0¢ in
magnetic fields of 0 T (circles), 2 T (squares), and 5 T (rhombs) oriented
along the crystallographic c-axis [49]; the inset shows a magnified portion
of the plots.

curve takes the shape typical of the high-temperature
magnetic phase (Tcx < T < Tcp).

The dependence of the magnetization curve on the
magnetic field growth rate indicates the occurrence of slow
dynamic processes in the magnetic structure. For this reason,
the frequency dependence of the dynamic magnetic suscept-
ibility was carefully studied in Ref. [59]. The imaginary part of
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Figure 6. Magnetization curves of Ca;Co,04 at 7= 2 K and a magnetic
field growth rate of 0.1 T min~! (f.u.: formula unit). The inset shows the
magnetization derivative over the magnetic field strength, the arrows
indicate the traces of steps in strong magnetic fields (see text) [38].

1.6

x", emu/mol

x", emu/mol

Figure 7. Imaginary part of the dynamic magnetic susceptibility of
Ca3Co0,0¢ (in electromagnetic units per mol) as a function of (a) tem-
perature at frequencies of 0.01 Hz (squares), 0.1 Hz (circles), 1 Hz
(triangles), 10 Hz (inverted triangles), 100 Hz (rhombs), 1000 Hz
(asterisks), and (b) frequency at temperatures of 2.25 K (squares), 3.5 K
(circles), 6 K (triangles), 8 K (inverted triangles), 10 K (rhombs), 11.5 K
(asterisks), and 13 K (triangles pointing to the right) [59].

the susceptibility exhibits a broad peak, which resembles the
response of an isolated chain, discussed in Section 2.1.

Some results of paper [59] are presented in Fig. 7. One can
see, in particular, that, as temperature is lowered, the peak
rapidly shifts to the red. The authors of Ref. [59] also pointed
out the interesting fact that the peak height and position at
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Figure 8. Ca;Co0,04 magnetization relaxation in a permanent magnetic
field at T=4 K: (a) in different magnetic fields in the ascending
magnetization curve, and (b) for 2.0, 2.3, and 2.7 T in the ascending
(inverted triangles, rhombs, asterisks) and for 2.0 and 2.3 T (triangles,
circles) in descending branches [38].

10 K depend on the hold time of a sample at the given
temperature: the peak height noticeably increases and it shifts
to the red after sample holding at 10 K for a few hours. The
measurements of the dynamic susceptibility were interpreted
using a model with two characteristic relaxation times, 7, and
75. For T > 10 K, these times coincided, 7y = 7, = 7, withIn <t
being proportional to the inverse temperature 7-!. As
temperature was decreased below 10 K, one of the relaxation
times continued to linearly increase as Int oc 77!, while
another one saturated, reaching ~ 0.4 s.

The magnetization dynamics was analyzed in more detail
by studying relaxation processes on very long time intervals
(up to 10% s) in a permanent magnetic field [38, 60]. For this
purpose, the external magnetic field on a sample was rapidly
changed to the required value, and then the magnetization of
the sample was measured after long sitting in a permanent
magnetic field. At temperatures above 10 K, relaxation
proceeded rapidly (for a few seconds). At low temperatures
(4 K), the slow magnetization dynamics was quite compli-
cated: the relaxation sign changed upon increasing the
magnetic field above 2.3 T, as demonstrated in Fig. 8a. One
can see from these plots that there are at least two slow
relaxation mechanisms with different directions and various
time constants.

The magnetic structure was studied by using neutron
diffraction [27, 29, 61, 62]. It was pointed out in both old
[27, 29] and later [61, 62] papers that the AFM peak
intensity decreased when lowering the temperature below

Tcr. Thus, the low-temperature magnetic phase of
Ca3Co0,04 should be more disordered than the high-
temperature phase. The ratio of peak intensities observed
near 7 = 0 K during cooling in a magnetic field (FC) and in
its absence (ZFC) is 1.7, which is much greater than the
expected value (1.3) for the PDA structure. From this
follows the important conclusion that the magnetic struc-
ture of the low-temperature phase differs from the PDA
order observed for Ty < T < T¢;. Changes in the inten-
sities of AFM and FM peaks in large single crystals in a
magnetic field at 7= 2 K were recently studied in detail by
Fleck et al. [62]. All four magnetization steps were distinctly
observed by changes in the intensity of these peaks. Note
also that a weak peculiarity was also observed here at
~ 4.8 T, which should correspond to the fifth step.

The spin relaxation of muons (USR) in Ca3;Co,0¢ was
studied by Takeshita et al. [52, 53]. At temperatures below
Tc2, a long ‘tail’ was revealed in the time dependence of the
muon decay asymmetry function, while the asymmetry on the
microsecond time scale was virtually absent for temperatures
Tcr < T < Tcy. Most likely, this means that, in the first case,
the decay occurred in stationary magnetic fields, whereas
rapidly fluctuating microscopic magnetic fields existed in the
second case, resulting in the fluctuation of magnetic
moments. The characteristic time of magnetic fluctuations
was estimated as 21 ns. Recent NMR measurements have
revealed a broad fluctuation region above the temperature of
transition to the ordered state, where the short-range order
probably exists [63].

By partially replacing cobalt ions in Ca3;Co0,0g4, we can
obtain a family of stoichiometric Caz;CoBOg compounds,
where B = Ni, Ru, Ir, Rh, and Mn [31, 61, 64-69]. The
octahedral Col sites in Ca3CoRhOg and Ca3z;ColrOg¢ com-
pounds are occupied by rhodium and iridium ions, while Coll
sites are occupied by cobalt ions as before. The charge and
spin states of cobalt, rhodium, and iridium ions in these
compounds were discussed in papers [64, 65, 67-69]. It has
been established that Co’>" ions reside in the high-spin
(S = 3/2) state, while Rh** and Ir** ions in the low-spin
(S = 1/2) state, with both types of ions being ferromagneti-
cally ordered in chains [31, 67, 68].

XMCD measurements are indicative of the important role
of the spin—orbit splitting and the anomalously large orbital
contribution to Co?*, similarly to ColI ions in Ca3Co,Q0s.
This model of the magnetic structure is consistent with
observed total magnetic moments [65, 68]. Critical tempera-
tures were considerably higher than in Ca3Co0,0¢: Tc; = 90K
(Ca3;CoRhOg) [66, 67, 69] and T¢; = 30 K (CazColrOg) [68].
At Ty = 30 K, the transformation from the PDA structure
to the low-temperature phase was observed in Ca3CoRhOyg
[70], while T, = T tentatively in Ca3zColrQOg, i.e., the PDA
phase is absent [68], in accordance with puSR results [71]. This
feature of Ca3;ColrOg was interpreted [68] as the result of a
noticeable elongation of a unit cell along the c-axis in this
compound, which violates the relationship between intra- and
interchain magnetic interactions.

The magnetic behavior of both compounds has many
common features with CazCo,0g, such as a plateau at a level
of 1/3 of the saturation magnetization, a step in the zero
magnetic field, and a very slow magnetization relaxation [65,
67, 68]. The main difference consists in the absence of two
additional steps in the 1/3 plateau. Quite recently, the
Sr3C0,04 compound was synthesized, which also exhibits a
behavior similar to Caz;Co,0¢ [72].
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By further replacing cobalt ions and calcium, new
compounds with the 43BB'Og structure can be synthesized.
In particular, the SryNiRhOg compound was synthesized in
this way [64, 73]. The Ni?* (3d®) ions are located in Coll sites
in the high-spin (HS) state (S = 1), while Rh** ions remain in
octahedral Col sites in the low-spin (LS) state (S = 1/2). In
an individual chain, unlike examples considered above, a
ferrimagnetic state is realized, in which the nickel and
rhodium sublattices are oriented in opposite directions [73].
The temperature T¢; approximately equals 45 K. Above this
temperature, as in Ca;CoRhOg, a broad short-range-order
fluctuation region is observed. In Sr3;NiRhOg, a step in the
zero magnetic field and the 1/3 plateau were also revealed
[73].

In various nonstoichiometric solid Ca3;Co,_, M ,Oq
substitution solutions, where M = Fe, Cr [74-76], or
Ca;_,R,Co0,0¢, where R is the strontium or rare-carth ion
[77, 78], steps in the magnetization curve are blurred. In this
case, the step height and position can change. As found for the
Ca3Co,_,Fe,O¢ compound, substitution may change the
type of magnetic ordering [75].

Of special interest are Ca3;Co,_ . Mn,Og substitution
solutions (x =~ 0.96 [12, 79, 82]). These compounds belong to
multiferroics combining magnetic and ferroelectric orderings.
In chains, Mn** (S = 3/2) ions occupy Col sites, while Co**
ions occupy Coll sites. As the temperature is lowered, a
crossover occurs from the high-spin (S = 3/2) state of Co**
to the low-spin (S = 1/2) state [81]. Manganese ions are
displaced along the c-axis to one of the neighboring cobalt
ions, which breaks the symmetry with respect to inversion.
The magnetic ordering along chains takes the form 11|, i.e.,
each Co—Mn block is oriented ferromagnetically, and blocks
are antiferromagnetically ordered. At low temperatures,
magnetization curves exhibit a plateau at a level of 3/4 of
the saturation magnetization [80]. In Ca3;Co,_,Mn,Og, the
magnetoelectric effect is observed, i.e., the dependence of the
electric polarization on the magnetic field, and this is one of
the very rare examples of such a type in collinear magnetic
systems. Unfortunately, a detailed discussion of the physics of
magnetoelectricity in the Ca3;Co,_,Mn,Og compound is far
beyond the scope of this review. Note only that magnetodi-
electric properties [83], i.e., the relationship between the
magnetic field and dielectric constant, were also studied in
Ca3Co0,04, as well as the widely discussed interrelation
between magnetoelectricity and frustration in various sys-
tems [84].

A heated dispute, which continues at present, was
initiated by reports that chains in CazCo,0g are actually not
ordered ferromagnetically, as assumed above, but contain a
long-wavelength longitudinal spin density wave (SDW)
propagating along the chain [60, 85-90]. It seems that the
wavelength is incommensurable with the lattice period. In
resonance X-ray scattering (RXS) and neutron diffraction
spectra, an SDW is manifested in the form of peaks
corresponding to magnetic scattering and centered at incom-
mensurable wave vectors [85, 86]. Together with the geome-
trical frustration in a triangular chain lattice, the SDW should
give rise to a complex incommensurable partially disordered
AMEF structure, which is now designated by iPDA. The basic
characteristics of the iPDA have been established [8§7-89].
The SDW length is on the order of 200 lattice periods
(~ 1000 A), and the SDW has the form schematically
presented in Fig. 9. In this case, the correlation length in the
ab plane proves to be considerably smaller, about 180 A. At
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Figure 9. Schematic view of a spin density wave propagating along Co,0Og
chains (only ions in ColI sites are shown).

temperatures above 12 K, the fraction of the SDW phase is
virtually 100% [89]. As temperature is lowered, this fraction
gradually decreases to 75% at 8 K. In the range from 8 to
12 K, the SDW depends on the hold time and gradually
decays, which, in the opinion of the authors of Ref. [89],
means that the SDW state is metastable. It has also been
established that the SDW is rapidly suppressed in a magnetic
field [87].

Nanostructured Ca3;Co,0¢ was studied for samples of
two types. Thin films were deposited by the laser-induced
evaporation method [8, 91, 92]. In work [8], Ca3Co0,0¢ films
were deposited onto a single-crystalline Si(100) substrate.
Films were produced in the form of closely packed single-
crystal nanorods 300 nm in length and 40 nm in diameter.
Magnetization curves exhibited two magnetization steps and
a 1/3 plateau at T = 10 K, which were similar to those in bulk
material at this temperature. Samples of the second type were
obtained by growing 50-300-nm thick epitaxial films with a
small roughness on an SrTiO3(001) substrate [91]. Notice that
the epitaxy conditions were chosen so that the crystal-
lographic c-axis of the film was directed along the substrate
surface. Despite the high quality of films, no steps in
magnetization curves were detected, and only a broad
hysteresis revealed itself.

Nanocrystalline Ca3;Co,0O¢ particles a few hundred
nanometers in length and about 50 nm in diameter were
obtained by grinding a bulk sample in a planetary ball mill
[93]. These particles were shown to be polycrystalline rather
than amorphous, with the lattice parameters very close to the
bulk parameters. At 7= 15 K, two magnetization steps were
observed, which are typical for the PDA structure. The steps
were absent at low temperatures. It should be noted that the
magnetic ordering temperature for both Ca;Co,0g films [8,
91] and nanoparticles [93] determined from the ZFC—-FC
magnetization curves ranged from 40 to 50 K, which is
noticeably higher than the bulk value of T¢;.

2.4 CsCoCl3, CsCoBr3, and their related compounds

The structure of the CsCoCl; compound is formed by CoCl;
chains oriented along the crystallographic c-axis and forming
a regular triangular lattice in the ab plane (Fig. 10). Co*>* ions
in the octahedral surrounding of C1~ ions reside in the high-
spin ‘Ising’ state, which is formed under the action of the
spin—orbit interaction and triangular distortion of the
octahedron [94]. Unlike Ca3Co0,0g, cobalt ions are packed
into plane hexagonal layers. A strong AFM interaction
between nearest cobalt ions occurs along CoCl; chains
through the mediation of chlorine ions, with the intrachain
exchange constant being estimated as 80 K (for a model with a
hypothetical spin 1/2) [58]. Interchain interactions prove to
be much weaker due to a large distance between chains. At
temperature T¢c; =21 K, the long-range magnetic order
emerges in CsCoCls.
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Figure 10. (See in color online). View of CoClj; chains in CsCoCl; along the
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The magnetic structure in the ordered phase was studied
by the neutron diffraction method [58]. It is convenient to
analyze this structure by dividing the triangular lattice of one
of the cobalt layers into three triangular sublattices embedded
into each other, with magnetic moments M, M;, and M3. At
temperatures slightly below T, a structure with M| = —M,,
M5 = 0 was observed. Thus, the PDA phase was discovered,
as already mentioned in Section 2.3 (Fig. 3b). The existence of
the PDA structure had somewhat earlier been theoretically
predicted and studied by Mekata [57]. Below 13.5 K, the PDA
structure continuously transforms into a three-sublattice
ferrimagnetic structure ' [58], and the pure phase is observed
(M, = My = —M3) below 5 K. This transformation is well
described in the mean field model [57, 58] and numerical
models [96] assuming the existence of the two types of
interchain interactions: the AFM interaction for nearest
neighbors (J;), and the FM interaction for next-to-nearest
neighbors (J>), with the ratio of interaction constants equal
to |J2/J1| =0.4.

Later on, CsCoClj attracted great interest as a model
system for studying spin excitations in Ising spin-1/2 chains
[94, 97-99]. These excitations comprise solitons (or domain
walls) in a one-dimensional system. Their nature was studied
in detail by the neutron diffraction [100], NMR [101], and
Raman scattering [102] methods.

One can easily see that, despite the AFM ordering of
chains in CsCoCls, the magnetic ordering structure in the zero
external magnetic field should be completely equivalent to a
model for FM chains on a triangular lattice accurate to a
change in the direction of magnetization in odd layers. On the
other hand, its behavior in an external magnetic field becomes
radically different. The total magnetic moment of each chain
is zero, and therefore the magnetization remains close to zero
in weak magnetic fields. In strong magnetic fields, two
magnetization steps are observed at Hc; =33 T and
Hc, =43.9 T, which correspond to the flip of part of the
cobalt ion magnetic moments [103]. As a whole, the result is
described by the mean field theory. Nevertheless, as pointed
out by Amaya et al. [103], a few facts remain unexplained so
far. First, yet another small step is observed at a low
temperature in a magnetic field slightly lower than Hc,

I As shown in paper [57], two types of the three-sublattice ferrimagnetic
structure can be realized: M| # M, # M3 #0, and M, =M, >0,
M3 < 0. In some papers (see, for example, Ref. [95]), they are denoted by
3FI and 2FI; however, in our opinion, this notation is not appropriate.

which is preserved at different temperatures below 4.2 K and
in studies performed in different strong pulsed magnetic fields.
Second, a continuous increase in the magnetic moment is
observed between transitions, as should be expected for the
angular phase. However, such an explanation seems unlikely
for a strong CsCoClj Ising system. Finally, peaks in the time
dependence of the differential magnetic susceptibility corre-
sponding to these steps prove to be strongly asymmetric.

There is an alternative approach to the explanation of the
nature of the phase transition in CsCoCl; in a strong
magnetic field [103, 104], which considers the phase transi-
tion as the magnetization of an almost isolated strongly
anisotropic Heisenberg chain.

Similar results were basically obtained for related
CsCoBr; and RbCoCl; compounds [58]. Of interest for us
are other compounds belonging to this class, RbCoBr; and
TICoCl; [95, 105-107], in which the structural phase transi-
tion causes the relative displacements of chains along the c-
axis. An important result of these displacements is the
structuring of interactions even between nearest chains,
which in turn leads to the formation of a complex magnetic
ordering. The structural transition in TICoCl; occurs at
Ts = 68 K,” while the temperature of transition to the
magnetic ordered state is T¢c; = 29.5 K [106, 107]. It was
assumed earlier that both transitions in RbCoBr; occur
simultaneously at Ts = T¢; = 37 K [105]. Later on, careful
measurements revealed [108] that, in reality, yet another
transition takes place, in which both the structure of chain
displacements along the c-axis and magnetic structure change
at Tsp=Tc>=31 K. In addition, the low-temperature
RbCoBrj; phase and the phase above T in TICoClj prove to
be ferroelectric [106].

The TICoCl; compound does not contain the PDA phase.
It was recently found that the PDA phase exists in RbCoBr;
in a narrow temperature range between T¢; and T¢; [108,
109]. The low-temperature RbCoBr; phase is formed by a
three-sublattice ferrimagnetic structure similar to CsCoCls.
In TICoCl;, 11]] type magnetic ordering is realized every-
where over the region below T¢|, where the arrows show the
alternating of the magnetic moment directions of cobalt ions
in a plane along the a-axis [107].

2.5 Magnetic structure of SrsRhs01>
Consider now a new SrsRhsO;, compound with a triangular
lattice [110-112]. Among its features, we point out first of all
that a magnetic system is formed in it by rhodium 4d ions
rather than by 3d ions, as in the compounds considered
above. This compound exhibits a pronounced Ising aniso-
tropy. The SrsRh4O1; structure is extremely complex. It is
sufficient to say that rhodium ions are located in twelve
nonequivalent crystallographic [110] sites. In addition,
rhodium in this compound has the variable valence
Rh* —Rh*" and, depending on the oxygen environment
(the O octahedron and the triangular P prism), it can reside
both in the HS state and in the LS state. The spin moments of
rhodium ions along each of the chains alternate as follows
[110]: S =0 (Rh3*, 4d®, O, LS), S = 2 (Rh**, 4d°, P, HS),
S = 1/2(Rh*", 4d%,0,LS),and S = 1/2(Rh**, 4d3, O, LS).
In this case, each unit cell contains six chains.

According to Ref. [113], we will assume that a chain is
divided by nonmagnetic ions (S =0, Rh3") into blocks,

2 In reality, a series of structural phase transitions occur in TICoCl; [106,
107]. We are speaking here about the lowest-temperature transition.
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Figure 11. (See in color online). Magnetization curves (ascending branch)
of SrsRh4O;, at different temperatures [110]. The arrows indicate the
sequence order of curves for increasing temperature.

which are treated as elements of the Ising chain. Chains are
separated from each other by the same distance (560 pm), and
interchain Rh—O—-Sr—O—Rh bonds are probably weak.
Thus, the SrsRhsO;; magnetic subsystem can be treated as a
triangular lattice of weakly coupled ferromagnetic chains,
similar to Co,QOg chains in Ca3;Co0,0s.

The magnetization curves for SrsRh4O1; are presented in
Fig. 11. The saturation magnetization of 5.3 ugz proves to be
slightly lower than the theoretical estimate (6 pg) for the spin
sequence in the chain S = 0, 2, 1/2, 1/2 for the g factor equal
to 2. One can see from the plots in Fig. 11 that two types of
curves exist in reality. At a high temperature, we observe a
typical PDA structure with two steps and a plateau at a level
of ~ 1/3 of the saturation magnetization. However, unlike
compounds with cobalt chain triangular lattices, the plateau
slope in SrsRhsO;, proves to be considerable. The low-
temperature behavior differs from that for all systems
considered above: beginning from the zero magnetic field,
an interval with a very weak magnetic moment exists. Then,
the curve returns to the 1/3 plateau. Thus, we can assume that
a special low-temperature phase is realized in the SrsRhsO
compound.

2.6 General peculiarities

In the conclusion of this section, we indicate the basic
characteristics observed in experiments with triangular Ising
chain lattices. As a rule, these compounds possess low- and
high-temperature magnetic ordered phases. The high-tem-
perature phase is universal, being the PDA structure, while
low-temperature phases are quite diverse in their structure.
The exception is only strongly distorted triangular lattices in
RbCoBr; and TICoCl;, where the low-temperature phase is
realized at once, and in Ca3ColrQOg, where the PDA phase is
also probably absent. The complex slow magnetization
dynamics is manifested in Ca3;Co0,0¢ and its related com-
pounds.

3. Magnetic structure and phase diagram

3.1 Model of rigid chains

In all the compounds discussed above, the strongest magnetic
interactions occur along chains, which allows one to treat
them as elements of the magnetic structure. Chains can then

be considered completely ordered at zero temperature, i.e.,
they can be treated as individual Ising superspins with two
possible states in which the magnetization is oriented along
the c-axis in two opposite directions. Taking into account
weak interaction between adjacent chains, we arrive at the
two-dimensional (2D) AFM Ising model (spin 1/2) on a
triangular lattice with the Hamiltonian

I:[:JZO'[GJ'—BZO',', (1)
(i) i

where g; = %1 is the spin projection for the ith chain onto the
c-axis, (...) means summation over the nearest neighbors in
the triangular lattice, and B is the external magnetic field
oriented along the c-axis. It should be noted that, because
here J > 01is the coupling constant between chains rather than
between individual ions, the effective temperature always
proves to be very low (with respect to J).

Model (1) was carefully studied by Wannier [114] in a zero
magnetic field. He showed that the ground state of the model
is strongly degenerate and formed by configurations of
several types: stripe structures formed by alternating ‘spin-
up’ and ‘spin-down’ stripes, the PDA structure mentioned
above (Fig. 3b), the special class of configurations called
tripods by Wannier (Fig. 12a), and more complex structures.
The appearance of tripods can be illustrated in the following
way. Assume that the three adjacent spins of a PDA structure
in a disordered sublattice are oriented downward (white
circles in Fig. 12a). Then, a spin located in the middle of a
triangle formed by them can flip, i.e., an additional state
appears. Thus, tripods increase the entropy.

Wannier has failed to represent the ground-state structure
in the explicit form; however, he managed to calculate the
entropy density in the ground state (per site of the triangular
lattice) [114]:

2 n/3
So = EJ In(2cosw)dw = 0.323. (2)
0

Notice that statistical weights of different ground-state
configurations are considerably different. For example, the
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Figure 12. Types of configurations: (a) isolated tripod, and (b) three star-
connected tripods.
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stripe structure has zero entropy, which means an exponen-
tially small statistical weight. In other words, we can neglect
these configurations because the probability of their appear-
ance tends to zero. The entropy of the PDA structure can be
readily calculated: each third spin can take any of the two
possible states: Sppa = (1/3)1n2 ~ 0.231. One can see that
this state can be treated as the first approximation to the
ground state. Then, we calculate the entropy of the PDA
structure with tripods: St = (5/12)In2 ~ 0.289. This
includes both isolated tripods and their different combina-
tions, for example, a triad of tripods connected in the form of
a star (Fig. 12b). The entropy of ‘isolated tripod’ type
configurations, etc., can be separately calculated [115]. The
proximity of the entropy to its exact value (2) characterizes
the quality of the approximate representation of the ground
state.

Consider now the low-temperature behavior of Ca3;Co,Og
in the rigid chain model. We already pointed out that the
magnetization curves of this compound strongly depend on
the rate of change of an external magnetic field. Taking into
account the strong degeneracy of model (1), we assume that
the system placed in a variable magnetic field resides in a
metastable state, rather than in the ground state. The
metastability condition can be formulated in the following
way [115]:

O'i/’li = 0, (3)
where
hi=B—1TY o (4)
(if)

means the effective field acting on the ith chain. Thus, if the
magnetic moment of each chain is oriented along the effective
field, the system is in a metastable state. In this case, the flip of
the magnetization direction for any chain leads to an increase
in energy.

We will study the evolution of the system upon varying the
external magnetic field by using the single-flip technique
which was earlier applied to describing nonequilibrium
phenomena in the Ising model [116]. The probability of a
magnetization flip in the ith chain is given by

0,
- {0

From this it follows that the system placed in the variable
magnetic field will be in the metastable state at each instant of
time.

Now we should prepare the initial (ground) state of the
system in a zero field. Let the PDA structure be utilized as the
first approximation. As the magnetic field is increased, we will
observe a magnetization jump in the zero field up to 1/3 of the
saturation magnetization, because chains having an equal
number of neighbors (shown by grey circles in Fig. 3b) are
ordered along the external magnetic field direction at once
after its appearance. As a result, we obtain a transformation
to a three-sublattice ferrimagnetic structure in an arbitrarily
weak magnetic field. This structure is preserved upon
increasing the magnetic field up to B=6J, at which a
transformation to the ferromagnetic structure takes place.
The magnetization curve with the initial PDA state exhibits
two steps and a plateau at 1 /3 of the saturation magnetization

if o >0,
lf Gihl‘ < 0 . (5)
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Figure 13. Magnetization curves of Ca3;Co,0g in the rigid chain model
[115]: PDA (dashed line) taking into account single tripods (dot-and-dash
line), and also single and pair tripods and star-like structures (solid line).
Shown are nearest-neighbor configurations corresponding to steps in the
curve.

(dashed straight line in Fig. 13). This line corresponds to the
high-temperature magnetization curve of Ca3;Co0,04, and
therefore we can assume that we are on the right road.

Let us now define more exactly the ground state of the
system by including isolated tripods into our consideration.
The probability of their appearance on the PDS structure can
be readily calculated [115]. Tripods contain a new local
nearest-neighbor configuration: four neighbors are located
along the magnetic field, and two in the opposite direction.
This, in turn, gives rise to a new small step in the magnetiza-
tion curve, B =2J. The inclusion of a pair of connected
tripods into the consideration does not qualitatively change
the shape of the curve, while configurations with three star-
connected tripods (Fig. 12b) produce a new step at B = 4J.
Note that the further refinement of the ground state cannot
qualitatively change the picture, because all the possible
nearest-neighbor configurations are exhausted. To deter-
mine the height of the steps, it is necessary to calculate the
appearance probabilities of each of the configurations. The
magnetization curve, obtained analytically in work [115], is
depicted by the solid line in Fig. 13. It agrees well with the
experimental low-temperature magnetization curve of
Ca3C0206.

The strong degeneracy of the 2D AFM Ising model has
another important consequence. Very weak next-to-nearest-
neighbor interactions partially lift this degeneracy and select a
certain type of configuration for the ground state. We will
expand model (1) by including such interactions:

I:I:JZO'jOjJrJ,ZO'iOff—BZUi, (6)
(ij) ((ij)) i

where ((...)) denotes summation over next-to-nearest neigh-
bor pairs, as shown in Fig. 3a. In the case of the FM
interaction (J' < 0), the three-sublattice ferrimagnetic sys-
tem becomes the ground state, as in the case of CsCoCl; and
its related compounds. For J’ > 0, the ground state is a two-
sublattice stripe structure (Fig. 3c). In weak magnetic fields,
the magnetic moment of such a structure is close to zero (a
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two-sublattice Ising antiferromagnet), as observed in
SrsRh4Op, [110, 111]. Therefore, weak AFM next-to-near-
est-neighbor interactions can produce a special low-tempera-
ture phase in this compound [113].

The degeneracy of the 2D AFM Ising model (1) can also
be partially lifted by a reduction of symmetry. In this case, the
nearest-neighbor interaction constants are different. The
displacements of chains along the c-axis in RbCoBr; and
TICoCl; produce exactly such a situation and lead to the
appearance of a new ground state which is determined by the
form of distortions: a stripe structure in TICoCl; [107], and a
three-sublattice ferrimagnetic structure in RbCoBr; [108,
109].3 In SrsRh4O;», chains are not, strictly speaking,
equivalent to each other, and weak differences between
nearest-neighbor interaction constants is the second possible
scenario of the appearance of the low-temperature phase in
SI‘5Rh4O]2.

Thus, weak next-to-nearest-neighbor interactions or
structural distortions partially lift the degeneracy, thereby
producing different types of ground states.

3.2 Effective field models

It is useful to begin the discussion of the properties of a
triangular Ising chain lattice at nonzero temperature with
effective field models. Two types of models have been
proposed. The models of the first type are purely two-
dimensional. The 2D effective field model was first devel-
oped by Mekata [57] to describe the CsCoCl3 phase diagram.
Chains are still assumed rigid, i.e., completely ordered with
two possible states.

Consider Hamiltonian (6) with the AFM nearest-neigh-
bor interaction (J > 0) and the FM next-to-nearest-neighbor
interaction (J' < 0). We divide the entire triangular lattice
into three sublattices, as illustrated in Fig. 3b. Then, we can
write down the Hamiltonian of the /th sublattice in the
molecular field approximation as [57]

H,=3J((0),, + (o)) Z gl +6J'(a), Z gl — BZO’Z. (7)
i (i) i

Here, the respective /, m, and n superscript and subscripts
denote three sublattices, and the subscript i is the number of a
unit cell, each one of which containing three sites of the 2D
lattice. Expression (7) comprises (S), magnetizations aver-
aged over the /th sublattice, which are determined from the
equation [57]

(o), = tanh { B(s(a); + (0, + (@), +7) } (8)

where coefficients are o =2J'/J, f = —3J/(kgT), and y =
—B/(3J), kg is the Boltzmann constant, and T 'is temperature.
Three equations (8) for sublattices form a set determining
the magnetization of sublattices at a given temperature. In
particular, the expansion of the right-hand part near the point
(0);, = {0),, = {0), = 0 at y = 0 allows one to determine the
magnetic ordering temperature in the given system:

Tci :%(J—zf,)- )

3 In RbCoBrs, a strong coupling takes place between the magnetic
ordering and lattice deformation, and therefore its phase diagram is
described by the complex spin—lattice Hamiltonian [108, 109].

By using Hamiltonian (7) and equations (8), we can calculate
the free energy of the system and all basic thermodynamic
characteristics [57].

The most important result obtained by using the 2D
effective field model is the discovery of the second-order
phase transition from the high-temperature PDA phase to
the low-temperature ferrimagnetic phase in the absence of a
magnetic field at temperature T, [57], which corresponds to
the observed phase diagram of CsCoCls. The nature of this
transition is related to the above-mentioned peculiarity of the
ground state for the 2D AFM Ising model, namely, its strong
degeneracy. The PDA structure, unlike the ferrimagnetic one,
has nonzero entropy S. At high temperatures, this produces a
gain in the free energy: F= E — TS. At very low tempera-
tures, the next-to-nearest-neighbor interactions partially lift
the degeneracy, while the energy of the ferrimagnetic
structure slightly decreases compared to the PDA phase.
Notice also that, depending on the phase diagram region,
two types of ferrimagnetic structures can appear.*

The two-dimensional model considered above has two
disadvantages. First, it assumes the division of the lattice into
sublattices. We saw in Section 3.1 that such a division is not
always justified. The second disadvantage is related to the
rigid chain approximation. To estimate restrictions imposed
by this approximation, note first of all that chains in real
materials have a finite length.

The chain length in Ca3;Co,0¢ was estimated in Ref. [117]
from simple considerations as a magnitude on the order of
100 lattice periods (or 100 magnetic ions). We will see below
that the exact magnitude of the chain length is not important.
Notice that this estimate is consistent with the distance
between two SDW nodes (see Section 2.3). The value of the
spin—spin correlation function for an Ising chain with a finite
length L in the zero magnetic field is well known [118]:

I'(r) = (0:0:4,) = tanh” (K), (10)
where K =|Jo/kgT|, Jo is the magnitude of the nearest-
neighbor exchange interaction in the chain, and r is the
distance in the units of the chain period. We assume that
Jo < 0. Note that the result obtained below is valid both for
FM and AFM chains. If I'(L) ~ 1, the chain can be
considered completely ordered. When I'(L) — 0, the chain
is, on the contrary, completely disordered. The characteristic
order—disorder transition temperature estimated from for-
mula (10) is [117]
1

K= 3 InL. (11)

One can see from expression (11) that this temperature
weakly depends on the chain length, and the approximate
estimate is sufficient. On the other hand, the correlation
function exponentially depends on temperature, as is seen
from formula (10). Because of this, the transition of the chain
from the ordered state to the disordered state occurs in a
narrow temperature range. Finally, assuming that Jy ~ 20 K
for Ca3zCo,04, we estimate the transition temperature as
approaching 11 K [117], which almost exactly corresponds
to the value of T, for this compound.

Our consideration leads to two conclusions. First, the
rigid chain model cannot, strictly speaking, be applied to the
high-temperature phase because, for example, chains in the

4 See footnote 1.
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zero effective field in a PDA structure (grey circles in Fig. 3b)
will be disordered. Second, the transition from the low-
temperature phase to the high-temperature one in
Ca3Co0,04 can be caused by the disordering of part of the
chains.

To go beyond the scope of a purely two-dimensional
model, the mean field model for Ca;Co,0¢ was formulated
in Ref. [117], which assumes that each of the chains is located
in the effective field defined by an expression analogous to
formula (4):

hi=B—JY (o).
(i)

Here, (0); under the sum sign is the mean magnetization of the
jth chain, and summation is again performed over nearest
neighbors. We can now write down the Hamiltonian for the
ith chain in the effective field as

H; = J Zo'imzp - Eizﬂi;.,
(Ap) 4

where subscripts 4 and u denote the number of a magnetic ion
in the ith chain. Next, we can easily calculate the mean
magnetization (g); for each of the chains, which, in turn
enters into the expression for the effective field. In paper[117],
the known analytical solution for a chain in a magnetic field
with periodic boundary conditions was used, which was
obtained by the transfer-matrix method [118].

As we saw in the previous section, the magnetic structure
in Ca3;Co,0¢ is obviously nonperiodic, at least in the zero
magnetic field. Therefore, the division into sublattices in this
case is impossible. As for the rigid chain model, we should
calculate the appearance probabilities of various configura-
tions, taking a finite temperature into account, which allows
us to determine the total magnetization [117]. The results
obtained are presented in Fig. 14. The plots demonstrate well
the transition from the low-temperature phase to the high-
temperature one. The high-temperature phase proves to be a
PDA one.

The explanation of the nature of this transition somewhat
differs from that presented above for CsCoCl;. At a low
temperature, as was established in the rigid chain model, the
total entropy of the system corresponds to the 2D AFM Ising

(12)

1.0 —
{y
2
M/ M, ]
1/
or '/
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Figure 14. Magnetization curves of Ca;Co,0g in the effective field model
at T=2K (1), 120K (2), and 16 K (3) [117].

model on a triangular lattice. At high temperatures in a zero
magnetic field, some chains can be found in a zero effective
field (for example, chains shown by grey circles for the PDA
phase in Fig. 3b). It can be easily verified that they become
disordered at the lowest temperature. The disordered chains
make a very large contribution to the total entropy. Thus, the
greater the number of chains in the zero effective field, the
greater is the gain in the free energy of the system [117].
Among all the configurations contained in the ground state of
the 2D AFM Ising model on a triangular lattice, the
maximum number of disordered chains can be found in the
PDA phase. Therefore, this phase should be the universal
high-temperature phase.

3.3 Model of incommensurate magnetic ordering

in Ca3C0206

In Ref. [88], a model was developed for describing the
incommensurate iPDA structure discussed in Section 2.3.
The key moment is the fact that, in reality, two types of
interactions exist between adjacent chains in Ca3;Co0,0¢
through Co—O—-0—Co oxygen bridges, which are shown
by solid and dashed straight lines in Fig. 1b. In the case of
interactions shown by dashed straight lines, oxygen ions are
separated from each other by a noticeably longer distance
and, as a rule, neglected. Nevertheless, estimates show [88]
that interaction constants can be commensurate. Both types
of interchain bonds form helicoidal paths with different
topologies, which can lead to the competition of these
interactions if, for example, they have the AFM nature.

A primitive rhombohedral cell of Ca3;Co,0¢ contains two
magnetic Coll ions with coordinates (1/4,1/4,1/4) and
(3/4,3/4,3/4). Note that chains in this cell are oriented
along the [111] direction (the c-axis of the hexagonal cell
considered above). Then, the lattice contains two types of
magnetic ions with magnetic moments M; and M,. Group-
theoretic analysis shows that experimental RXS and neutron
diffraction data [85-87, 89] correspond to the following
magnetic structure (see Fig. 9):

M;(R) = Mcos (kR), (13)
M;(R) = —Mcos (kR + nt4) ,

where M is a vector oriented along the [111] direction, and R is
the vector of cell translation with respect to the initial cell.
Here, k = 2n(4/3,4/3, 4/3) is the wave vector of the SDW.
If the parameter 4 slightly differs from 1, the SDW appears.

Further analysis was performed in Ref. [88] in the
framework of the Heisenberg model with three types of
interactions: one along the chain, and two others between
the nearest chains. The model also included the uniaxial
single-ion anisotropy. As a result, it was shown that there is
a set of parameters corresponding to the value of 4 = 1.01
observed in experiments.

It should be noted that the model considered above was
initially based on a very narrow class of solutions (13), and
therefore it cannot answer, for example, the question about
the stability of the SDW obtained. In work [90], the
Heisenberg model was studied by the renormalization group
method for the density matrix on the same lattice as in paper
[88]. Solutions corresponding to the iPDA structure were also
obtained in work [90]. However, the enhancement of the
uniaxial anisotropy completely suppressed the SDW and led
to the commensurate magnetic structure. Thus, the issue of
the nature of the iPDA state remains open.
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4. Glauber dynamics in Ising systems

4.1 Dynamics of an isolated chain
As already mentioned, the Ising model constitutes a statical
model, i.e., it does not involve the dynamics of the system
under study. For a one-dimensional Ising spin chain, Glauber
proposed a stochastic model in which the interaction of the
chain with a heat reservoir is assumed [6]. In this section, we
will discuss the basic ideas of the Glauber dynamics.

Consider the spins of N fixed particles in a chain as
stochastic functions of time ¢;(¢) taking two values, £1. The
spin flip occurs due to interaction with an external agent: a
heat reservoir. However, it is obvious that the spin flip
probability should depend on the instantaneous values of
adjacent spins.

The number of states of a system comprising N spinsis 2.
Each spin configuration has the probability p(ay,..., 0y, ),
which obeys the master kinetic equation

((111 (o1, 0w, [):_{Zwi("i)]P(Gum,om )

i
+E w Jl,... —0...,

where w;(a;) is the spin flip probability for the ith spin per unit
time, provided all other spins remain fixed. One can see from
the right-hand side of formula (14) that the emergence
probability of the state {o1,...,oy} decreases due to the flip
of any of the spins composing the given configuration and
increases due to the flip of the spin in the configuration that
differs from the specified configuration only by the value of
this spin. In the case of a contact with a thermostat, the master
kinetic equation should lead the system to the Gibbs
distribution [119].

The most interesting quantities that can be obtained from
the system of equations (14) are local mean magnetic

moments
Z g p O1y--
{o}

and correlation functions

1) = {a:(1) 0%

onN, l), (14)

sON, )7

E Jka O1y---

{o}

Here, the sum over {¢} means summation over 2" spin
configurations. From the system of equations (14), the
following equations for local mean magnetic moments and
correlation functions can be obtained [6]:

yON, )

%qk( = —2<ok Wi [Uk(l)]>, (15)
% ric(1) = =2{o;(t) ax(t){wi[o:(1)] + wi [0 (1)] }) .

Thus, the time evolution of the quantities of interest to us
is completely determined by the choice of the spin flip
probability w;(a;), which, in turn, depends on the character
of interaction with a heat reservoir and the mutual orientation
of adjacent spins. Here, the following restrictions on the form
of w;(a;) appear. First, the spin flip probability should reflect
real tendencies taking place in the system, for example, to the
FM or AFM ordering. Second, for an arbitrary system of
spins connected with a heat reservoir and residing in the

thermodynamic equilibrium, the principle of detailed balan-
cing, namely

wi(ai) pi(ai) = wi(—0i) pi(—0i) (17)
should be satisfied, where p;(0;) is the probability that the ith
particle has the spin g; for the fixed spins of other particles.

The spin flip probability for an FM Ising spin chain with
the Hamiltonian H = JZ o,0; (J < 0) was proposed by
Glauber in the form [6]

o 1
wi(G,‘)IE{l—EVG[(G,;1+O','+])}. (18)
Expression (18) contains two parameters. The parameter

o specifies the time scale of the spin flip and is free in this
theory, because the mechanism of interaction of the Ising
system with a heat reservoir remains uncertain. The para-
meter ) is determined from the principle of detailed balancing
[6]: y = tanh (=2J/kpT).

So far, we have said nothing about boundary conditions:
expression (18) makes sense only for internal spins of a chain
with opened ends or for a ring (periodic boundary condi-
tions). For spins at the ends of a finite chain with length N, the

absence of one of the neighbors should be taken into account
[120]:

o
=— [l — foioi1],

> (19)

wi(o;)
where the quantity = tanh (—J/kgT) is also determined
from the detailed balance principle. The ‘+’ sign in the
subscript in formula(19) is used fori =1, and ‘-’ fori = N.

Mathematical approaches to the solution of a system of
equations for mean local moments (and correlation functions
as well) for open and closed spin chains are different. Thus,
the system of recurrent equations

d

m qi(1) = (20)

—qx (1) +% V[Qk—l(t) + Qk+1(f)] )

d
o) "+

1
= —2ry (1) t3 Pri-1() + ricer (8) + rice(0) + rigie(0)]

(1)

is obtained for a ring.

One can see from expressions (20) and (21) that it is
convenient to combine the constant « with a time variable and
to set it equal to unity. Notice also that Glauber [6] proposed
an elegant image method for calculating correlation functions
both for a ring [6] and for a finite chain [121].

The evolution of the mean moments of a finite chain with
open ends can be described in the matrix form. For the
column vector q = {q1,...,qn}, equations similar to equa-
tion (20) can be written in the form [120]

q=Mq, (22)
where
-1 p o -~ 0 0
/2 -1 /2 -~ 0 0
M=| 0 2 -1 -~ 0 0
0 0 0 - =1 9v/2
0 0 o - p -1
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Spatial correlation functions rj of a chain form the
symmetric matrix r. The time evolution equation of this
matrix has the form [121]

i=Mr+rM7. (23)

Two characteristic times can be singled out in the Glauber
dynamics of an Ising chain [121]. The first, 71, is the relaxation
time of the mean magnetic moment ¢ = 1/N ), ¢;. This time
for an Ising ring or an infinite chain was found by Glauber [6]:

1

St (24)

!

The expression for the relaxation time of the mean magnetic
moment for an open chain is more complicated [120, 121] and
is determined by the system size. It is also interesting to note
that the critical dynamics of a chain (7" — 0) with an arbitrary
length differs from the ring dynamics and is anomalous [120].

At low temperatures, the probability distribution of the
chain states as a function of the chain magnetic moment
exhibits two pronounced peaks corresponding to the two
magnetization states of the chain as a whole. Thus, the Ising
chain is an example of a bistable stochastic system [122]. Inter
alia, it is possible to talk about a stochastic resonance in the
chain [123].

The description of the magnetization dynamics in a
system with two almost stable states in terms of the mean
moment is incomplete. Strictly speaking, it is valid for an
ensemble of noninteracting chains. It is then useful to
introduce the second relaxation time, t,, describing the
transition from the completely disordered state of the chain
to one of the almost ordered states, i.c., the dynamic
spontaneous breaking of the symmetry [121]. Obviously, this
process does not affect the mean moment of an atom in any
way. At low temperatures, one has 7; > 1,. In the time
interval 7, < t < 11, the chain is completely ordered and can
be utilized as a memory eclement. Notice also that the
temperature dependence of 7; obtained in the Glauber
theory well describes the experimental results obtained for
the above-mentioned CoPhOMe SCM compound [124].

We have already said that « is a free parameter
(constant). However, a more detailed study reveals that the
coefficient « should depend on temperature [21]. This fact is
described in the Heisenberg model with a strong uniaxial
anisotropy. The temperature dependence of the character-
istic spin-flip time in the absence of the local field of
neighbors is determined by the anisotropy parameter and
has an activation nature [21]:

9 =0a"' =1iexp 4a
0 i kB )

where 7; describes the inner spin dynamics in contact with a
heat reservoir in the absence of the energy barrier. Recall that
A, is the anisotropy parameter (see Section 2.1).

The process of simultaneous flip of several spins can also
be included into consideration [125]. Alternative models for
describing the stochastic dynamics of the Ising chain also exist
[126, 127]. For example, the Kawasaki model [126] considers
the stochastic simultaneous flip of a pair of opposite adjacent
spins. In this case, the magnetization remains invariable. Note
also that because the Glauber model is one of the few exactly
solvable models of nonequilibrium dynamics, many theore-

(25)

tical papers have been devoted to studying its various aspects
(see, for example, papers [128—130]).

The involvement of a magnetic field in the system changes
the spin-flip probability. For example, for a closed Ising chain
placed in an external magnetic field and possessing the
Hamiltonian

I:I:J()ZO'[Uj—BZO-iq (26)
(i) i
Glauber derived the expression
w!(6;) = wi(o;)|1 — o; tanh B (27)
i\Oi) — Wil0i i kBT

for the spin-flip probability in the magnetic field, which also
satisfies the principle of detailed balancing. Here, w;(o;) is the
spin-flip probability in the absence of the magnetic field, and
y = tanh (=2Jy/kgT). Formula (27) is not the only possible
one, as shown in the next section.

4.2 Spin-flip probability in the Glauber dynamics

The question about the expression for the spin-flip prob-
ability in the Glauber dynamics becomes most important
during its generalization to lattices of different dimensional-
ities. Thus, the linearized spin-flip probability generalized to a
system with an arbitrary dimensionality was reported in the
form [131]

wi(e)=1— Zid O',-Z o, (28)
(i)

where / is an arbitrary parameter varying from 0 to 1, dis the
system dimensionality, and summation is performed over 2d
nearest neighbors in a hypercubic lattice. This expression for
the transition probability proved to satisfy the principle of
detailed balancing only in the case of the one-dimensional
model. If d > 2, this form of the transition probability does
not satisfy the principle of detailed balancing and cannot lead
the system to the Gibbs distribution.

From the point of view of the Glauber approach, the
choice of the spin-flip probability is ambiguous. Indeed, let us
consider the requirement of detailed balancing (17) in more
detail. Under the conditions of the statistical equilibrium, the
probability that the ith spin will take the value o; is
proportional to the Boltzmann factor exp (—E;/kgT). For a
type (1) Hamiltonian with any dimensionality and an
arbitrary number of nearest neighbors, we obtain

wi(o;) _ exp [_Ui/(kBT)(JZ(m Oj — B)]
wi(=0:)  exp [0/ (knT) (I X5, 0 — B)]

(29)

for the ith spin. Because the subscript i is fixed, summation in
formula (29) is performed over its nearest neighbors.

It follows from the last formula that functions w;(a;) are
defined accurate to the ratio w;(o;)/w;i(—a;), which is the
reason for their ambiguity. After some algebraic transforma-
tions, we arrive at the expression for the spin-flip probability

wiloy) = %{1 — o;tanh {éT <—J; o+ B>]} . (30)

It should be noted that the numerator and denominator in
expression (29) can be factorized, and similar transformations
can be taken on individual factors. This gives a new
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Figure 15. Magnetic structure on a 96 x 96 rhombic supercell during relaxation at 5 K in a magnetic field of 1.2 T (a, b) and 2.4 T (c, d) for times 125 s (a, b)

and 1250 s (b, d), respectively [134].

expression

B
wi(o—i) = % (1 — aitanh kB—,T) H|:l — aiq,-tanh <_]€BLT):| 5
(31)

ij)

satisfying formula (29).

The stochastic dynamics of Ising systems is simulated
using both forms of the function w;(a;). They correspond to
the so-called hard (30) and soft (31) dynamics [132, 133].
Original Glauber expression (27) describes the soft dynamics
of the chain. Possible variants are not exhausted by expres-
sions (30) and (31). If strong interactions Jy exist in the
system, as for example, along Co,0O¢ chains in Ca3;Co,0g, as
do weak ones, for example, interchain interactions J;, they
can also be factorized in exponents of expression (29) to
obtain

1
wi(0;) :% 1 — og;tanh {kB—T <—J1 Zgi —I—B)]
(if)

X H>|:1 — J,»ajtanh <7]€‘£70T):| .

(ij)

(32)

Here, () and (()) denote summation over nearest-neighbor
pairs with weak and strong interactions, respectively.

All the above expressions for the spin-flip probability lead
the nonequilibrium Ising system in the process of evolution to
the Gibbs distribution, but only expression (30) has a clear
physical meaning. This expression describes the stochastic
dynamics of an isolated spin in the effective field
—J 3 4y 0;+ B. For this reason, we used below in all
numerical calculations the hard stochastic dynamics
described by expression (30). The discussion of the influence
of the form of the function w;(s;) on the results of simulating
the dynamics is presented in Refs [132, 133].

4.3 Two-dimensional simulation in a rigid chain model

The analytical model of rigid chains presented in Section 3.1
does not contain the spin dynamics in the explicit form:
according to condition (5), the change in the sign of the
effective field causes an instantaneous spin flip. At the same
time, as discussed above, the Ca;Co,04 magnetization curves
demonstrate a strong dependence on the rate of magnetic field
change. The Glauber theory opens up the possibility of
studying the stochastic dynamics of an Ising system.

The 2D Glauber dynamics calculations were performed
numerically on rhombic n x n supercells (Fig. 15) with
periodic boundary conditions [134, 135]. Chains were
assumed rigid, i.e., they had two possible magnetization
states [Hamiltonian (1) on a triangular lattice]. The spin-flip
probability in a chain was calculated by the hard dynamics
expression (30). Test calculations with 18 x 18, 36 x 36,
48 x 48, 96 x 96, and 192 x 192 cells demonstrated that
n = 96 provides a good convergence, repeatability of calcula-
tions, and low noise of the total magnetization. Therefore, the
96 x 96 cell was used in all 2D calculations presented below.
We emphasize that it is desirable to select the cell size to be at
least a multiple of six to eliminate the influence of boundary
conditions on ordered structures with a period equal to two
(stripe phase) or three (PDA phase) intersite distances.

The rhombic supercell (see Fig. 15) is mapped onto a
square C i/,. matrix with elements equal to £1. Thus, this matrix
determines the state of the supercell at each instant of time.
Summation over interacting nearest neighbors of an element
in expression (30) can be performed either directly or by
applying the known standard convolution of the C matrix
with the nearest-neighbor interaction matrix N:

3

Aij = Civk—2,j41-2Ne 1 (33)

where i, j=2...(n+ 1), and n is the linear size of the
supercell. To perform the convolution, the C’ matrix should
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Figure 16. Magnetization curves in a growing magnetic field: (a)at 7= 4K
and different magnetic field growth rates, and (b) at different temperatures
for the magnetic field growth rate equal to 0.1 T min~! [134].

be expanded to the (n+2) x (n+2) C matrix based on

periodic boundary conditions.®> The interaction matrix for a

triangular lattice has the form
0 1 1

1 0 1} ,

1 10

N= (34)

where elements with which the interaction occurs correspond
to 1.

Test calculations revealed that the calculation of the
hyperbolic tangent [in expression (30)] takes up most of the
time spent for calculating the dynamics. The number of such
operations can be reduced. Altogether, 26 configurations of
the given spin and nearest neighbors exist. Therefore,
26 possible values of the hyperbolic tangent can be calculated
preliminarily and then selected from a table, depending on the
configuration for the given site. This procedure accelerates
the calculation on a 96 x 96 cell no less than threefold times.

The PDA structure or a random spin distribution was
taken as the initial structure for simulations. Then, the
structure relaxation proceeded at the given temperature
without a magnetic field. The typical number of calculation
steps in time was about 2 x 10°.

5 The copies of the first and last columns of the C’ matrix become,
respectively, the last and first columns of the C matrix. The first and last
rows of the C’ matrix are copied similarly.
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Figure 17. Magnetization relaxation for 2D simulations in different
magnetic fields at 7= 5 K (a), and 8 K (b) [135].

Figure 16 depicts the M (uyH) curves obtained at different
temperatures for different growth rates of the magnetic field
[134]. Good agreement between the calculated curves and
experimental data [38] is achieved at o = 0.21 s~ !. It is readily
seen that equidistant steps in the magnetization curve
disappear both upon decreasing the magnetic field growth
rate (Fig. 16a) and with increasing temperature (Fig. 16b).
The calculated magnetization curves reproduce even rather
fine details of experimental magnetization curves, such as the
overlap of the ascending and descending branches [38, 134]. It
is interesting that the 2D simulation describes even the
transition from the low-temperature to the high-temperature
(PDA) phase although, as shown in Section 3.2, this
transition is related to the disordering of chains. The
interpretation of the transition in terms of the 2D model is
similar to that in the Mekata theory [57] and reduces to
describing the increase in entropy during the disordering of
one of the 2D sublattices in the PDA phase.

The results obtained indicate the existence of two
characteristic times. The first, on the order of 1 s (x7!), is
related to the chain flip process (a single spin in the 2D
model). The second time is rather large, on the order of a few
hours.

Yet another experimental result, which required a
theoretical explanation, is the magnetization relaxation in
Ca3Co0,04 in a permanent magnetic field [38]. The results of
2D simulations of the relaxation process with the same
parameters as for magnetization curves are presented in
Fig. 17. One can see that the calculated curves reproduce the
nonexponential relaxation of the magnetic moment and the
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change in the relaxation sign in a magnetic field above 2.4 T.
In addition, the characteristic time scale on the order of 10° s
appears again (at T = 5 K), which considerably exceeds o ~!.

The nature of two additional steps on the 1/3 plateau in
magnetization curves and of the slow dynamics of the
magnetic moment is illustrated by the evolution of the
magnetic structure of the supercell in an alternating magnetic
field [135] (see Fig. 15). After magnetic field switching, the
initial state undergoes the transition to the ferrimagnetic
state. Here, it is important that the ferrimagnetic state on a
triangular lattice is triply degenerate (the open circles in
Fig. 3a can belong to one of the three sublattices). Because a
new phase emerges from a few nucleation centers, large-scale
formations appear—domains of the ferrimagnetic phase,
which are clearly seen in Fig. 15. Steps in magnetization
curves are related namely to the domain structure, while the
domainless ferrimagnetic state gives rise to the 1/3 plateau
without additional steps.

The domain structure in the ferrimagnetic phase
explains many phenomena observed in the Ca;Co,0q
compound [134-137]. The slow relaxation with long char-
acteristic times considerably exceeding o ! is related to slow
motion (creep) of domain walls [134, 135]. Domains grow
with time, as shown in Fig. 15, which leads to a decrease in
the total length of boundaries and to a decrease in the
height of steps. Notice also that there are two types of
domain walls corresponding to two additional steps in
magnetization curves, with the first additional step redu-
cing the magnetization value with respect to the 1/3 plateau,
while the second step increases it. As a result, the relaxation
of these two types of domain boundaries has different signs.
In the limit of very long times or a very slowly varying
magnetic field, the system passes to the single-domain state.
Thus, the static magnetization curve should have only the
1/3 plateau without additional steps.

It also follows from this that the magnetization curves
of nanostructured Ca3;Co,04 samples should tend to the
1/3-plateau curve without additional steps, because a single-
domain state should be rapidly established on a small cluster.
This conclusion requires, however, additional verification,
because cluster boundaries can strongly affect the magnetic
structure.

The 2D simulation of a response to a variable magnetic
field, performed in Ref. [136], revealed a significant disadvan-
tage of the standard Glauber model —the absence of the
temperature dependence of «. The experimental dependence
of the complex susceptibility fits the appropriate theoretical
dependence well upon introducing the exponential tempera-
ture dependence of o as in formula (25) [136]. Here, we should
recall that the spin flip in the 2D model corresponds in reality
to the chain remagnetization.

Assume that the effective field of the chain is defined as
follows:

~JY o+ B<0;
)

then the spin-flip probability is w;(a;) >«/2. Let the spin flip
originates from the end element of the chain. The effective
field for this element contains a term connected with a nearest
neighbor along the chain, which produces a potential barrier
for the spin flip on the end element and, hence, the entire
chain as a whole. It follows from these considerations that, by
introducing the temperature dependence of « into the 2D

model, we should set 4, = |Jy| in formula (25), where J is the
nearest-neighbor interaction in the chain. Thus, the appear-
ance of the dependence o(7") brings the 2D model beyond the
scope of a purely two-dimensional model.

4.4 Three-dimensional simulation

The 2D model has two substantial disadvantages. First,
although it correctly estimates the transition temperature to
the high-temperature phase, this model cannot be used in the
high-temperature region, where the disordering of chains is
substantial. Second, the chain magnetization flip is consid-
ered an instantaneous process proceeding with some prob-
ability.

The generalization of a Glauber chain lattice to the real
three-dimensional structure of Coll ions in Ca3;Co,0¢ was
performed in papers [135, 138]. Following the concept of the
hard Glauber dynamics, the spin-flip probability for the ith
spin in the chain per unit time can be written down as [138]

o J() J] B
- gitanh {— 20 S - LN g 4 2L
2{ oitan { kBTZU-’ kBTZa“rkBTH

(if) ((ik))
(35)

W(O'i) =

where Jy = —20 K and J; = 1.6 K are parameters of the intra-
and interchain interactions, respectively, () and (()) denote
summation over lattice sites nearest the ith site along the
chain and in adjacent chains (along solid straight lines in
Fig. 1b), respectively, and « = 20 s~!. The parameter J; of the
intrachain FM interaction was obtained from theoretical and
experimental estimates (see Section 2.2), while J; is deter-
mined by the step width in the magnetization curve
(AB =1.2T for Ca3C0206).

Here, a number of difficulties appearing in 3D simulations
should be pointed out. First, it is necessary to cover at least
two time scales. On the one hand, the time step should be
much shorter than the chain-flip time. On the other hand, the
total calculation time should be longer than the characteristic
slow relaxation times. This leads to an increase in the number
of steps in time. Second, as pointed out above, the topology of
the magnetic sublattice in Ca;Co,Og is extremely complex. In
3D Monte-Carlo simulations [138], the topology was simpli-
fied by reducing it to a stack of plane triangular layers. The
mathematical description of interactions between the sites of
the real Ca3;Co,0¢ magnetic sublattice used in papers [135,
138] is presented in the Appendix.

3D simulations were performed by the example of a
24 x 24 x 36 rhombic supercell. Boundary conditions in the
ab plane were periodic, and chains had a finite length along
the c-axis. Notice that the finite length of chains has a
fundamental meaning. The free ends of chains were pro-
duced with the help of a layer filled with zero elements. Then,
as in the 2D case, all possible values of the flip probability
were preliminarily calculated and tabulated. The number of
these values calculated from expression (35) in the 3D model
taking the finite length of chains into account is 195. Later on,
depending on the configuration of the central spin and its
nearest neighbors, the value of the flip probability was
selected from the table compiled.

The start state for the three-dimensional calculation was a
random spin structure. Then, the relaxation of this structure
proceeded at the given temperature without a magnetic field,
similarly to the 2D model. The examples of initial structures
(shown are averaged magnetizations over chains) at 5 K and
15 K and vertical cross sections of a cluster along the c-axis
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Figure 18. (See in color online). Magnetic structure of a 3D 24 x 24 x 36 supercell: magnetization averaged over chains at 5 K (a) and 15 K (b), and
vertical cross sections of a cluster along the c-axis in the absence of a magnetic field [138].
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Figure 19. Magnetization curves in the 3D model in the growing magnetic
field (a) at 7= 8 K and different magnetic field growth rates, and (b) at
different temperatures and the magnetic field growth rate of 0.1 T min~!
[138].

and over the middle line of a rhomb are presented in Fig. 18.
Notice that at a low temperature (Fig. 18a), the magnetic
structure virtually reproduces the results of 2D simulations
[134, 135]. The vertical cross section of the cluster shows that
all the chains are completely ordered. At a high temperature
(Fig. 18Db), a structure close to a PDA one appears, and chains
become substantially disordered.

Figure 19 displays the M(B) dependences of the mean
magnetization on the magnetic field intensity calculated at
different temperatures for a magnetic field growth rate on the
order of 0.1 T min~! (Fig. 19b) and for different rates at 8§ K
(Fig. 19a). It should be noted that the second and third steps
in the magnetization curve disappear with increasing tem-
perature or decreasing magnetic field growth rate. The form
of the magnetization curve as a whole is consistent with the
results of 2D simulations and experimental data. The
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S 12T
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102 103 104

Figure 20. Magnetization relaxation in the 3D model in a 96 x 96 x 36
supercell in Ca3;Co,0¢ in different magnetic fields in the ascending
magnetization curve at 7= 8 K [135].

observed transition from the low-temperature to high-
temperature phase in 3D simulations is related to the
disordering of chains.

The magnetization relaxation in the 3D model demon-
strates not only the change in sign, but also nonmonotonic
relaxation at B = 2.4 T (Fig. 20), which is explained by the
fact that the relaxation time of the two types of domain
boundaries proves to be different. This effect was observed in
experiments [38] and is not reproduced in the 2D model.

Additional materials on the numerical 2D and 3D
simulations of the Glauber magnetization dynamics can be
found at http://sarfti.ru/HMFLab/ssph.html.

5. Monte Carlo simulation

5.1 Metropolis and Wang—Landau algorithms

It is useful to begin the discussion of the results concerning
simulation of the static (thermodynamic) magnetization
curve with a brief comparison of two Monte Carlo computa-
tional algorithms. During integration over the phase space in
the classical Monte Carlo method, it is necessary to take into
account a great number of calculation points with small
weight coefficients, which strongly increases the calculation
time. To reduce the latter, the Metropolis algorithm was
developed [139].

Mean values are successively calculated in the Metropo-
lis algorithm in the following way: the state of a system is
randomly changed and the energies of the system before and
after the change are compared. If the given change reduces
the system’s energy, the new state is accepted. Otherwise,
the new state is accepted with the probability equal to
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exp (—AE/kgT), namely

p(old — new) = min {exp <— kA—b;">’ 1} .
B

If the new state is not accepted, we return to the previous
state. The mean value of the characteristic of interest to us is
found in this algorithm as the arithmetic mean of the values of
the given characteristic obtained over the entire sequence of
states:

(36)

(37)

where F; denotes this characteristic at the jth iteration. The
mean value determined in such a way is also the mean taken
over the equilibrium distribution [139].

It was found that the algorithm described above can lead
to the ‘sticking’ of the system in a local minimum of the
system. For this reason, the Wang—Landau algorithm was
proposed for systems with many local minima (for example,
frustrated magnetic systems) [140]. This algorithm is based on
the following observation: if during a random walk in the
energy space the probability of visiting an energy level is
inversely proportional to the density of states at this energy,
the visit histogram will be flat. For example, the degenerate
ground state of Hamiltonian (1) on a triangular lattice gives
an enormous density of states at the ground state energy.
Then, the probability of visiting such states should be reduced
proportionally to the density of states, which is not known
beforehand. This is achieved by systematically modifying the
initial density of states to obtain a flat histogram on the given
energy interval. The density of states is changed at each
random walk step.

The density of states of a magnetic system is the function
g(E, M) of energy and magnetization. Before calculations, the
energy region is divided into individual intervals [140]. At the
very beginning of the random walk, the density of states is not
known a priori, and therefore all the densities of states are
assumed equal: g(E, M) = 1. Then, we start a random walk in
the energy region, performing random spin flips and changing
the state of the system as a whole. If £} and E; are the energies
before and after a change of the system’s state, respectively,
then the probability of accepting the new state is given by the
expression

(38)

E.M
p(E1, M| — E>, M>) = min {M7 1}-

g(E27 MZ)

Each time after visiting a certain state, the corresponding
density of states is multiplied by a factor f>1, ie.,
g(E, M) — g(E, M) f. If the new state is rejected, the preced-
ing density of states is multiplied by the same factor f. In work
[140], the initial factor /= f; = e was used, which allows one
to rapidly reach all the energy levels even for very large
systems. Then, we continue the random walk in the energy
space and change the densities of states until the visit
histogram F(E, M) becomes ‘flat’. At this stage, we can say
that the density of states converged to its true value with an
accuracy proportional to Inf. Therefore, we reduce the factor
fi =+ fo by a certain rule (any function monotonically
decreasing to 1 can be utilized) and set the histogram values
equal to zero: F(E,M)=0. We then start the following
random walk cycle with a new factor f=f; until the

histogram again becomes flat, and after that the factor is
changed again: f;;; = +/f;. The calculation is assumed
converged if the modifying factor becomes smaller than a
certain preliminarily specified value (for example, fu, =
exp (107%) ~ 1.00000001). Notice that an absolutely flat
histogram cannot be obtained, and the term ‘flat histogram’
means that the values of F(E, M) for all possible £ and M are
no less than 80% of the mean value for the histogram.

After calculating the true value of the density of states, we
can obtain the thermodynamic and magnetic quantities of the
system at any temperatures in any magnetic fields. In the case
of a magnetic system, the density of states g(E, M) is the
function of energy and magnetization. Then, for example, the
internal energy of the system has the form [140, 143]

U(T. H) = S e H(E,M)exp (—H/kgT)
s we(E,M)exp (—H/kgT)

and the magnetization as a function of temperature and
magnetic field takes the form

M(T, H) = g Mg(E, M) exp (—H/kyT)
S ZE,Mg(EaM)GXp(—I:[/kBT) :

(39)

(40)

5.2 Static magnetization curves

The first 2D and 3D Monte Carlo calculations of static
magnetization curves for the Ca;Co,0¢ compound were
performed using the Metropolis algorithm [141, 142].
Magnetization curves demonstrated the formation of
domains which were similar to those discussed above, the
1/3 plateau, and two small additional steps. As the tempera-
ture increased, two additional steps disappeared and the 1/3
plateau typical for the PDA phase was observed, i.e., a
transition from the low-temperature to high-temperature
phase had occurred.

The introduction of a random scatter in the nearest-
neighbor interactions into Hamiltonian (1), for example, in
the form J — J(1 + 4,), where 4, is a small random number,
increased the height of the steps. The random scatter in the
nearest-neighbor interactions imitated the emergence of
defects and disordering. The 2D simulation was performed
in the rigid chain model on a rhombic cell, similar to that
considered in Section 4.3. The 3D model contained a
simplified description of the Ca3;Co,04 magnetic sublattice:
planar two-dimensional triangular layers without helicoidal
paths.

In the 3D Monte Carlo calculations, as in the Glauber
dynamics, the transition to the high-temperature phase was
accompanied by the disordering of part of the chains.
However, these results could not completely explain experi-
mental magnetization curves, because, as pointed out above,
the height of steps changes in experiments, depending on the
rate of magnetization change in one and the same sample [38].

The Metropolis and Wang—Landau algorithms applied to
the calculation of the static magnetization curve of Ca3;Co,Oq
were carefully compared in Ref. [143]. Simulations were
performed for a 2D 12 x 12 cluster with periodic boundary
conditions. The results of simulations are presented in Fig. 21.
The magnetization curves and dependences of the internal
energy at high temperature (7 = 10 K) coincided, whereas a
qualitative difference was revealed at low temperature
(T =2 K). The Wang-Landau algorithm gives a flat 1/3
plateau corresponding to the single-domain state, unlike the
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Figure 21. Dependences of (a, b) the relative magnetization and (c, d) the internal energy in the AFM Ising model on a triangular lattice on the magnetic
field according to the Wang—Landau (solid lines) and Metropolis (circles) algorithms at different temperatures [137].

four steps obtained with the help of the Metropolis algorithm.
A comparison of internal energies at low temperature shows
that the Wang—Landau algorithm results in the lower-energy
state.

Thus, two important conclusions follow from paper [143]:
(1) The Monte Carlo simulation of the static state of a strongly
frustrated magnetic system should be performed applying the
Wang-Landau algorithm, and (ii) static magnetization curves
of Ca3Co,04 have two steps and the 1/3 plateau both at high
and at low temperatures. These conclusions are consistent
with the simulated results of the Glauber dynamics.

To avoid qualitative errors, almost all papers on simula-
tion of static magnetization curves were performed after the
publication of paper [143] using the Wang—Landau algorithm
[137, 144]. Notably, the influence of two types of disordering
was investigated: vacancy formation [144], and random
variations in the nearest-neighbor interactions [143]. It was
shown that, in both cases, the four magnetization steps
observed in experiments were not reproduced in model
magnetization curves: when vacancies were introduced, a
great number of small steps appeared, whereas in the case of
random variations in the nearest-neighbor interactions, the
magnetization curve became smeared without the formation
of news steps. Thus, the fact that two additional steps are
related to the dynamic effect is again confirmed.

6. Conclusions

We have shown that the diversity of low-temperature phases
in frustrated Ising chain lattices is related to the partial
removal of degeneracy due to very weak next-to-nearest-
neighbor interactions or a weak anisotropy of nearest-
neighbor interactions. The three groups of frustrated com-
pounds discussed in the review represent the three most

characteristic types of low-temperature magnetic structures
on an undistorted triangular lattice: Ca3C0,0¢ (only AFM
nearest-neighbor interactions), CsCoCl; and some others
(FM next-to-nearest-neighbor interactions), and SrsRhsO
(AFM next-to-nearest-neighbor interactions). The transition
to the high-temperature PDA phase is universal for a
triangular lattice and is determined by the entropy of
disordered chains.

In a more general case, the following ruleis valid [117]: in a
zero external magnetic field, of all the 2D configurations of
the degenerate ground state at high temperatures, only those
in which the number of chains with a zero effective field is
maximal remain. It is these chains that are disordered first of
all.

The stochastic Glauber dynamics well describes the
nonequilibrium evolution of the Ca3;Co,0¢ magnetization in
a broad temperature range on different time scales. The static
magnetization curve of this compound is described by the
Wang-Landau algorithm and contains two steps with the 1/3
plateau. Two additional steps appear due to the nonequili-
brium domain structure in the ferrimagnetic phase. The very
slow magnetization dynamics occurs due to the slow motion
of domain walls.

In conclusion, we would like to emphasize some unsolved
problems concerning the Ca3;Co,0¢ magnetic structure. It
has been reliably established that an incommensurate long-
itudinal large-period spin density wave appears in Co,Og¢
chains. Nevertheless, in our opinion, the theoretical descrip-
tion of this phenomenon is still incomplete, which was
discussed in Section 2.3.

Another interesting problem is the traces of magnetiza-
tion steps in strong magnetic fields (4.8, 6.0, and 7.2 T), which
are observed at very low temperatures. To date, even a
qualitative explanation of this phenomenon is absent. It is
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possible that part of the Col ions in some small regions of a
sample, for example, near defects, reside in the magnetic state
(S =2). Then, the magnetic moment of the chain doubles,
and a step in the magnetic field between magnetization steps
should also be doubled.
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7. Appendix. Magnetic interactions
in C33C0206

The spin state of Coll ions in a real Ca;Co,0Og lattice is
described by the three-dimensional i x j x k array, where i
and j indices describe coordinates of chains in a plane,
similarly to the rhombic 2D cell, while the third index
describes the coordinate along the crystallographic c-axis.
Chains in three sublattices of CazCo0,04 are displaced with
respect to each other along the c-axis by 2/3 of the unit cell
size. The real coordinates of magnetic ions in the lattice are
determined by indices i, j, and k as x;;x = cos(n/3)i+j,
Vijk =sin(n/3) i, and z;j = 1/3mod; [2(i —j)] + k, where
modj is the function of the residue of division by 3.

We can introduce the interaction matrix which determines
the indices of sites in adjacent chains interacting with the
given site along solid straight lines in Fig. 1b:

0 -1 1
1 0 1
—1 1 1
N' = 1 -1 -] (A.1)
0 1 -1
—1 0 -1

Each row of the matrix is related to the nearest interacting
neighbor; in the first column, Ai is the displacement inside a
supercell over the index i with respect to the chosen site; in the
second column, A is the similar displacement over the index
J, and in the third column, z determines only the direction of
displacement along the crystallographic c-axis, while the
displacement is determined from the expression

ho = ! mod; [2(i —j)]

3 (A.2)

where i and j are the moving indices of the chain under study.
The interaction occurs with elements of other chains, which
differ in height by 2/3 of the layer height. Therefore, the third
index of the site with which the interaction occurs will be
given by the expression

k’:ﬁx[k—f—%z—i—ho}, (A.3)

where k is the third index of the element considered, z is a
value from the N’ matrix, and the function fix (x) determines
the round-off of x towards the —oo side. Thus, interchain

bonds appear for k — k' = 0, £1. The merit of this procedure
is its universality for all sublattices. A model for competing
bonds (dashed straight lines in Fig. 1b) can be constructed
similarly. The interaction with nearest neighbors along the
chain does not cause difficulties.
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