
A scientific session of the Physical Sciences Division of the
RussianAcademy of Sciences (RAS) devoted to the ``Physical
properties of graphene'' was held on 28 March 2012 in the
conference hall of the Lebedev Physical Institute.

The agenda of the session announced on theRASPhysical
Sciences Division website www.gpad.ac.ru included the
following reports:

(1) Falkovsky L A (Landau Institute of Theoretical
Physics, RAS, Moscow; Vereshchagin Institute of High-
Pressure Physics, RAS, Moscow) ``Magnetooptics of gra-
phene'';

(2) Varlamov A A (The University of Rome Tor Vergata,
Italy) ``Thermoelectric properties of graphene.''

The papers written on the basis of these reports are given
below.
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Magnetooptics of graphene layers

L A Falkovsky

1. Introduction

Most of the vast amount of information on graphene can be
described based on the concept of ``gapless Dirac fermions.''
According to this concept, at the K points of the Brillouin
zone (vertices of a hexagon), there are two zones without a
gap between them, and the electron spectrum can be
considered linear in a sufficiently wide neighborhood of
wave vectors. It is obvious that to assume the spectrum to be
linear, the size of the neighborhood under consideration must
be small compared to the size of the Brillouin zone, i.e., less
than 108 cmÿ1, which suggests not too large concentrations of
charge carriers, n5 1016 cmÿ2. Ideally pure graphene at zero
temperature should contain no charge carriers at all, and the
Fermi level should separate the conduction band from the
valence band. However, it is quite difficult to prepare pure
graphene; the minimum concentration of charge carriers
that could be obtained in it to date is n � 109 cmÿ2. The
following key problems arise here: to what extent the
Coulomb electron interaction renormalizes the initial linear

spectrum and whether graphene can pass into a state with
an energy gap.

At present, there is also a practical need in gapped
materials for modern electronics. Therefore, investigations
of a graphene bilayer to which a constant voltage can be
applied (as to a capacitor), thereby creating an energy gap in
its spectrum, have become quite popular. In its development
over the last half-century, physics has come full circle and
returned to the investigation of graphite. Here, we recall the
names of Slonczewski and Weiss [1], who formulated the
principle of the description of a layered substance with a
strong interaction in the layers and a weak interaction
between them.

The main methods for studying the metallic state appear
to be magnetotransport and magnetooptical investigations.
In a magnetic field, phenomena such as Hall effects (classical
and quantum) are observed, as is rotation of the polarization
plane, or the Faraday effect upon light transmission and the
Kerr effect upon reflection. In describing graphene layers, in
spite of the relative simplicity of the presented picture,
difficulties arise, which, just as the corresponding achieve-
ments, are the subject of this paper.

2. Electronic spectrum of graphene

The K points of the Brillouin zone have the C3v symmetry
(a 3-fold axis and a symmetry plane). This space group has a
two-dimensional representation whose basis is composed of
two functions that are transformed into one another under
reflection and acquire factors exp ��2pi=3� under rotation.
Using the components of the momentum deviation from the
K points, linear combinations k� � �ikx ÿ ky can be com-
posed that transform similarly to the functions of the basis.
The effective Hamiltonian must be invariant under a
representation of this small group; hence, near the K point,
we have a unique possibility of writing the Hamiltonian in the
linear approximation:

H�k� � 0 vk�
vkÿ 0

� �
; �1�
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where v is a constant with the dimension of velocity. The same
Hamiltonian is obtained, naturally, in the tight-binding
approximation.

The eigenvalues of the matrix in the right-hand side of
Eqn (1) give a two-band gapless spectrum:

e1;2 � �v
����������������
k 2
x � k 2

y

q
� �vk :

Hence, the gapless character of the spectrum is a mere
consequence of the symmetry, and the fact that the Fermi
level should pass through the conical point K follows merely
from the valence of carbon. The cyclotron mass for such a
spectrum is given by

m�e� � 1

2p
dS�e�
de
� e
v 2

;

where S is the area of the cross section of the isoenergy surface
and the concentration of charge carriers at zero temperature
is expressed through the chemical potential m as

n�m� � m 2

p�h 2v 2
:

The simplest way to experimentally verify the type of
spectrum is by using the relation

m�m� v
�h
� �

������������
pn�m�

p
;

for example, by measuring the Shubnikov±de Haas effect, in
which case the cyclotronmass at the Fermi level is found from
the temperature dependence of the amplitude of oscillations
and the concentration of charge carriers is determined from
their frequency. Both these quantities are measured at
different concentrations of charge carriers, which is changed
by varying the voltage at the ``gate.'' Such a verification was
performed by Ellis et al. [2], who obtained very pure samples
with a charge-carrier concentration as low as 109 cmÿ2. It
turned out that the ``constant'' parameter v is not constant
but increases at small concentrations by a factor of three
compared to its ``normal'' value 108 cm sÿ1 at concentrations
exceeding 1011 cmÿ2. This effect is a result of the electron±
electron Coulomb interaction, which proves to be more
efficient, as was to be expected, at small concentrations,
when no screening is observed. The logarithmic renormaliza-
tion of the velocity due to the Coulomb interaction in the
three-dimensional case was first found in [3], and for two-
dimensional graphene, in [4]. Interestingly, even at a quite low
concentration, no signs of any phase transition have been
found. In accordance with the theory, the Coulomb interac-
tion does not violate the symmetry-related gapless character
of the spectrum.

3. Dynamic conductivity of graphene

One of the clearest manifestations of the specific character
of the graphene spectrum can be provided by the behavior
of its dynamic (i.e., frequency-dependent) conductivity
(conductance). At higher frequencies, in the optical range,
the spatial dispersion of conductivity and the frequency of
collisions of charge carriers are insignificant. Summing the
contributions from conical points (two per unit cell),
integrating over the angle of the two-dimensional vector k,
and passing to the variable e � vk, we find the conductivity

as [5±7]

s�o��e 2o
ip�h

� ��1
ÿ1

de
jej
o 2

df �e�
de
ÿ
��1
0

de
f �ÿe� ÿ f �e�
�o� id�2 ÿ 4e 2

�
;

�2�

where f �e� is the distribution function and d is an infinitesimal
parameter. The first term in the right-hand side of Eqn (2),
which represents the intraband contribution, can be inte-
grated once more:

s intra�o� � 2ie 2T

p�h�o� itÿ1� ln
�
2 cosh

m
2T

�
; �3�

where we substituted o� itÿ1 for o in order to allow for the
electron relaxation t. In this form, the intraband contribution
coincides with the classical Drude±Boltzmann expression for
conductivity. At low temperatures (m4T ), when the charge
carriers are degenerate, the intraband term acquires a
``metallic'' form:

s intra�o� � ie 2jmj
p�h�o� itÿ1� : �4�

For pure graphene, the chemical potential is m � 0 (gapless
dielectric) and conductivity (3) is proportional to the
temperature. The concentration of charge carriers can be
changed either by doping or by applying a constant electric
field (``field effect'').

The second term in the right-hand side of Eqn (2), where d
is an infinitesimal quantity describing interband transitions,
contains both a real part, which arises as a result of going
around the pole and corresponds to absorption, and an
imaginary part. At zero temperature, the second integral in
the right-hand side of Eqn (2) can be calculated analytically as

s inter�o� � e 2

4�h

�
y�oÿ 2m� ÿ i

2p
ln
�o� 2m�2
�oÿ 2m�2

�
; �5�

where y is the step-function, which reflects the condition of
interband electron transitions with the thresholdo � 2m. The
logarithmic singularity is removed by a temperature cut-off
(or by relaxation of charge carriers), and at a finite but small
(in comparison with the chemical potential) temperature, the
following replacement should be made in (5):

y�oÿ 2m� ! 1

2
� 1

p
arctan

�
oÿ 2m
2T

�
;

�6�
�oÿ 2m�2 ! �oÿ 2m�2 � �2T �2 :
The above results allow arriving at two main conclusions.

First, at high frequencies o4 �T; m�, the conductivity is
mainly real and independent of any parameters:

s�o� � e 2

4�h
:

In this frequency range, which is limited from above by the
band width (of about 3 eV), the conductivity, as we see, is
independent of the material parameters, e.g., of the velocity v,
and has a universal character. Second, if degenerate carriers
exist in graphene at sufficiently low temperatures, then the
imaginary part of the conductivity contains a logarithmic
singularity at the threshold of the interband absorption
o � 2m, where the real part undergoes a finite jump. This
feature becomes smoothened with increasing the temperature
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and also because of the finite length of the mean free path of
charge carriers. To observe this feature, the frequency should
not exceed the temperature, i.e., should be of the order of 10±
40 K in energy units. These conclusions have been confirmed
experimentally [8].

The universal conductivity leads to an interesting con-
sequence. Using its value, the coefficient of transmission T of
an electromagnetic wave through graphene can be obtained
as [9, 10]

T � 1ÿ 4p
c

Re s�o� cos y � 1ÿ p
e 2

�hc
cos y ; �7�

where y is the incidence angle of the wave. We see that the
coefficient of light transmission through a graphene layer is
expressed via the fine-structure constant of quantum electro-
dynamics, to which graphene has no relation at all. Several
experimental groups [11, 12] have confirmed the calculated
value of the transmission coefficient in awide frequency range
of the visible spectrum, both for graphene and for a graphene
bilayer, in which the difference of this coefficient from unity is
twice greater (Fig. 1).

4. Spectrum of graphene layers
in a magnetic field

The Slonczewski±Weiss Hamiltonian for a graphene bilayer
and graphite in the vicinity of the KH line of the Brillouin
zone has the form

H�k��

~g5 �U vk� ~g1
~g4vkÿ
g0

vkÿ ~g2 �U
~g4vkÿ
g0

~g3vk�
g0

~g1
~g4vk�
g0

~g5 ÿU vkÿ

~g4vk�
g0

~g3vkÿ
g0

vk� ~g2 ÿU

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; �8�

where k� � �ikx ÿ ky is the projection of the quasimomen-
tum, v is the parameter of the velocity in the direction of
graphite layers, ~gj are functions of the projection kz in the
direction of the principal axis,

~g2 � 2g2 cos �2kzd0� ; ~g5 � 2g5 cos �2kzd0� � D ;

~gi � 2gi cos �kzd0� ; i � 1; 3; 4;

and d0 � 3:35 A
�
is the spacing between the layers in graphite.

The velocity parameter v � 1:5a0g0 � 108 cm sÿ1 is
related to the overlap (g0 � 3 eV) of the wave functions of
nearest neighbors located in the same layer at the distance
a0 � 1:415 A

�
from each other. The parameters with i � 1, 3,

4, which arise because of the overlap of the wave functions of
nearest neighbors in the direction of the principal axis, are an
order of magnitude less than g0. In a bilayer, there is only one
neighboring layer in the direction of the principal axis;
therefore, ~gi � gi for i � 1, 3, 4, and because the next layer is
absent, the interlayer integrals of the overlap with the third
sphere are ~gi � 0 for i � 2, 5, whereas they should be taken
into account in graphite.

In the absence of a magnetic field, the spectrum can be
computed numerically (Fig. 2) and studied analytically [13];
the specific features of conductivity related to transitions
between the bands can also be studied experimentally.
Hamiltonian (8) also involves the parameter U, which is
important in the case of a bilayer when a constant voltage is
applied to it in the direction of the principal axis. At an
arbitrary value of the quasimomentum, we find four energy
eigenvalues, which are numbered using subscripts s � 1, 2, 3,
4. At kx � ky � 0 (i.e., on the KH line) and U � 0, there is a
twofold degeneracy (e2 � e3), which is a consequence of the
symmetry. In an external electric field U, a gap appears in
the spectrum; it is this feature that mainly accounts for the
enhanced interest in bilayers. In addition, the simple
quadratic behavior in the bands that touch each other
acquires the shape of a Mexican hat. There is one more
detail that should be taken into account: two points, K and
K 0, which pass into one another under rotations and
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Figure 1. The coefficient of light transmission through graphene and a

graphene bilayer [11].
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Figure 2. The Brillouin zone and the electron spectrum of graphite.
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reflection (x! ÿx), are not equivalent in the bilayer; the
reflection corresponds to the permutation k� $ kÿ in
Hamiltonian (1). To avoid the enumeration of obvious
possibilities, we restrict ourselves to the description of the
graphite spectrum at U � 0 and only then turn to a bilayer.

The problem becomes more complex andmore interesting
in the presence of amagnetic field. In amagnetic fieldB that is
parallel to the principal axis, the projections of the quasi-
momentum kx; y are operators with the commutation relation
fk̂�; k̂ÿg � ÿ2e�hB=c; it is therefore convenient to introduce
creation and annihilation operators a� and a that change the
Landau index by unity:

k̂� �
�������������
2jej�hB

c

r
a ; k̂ÿ �

�������������
2jej�hB

c

r
a� :

For graphene, an explicit expression for the spectrum is found
using Eqn (1) in the form

e1;2 � �v
����������������
2jej�hBn

c

r
;

where n � 0, 1, ... .
The eigensolutions for matrix Hamiltonian (8) are sought

in the form of a column,

ca
sn�x� �

C 1
snjnÿ1�x�
C 2

snjn�x�
C 3

snjnÿ1�x�
C 4

snjnÿ2�x�

8>>><>>>:
9>>>=>>>; ; �9�

where jn�x� are the orthogonal Hermite functions with the
Landau eigenvalue n5 0. At a given n, the states are
numbered by the band index s � 1, 2, 3, 4; we use the
notation jsni for states by counting s, as before, from below.
For brevity, we omit the standard exponentials that appear in
the Landau gauge and take the degeneracy in corresponding
components of the quasimomentum into account only in the
final results.

It is easy to see that if we neglect terms with g3, which lead
to a trigonal warping of the spectrum, then each line of matrix
Hamiltonian (8) is proportional to a certain Hermite
function, which can therefore be canceled. We thus come to
the problem for eigenvectors Csn and eigenvalues

~g5 ÿ e oc

���
n
p

~g1 o4

�����������
nÿ 1
p

oc

���
n
p

~g2 ÿ e o4

���
n
p

0

~g1 o4

���
n
p

~g5 ÿ e oc

�����������
nÿ 1
p

o4

�����������
nÿ 1
p

0 oc

�����������
nÿ 1
p

~g2 ÿ e

0BBB@
1CCCA

C 1
sn

C 2
sn

C 3
sn

C 4
sn

8>>><>>>:
9>>>=>>>; � 0 ;

�10�

where oc � v
������������������
2jej�hB=cp

, o4 � ~g4oc=g0.
We see from (9) that at n � 0, the eigenvector has one

nonzero component, C0 � �0; 1; 0; 0�, and there is only one
(rather than four) energy eigenvalue

e�n � 0� � ~g2 ; �11�

which depends on kz and intersects the Fermi level such that
electrons appear in the vicinity of the K point (up to the
Fermi level) and holes appear in the vicinity of the H point
(Fig. 3).

At n � 1, we see from Eqns (9) that the fourth component
should be set equal to zero (C 4

s1 � 0), and three (rather than
four) levels can be determined from the first three equations.
The middle level j21i is very close to j10i, and in the region of
kz where the condition g1= cos z4 g2 holds and where the
electrons are located, this level has the energy

e2�n � 1� � ~g2 ÿ 2
o 2

c ~g4
~g1g0

: �12�

For n5 2, four eigenvalues exist at any kz. The energies of
two close levels with s � 2 and 3 in the region g1= cos z4 g2,
where electrons are located, are expressed as

e2;3�n� � ~g2 ÿ
o 2

c ~g4
~g1g0

�2nÿ 1� � o 2
c

~g1

�����������������
n�nÿ 1�

p
: �13�

4.1 Effect of a trigonal distortion on the spectrum
in a magnetic field
In spite of the smallness of the ratio g3=g0, the effect of
trigonal distortion is significant because of the degeneracy
that is observed in the KH lines. To date, several ways to take
the trigonal distortion into account have been suggested. Two
of these are analytic: the perturbation theory [14] and
semiclassical quantization [15]. The perturbation theory for
the matrix Hamiltonian can suitably be constructed based on
its Green's function

G ab
0 �e; x; x 0� �

X
sn

ca
sn�x�c �bsn �x 0�

eÿ esn
; �14�

where the superscripts can take four values, in accordance
with the matrix of the Hamiltonian, and x and x 0 are position
variables.
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Figure 3. (Available in color online.) (a) Landau levels esn from n � 0 to

n � 4 in four bands, s � 1, 2, 3, 4 (dotted, solid, dashed, and dotted-and-

dashed curves, respectively), depending on the projection of the momen-

tum kz along the KH line in the Brillouin zone of graphite (K � 0,

H � p=2d0) for a magnetic field B � 7 T; the band parameters are given

in the table. (b) An enlarged fragment of Fig. 3a for the bands s � 2 and 3.
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In the second approximation, we obtain the correction�
dx1 dx2 G

a4
0 �x; x1�V 42�x1�G 22

0 �x1; x2�V 24�x2�G 4b
0 �x2; x 0� ;

and a similar term with the permutation of indices 2$ 4. The
matrix elements of the perturbation V, labeled by the
superscripts, can be easily calculated using functions (9); for
the correction to the Green's function (14), we obtain the
expression�

oc~g3
g0

�2X
s 0sn

�nÿ 2�jC 4
snC

2
s 0 ; nÿ3j2ca

sn�x�c �bsn �x 0�
�eÿ esn��eÿ es 0; nÿ3��eÿ esn� : �15�

Correction (15) is large near the poles of the Green's function.
Therefore, for e close to esn, we can substitute esn in the second
factor in the denominator instead of e. Thus, the Green's
function with the correction is written as

1

eÿ esn
� d

�eÿ esn�2
;

which, up to terms of the second order in d, can be represented
as

1

eÿ esn ÿ d
:

The expression obtained from (15) allows writing a correction
to the eigenvalue in the form

des�n� �
�
oc~g3
g0

�2 X
s 0

� �nÿ 2�jC 4
snC

2
s 0 ; nÿ3j2

es�n� ÿ es 0 �nÿ 3�

� �n� 1�jC 2
snC

4
s 0; n�3j2

es�n� ÿ es 0 �n� 3�
�
; �16�

where the terms with nÿ 3 < 0 can be omitted.
Formula (16) contains a parameter of the perturbation

theory. We note that the spacing between the unperturbed
levels can be estimated, for example, using Eqn (13). We thus
find this dimensionless parameter�

~g3~g1
g0oc

�2

;

which turns out to be less than unity in magnetic fields
B4 1 T. We also write the level j10i with the correction:

e1�n � 0� � ~g2 �
�
oc~g3
g0

�2X
s 0

jC 4
s 03j2

~g2 ÿ es 0 �3� : �17�

The band structure in a magnetic field is shown in Fig. 3.
A comparison shows that our expressions (16) and (17) for the
levels give the same results as the numerical method of
truncating an infinite-rank matrix [16]. We note that the
expressions obtained are also applicable to a bilayer; we
only should set g2 � g5 � 0 and ~gi � gi for i � 1, 3, 4 and
take the field U into account.

The semiclassical quantization, which we do not describe
here, can suitably be introduced in the case of weak magnetic
fields and relatively pure materials with a small frequency of
collisions, when the observation of quantum oscillations is
still possible.

5. Transmission coefficient and the
magnetooptical effect in graphene layers

In the presence of a magnetic field, a radically new phenom-
enon is the appearance of the Hall component of conductiv-
ity, which is usually denoted by sxy�o�. The Hall conductivity
violates the rotation symmetry about the principal axis, which
leads to Faraday and Kerr effects, i.e., to the rotation of the
polarization plane of light during its transmission and
reflection. Electron transitions then become possible, both
between band states s and between different Landau levels n;
therefore, resonance denominators Dss 0n�esn ÿ es 0 ; n�1
appear. The method for calculating the correlator that
determines the current and is expressed through the product
of twoGreen's functions remains essentially the same as in the
absence of a magnetic field.

The calculations in [13] lead to the following expressions
for the two components of conductivity of graphite in the
collisionless case, where the frequency of collisions G is much
less than the spacing between the levels:

sxx�o�
isxy�o�

� �
� is0

4o 2
c

p 2

X
n; s; s 0

� p=2

0

dz
D fss 0n
Dss 0n

jdss 0nj2

� ��o� iG� Dss 0n�ÿ1 � �o� iGÿ Dss 0n�ÿ1
�
; �18�

where the integration is performed over one-half of the
Brillouin zone, 0 < z < p=2; in the case of graphene and a
bilayer, it is not performed. Here,D fss 0n � f �es 0n�1� ÿ f �esn� is
the difference of distribution functions with the shift of levels
due to trigonal distortion taken into account, and the matrix
element of the dipole moment

dss 0n�C 2
snC

1
s 0n�1 � C 3

snC
4
s 0n�1 �

~g4
g0
�C 1

snC
4
s 0n�1 � C 2

snC
3
s 0n�1�

is expressed in terms of the components of wave function (9).
The most intense electron transitions that are taken into
account satisfy the selection rule Dn � 1.

In addition, the renormalization of the dipole moment, in
other words, of the electron±photon vertex, due to the
trigonal distortion must be taken into account. This renor-
malization leads to additional weak lines, obtained by
replacing the matrix element in (18) by the quantity

dss 0n � ~g3
g0

C 2
snC

4
s 0n�2

and by the replacement n� 1! n� 2 with the new selection
rule Dn � 2.

The results of calculations are shown in Figs 4 and 5. The
Kerr rotation angle reaches giant values, which exceed the
values typical of semiconductors by more than an order of
magnitude. The oscillations of the angle are related to certain
electron transitions, and the position of its maxima (as well as
of reflection minima) are determined either by the boundaries
of the Landau levels at the K and H points or by the
intersection of these levels with the Fermi level (Fig. 3b). We
note that the dispersion of the levels affects the positions of
optical features. We used the parameters of Hamiltonian (8)
presented in the table. Their values (also see [19, 20]) differ
from those obtained in various experimental studies only
because we took a different form of the Hamiltonian than the
one used by Slonczewski and Weiss (the third line of the
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table). The experimental values of the parameters g4, g5, andD
exhibit a significant scatter; our values are close to those
obtained in [17]. We note that in strong magnetic fields, the
Fermi level increases to eF � ÿ1 meV from the value given in
the table for weak fields.

6. Conclusion

To the best of our knowledge, measurements of the Kerr and
Faraday rotation angles in graphene layers have been made
only at the University of Geneva, and we are grateful to
A Kuzmenko and J Levallois for the fruitful discussions and
for the opportunity to become acquainted with the experi-
mental results before they were published.
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Anomalous thermoelectric
and thermomagnetic properties of graphene

A A Varlamov, A V Kavokin,
I A Luk'yanchuk, S G Sharapov

1. Introduction

We present the results of recent investigations of some
anomalies of thermoelectric and thermomagnetic properties
of graphene. In Section 3, we show that the presence of a gap
in the Dirac spectrum (the possibility of its existence under
certain conditions is actively discussed in the literature) leads
to the appearance of a characteristic peak in the thermopower
as the chemical potential approaches the gap edge. The height
of this peak can exceed the magnitude of the graphene
thermopower, which is large by itself, by an order of
magnitude. The giant effect revealed is related to the
appearance, with the chemical potential approaching the
edge of the gap, of a new channel of scattering of quasipar-
ticles by impurities, with the relaxation time that essentially
depends on energy. The analysis of this feature, which is
based on the Kubo formalism, reproduces the well-known
results for gapless graphene, but demonstrates the inapplic-
ability of the simple Mott formula in the case under
consideration.

In Section 4, we discuss the specific behavior of quantum
oscillations of the Nernst coefficient (NC) that are observed
in graphene and graphite upon the application of sufficiently
strong magnetic fields. We show how the character of the
spectrum of quasiparticles of a sample can be judged from the
character of these oscillations.

2. On the history of thermoelectricity

The control of heat fluxes and the minimization of related
losses are important factors in designing modern elements of
nanoelectronics, including those based on the application of
graphene [1]. Experiments [2] show that the thermoelectric
effect can lead to a significant change in temperature (up to
30%) in the region of contacts and can therefore play a
substantial role in the problem of cooling contacts. The
experimentally measured magnitude of the graphene thermo-
power at room temperature can reach kB=e � 100 mV Kÿ1

(here, kB is the Boltzmann constant andÿe < 0 is the electron
charge).

The study of thermoelectric and thermomagnetic phe-
nomena has a two-century history. The thermoelectric effect,
consisting in the appearance of electric current in a circuit that
includes two different metals whose contacts are maintained
at different temperatures, was discovered in 1821 by an
Estonian±German scientist, Thomas Johann Seebeck. Quan-
titatively, the Seebeck effect is characterized by the differ-
ential thermopower (the Seebeck coefficient, i.e., the thermo-
electromotive force arising in an inhomogeneously heated
conductor) divided by the corresponding temperature differ-
ence:

Sxx � ÿ lim
DT!0

DV
DT
� Ex

HxT
:

The thermopower of metals is usually small (about
10ÿ8 V Kÿ1), but can be much greater in doped semiconduc-
tors and in semimetals.

More than a century later [3], an English scientist, Nevill
Mott, found an important relationship between the differ-
ential thermopower and the logarithmic derivative of the
longitudinal electric conductivity sxx�m;T � of a metal:

Sxx�m;T � � ÿ p 2

3e
kBT

d

dm

�
ln sxx�m;T � 0�� ; �1�

where m is the chemical potential of charge carriers and T is
the temperature. At present, this formula is basic in analyzing
experiments related to thermoelectricity; however, numerous
anomalous situations are known where the behavior of the
thermopower cannot be described by the Mott formula.
These are phenomena such as an increase in the thermo-
power of metals at temperatures close to the Kondo
temperature and the anomalies of thermopower at electron
topological transitions and its oscillations in strong magnetic
fields. One of the factors responsible for the invalidity of the
Mott formula is the existence (due to one reason or another)
of an essential dependence of the relaxation time of charge
carriers on energy.

Among the variety of known thermomagnetic phenom-
ena, those discussed most frequently are the effects of Nernst
and Nernst±Ettingshausen, discovered by Austrian scientists
Walter Nernst and Albert von Ettingshausen in 1886. The
Nernst effect in metals [4], which is a thermal analog of the
Hall effect, consists in the appearance of an electric field Ey

perpendicular to the mutually perpendicular magnetic field
H (jjz) and temperature gradient HxT. In this case, it is
assumed that all electrical circuits are open, i.e., Jx � Jy � 0,
and no heat flux is present along the y axis (the adiabaticity
condition). Quantitatively, the effect is characterized by
the NC

n � Ey

�ÿHxT �H :

Depending on the material, the NC can change within several
orders of magnitude, from 7 mV Kÿ1 Tÿ1 in bismuth to
10ÿ5 mB Kÿ1 Tÿ1 in ``good'' metals [5].

The Nernst±Ettingshausen effect is a different experimen-
tal realization of the Nernst effect: the electrical current is
passed along the y axis through a sample placed into a
magnetic field directed along the z axis; along the x axis, a

A A Varlamov National University of Science and Technology MISiS,

Moscow, Russian Federation;

SPIN-CNR, University of Rome ``Tor Vergata,'' Rome, Italy

E-mail: varlamov@ing.uniroma2.it

A V Kavokin University of Southhampton, UK;

St. Petersburg State University,

St. Petersburg, Russian Federation

I A Luk'yanchuk Landau Institute of Theoretical Physics, RAS,

Moscow, Russian Federation;

University of Picardie Jules Verne, France

S G Sharapov Bogolyubov Institute for Theoretical Physics, National

Academy of Sciences of Ukraine, Ukraine

Uspekhi Fizicheskikh Nauk 182 (11) 1229 ± 1234 (2012)

DOI: 10.3367/UFNr.0182.201211j.1229

Translated by S N Gorin; edited A M Semikhatov

1146 Conferences and symposia Physics ±Uspekhi 55 (11)



temperature gradient arises in this case. Below, we do not
distinguish between these effects.

The microscopic nature of the Nernst effect remained
unclear up to 1948, until Sondheimer [6], using a kinetic
equation, found an expression for the NC of a degenerate
electron gas with impurities by relating the NC to the
derivative of the Hall angle yH � sxy=sxx with respect to
energy:

n�T � � ÿ p 2

3

cT

eHz

q
qm

�
sxy
sxx

�
� ÿ p 2T

3m

dt�e�
de

����
e�m

; �2�

which permitted him to find the relation between these two
effects and made the Nernst effect an important tool for
studies of the character of scattering of charge carriers in
semiconductors. In (2), m is the effective mass of charge
carriers and t�e� is the energy-dependent relaxation time.

Within the Sondheimer theory, the coefficient n is
constant in weak fields and decreases as Hÿ2 in sufficiently
strong fields, when the cyclotron frequency oc exceeds tÿ1

(the inverse relaxation time). In 1964, Obraztsov [7] noted the
importance of taking so-called magnetization currents
(electric currents arising because of the inhomogeneous
magnetization of a sample) into account in discussing the
Nernst effect.

In Sections 3 and 4, we present the results of two recent
investigations [8, 9] of unusual thermoelectric and thermo-
magnetic effects in a ``hot'' field in the physics of condensed
state, the study of properties of graphene and related systems.

3. Thermoelectric effect in graphene with
a gap in its spectrum

The results of experiments [10±13] on the measurements of
thermoelectric transport in graphene canmainly be explained
theoretically using the Mott formula. Nevertheless, these
experiments showed that Mott formula (1) gives results that
do not correspond to experimental data when, at high
temperatures, m is close to the Dirac point, especially in
graphene samples with a high mobility [13]. The theoretical
analysis in [14±16] shows that this discrepancy is related to the
violation of the conditions for the applicability of the Mott
formula, which have the formT5 jmj and/orT5 z (where z is
the characteristic energy scale at which a change occurs in the
conductivity sxx�m;T � 0� near the Fermi surface).

Below, we show that the thermopower in graphene, which
is already high, can be increased additionally by about an
order of magnitude due to the opening of a gap D in the
spectrum of quasiparticle excitations. This leads to the
appearance of a new channel of scattering of quasiparticles,
and because the relaxation time depends strongly on energy,
this leads to the appearance of a giant peak in the thermo-
power when the chemical potential approaches the edge of the
gap. This picture is very similar to the well-known thermo-
power anomaly near the electron topological transition (see
review [17]).

We note that experiments [18, 19] indicate the presence of
a gap in the spectrum of quasiparticle excitations in graphene
near the Dirac point, which seems to be related to the effect of
the substrate. For single-layer graphene, the problem of the
existence of a gap has been studied insufficiently. Our results
allow suggesting measurements of thermopower as a sensitive
method for revealing the gap.

3.1 Electron scattering in gapped graphene
In the momentum representation, the Hamiltonian of
graphene is written as

bH �X
s

�
BZ

d2p

�2p�2 U ys�p�
� bH�p� ÿ mbt0�Us�p� ; �3�

where

bH�p� � bt�f�p� �btÿf ��p� � Dbt3 ;
bt0, bt3, and bt� � �bt1 � ibt2�=2 are the Pauli matrices acting in
the space of sublattices on the spinors Us�p� and
U ys�p� �

ÿ
a ys�p�; b ys�p�

�
with the electron creation (annihila-

tion) operators a ys�p� and b ys�p�
ÿ
as�p� and bs�p�

�
, which

correspond to the sublattices of components A and B; s is the
spin index; and the integration is performed over the Brillouin
zone (BZ). In the case under consideration, the complex
function f�p� responsible for the dispersion can be chosen
near two independent K points of the BZ in the form
x � jf�p�j � �hvFjpj, where vF is the Fermi velocity, and the
wave vector p is referenced to the corresponding K point. The
presence of the gap D violates the equivalence of the A and B
sublattices, and the spectrum near theK points takes the form
E�p� � ���h 2v 2Fp

2 � D 2�1=2 ÿ m.
Scattering by impurities is considered using the Abriko-

sov±Gor'kov technique in terms of the self-consistent Born
approximation. The scattering potential is chosen such that
the scattering between different valleys can be neglected;
within a single valley, the potential is assumed to be
constant, equal to u�0�. As a result, we obtain the following
expression for the scattering by impurities:

G�e� � G0

� je� mj
jmj �

D 2

je� mjjmj
�
y
ÿ�e� m�2 ÿ D 2

�
; �4�

where G0 � 2�h=t0, t0 is the characteristic relaxation time,
tÿ10 � niju�0�j2jmj=�4�h 3v 2F� [20], ni is the concentration of
charge carriers, and y is the Heaviside function. In the results
presented below, we use the value G0 � 20 K, neglecting the
concentration dependence. It follows from Eqn (4) that the
scattering is absent at �e� m�2 < D 2. Nevertheless, we note
that some processes that have not been taken into account in
themodel lead to a finite relaxation time below the edge of the
gap. In numerical calculations, this is taken into account by
adding a small residual scattering g0 to G�e�. The final results
are almost independent of g0.

3.2 Thermopower in gapped graphene
Using the Kubo formula, the following expressions can be
obtained for the electrical conductivity and thermoelectric
coefficient:

sxx
bxx

� �
� e 2

�h

�1
ÿ1

deAÿe;G�e�;D�
2T cosh2

�
e=�2T ��

1
e
eT

( )
; �5�

where at a nonzero gapD, the functionA has the form [21, 22]

A�e;G�e�;D� � 1

2p 2

�
1� �m� e�2 ÿ D 2 � G 2�e�

2jm� ejG�e�

�
�
p
2
ÿ arctan

D 2 � G 2�e� ÿ �m� e�2
2jm� ejG�e�

��
: �6�
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At D � 0, Eqn (6) is simplified to the form considered in [14,
16]. In this case, assuming that G�e� � G0 � const and that
jmj4T, G0, we find that sxx � e 2jmj=�2p�hG0� and bxx �
peT sgn m=�6�hG0�, in accordance with the results in [22].
Then the thermopower Sxx � ÿbxx=sxx is the same as in
usual metals, Sxx � ÿ�p 2=3e�T=m, and coincides with the
value that directly follows fromMott formula (1).

The Sxx�m� dependences at T � 1 K and T � 5 K are
shown in Fig. 1. The thick dashed curves correspond to the
case D � 0, G�e� � G0, with sxx�m� / jmj and Sxx�m�/1=m at
large jmj. Expressions (5) and (6) also allow reproducing the
results in the case of a nonzero gap and an energy-
independent G�e� � G0 [21, 22]. The corresponding depen-
dences are shown by thick dashed-dotted curves, calculated at
D � 50 K.

Our main result, shown by thick solid curves, was
obtained for the energy-dependent G�e� given by Eqn (4), at
D � 50 K. We note that the corresponding values of Sxx�m�
were diminished fivefold to show them together with the other
curves in the figure. This means that the peak values of the
thermopower are at least fivefold greater than the magnitude
of the thermopower obtained for G�e� � const.

A substantial increase in the thermopower in the case of
the energy-dependent G�e� can already be expected on the
basis of Mott formula (1). Nevertheless, formula (1) cannot
be used for a quantitative description. Indeed, the thin
curves in Fig. 1b were obtained with the use of data for the
electrical conductivity at the zero temperature s�m;T � 0� �
�2e 2=�h�A�0;G�0�;D� andMott formula (1), whereas the thick
curves were derived using the Kubo formula for both sxx and
bxx. It is seen that the agreement between the Kubo andMott
formulas is quite good for D � 0 and G�e� � const, and
becomes ideal at T � 1 K; therefore, the results for the Mott
formula are not given in Fig. 1a. At the same time, it can be
seen fromFig. 1b that for a finite value ofD andG�e� � const,
a discrepancy is already observed between the results
obtained using the Kubo and Mott formulas, especially near
jmj � D. Finally, in the case of an energy-dependent G�e�, the
Mott formula is inapplicable.

A specific feature of thermopower is its sensitivity to the
derivative of the reciprocal relaxation time. Therefore, the
presence of the y function in (4) strongly affects the S�m�
dependence near jmj � D. Here, it is worth mentioning once
again that an obvious analogy exists between the transport in
gapped graphene and in metals near the topological electron
transition. Indeed, near the critical value of the chemical
potential m � mc, where the connectivity of the Fermi surface
changes, the relaxation time of quasiparticles becomes
substantially energy-dependent, which leads to the appear-
ance of well-known bends in the conductivity curves and of
peaks in the thermopower [17].

4. Giant oscillations of the NC in graphene

Giant oscillations of the NC were discovered in 1959 in [25],
where this phenomenon was explained as the intersection of
the chemical potential by the Landau levels. As in the case of
the de Haas±van Alphen oscillations of magnetization and
the Shubnikov±deHaas oscillations of conductivity, the fields
corresponding to the oscillations of theNC are determined by
the Lifshits±Onsager condition [23]

S�m� � �k� gs� 2p�h
eHks

c
; �7�

where S�m� is the area of the Fermi surface cross section
corresponding to the orbital motion of electrons at pz � 0, k is
an integer, gs � g� 1=2 �m �=m� s with s � �1, and
m � � �1=2p� dS=dm is the cyclotron mass of the electron [23].

Quite recently, the Nernst effect in graphene was studied
experimentally [11, 12] and the corresponding results were
analyzed in terms of the standard theory [24]. Unexpectedly,
it was found that under oscillations, the NC changes sign in
graphene in fields that satisfy condition (7), whereas in zinc
[25] and bismuth [26], maxima are observed in the corre-
sponding fields. This unusual behavior of the n�H � oscilla-
tions in graphene is not reproduced in three-dimensional
graphite.

One more remarkable property of quantum oscillations is
the dependence of their character on the type of the spectrum
of charge carriers, namely, on the value of the topological
parameter g [27, 28]: g � 1=2 for normal charge carriers
(NCCs) with a parabolic two-dimensional (2D) spectrum
and Landau linear quantization:

NC : e� p?� � p 2
?

2m?
; ek � 2mB H

m
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�
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2
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;
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Figure 1. (Available in color online.) Thermopower Sxx (in kB=e units) as a
function of the chemical potential m at (a) T � 1 K and (b) T � 5 K. The

dashed curves correspond to the energy-independent G � G0 and D � 0;

dashed-dotted thick curves to G � G0 and D � 50 K; solid thick curves to

the energy-dependent G�e� and D � 50 K. The dependences shown by

continuous lines are multiplied by 0.2. The thin curves in (b) are obtained

via the Mott formula.
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and g � 0 for Dirac fermions (DFs), which have a linear
spectrum with two branches and a square-root dependence of
the energy of Landau levels (� k 1=2) in a magnetic field:

DF : e� p?� � �vj p?j ; ek � �
ÿ
4mv 2F mB Hk

�1=2
;

where p? andm? are the momentum and the effective mass in
the plane perpendicular to the magnetic field,m is the mass of
a free electron, vF is its Fermi velocity, and mB � e=2mc is the
Bohr magneton.

Below, we use a simple thermodynamic approach to the
description of the Nernst effect, which allows relating the
corresponding oscillations to the de Haas±van Alphen
oscillations of magnetization. For both contributions to the
NCÐthe thermal contribution (Sondheimer [6]) and the
contribution corresponding to magnetization currents
(Obraztsov [7])Ð exact expressions are found for both
parabolic and Dirac spectra. In the last case, our results
quite well reproduce the oscillations of the NC found
experimentally in graphene [11, 12]. It is remarkable that in
contrast to the case of a parabolic spectrum, their amplitude
decreases rather than increases with increasing the Fermi
energy (gate voltage). The shape of the oscillations is
determined by the temperature derivative of the de Haas±
van Alphen oscillations.

4.1 Thermodynamic description of the Nernst effect
Asmentioned in Section 2, the NC is measured in the absence
of currents in the system. Therefore, the electrochemical
potential along the temperature gradient can be considered
constant, m� ej � const (where j is the electrostatic poten-
tial). Consequently, the effect of temperature inhomogeneity
in the sample is determined by the appearance of an effective
electric fieldEx � Hx m=e along the temperature gradient. The
problem therefore reduces to the classical Hall problem,
which allows easily finding the thermal contribution to the
NC,

n term � sxx
e 2nc

dm
dT

; �8�

where n is the concentration of charge carriers. This simple
formula reproduces the Sondheimer result for a degenerate
electron gas, the fluctuation contribution to the NC in
superconductors at temperatures above Tc, etc. [30].

The second contribution to the NC, which arises as a
result of the spatial dependence of magnetization in the
sample [7], can be found based on the Amp�ere law. The
density of the magnetization current is written as
jmag � �c=�4p��H� B, where B � H� 4pM, H is the spa-
tially homogeneous magnetic field, and M is the magnetiza-
tion, which can depend on temperature and hence on the
coordinates. The magnetization-related current density is
written as jmag

y � ÿc�dM=dT �HxT; the corresponding con-
tribution to the Nernst electric field is Emag

y � ryy j
mag
y , where

ryy is the diagonal component of the resistivity (ryy � rxx). As
a result, the contribution from the magnetization currents to
the NC is written as

nmag � cryy
H

�
dM

dT

�
: �9�

Relations (8) and (9) allow elucidating the physical nature
of oscillations of the NC in quantizing magnetic fields. In
particular, they show that the NC depends on the diagonal
components of the conductivity and resistivity tensors, whose

oscillations, depending on the magnetic field, are nothing
more than the Shubnikov±de Haas effect. However, in
graphene, the giant oscillations of the NC are also observed
in the state where the Shubnikov±de Has effect is small (at
H < 3 T) [12]; we should therefore assume that the giant
oscillations of the NC in the last case are due to other factors
in expressions (8) and (9), namely, the temperature derivatives
of the chemical potential dm=dT and magnetization dM=dT.
It is remarkable that to obtain explicit expressions for these
quantities, we need no additional information on the
transport properties of the system; these derivatives can be
expressed in terms of the thermodynamic potential O:

dm
dT
� q 2O

qT qm

�
q 2O
qm 2

�ÿ1
T

;
dM

dT
� q 2O

qT qH
: �10�

The expression for the oscillating part of the thermodynamic
potential in the case of a parabolic spectrum obtained in [31]
(see also [32]) was later extended to an arbitrary spectrum
e?�p?� in [33] (see also [34]). In the 2D case, we have

eO � m �

2p�h 2

�h 2o 2
c

p 2

1

2

X1
l�1; s��1

c�ll �
l 2

exp

�
ÿ 2plG

�hoc

�

� cos

�
2pl
�

c

e�h

S�m�
2pH

ÿ gs

��
; �11�

with c�ll � � ll=sinh ll. Here, l � 2 p 2T=��hoc� and G is the
Dingle broadening of the Landau level. To apply the results to
both the parabolic andDirac spectra, we represent expression
(11) in the most general form using the parameters S,m �, oc,
and gs. In the case of NCCs, we have S � 2pm? m, m � � m?,
oc � eH=m?c, and gs�1=2� �1=2� �m?=m� s; in the case of
DFs, S�p m 2=v 2, m ��m=v 2, oc � eHv 2=�mc�, and gs �
1=2 �m=�mv 2�� s. As a result, the oscillating parts of the
magnetization and chemical potential can be expressed,
using relation (10), in the form

dem
dT
� ÿ ImX f1g

1� 2ReX f0g
;

d eM
dT
� n

H

dem
dT

; �12�

where

X fag � 1

2

X1
l�1; s��1

c �a� �ll � exp
�
ÿ 2plG

�hoc

�

� cos

�
2pl
�

c

e�h

S�m�
2pH

ÿ gs

��
; �13�

and c �a��x� is the derivative of c of the order a � 0; 1. It
follows from (9) and (12) that the NC oscillates proportion-
ally to the temperature derivative of the magnetization. This
fact suggests the existence of an important universal
(independent of the dimensionality and type of charge
carriers) relation between the oscillations of the NC and the
de Haas±van Alphen effect.

It is convenient to represent the NC in the form

n � n term � nmag � n0�H � � en�H � ; �14�

where n0�H � and en�H � are respectively the background and
oscillating parts. The background part can be found in the
Drude theory approximation [30]:

n0�H � � p 2t
6m �c

�
T

eF

�
1

1� �oct�2
: �15�
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Taking the magnetization currents into account here leads to
the appearance of a correction to Sondheimer's result (15) of
the order �eFt�ÿ2.

With (8), (9), and (12), the oscillating part of the NC can
be represented as

en�H � � ÿ2pk�H � ImXf1g

1� 2ReXf0g
; �16�

where

k�H � � sxx�H �
e 2nc

� cnrxx�H �
H 2

: �17�

Expression (16) describes the oscillations of the NC in the
most general form, which is valid for an arbitrary type of the
spectrum of charge carriers e?�p?�.

4.2 Shape of oscillations and its dependence on the type
of carriers
We analyze expression (16) in the limit of low temperatures,
2p 2T < �hoc. In this case, the parameter l in (11) is much less
than unity; consequently, c�ll � � 1ÿ �1=6� l 2l 2. For
m � < 0:02m and H � 10 T (typical values in experiments on
graphene), this requirement means that T < 10 K. Because
m �5m, we can neglect the Zeeman splitting, assuming that
gs � 0 for the NCCs and gs � 1=2 for the DFs. The series
X f0g and X f1g in (16) in this case can be summed analytically:

en �2D��m;H � � 2p 3

3

T

�hoc
k�H �

� sin 2p
��c=�e�h�� �S�m�=�2pH �� ÿ g

	
cosh �2pG=��hoc��ÿcos 2p

��c=�e�h���S�m�=�2pH��ÿg	 : �18�
In experiments involving measurements of the NC in
graphene, the number of particles is usually fixed; therefore,
we have the relation [31]

n � ÿ
�
qO�m�
qm

�
H;T

� 2
S�m�
�2p�h�2 ÿ

�
qeO�m�
qm

�
H;T

� const

�19�
(we assume that the volume is V � 1). This equation
implicitly determines the dependence of the chemical poten-
tial m onH and T at a given n. We note that according to (19),
the chemical potential m is a function of the magnetic fieldH.
The corresponding expression for S�m� is
c

e�h

S�m�
2H
� p 2 �hc

e

n

H

ÿ arctan
sin 2p

�
p��hc=e� n=Hÿ g

�
exp �2pG=�hoc� � cos 2p

�
p��hc=e� n=Hÿ g

� : �20�
Relation (20) gives the sought dependence m�n;H �. Substitut-
ing (20) in (18), after laborious calculations, we can find the
oscillating part of the NC in the explicit form

en �2D��n;H � � 2p 3

3

T

�hoc

k�H �
sinh �2pG=�hoc�

� sin 2p
�
p

�hc

e

n

H
ÿ g
�
: �21�

We see that Eqn (21) is a strongly oscillating function that
vanishes in magnetic fields in which Landau levels cross the
chemical potential (H � Hks is determined by condition (7)).

The magnetic-field-dependent factor k�H �, which is deter-
mined by the behavior of magnetoresistance, is given by (17).
At oct4 1, when the Shubnikov±de Haas oscillations are
small, k�H � can be estimated in the Drude approximation. In
particular, in the limit where oct � 1, we obtain k�H � �
t=�m �c� (assuming that G � �h=2t), and the amplitude of NC
oscillations turns out to be giant compared to the background
magnitude en �2D� � �eF=��hoc�� n0. In stronger fields (oct > 1),
under the quantum Hall effect, the shape of NC oscillations
begins to be determined by the sharp dependence of the
magnetoconductivity and of the Dingle temperature on the
magnetic field. This circumstance can be taken into account
by substituting the appropriate dependences in Eqns (16)
and (17).

Figure 2a displays the oscillations of the NC as a function
of the inverse magnetic field for the two-dimensional system
with parabolic andDirac spectra in accordance with Eqn (21).
Both theoretical and experimental results obtained for
graphene [11, 12] exhibit a sinusoidal profile of the signal,
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aNC: m� � 0.04 m, m � 0.02 eV,
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bNC: m� � 0.04 m,H � 3 T, G � 30 K
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cDF: n � 108 cm sÿ1,H � 3 T, G � 30 Kn=n0

Figure 2. (a) Oscillations of the NC as a function of the inverse magnetic

field and the concentrations of charge carriers (b) with a parabolic

spectrum (NCC) and (c) for Dirac fermions (DF). The n�Hÿ1� depen-
dence for theDFs has the same shape as the dependence for theNCCs, but

is shifted relative to the latter by a half-period. The vertical straight lines

indicate the field values at which quantization condition (7) is satisfied.
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whose amplitude decreases slowly with increasing the con-
centration of charge carriers with the Dirac spectrum. This
behavior contradicts the theoretical predictions based on the
classical Mott formula applied to the Boltzmann electron
gas [11]. On the contrary, in the case of charge carriers with a
parabolic spectrum, our theory predicts an increase in the
amplitude of oscillations with increasing the concentration of
charge carriers. The last statement agrees qualitatively with
the results obtained using the Mott formula.
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