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Anomalous thermoelectric
and thermomagnetic properties of graphene

A A Varlamov, A V Kavokin,
I A Luk'yanchuk, S G Sharapov

1. Introduction

We present the results of recent investigations of some
anomalies of thermoelectric and thermomagnetic properties
of graphene. In Section 3, we show that the presence of a gap
in the Dirac spectrum (the possibility of its existence under
certain conditions is actively discussed in the literature) leads
to the appearance of a characteristic peak in the thermopower
as the chemical potential approaches the gap edge. The height
of this peak can exceed the magnitude of the graphene
thermopower, which is large by itself, by an order of
magnitude. The giant effect revealed is related to the
appearance, with the chemical potential approaching the
edge of the gap, of a new channel of scattering of quasipar-
ticles by impurities, with the relaxation time that essentially
depends on energy. The analysis of this feature, which is
based on the Kubo formalism, reproduces the well-known
results for gapless graphene, but demonstrates the inapplic-
ability of the simple Mott formula in the case under
consideration.

In Section 4, we discuss the specific behavior of quantum
oscillations of the Nernst coefficient (NC) that are observed
in graphene and graphite upon the application of sufficiently
strong magnetic fields. We show how the character of the
spectrum of quasiparticles of a sample can be judged from the
character of these oscillations.

2. On the history of thermoelectricity

The control of heat fluxes and the minimization of related
losses are important factors in designing modern elements of
nanoelectronics, including those based on the application of
graphene [1]. Experiments [2] show that the thermoelectric
effect can lead to a significant change in temperature (up to
30%) in the region of contacts and can therefore play a
substantial role in the problem of cooling contacts. The
experimentally measured magnitude of the graphene thermo-
power at room temperature can reach kB=e � 100 mV Kÿ1

(here, kB is the Boltzmann constant andÿe < 0 is the electron
charge).

The study of thermoelectric and thermomagnetic phe-
nomena has a two-century history. The thermoelectric effect,
consisting in the appearance of electric current in a circuit that
includes two different metals whose contacts are maintained
at different temperatures, was discovered in 1821 by an
Estonian±German scientist, Thomas Johann Seebeck. Quan-
titatively, the Seebeck effect is characterized by the differ-
ential thermopower (the Seebeck coefficient, i.e., the thermo-
electromotive force arising in an inhomogeneously heated
conductor) divided by the corresponding temperature differ-
ence:

Sxx � ÿ lim
DT!0

DV
DT
� Ex

HxT
:

The thermopower of metals is usually small (about
10ÿ8 V Kÿ1), but can be much greater in doped semiconduc-
tors and in semimetals.

More than a century later [3], an English scientist, Nevill
Mott, found an important relationship between the differ-
ential thermopower and the logarithmic derivative of the
longitudinal electric conductivity sxx�m;T � of a metal:

Sxx�m;T � � ÿ p 2

3e
kBT

d

dm

�
ln sxx�m;T � 0�� ; �1�

where m is the chemical potential of charge carriers and T is
the temperature. At present, this formula is basic in analyzing
experiments related to thermoelectricity; however, numerous
anomalous situations are known where the behavior of the
thermopower cannot be described by the Mott formula.
These are phenomena such as an increase in the thermo-
power of metals at temperatures close to the Kondo
temperature and the anomalies of thermopower at electron
topological transitions and its oscillations in strong magnetic
fields. One of the factors responsible for the invalidity of the
Mott formula is the existence (due to one reason or another)
of an essential dependence of the relaxation time of charge
carriers on energy.

Among the variety of known thermomagnetic phenom-
ena, those discussed most frequently are the effects of Nernst
and Nernst±Ettingshausen, discovered by Austrian scientists
Walter Nernst and Albert von Ettingshausen in 1886. The
Nernst effect in metals [4], which is a thermal analog of the
Hall effect, consists in the appearance of an electric field Ey

perpendicular to the mutually perpendicular magnetic field
H (jjz) and temperature gradient HxT. In this case, it is
assumed that all electrical circuits are open, i.e., Jx � Jy � 0,
and no heat flux is present along the y axis (the adiabaticity
condition). Quantitatively, the effect is characterized by
the NC

n � Ey

�ÿHxT �H :

Depending on the material, the NC can change within several
orders of magnitude, from 7 mV Kÿ1 Tÿ1 in bismuth to
10ÿ5 mB Kÿ1 Tÿ1 in ``good'' metals [5].

The Nernst±Ettingshausen effect is a different experimen-
tal realization of the Nernst effect: the electrical current is
passed along the y axis through a sample placed into a
magnetic field directed along the z axis; along the x axis, a
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temperature gradient arises in this case. Below, we do not
distinguish between these effects.

The microscopic nature of the Nernst effect remained
unclear up to 1948, until Sondheimer [6], using a kinetic
equation, found an expression for the NC of a degenerate
electron gas with impurities by relating the NC to the
derivative of the Hall angle yH � sxy=sxx with respect to
energy:

n�T � � ÿ p 2

3

cT

eHz

q
qm

�
sxy
sxx

�
� ÿ p 2T

3m

dt�e�
de

����
e�m

; �2�

which permitted him to find the relation between these two
effects and made the Nernst effect an important tool for
studies of the character of scattering of charge carriers in
semiconductors. In (2), m is the effective mass of charge
carriers and t�e� is the energy-dependent relaxation time.

Within the Sondheimer theory, the coefficient n is
constant in weak fields and decreases as Hÿ2 in sufficiently
strong fields, when the cyclotron frequency oc exceeds tÿ1

(the inverse relaxation time). In 1964, Obraztsov [7] noted the
importance of taking so-called magnetization currents
(electric currents arising because of the inhomogeneous
magnetization of a sample) into account in discussing the
Nernst effect.

In Sections 3 and 4, we present the results of two recent
investigations [8, 9] of unusual thermoelectric and thermo-
magnetic effects in a ``hot'' field in the physics of condensed
state, the study of properties of graphene and related systems.

3. Thermoelectric effect in graphene with
a gap in its spectrum

The results of experiments [10±13] on the measurements of
thermoelectric transport in graphene canmainly be explained
theoretically using the Mott formula. Nevertheless, these
experiments showed that Mott formula (1) gives results that
do not correspond to experimental data when, at high
temperatures, m is close to the Dirac point, especially in
graphene samples with a high mobility [13]. The theoretical
analysis in [14±16] shows that this discrepancy is related to the
violation of the conditions for the applicability of the Mott
formula, which have the formT5 jmj and/orT5 z (where z is
the characteristic energy scale at which a change occurs in the
conductivity sxx�m;T � 0� near the Fermi surface).

Below, we show that the thermopower in graphene, which
is already high, can be increased additionally by about an
order of magnitude due to the opening of a gap D in the
spectrum of quasiparticle excitations. This leads to the
appearance of a new channel of scattering of quasiparticles,
and because the relaxation time depends strongly on energy,
this leads to the appearance of a giant peak in the thermo-
power when the chemical potential approaches the edge of the
gap. This picture is very similar to the well-known thermo-
power anomaly near the electron topological transition (see
review [17]).

We note that experiments [18, 19] indicate the presence of
a gap in the spectrum of quasiparticle excitations in graphene
near the Dirac point, which seems to be related to the effect of
the substrate. For single-layer graphene, the problem of the
existence of a gap has been studied insufficiently. Our results
allow suggesting measurements of thermopower as a sensitive
method for revealing the gap.

3.1 Electron scattering in gapped graphene
In the momentum representation, the Hamiltonian of
graphene is written as

bH �X
s

�
BZ

d2p

�2p�2 U ys�p�
� bH�p� ÿ mbt0�Us�p� ; �3�

where

bH�p� � bt�f�p� �btÿf ��p� � Dbt3 ;
bt0, bt3, and bt� � �bt1 � ibt2�=2 are the Pauli matrices acting in
the space of sublattices on the spinors Us�p� and
U ys�p� �

ÿ
a ys�p�; b ys�p�

�
with the electron creation (annihila-

tion) operators a ys�p� and b ys�p�
ÿ
as�p� and bs�p�

�
, which

correspond to the sublattices of components A and B; s is the
spin index; and the integration is performed over the Brillouin
zone (BZ). In the case under consideration, the complex
function f�p� responsible for the dispersion can be chosen
near two independent K points of the BZ in the form
x � jf�p�j � �hvFjpj, where vF is the Fermi velocity, and the
wave vector p is referenced to the corresponding K point. The
presence of the gap D violates the equivalence of the A and B
sublattices, and the spectrum near theK points takes the form
E�p� � ���h 2v 2Fp

2 � D 2�1=2 ÿ m.
Scattering by impurities is considered using the Abriko-

sov±Gor'kov technique in terms of the self-consistent Born
approximation. The scattering potential is chosen such that
the scattering between different valleys can be neglected;
within a single valley, the potential is assumed to be
constant, equal to u�0�. As a result, we obtain the following
expression for the scattering by impurities:

G�e� � G0

� je� mj
jmj �

D 2

je� mjjmj
�
y
ÿ�e� m�2 ÿ D 2

�
; �4�

where G0 � 2�h=t0, t0 is the characteristic relaxation time,
tÿ10 � niju�0�j2jmj=�4�h 3v 2F� [20], ni is the concentration of
charge carriers, and y is the Heaviside function. In the results
presented below, we use the value G0 � 20 K, neglecting the
concentration dependence. It follows from Eqn (4) that the
scattering is absent at �e� m�2 < D 2. Nevertheless, we note
that some processes that have not been taken into account in
themodel lead to a finite relaxation time below the edge of the
gap. In numerical calculations, this is taken into account by
adding a small residual scattering g0 to G�e�. The final results
are almost independent of g0.

3.2 Thermopower in gapped graphene
Using the Kubo formula, the following expressions can be
obtained for the electrical conductivity and thermoelectric
coefficient:

sxx
bxx

� �
� e 2

�h

�1
ÿ1

deAÿe;G�e�;D�
2T cosh2

�
e=�2T ��

1
e
eT

( )
; �5�

where at a nonzero gapD, the functionA has the form [21, 22]

A�e;G�e�;D� � 1

2p 2

�
1� �m� e�2 ÿ D 2 � G 2�e�

2jm� ejG�e�

�
�
p
2
ÿ arctan

D 2 � G 2�e� ÿ �m� e�2
2jm� ejG�e�

��
: �6�
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At D � 0, Eqn (6) is simplified to the form considered in [14,
16]. In this case, assuming that G�e� � G0 � const and that
jmj4T, G0, we find that sxx � e 2jmj=�2p�hG0� and bxx �
peT sgn m=�6�hG0�, in accordance with the results in [22].
Then the thermopower Sxx � ÿbxx=sxx is the same as in
usual metals, Sxx � ÿ�p 2=3e�T=m, and coincides with the
value that directly follows fromMott formula (1).

The Sxx�m� dependences at T � 1 K and T � 5 K are
shown in Fig. 1. The thick dashed curves correspond to the
case D � 0, G�e� � G0, with sxx�m� / jmj and Sxx�m�/1=m at
large jmj. Expressions (5) and (6) also allow reproducing the
results in the case of a nonzero gap and an energy-
independent G�e� � G0 [21, 22]. The corresponding depen-
dences are shown by thick dashed-dotted curves, calculated at
D � 50 K.

Our main result, shown by thick solid curves, was
obtained for the energy-dependent G�e� given by Eqn (4), at
D � 50 K. We note that the corresponding values of Sxx�m�
were diminished fivefold to show them together with the other
curves in the figure. This means that the peak values of the
thermopower are at least fivefold greater than the magnitude
of the thermopower obtained for G�e� � const.

A substantial increase in the thermopower in the case of
the energy-dependent G�e� can already be expected on the
basis of Mott formula (1). Nevertheless, formula (1) cannot
be used for a quantitative description. Indeed, the thin
curves in Fig. 1b were obtained with the use of data for the
electrical conductivity at the zero temperature s�m;T � 0� �
�2e 2=�h�A�0;G�0�;D� andMott formula (1), whereas the thick
curves were derived using the Kubo formula for both sxx and
bxx. It is seen that the agreement between the Kubo andMott
formulas is quite good for D � 0 and G�e� � const, and
becomes ideal at T � 1 K; therefore, the results for the Mott
formula are not given in Fig. 1a. At the same time, it can be
seen fromFig. 1b that for a finite value ofD andG�e� � const,
a discrepancy is already observed between the results
obtained using the Kubo and Mott formulas, especially near
jmj � D. Finally, in the case of an energy-dependent G�e�, the
Mott formula is inapplicable.

A specific feature of thermopower is its sensitivity to the
derivative of the reciprocal relaxation time. Therefore, the
presence of the y function in (4) strongly affects the S�m�
dependence near jmj � D. Here, it is worth mentioning once
again that an obvious analogy exists between the transport in
gapped graphene and in metals near the topological electron
transition. Indeed, near the critical value of the chemical
potential m � mc, where the connectivity of the Fermi surface
changes, the relaxation time of quasiparticles becomes
substantially energy-dependent, which leads to the appear-
ance of well-known bends in the conductivity curves and of
peaks in the thermopower [17].

4. Giant oscillations of the NC in graphene

Giant oscillations of the NC were discovered in 1959 in [25],
where this phenomenon was explained as the intersection of
the chemical potential by the Landau levels. As in the case of
the de Haas±van Alphen oscillations of magnetization and
the Shubnikov±deHaas oscillations of conductivity, the fields
corresponding to the oscillations of theNC are determined by
the Lifshits±Onsager condition [23]

S�m� � �k� gs� 2p�h
eHks

c
; �7�

where S�m� is the area of the Fermi surface cross section
corresponding to the orbital motion of electrons at pz � 0, k is
an integer, gs � g� 1=2 �m �=m� s with s � �1, and
m � � �1=2p� dS=dm is the cyclotron mass of the electron [23].

Quite recently, the Nernst effect in graphene was studied
experimentally [11, 12] and the corresponding results were
analyzed in terms of the standard theory [24]. Unexpectedly,
it was found that under oscillations, the NC changes sign in
graphene in fields that satisfy condition (7), whereas in zinc
[25] and bismuth [26], maxima are observed in the corre-
sponding fields. This unusual behavior of the n�H � oscilla-
tions in graphene is not reproduced in three-dimensional
graphite.

One more remarkable property of quantum oscillations is
the dependence of their character on the type of the spectrum
of charge carriers, namely, on the value of the topological
parameter g [27, 28]: g � 1=2 for normal charge carriers
(NCCs) with a parabolic two-dimensional (2D) spectrum
and Landau linear quantization:

NC : e� p?� � p 2
?

2m?
; ek � 2mB H

m

m?

�
k� 1

2

�
;
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Figure 1. (Available in color online.) Thermopower Sxx (in kB=e units) as a
function of the chemical potential m at (a) T � 1 K and (b) T � 5 K. The

dashed curves correspond to the energy-independent G � G0 and D � 0;

dashed-dotted thick curves to G � G0 and D � 50 K; solid thick curves to

the energy-dependent G�e� and D � 50 K. The dependences shown by

continuous lines are multiplied by 0.2. The thin curves in (b) are obtained

via the Mott formula.
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and g � 0 for Dirac fermions (DFs), which have a linear
spectrum with two branches and a square-root dependence of
the energy of Landau levels (� k 1=2) in a magnetic field:

DF : e� p?� � �vj p?j ; ek � �
ÿ
4mv 2F mB Hk

�1=2
;

where p? andm? are the momentum and the effective mass in
the plane perpendicular to the magnetic field,m is the mass of
a free electron, vF is its Fermi velocity, and mB � e=2mc is the
Bohr magneton.

Below, we use a simple thermodynamic approach to the
description of the Nernst effect, which allows relating the
corresponding oscillations to the de Haas±van Alphen
oscillations of magnetization. For both contributions to the
NCÐthe thermal contribution (Sondheimer [6]) and the
contribution corresponding to magnetization currents
(Obraztsov [7])Ð exact expressions are found for both
parabolic and Dirac spectra. In the last case, our results
quite well reproduce the oscillations of the NC found
experimentally in graphene [11, 12]. It is remarkable that in
contrast to the case of a parabolic spectrum, their amplitude
decreases rather than increases with increasing the Fermi
energy (gate voltage). The shape of the oscillations is
determined by the temperature derivative of the de Haas±
van Alphen oscillations.

4.1 Thermodynamic description of the Nernst effect
Asmentioned in Section 2, the NC is measured in the absence
of currents in the system. Therefore, the electrochemical
potential along the temperature gradient can be considered
constant, m� ej � const (where j is the electrostatic poten-
tial). Consequently, the effect of temperature inhomogeneity
in the sample is determined by the appearance of an effective
electric fieldEx � Hx m=e along the temperature gradient. The
problem therefore reduces to the classical Hall problem,
which allows easily finding the thermal contribution to the
NC,

n term � sxx
e 2nc

dm
dT

; �8�

where n is the concentration of charge carriers. This simple
formula reproduces the Sondheimer result for a degenerate
electron gas, the fluctuation contribution to the NC in
superconductors at temperatures above Tc, etc. [30].

The second contribution to the NC, which arises as a
result of the spatial dependence of magnetization in the
sample [7], can be found based on the Amp�ere law. The
density of the magnetization current is written as
jmag � �c=�4p��H� B, where B � H� 4pM, H is the spa-
tially homogeneous magnetic field, and M is the magnetiza-
tion, which can depend on temperature and hence on the
coordinates. The magnetization-related current density is
written as jmag

y � ÿc�dM=dT �HxT; the corresponding con-
tribution to the Nernst electric field is Emag

y � ryy j
mag
y , where

ryy is the diagonal component of the resistivity (ryy � rxx). As
a result, the contribution from the magnetization currents to
the NC is written as

nmag � cryy
H

�
dM

dT

�
: �9�

Relations (8) and (9) allow elucidating the physical nature
of oscillations of the NC in quantizing magnetic fields. In
particular, they show that the NC depends on the diagonal
components of the conductivity and resistivity tensors, whose

oscillations, depending on the magnetic field, are nothing
more than the Shubnikov±de Haas effect. However, in
graphene, the giant oscillations of the NC are also observed
in the state where the Shubnikov±de Has effect is small (at
H < 3 T) [12]; we should therefore assume that the giant
oscillations of the NC in the last case are due to other factors
in expressions (8) and (9), namely, the temperature derivatives
of the chemical potential dm=dT and magnetization dM=dT.
It is remarkable that to obtain explicit expressions for these
quantities, we need no additional information on the
transport properties of the system; these derivatives can be
expressed in terms of the thermodynamic potential O:

dm
dT
� q 2O

qT qm

�
q 2O
qm 2

�ÿ1
T

;
dM

dT
� q 2O

qT qH
: �10�

The expression for the oscillating part of the thermodynamic
potential in the case of a parabolic spectrum obtained in [31]
(see also [32]) was later extended to an arbitrary spectrum
e?�p?� in [33] (see also [34]). In the 2D case, we have

eO � m �

2p�h 2

�h 2o 2
c

p 2

1

2

X1
l�1; s��1

c�ll �
l 2

exp

�
ÿ 2plG

�hoc

�

� cos

�
2pl
�

c

e�h

S�m�
2pH

ÿ gs

��
; �11�

with c�ll � � ll=sinh ll. Here, l � 2 p 2T=��hoc� and G is the
Dingle broadening of the Landau level. To apply the results to
both the parabolic andDirac spectra, we represent expression
(11) in the most general form using the parameters S,m �, oc,
and gs. In the case of NCCs, we have S � 2pm? m, m � � m?,
oc � eH=m?c, and gs�1=2� �1=2� �m?=m� s; in the case of
DFs, S�p m 2=v 2, m ��m=v 2, oc � eHv 2=�mc�, and gs �
1=2 �m=�mv 2�� s. As a result, the oscillating parts of the
magnetization and chemical potential can be expressed,
using relation (10), in the form

dem
dT
� ÿ ImX f1g

1� 2ReX f0g
;

d eM
dT
� n

H

dem
dT

; �12�

where

X fag � 1

2

X1
l�1; s��1

c �a� �ll � exp
�
ÿ 2plG

�hoc

�

� cos

�
2pl
�

c

e�h

S�m�
2pH

ÿ gs

��
; �13�

and c �a��x� is the derivative of c of the order a � 0; 1. It
follows from (9) and (12) that the NC oscillates proportion-
ally to the temperature derivative of the magnetization. This
fact suggests the existence of an important universal
(independent of the dimensionality and type of charge
carriers) relation between the oscillations of the NC and the
de Haas±van Alphen effect.

It is convenient to represent the NC in the form

n � n term � nmag � n0�H � � en�H � ; �14�

where n0�H � and en�H � are respectively the background and
oscillating parts. The background part can be found in the
Drude theory approximation [30]:

n0�H � � p 2t
6m �c

�
T

eF

�
1

1� �oct�2
: �15�
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Taking the magnetization currents into account here leads to
the appearance of a correction to Sondheimer's result (15) of
the order �eFt�ÿ2.

With (8), (9), and (12), the oscillating part of the NC can
be represented as

en�H � � ÿ2pk�H � ImXf1g

1� 2ReXf0g
; �16�

where

k�H � � sxx�H �
e 2nc

� cnrxx�H �
H 2

: �17�

Expression (16) describes the oscillations of the NC in the
most general form, which is valid for an arbitrary type of the
spectrum of charge carriers e?�p?�.

4.2 Shape of oscillations and its dependence on the type
of carriers
We analyze expression (16) in the limit of low temperatures,
2p 2T < �hoc. In this case, the parameter l in (11) is much less
than unity; consequently, c�ll � � 1ÿ �1=6� l 2l 2. For
m � < 0:02m and H � 10 T (typical values in experiments on
graphene), this requirement means that T < 10 K. Because
m �5m, we can neglect the Zeeman splitting, assuming that
gs � 0 for the NCCs and gs � 1=2 for the DFs. The series
X f0g and X f1g in (16) in this case can be summed analytically:

en �2D��m;H � � 2p 3

3

T

�hoc
k�H �

� sin 2p
��c=�e�h�� �S�m�=�2pH �� ÿ g

	
cosh �2pG=��hoc��ÿcos 2p

��c=�e�h���S�m�=�2pH��ÿg	 : �18�
In experiments involving measurements of the NC in
graphene, the number of particles is usually fixed; therefore,
we have the relation [31]

n � ÿ
�
qO�m�
qm

�
H;T

� 2
S�m�
�2p�h�2 ÿ

�
qeO�m�
qm

�
H;T

� const

�19�
(we assume that the volume is V � 1). This equation
implicitly determines the dependence of the chemical poten-
tial m onH and T at a given n. We note that according to (19),
the chemical potential m is a function of the magnetic fieldH.
The corresponding expression for S�m� is
c

e�h

S�m�
2H
� p 2 �hc

e

n

H

ÿ arctan
sin 2p

�
p��hc=e� n=Hÿ g

�
exp �2pG=�hoc� � cos 2p

�
p��hc=e� n=Hÿ g

� : �20�
Relation (20) gives the sought dependence m�n;H �. Substitut-
ing (20) in (18), after laborious calculations, we can find the
oscillating part of the NC in the explicit form

en �2D��n;H � � 2p 3

3

T

�hoc

k�H �
sinh �2pG=�hoc�

� sin 2p
�
p

�hc

e

n

H
ÿ g
�
: �21�

We see that Eqn (21) is a strongly oscillating function that
vanishes in magnetic fields in which Landau levels cross the
chemical potential (H � Hks is determined by condition (7)).

The magnetic-field-dependent factor k�H �, which is deter-
mined by the behavior of magnetoresistance, is given by (17).
At oct4 1, when the Shubnikov±de Haas oscillations are
small, k�H � can be estimated in the Drude approximation. In
particular, in the limit where oct � 1, we obtain k�H � �
t=�m �c� (assuming that G � �h=2t), and the amplitude of NC
oscillations turns out to be giant compared to the background
magnitude en �2D� � �eF=��hoc�� n0. In stronger fields (oct > 1),
under the quantum Hall effect, the shape of NC oscillations
begins to be determined by the sharp dependence of the
magnetoconductivity and of the Dingle temperature on the
magnetic field. This circumstance can be taken into account
by substituting the appropriate dependences in Eqns (16)
and (17).

Figure 2a displays the oscillations of the NC as a function
of the inverse magnetic field for the two-dimensional system
with parabolic andDirac spectra in accordance with Eqn (21).
Both theoretical and experimental results obtained for
graphene [11, 12] exhibit a sinusoidal profile of the signal,
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Figure 2. (a) Oscillations of the NC as a function of the inverse magnetic

field and the concentrations of charge carriers (b) with a parabolic

spectrum (NCC) and (c) for Dirac fermions (DF). The n�Hÿ1� depen-
dence for theDFs has the same shape as the dependence for theNCCs, but

is shifted relative to the latter by a half-period. The vertical straight lines

indicate the field values at which quantization condition (7) is satisfied.
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whose amplitude decreases slowly with increasing the con-
centration of charge carriers with the Dirac spectrum. This
behavior contradicts the theoretical predictions based on the
classical Mott formula applied to the Boltzmann electron
gas [11]. On the contrary, in the case of charge carriers with a
parabolic spectrum, our theory predicts an increase in the
amplitude of oscillations with increasing the concentration of
charge carriers. The last statement agrees qualitatively with
the results obtained using the Mott formula.
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