
A scientific session of the Physical Sciences Division of the
RussianAcademy of Sciences (RAS) devoted to the ``Physical
properties of graphene'' was held on 28 March 2012 in the
conference hall of the Lebedev Physical Institute.

The agenda of the session announced on theRASPhysical
Sciences Division website www.gpad.ac.ru included the
following reports:

(1) Falkovsky L A (Landau Institute of Theoretical
Physics, RAS, Moscow; Vereshchagin Institute of High-
Pressure Physics, RAS, Moscow) ``Magnetooptics of gra-
phene'';

(2) Varlamov A A (The University of Rome Tor Vergata,
Italy) ``Thermoelectric properties of graphene.''

The papers written on the basis of these reports are given
below.
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Magnetooptics of graphene layers

L A Falkovsky

1. Introduction

Most of the vast amount of information on graphene can be
described based on the concept of ``gapless Dirac fermions.''
According to this concept, at the K points of the Brillouin
zone (vertices of a hexagon), there are two zones without a
gap between them, and the electron spectrum can be
considered linear in a sufficiently wide neighborhood of
wave vectors. It is obvious that to assume the spectrum to be
linear, the size of the neighborhood under consideration must
be small compared to the size of the Brillouin zone, i.e., less
than 108 cmÿ1, which suggests not too large concentrations of
charge carriers, n5 1016 cmÿ2. Ideally pure graphene at zero
temperature should contain no charge carriers at all, and the
Fermi level should separate the conduction band from the
valence band. However, it is quite difficult to prepare pure
graphene; the minimum concentration of charge carriers
that could be obtained in it to date is n � 109 cmÿ2. The
following key problems arise here: to what extent the
Coulomb electron interaction renormalizes the initial linear

spectrum and whether graphene can pass into a state with
an energy gap.

At present, there is also a practical need in gapped
materials for modern electronics. Therefore, investigations
of a graphene bilayer to which a constant voltage can be
applied (as to a capacitor), thereby creating an energy gap in
its spectrum, have become quite popular. In its development
over the last half-century, physics has come full circle and
returned to the investigation of graphite. Here, we recall the
names of Slonczewski and Weiss [1], who formulated the
principle of the description of a layered substance with a
strong interaction in the layers and a weak interaction
between them.

The main methods for studying the metallic state appear
to be magnetotransport and magnetooptical investigations.
In a magnetic field, phenomena such as Hall effects (classical
and quantum) are observed, as is rotation of the polarization
plane, or the Faraday effect upon light transmission and the
Kerr effect upon reflection. In describing graphene layers, in
spite of the relative simplicity of the presented picture,
difficulties arise, which, just as the corresponding achieve-
ments, are the subject of this paper.

2. Electronic spectrum of graphene

The K points of the Brillouin zone have the C3v symmetry
(a 3-fold axis and a symmetry plane). This space group has a
two-dimensional representation whose basis is composed of
two functions that are transformed into one another under
reflection and acquire factors exp ��2pi=3� under rotation.
Using the components of the momentum deviation from the
K points, linear combinations k� � �ikx ÿ ky can be com-
posed that transform similarly to the functions of the basis.
The effective Hamiltonian must be invariant under a
representation of this small group; hence, near the K point,
we have a unique possibility of writing the Hamiltonian in the
linear approximation:

H�k� � 0 vk�
vkÿ 0

� �
; �1�
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where v is a constant with the dimension of velocity. The same
Hamiltonian is obtained, naturally, in the tight-binding
approximation.

The eigenvalues of the matrix in the right-hand side of
Eqn (1) give a two-band gapless spectrum:

e1;2 � �v
����������������
k 2
x � k 2

y

q
� �vk :

Hence, the gapless character of the spectrum is a mere
consequence of the symmetry, and the fact that the Fermi
level should pass through the conical point K follows merely
from the valence of carbon. The cyclotron mass for such a
spectrum is given by

m�e� � 1

2p
dS�e�
de
� e
v 2

;

where S is the area of the cross section of the isoenergy surface
and the concentration of charge carriers at zero temperature
is expressed through the chemical potential m as

n�m� � m 2

p�h 2v 2
:

The simplest way to experimentally verify the type of
spectrum is by using the relation

m�m� v
�h
� �

������������
pn�m�

p
;

for example, by measuring the Shubnikov±de Haas effect, in
which case the cyclotronmass at the Fermi level is found from
the temperature dependence of the amplitude of oscillations
and the concentration of charge carriers is determined from
their frequency. Both these quantities are measured at
different concentrations of charge carriers, which is changed
by varying the voltage at the ``gate.'' Such a verification was
performed by Ellis et al. [2], who obtained very pure samples
with a charge-carrier concentration as low as 109 cmÿ2. It
turned out that the ``constant'' parameter v is not constant
but increases at small concentrations by a factor of three
compared to its ``normal'' value 108 cm sÿ1 at concentrations
exceeding 1011 cmÿ2. This effect is a result of the electron±
electron Coulomb interaction, which proves to be more
efficient, as was to be expected, at small concentrations,
when no screening is observed. The logarithmic renormaliza-
tion of the velocity due to the Coulomb interaction in the
three-dimensional case was first found in [3], and for two-
dimensional graphene, in [4]. Interestingly, even at a quite low
concentration, no signs of any phase transition have been
found. In accordance with the theory, the Coulomb interac-
tion does not violate the symmetry-related gapless character
of the spectrum.

3. Dynamic conductivity of graphene

One of the clearest manifestations of the specific character
of the graphene spectrum can be provided by the behavior
of its dynamic (i.e., frequency-dependent) conductivity
(conductance). At higher frequencies, in the optical range,
the spatial dispersion of conductivity and the frequency of
collisions of charge carriers are insignificant. Summing the
contributions from conical points (two per unit cell),
integrating over the angle of the two-dimensional vector k,
and passing to the variable e � vk, we find the conductivity

as [5±7]

s�o��e 2o
ip�h

� ��1
ÿ1

de
jej
o 2

df �e�
de
ÿ
��1
0

de
f �ÿe� ÿ f �e�
�o� id�2 ÿ 4e 2

�
;

�2�

where f �e� is the distribution function and d is an infinitesimal
parameter. The first term in the right-hand side of Eqn (2),
which represents the intraband contribution, can be inte-
grated once more:

s intra�o� � 2ie 2T

p�h�o� itÿ1� ln
�
2 cosh

m
2T

�
; �3�

where we substituted o� itÿ1 for o in order to allow for the
electron relaxation t. In this form, the intraband contribution
coincides with the classical Drude±Boltzmann expression for
conductivity. At low temperatures (m4T ), when the charge
carriers are degenerate, the intraband term acquires a
``metallic'' form:

s intra�o� � ie 2jmj
p�h�o� itÿ1� : �4�

For pure graphene, the chemical potential is m � 0 (gapless
dielectric) and conductivity (3) is proportional to the
temperature. The concentration of charge carriers can be
changed either by doping or by applying a constant electric
field (``field effect'').

The second term in the right-hand side of Eqn (2), where d
is an infinitesimal quantity describing interband transitions,
contains both a real part, which arises as a result of going
around the pole and corresponds to absorption, and an
imaginary part. At zero temperature, the second integral in
the right-hand side of Eqn (2) can be calculated analytically as

s inter�o� � e 2

4�h

�
y�oÿ 2m� ÿ i

2p
ln
�o� 2m�2
�oÿ 2m�2

�
; �5�

where y is the step-function, which reflects the condition of
interband electron transitions with the thresholdo � 2m. The
logarithmic singularity is removed by a temperature cut-off
(or by relaxation of charge carriers), and at a finite but small
(in comparison with the chemical potential) temperature, the
following replacement should be made in (5):

y�oÿ 2m� ! 1

2
� 1

p
arctan

�
oÿ 2m
2T

�
;

�6�
�oÿ 2m�2 ! �oÿ 2m�2 � �2T �2 :
The above results allow arriving at two main conclusions.

First, at high frequencies o4 �T; m�, the conductivity is
mainly real and independent of any parameters:

s�o� � e 2

4�h
:

In this frequency range, which is limited from above by the
band width (of about 3 eV), the conductivity, as we see, is
independent of the material parameters, e.g., of the velocity v,
and has a universal character. Second, if degenerate carriers
exist in graphene at sufficiently low temperatures, then the
imaginary part of the conductivity contains a logarithmic
singularity at the threshold of the interband absorption
o � 2m, where the real part undergoes a finite jump. This
feature becomes smoothened with increasing the temperature
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and also because of the finite length of the mean free path of
charge carriers. To observe this feature, the frequency should
not exceed the temperature, i.e., should be of the order of 10±
40 K in energy units. These conclusions have been confirmed
experimentally [8].

The universal conductivity leads to an interesting con-
sequence. Using its value, the coefficient of transmission T of
an electromagnetic wave through graphene can be obtained
as [9, 10]

T � 1ÿ 4p
c

Re s�o� cos y � 1ÿ p
e 2

�hc
cos y ; �7�

where y is the incidence angle of the wave. We see that the
coefficient of light transmission through a graphene layer is
expressed via the fine-structure constant of quantum electro-
dynamics, to which graphene has no relation at all. Several
experimental groups [11, 12] have confirmed the calculated
value of the transmission coefficient in awide frequency range
of the visible spectrum, both for graphene and for a graphene
bilayer, in which the difference of this coefficient from unity is
twice greater (Fig. 1).

4. Spectrum of graphene layers
in a magnetic field

The Slonczewski±Weiss Hamiltonian for a graphene bilayer
and graphite in the vicinity of the KH line of the Brillouin
zone has the form

H�k��

~g5 �U vk� ~g1
~g4vkÿ
g0

vkÿ ~g2 �U
~g4vkÿ
g0

~g3vk�
g0

~g1
~g4vk�
g0

~g5 ÿU vkÿ

~g4vk�
g0

~g3vkÿ
g0

vk� ~g2 ÿU

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; �8�

where k� � �ikx ÿ ky is the projection of the quasimomen-
tum, v is the parameter of the velocity in the direction of
graphite layers, ~gj are functions of the projection kz in the
direction of the principal axis,

~g2 � 2g2 cos �2kzd0� ; ~g5 � 2g5 cos �2kzd0� � D ;

~gi � 2gi cos �kzd0� ; i � 1; 3; 4;

and d0 � 3:35 A
�
is the spacing between the layers in graphite.

The velocity parameter v � 1:5a0g0 � 108 cm sÿ1 is
related to the overlap (g0 � 3 eV) of the wave functions of
nearest neighbors located in the same layer at the distance
a0 � 1:415 A

�
from each other. The parameters with i � 1, 3,

4, which arise because of the overlap of the wave functions of
nearest neighbors in the direction of the principal axis, are an
order of magnitude less than g0. In a bilayer, there is only one
neighboring layer in the direction of the principal axis;
therefore, ~gi � gi for i � 1, 3, 4, and because the next layer is
absent, the interlayer integrals of the overlap with the third
sphere are ~gi � 0 for i � 2, 5, whereas they should be taken
into account in graphite.

In the absence of a magnetic field, the spectrum can be
computed numerically (Fig. 2) and studied analytically [13];
the specific features of conductivity related to transitions
between the bands can also be studied experimentally.
Hamiltonian (8) also involves the parameter U, which is
important in the case of a bilayer when a constant voltage is
applied to it in the direction of the principal axis. At an
arbitrary value of the quasimomentum, we find four energy
eigenvalues, which are numbered using subscripts s � 1, 2, 3,
4. At kx � ky � 0 (i.e., on the KH line) and U � 0, there is a
twofold degeneracy (e2 � e3), which is a consequence of the
symmetry. In an external electric field U, a gap appears in
the spectrum; it is this feature that mainly accounts for the
enhanced interest in bilayers. In addition, the simple
quadratic behavior in the bands that touch each other
acquires the shape of a Mexican hat. There is one more
detail that should be taken into account: two points, K and
K 0, which pass into one another under rotations and
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Figure 1. The coefficient of light transmission through graphene and a

graphene bilayer [11].
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Figure 2. The Brillouin zone and the electron spectrum of graphite.
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reflection (x! ÿx), are not equivalent in the bilayer; the
reflection corresponds to the permutation k� $ kÿ in
Hamiltonian (1). To avoid the enumeration of obvious
possibilities, we restrict ourselves to the description of the
graphite spectrum at U � 0 and only then turn to a bilayer.

The problem becomes more complex andmore interesting
in the presence of amagnetic field. In amagnetic fieldB that is
parallel to the principal axis, the projections of the quasi-
momentum kx; y are operators with the commutation relation
fk̂�; k̂ÿg � ÿ2e�hB=c; it is therefore convenient to introduce
creation and annihilation operators a� and a that change the
Landau index by unity:

k̂� �
�������������
2jej�hB

c

r
a ; k̂ÿ �

�������������
2jej�hB

c

r
a� :

For graphene, an explicit expression for the spectrum is found
using Eqn (1) in the form

e1;2 � �v
����������������
2jej�hBn

c

r
;

where n � 0, 1, ... .
The eigensolutions for matrix Hamiltonian (8) are sought

in the form of a column,

ca
sn�x� �

C 1
snjnÿ1�x�
C 2

snjn�x�
C 3

snjnÿ1�x�
C 4

snjnÿ2�x�

8>>><>>>:
9>>>=>>>; ; �9�

where jn�x� are the orthogonal Hermite functions with the
Landau eigenvalue n5 0. At a given n, the states are
numbered by the band index s � 1, 2, 3, 4; we use the
notation jsni for states by counting s, as before, from below.
For brevity, we omit the standard exponentials that appear in
the Landau gauge and take the degeneracy in corresponding
components of the quasimomentum into account only in the
final results.

It is easy to see that if we neglect terms with g3, which lead
to a trigonal warping of the spectrum, then each line of matrix
Hamiltonian (8) is proportional to a certain Hermite
function, which can therefore be canceled. We thus come to
the problem for eigenvectors Csn and eigenvalues

~g5 ÿ e oc

���
n
p

~g1 o4

�����������
nÿ 1
p

oc

���
n
p

~g2 ÿ e o4

���
n
p

0

~g1 o4

���
n
p

~g5 ÿ e oc

�����������
nÿ 1
p

o4

�����������
nÿ 1
p

0 oc

�����������
nÿ 1
p

~g2 ÿ e

0BBB@
1CCCA

C 1
sn

C 2
sn

C 3
sn

C 4
sn

8>>><>>>:
9>>>=>>>; � 0 ;

�10�

where oc � v
������������������
2jej�hB=cp

, o4 � ~g4oc=g0.
We see from (9) that at n � 0, the eigenvector has one

nonzero component, C0 � �0; 1; 0; 0�, and there is only one
(rather than four) energy eigenvalue

e�n � 0� � ~g2 ; �11�

which depends on kz and intersects the Fermi level such that
electrons appear in the vicinity of the K point (up to the
Fermi level) and holes appear in the vicinity of the H point
(Fig. 3).

At n � 1, we see from Eqns (9) that the fourth component
should be set equal to zero (C 4

s1 � 0), and three (rather than
four) levels can be determined from the first three equations.
The middle level j21i is very close to j10i, and in the region of
kz where the condition g1= cos z4 g2 holds and where the
electrons are located, this level has the energy

e2�n � 1� � ~g2 ÿ 2
o 2

c ~g4
~g1g0

: �12�

For n5 2, four eigenvalues exist at any kz. The energies of
two close levels with s � 2 and 3 in the region g1= cos z4 g2,
where electrons are located, are expressed as

e2;3�n� � ~g2 ÿ
o 2

c ~g4
~g1g0

�2nÿ 1� � o 2
c

~g1

�����������������
n�nÿ 1�

p
: �13�

4.1 Effect of a trigonal distortion on the spectrum
in a magnetic field
In spite of the smallness of the ratio g3=g0, the effect of
trigonal distortion is significant because of the degeneracy
that is observed in the KH lines. To date, several ways to take
the trigonal distortion into account have been suggested. Two
of these are analytic: the perturbation theory [14] and
semiclassical quantization [15]. The perturbation theory for
the matrix Hamiltonian can suitably be constructed based on
its Green's function

G ab
0 �e; x; x 0� �

X
sn

ca
sn�x�c �bsn �x 0�

eÿ esn
; �14�

where the superscripts can take four values, in accordance
with the matrix of the Hamiltonian, and x and x 0 are position
variables.
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Figure 3. (Available in color online.) (a) Landau levels esn from n � 0 to

n � 4 in four bands, s � 1, 2, 3, 4 (dotted, solid, dashed, and dotted-and-

dashed curves, respectively), depending on the projection of the momen-

tum kz along the KH line in the Brillouin zone of graphite (K � 0,

H � p=2d0) for a magnetic field B � 7 T; the band parameters are given

in the table. (b) An enlarged fragment of Fig. 3a for the bands s � 2 and 3.
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In the second approximation, we obtain the correction�
dx1 dx2 G

a4
0 �x; x1�V 42�x1�G 22

0 �x1; x2�V 24�x2�G 4b
0 �x2; x 0� ;

and a similar term with the permutation of indices 2$ 4. The
matrix elements of the perturbation V, labeled by the
superscripts, can be easily calculated using functions (9); for
the correction to the Green's function (14), we obtain the
expression�

oc~g3
g0

�2X
s 0sn

�nÿ 2�jC 4
snC

2
s 0 ; nÿ3j2ca

sn�x�c �bsn �x 0�
�eÿ esn��eÿ es 0; nÿ3��eÿ esn� : �15�

Correction (15) is large near the poles of the Green's function.
Therefore, for e close to esn, we can substitute esn in the second
factor in the denominator instead of e. Thus, the Green's
function with the correction is written as

1

eÿ esn
� d

�eÿ esn�2
;

which, up to terms of the second order in d, can be represented
as

1

eÿ esn ÿ d
:

The expression obtained from (15) allows writing a correction
to the eigenvalue in the form

des�n� �
�
oc~g3
g0

�2 X
s 0

� �nÿ 2�jC 4
snC

2
s 0 ; nÿ3j2

es�n� ÿ es 0 �nÿ 3�

� �n� 1�jC 2
snC

4
s 0; n�3j2

es�n� ÿ es 0 �n� 3�
�
; �16�

where the terms with nÿ 3 < 0 can be omitted.
Formula (16) contains a parameter of the perturbation

theory. We note that the spacing between the unperturbed
levels can be estimated, for example, using Eqn (13). We thus
find this dimensionless parameter�

~g3~g1
g0oc

�2

;

which turns out to be less than unity in magnetic fields
B4 1 T. We also write the level j10i with the correction:

e1�n � 0� � ~g2 �
�
oc~g3
g0

�2X
s 0

jC 4
s 03j2

~g2 ÿ es 0 �3� : �17�

The band structure in a magnetic field is shown in Fig. 3.
A comparison shows that our expressions (16) and (17) for the
levels give the same results as the numerical method of
truncating an infinite-rank matrix [16]. We note that the
expressions obtained are also applicable to a bilayer; we
only should set g2 � g5 � 0 and ~gi � gi for i � 1, 3, 4 and
take the field U into account.

The semiclassical quantization, which we do not describe
here, can suitably be introduced in the case of weak magnetic
fields and relatively pure materials with a small frequency of
collisions, when the observation of quantum oscillations is
still possible.

5. Transmission coefficient and the
magnetooptical effect in graphene layers

In the presence of a magnetic field, a radically new phenom-
enon is the appearance of the Hall component of conductiv-
ity, which is usually denoted by sxy�o�. The Hall conductivity
violates the rotation symmetry about the principal axis, which
leads to Faraday and Kerr effects, i.e., to the rotation of the
polarization plane of light during its transmission and
reflection. Electron transitions then become possible, both
between band states s and between different Landau levels n;
therefore, resonance denominators Dss 0n�esn ÿ es 0 ; n�1
appear. The method for calculating the correlator that
determines the current and is expressed through the product
of twoGreen's functions remains essentially the same as in the
absence of a magnetic field.

The calculations in [13] lead to the following expressions
for the two components of conductivity of graphite in the
collisionless case, where the frequency of collisions G is much
less than the spacing between the levels:

sxx�o�
isxy�o�

� �
� is0

4o 2
c

p 2

X
n; s; s 0

� p=2

0

dz
D fss 0n
Dss 0n

jdss 0nj2

� ��o� iG� Dss 0n�ÿ1 � �o� iGÿ Dss 0n�ÿ1
�
; �18�

where the integration is performed over one-half of the
Brillouin zone, 0 < z < p=2; in the case of graphene and a
bilayer, it is not performed. Here,D fss 0n � f �es 0n�1� ÿ f �esn� is
the difference of distribution functions with the shift of levels
due to trigonal distortion taken into account, and the matrix
element of the dipole moment

dss 0n�C 2
snC

1
s 0n�1 � C 3

snC
4
s 0n�1 �

~g4
g0
�C 1

snC
4
s 0n�1 � C 2

snC
3
s 0n�1�

is expressed in terms of the components of wave function (9).
The most intense electron transitions that are taken into
account satisfy the selection rule Dn � 1.

In addition, the renormalization of the dipole moment, in
other words, of the electron±photon vertex, due to the
trigonal distortion must be taken into account. This renor-
malization leads to additional weak lines, obtained by
replacing the matrix element in (18) by the quantity

dss 0n � ~g3
g0

C 2
snC

4
s 0n�2

and by the replacement n� 1! n� 2 with the new selection
rule Dn � 2.

The results of calculations are shown in Figs 4 and 5. The
Kerr rotation angle reaches giant values, which exceed the
values typical of semiconductors by more than an order of
magnitude. The oscillations of the angle are related to certain
electron transitions, and the position of its maxima (as well as
of reflection minima) are determined either by the boundaries
of the Landau levels at the K and H points or by the
intersection of these levels with the Fermi level (Fig. 3b). We
note that the dispersion of the levels affects the positions of
optical features. We used the parameters of Hamiltonian (8)
presented in the table. Their values (also see [19, 20]) differ
from those obtained in various experimental studies only
because we took a different form of the Hamiltonian than the
one used by Slonczewski and Weiss (the third line of the
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table). The experimental values of the parameters g4, g5, andD
exhibit a significant scatter; our values are close to those
obtained in [17]. We note that in strong magnetic fields, the
Fermi level increases to eF � ÿ1 meV from the value given in
the table for weak fields.

6. Conclusion

To the best of our knowledge, measurements of the Kerr and
Faraday rotation angles in graphene layers have been made
only at the University of Geneva, and we are grateful to
A Kuzmenko and J Levallois for the fruitful discussions and
for the opportunity to become acquainted with the experi-
mental results before they were published.
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Figure 4. (a) Real and (b) imaginary parts of the longitudinal (xx), solid

curve, and Hall (xy), dashed curve, dynamic conductivity of graphite.

(c) Kerr rotation angle and (d) reflection coefficient in the magnetic field

B � 7 T at the temperature T � 0:1 meV; the electronic relaxation

frequency is G � 3:5 meV.
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Figure 5. (a)Kerr rotation angle and (b) reflection coefficient of graphite in

strongmagnetic fields (10, 15, and 25 T) depending on the frequency of the

electromagnetic wave.
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