
Abstract. Methods for searching for non-Gaussianity in the
WMAP data are reviewed and the associated problems related
to the cosmic microwave background (CMB) data analysis are
discussed. Evidence for non-Gaussianity has been obtained by
various methods and from a number of multipole ranges. Dif-
ferent approaches to searching for non-Gaussian CMB data are
sensitive to different manifestations of non-Gaussianity, which
sometimes are due to the primordial non-Gaussianity and some-
times to galactic foregrounds and/or systematic residuals re-
maining after the data analysis that are difficult to take into
account.

1. Introduction

In the standard cosmological scenario with the Big Bang and
simple inflation [1±5], quantum fluctuations of the scalar field
generate inhomogeneities in the distribution of visible and
dark matter [6±10], which leads to fluctuations in the
microwave background radiation of the Universe. Tempera-
ture and polarization fluctuations of the cosmic microwave

background (CMB) are expected, and confirmed at a certain
level of precision by observations, to be Gaussian random
fields, statistically isotropic in space. Nevertheless, certain
models predict small but quite noticeable deviations of the
signal from the Gaussian statistic and/or statistical isotropy,
which, in principle, may be due to a number of reasons.
Within the inflation theory, a relatively strong non-Gaus-
sianity arises in models involving complex inflation [11±16]
(for example, when a nonlinear relation exists between
classical fluctuations of the scalar field generated at the
inflation stage and the observed field of matter density
fluctuations) (also see Refs [17±22]), while statistical aniso-
tropy may be caused by anisotropic expansion at the
inflationary stage [23±30], related, for instance, to the
presence of classical vector fields. Other sources of non-
Gaussianity and of statistical anisotropy, interesting from
the standpoint of cosmology, could be a nontrivial topology
of space [31±35], topological defects [36±39], anisotropic
expansion [40, 41], the primordial magnetic field [42±46],
etc. Owing to the appearance of new complete-sphere data
[47], the issue of searching for and explaining the non-
Gaussian properties of the CMB has become especially
important.

Although non-Gaussianity and statistical anisotropy are
far from being identical concepts, they are quite close to each
other from a cosmological standpoint. Below, in discussing
possible deviations from the simple picture of Gaussian and
statistically isotropic fluctuations, we for brevity speak of
non-Gaussianity, even though a number of CMB properties,
such as the coaxiality of multipoles (see Sections 3.3 and 6)
ought to be discussed in terms of statistical anisotropy.
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Reliable establishment of the non-Gaussianity caused by
processes that occurred in the early Universe would be of
utmost importance for cosmology. Different cosmological
scenarios lead to different forms of non-Gaussianity in
density perturbations (see, e.g., Refs [48±58] and the refer-
ences therein). For example, three-point and higher correla-
tion functions exhibit extremely diverse dependences on
coordinates or wave vectors. Therefore, the investigation of
non-Gaussianity may help identify viable cosmological
models. The investigation of CMB fluctuations is justified in
being considered the most effective way of searching for non-
Gaussianity [59]. The diversity of possible non-Gaussianity
forms, however, also has a flip side: it is not known a priori
which signal is to be sought and in which CMB characteristics
the non-Gaussianity is manifested most strongly. The issue is
also complicated by the fact that the CMB non-Gaussianity
can be caused by effects related to the more recent Universe,
such as CMB lensing [60, 61] and unaccounted pointlike
sources.

There are also two more reasons giving rise to non-
Gaussianity in the real signal appearing in CMB studies.
They consist of the collection of systematic errors due to
observational effects and/or effects caused by data handling
(a non-Gaussian shape of the antenna pattern, peculiarities of
microwave background observations in the ecliptic plane,
and so on), and to the instability of algorithms used for
separating signal components, which leads to residual
contamination by galactic background components (Fig. 1),
which are not well studied at small angular scales [62].

For searching for and analyzing the non-Gaussian
properties of the CMB temperature, methods have been
developed that use the distribution of temperature fluctua-
tions over the celestial sphere, DT�y;f�, where y andf are the
angles in a polar coordinate system, as well as methods based
on the expansion of temperature fluctuations with respect to
spherical harmonics,

DT�y;f� �
X1
`�2

Xm�`
m�ÿ`

a`mY`m�y;f� ; �1�

where a`m are complex quantities with the property

a �`m � a`;ÿm ; �2�

which follows because temperature fluctuations DT�y;f� are
real quantities. Theoretically, the relation between the
primary inhomogeneities, representing adiabatic scalar per-

turbations, and the coefficients a`m is linear [63],

a`m � �ÿi�`
�

d3k

�2p�3 F�k� gT`�k�Y �`m�k̂� ; �3�

where F�k� describes the primary perturbation of the density
(more precisely, of the gravitational potential) in Fourier
space, gT`�k� is the transfer function, and k̂ is the unity vector
directed along the wave vector k. A linear relation also exists
between the temperature fluctuations DT�y;f� and the
primary fluctuations F�k�. The total radiation transfer
function gT`�k� can be computed with the aid of the
CMBFAST program [64]. A simple linear relation permits,
at least theoretically, relating the CMB signal statistics and
the statistics of primary perturbations: if the primary
fluctuations F�k� are non-Gaussian, the non-Gaussianity
can also be observed in the CMB. In sensitive surveys of the
entire sky, for instance, theWMAP1 and Planck2 missions, it
is already possible to search for deviations of the signal from
theGaussian statistics.We stress that expression (3) holds not
only for adiabatic primary perturbations but also for
constant-curvature modes [63] (with their own transfer
functions).

We note an issue that must be raised in discussing the
problems of CMB non-Gaussianity, related to the calculation
of the angular power spectrum C�`�. By definition,

C�`� � 1

2`� 1

�
ja` 0j2 � 2

X̀
m�1
ja`mj2

�
; �4�

and the coefficients a`m are obtained by transforming themap
into harmonics:

a`m �
� p

0

sin y dy
� 2p

0

dfDT�x;f�Y �`m�x;f� : �5�

In expression (4), a Gaussian distribution is implied for the
2`� 1 coefficients a`m, whose squared amplitudes are aver-
aged with the same weights. In this case, the two-point
correlator (with the averaging performed over the ensemble
of universes) has the form

ha`ma�` 0m 0 i � C` d`` 0dmm 0 : �6�

a

0 0.80
Third year of observations

b

Figure 1. (See in color online.) (a) Example of a non-Gaussian effect due to the ecliptic coordinate system, manifested in sensitivity maps of theWilkinson

Microwave Anisotropy Probe (WMAP). (b) Example of a non-Gaussian effect due to the galactic coordinate system, related to galactic emission arriving

mainly from the galactic plane; shown is the map of synchrotron radiation in the K-channel of WMAP.

1 http://lambda.gsfc.nasa.gov
2 http://www.rssd.esa.int/Planck/
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In the case of averaging at a given `, the meaning of the
quantity C` for non-Gaussian data is no longer obvious.

The simplest and best studied quantity in which the non-
Gaussianity of CMB fluctuations may be manifested is the
three-point correlation function or its harmonic analog, the
bispectrum

ha`1m1
a`2m2

a`3m3
i : �7�

The bispectrum is quite sensitive to certain forms of non-
Guassianity that are considered `standard'. These include the
so-called local form obtained under the assumption that
primary fluctuations exhibit a nonlinearity local in the
coordinate space [63]:

F�x� � FL�x� � fNL

ÿ
F 2

L�x� ÿ


F 2

L�x�
��
; �8�

whereFL�x� denotes a linear Gaussian field, hFL�x�i�0, and
fNL is a constant describing the nonlinearity in the form of a
quadratic correction to perturbations of the gravitational
potential (curvature). Such a form of non-Gaussianity indeed
arises in some inflationary models involving an additional
scalar field (curvaton) [12, 65, 66] and/or the nontrivial
dynamics of postinflational modulated heating [14, 15]. The
`equilateral' [67] and `orthogonal' [68] forms of non-Gaus-
sianity are also considered to be `standard'. The WMAP
mission team devoted some of its work [22, 69±72] to the
investigation of these and of certain other forms of non-
Gaussianity, the main instrument being precisely the angular
bispectrum of the CMB temperature. The authors of Ref. [72]
established the results of an analysis of seven-year-long
observations performed by the WMAP mission to be
consistent, at a 95% confidence level, with the hypothesis
that primary fluctuations are Gaussian, and upon combining
their results with those of the Sloan Digital Sky Survey
(SDSS) (ÿ29 < fNL < 70 [73]) they found, in particular, that
ÿ5 < fNL < 59.

Various methods are used in studying peculiarities of the
radiation distribution over the celestial sphere, depending on
statistical properties of the CMB signal investigated, on the
resolution parameter ` describing angular scales on the
sphere, and on the specific goals to be achieved. During the
years that have passed since theWMAPmission data became
available [69, 74±79], announcements have been made
concerning a number of deviations from non-Gaussianity
and statistical isotropy [80±98] exhibited by the distribution
of the CMB signal. Several tests based on phase analysis,
multipole vectors, Minkowski functionals, wavelets and
needlets, the bispectrum and trispectrum, etc., have been
proposed for verification and investigation of the non-
Gaussianity. In this article, we examine some of these
methods (applied in the aforementioned references in dealing
with data from the WMAP mission), whose main advantage
consists in the repeated, multi-frequency complete coverage
of the sky. Precisely this fact has made extensive application
of the methods described in this article possible. It must be
noted that observations of the CMB radiation performed by
the WMAP mission of NASA and their further presentation
to the astronomical community in the archive of WMAP
observations turned out to be a revolutionary step in modern
cosmology.

To conclude this section, we note that no definite answer
to the question concerning the presence or absence of non-
Gaussian features in the statistics of primary density
perturbations has yet been obtained. Certain peculiarities to

be discussed in this article could perfectly well be caused by
the aforementioned systematic effects and the instability of
the algorithms used for separating the components; others
may simply be statistical fluctuations. In the latter case, as
underlined by the WMAP team [69], estimations of the
statistical significance of anomalies are made difficult by
their having been observed a posteriori and often involving
parameters whose values were chosen on purpose to achieve a
non-Gaussian signal as large as possible.

2. The CMB map

Besides CMB, the signal measured in experiments involves
contributions from galactic background components and
from galactic and extragalactic radio sources. These can be
taken into account by superposing masks, i.e., by excluding
certain patches of the celestial sphere from consideration
(22% in the case of the KQ85y7 mask used for the data
collected over seven years by the WMAP mission [99]). It is
possible, however, to restore the CMB signal over the whole
celestial sphere using the results of the WMAP multifre-
quency observations. One of the methods for determining
the complete CMB temperature map is based on a combina-
tion of observational data at different frequencies, addition-
ally multiplied by certain coefficients permitting the exclusion
of the galactic signal from the result and, thus, singling out the
microwave relic background [77]. In this approach, the idea is
used that the radiation spectra of galactic background
components (namely, of synchrotron radiation, free±free
radiation, and of the radiation of dust) differ from the CMB
spectrum. Because the combination of channels in the
WMAP mission is achieved without using observations
from other experiments, this method has been termed
Internal Linear Combination (ILC). The coefficients can be
determined byminimizing the dispersion in the resultantmap,
equating their sum to unity, so as to preserve the overall
normalization of the CMB signal.

In describing this procedure, we first note that from the
results of simulation [77], the instrumental noise has been
established to not affect the situation significantly, because it
only provides a shift of the order of 10 mK in the estimate of
the signal in the galactic plane. In the simple case where the
instrumental noise can be neglected and the background
components have the same spectrum in the region investi-
gated and differ from each other in different parts of this
region only in temperature, the sought ILC temperature can
be written as a linear combination of signals from the maps
for different frequencies ni:

TILC�p� �
X
i

ziTi�p� �
X
i

zi
�
Tc�p� � SiTf�p�

�
� Tc�p� � GTf�p� : �9�

Here, Ti�p� � T�ni; p� is the map of the signal observed at the
frequency ni, p is a certain pixel of the image (the smallest
region of themapwith themeasured temperature), themap of
the signal Ti�p� � Tc�p� � SiTf�p� is represented as a sum of
the CMB maps Tc�p� and of the background component
SiTf�p�, the coefficient Si � S�ni� describes the total fre-
quency spectrum of background radiation, and Tf�p� is the
distribution of the background radiation temperature. The
coefficients zi that are to be determined satisfy the normal-
ization condition

P
i zi � 1. The notation G �Pi ziSi is

introduced in (9).
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The coefficients zi are determined by minimizing the
dispersion of TILC�p�. For this dispersion, we have [77]

s 2
ILC �



T 2
ILC�p�

�ÿ 
TILC�p�
�2

� hT 2
c i ÿ hTci2 � 2G

�hTcTfi ÿ hTcihTfi
�

� G 2
�hT 2

f i ÿ hTfi2
� � s 2

c � 2Gscf � G 2s 2
f ; �10�

where the angular brackets h. . .i denote averaging over the
pixels of the selected region. The minimization of s 2

ILC,

0 � ds 2
ILC

dzi
� 2

dG
dzi

scf � 2G
dG
dzi

sf ; �11�

yields G � ÿscf=s 2
f and

TILC�p� � Tc�p� ÿ scf
s 2
f

Tf�p� :

In the ideal case, where no correlation between the CMB and
the background exists, i.e., scf � 0, the ILC map coincides
with the CMB map. Actually, as emphasized in Ref. [77], the
ILC map is shifted toward a decrease in the correlation
between the CMB signal and the signal from background
components.

We note that different versions of the ILCmethod exist in
both pixel space and harmonic space (see the review in
Ref. [100]). The regions where this method is used can be
determined as follows: (1) by dividing the sphere into separate
zones [77] (for example, in the analysis of WMAP data, the
sphere was divided into 12 regions, most of which were
situated in the galactic plane); (2) by applying selection rules
for averaged pixels [101]; (3) by fixing a certain set of
harmonics [102]. It is also possible to use other combinations
of radio-frequency observations. The modifications result in
only a few different maps being obtained.Moreover, there are
different versions of the actual procedure for producing a
map of an internal linear combination (for instance, the
Lagrange ILC, LILC, method [86], which yields the same
results as ILC). Finally, separation of the signal components
and the production of CMB maps is also possible with other
methods, such as theMaximumEntropyMethod (MEM) [77,

103], fitting templates of background components to other
observations [77, 103], Wiener filtration (the Wiener-filtered
map, WFM) performed in [104], or weighted removal of the
background (the foreground-cleaned map (FCM) in [104]).
The last was used to produce CMB maps exhibiting a higher
resolution �`max � 600� than theWMAP. In what follows, we
mainly deal with the ILC WMAP map, although maps
obtained by other methods are also mentioned.

Observations were performed by the WMAP within five
frequency bands: 23 GHz (band K), 33 GHz (band Ka),
4 GHz (band Q), 61 GHz (band V), and 94 GHz (band W)
(Fig. 2), involving intensity and polarization measurements.
Data arrays collected by the mission during one, three, five,
and seven years of work were put on a website for general use
[74±79]. As a result of observational data processing, which
included the registration and storage of time series, map
making and sky pixelization, and the separation of signal
components and their subsequent analysis, data were
obtained on the anisotropy and polarization distributions of
the CMB and of background components (synchrotron and
free±free radiation, the radiation of dust), and their power
spectra were also calculated. The ILCWMAPmap produced
was smoothed out by a Gaussian-shaped diagram with a 1�

resolution. The entire archive of observational and processed
data is available and accessible to the scientific community at
the WMAP website.

In Fig. 3, a map of the CMB anisotropy distribution
reconstructed by the ILC method is presented for not very
high harmonics �`4 150�. Figure 4 shows the angular power
spectrum produced using data from the WMAP mission and
from the ACBAR (Arcminute Cosmology Bolometer Array
Receiver) [105] and QUaD (QUEST (Q and U Extragalactic
Sub-mm Telescope) at DASI) experiments [106].

3. Phase analysis

The discovery of non-Gaussian properties in WMAP data
was first announced in publications [74±76] on the investiga-
tion of the statistics obtained by the mission during its first
year of work by methods of the phase analysis of signals [80±
82]. Although after presenting the CMB maps, the WMAP
team declared the identified signal to be Gaussian at a

a

0 00.40

0.40 0.40

0

0 0

0.40 0.40

b c

d e

Figure 2. (See in color online.) Maps of the observed microwave radiation in WMAP frequency channels: (a) 23 GHz (band K), (b) 33 GHz (band Ka),

(c) 41 GHz (band Q), (d) 61 GHz (band V), and (e) 94 GHz (bandW) from data obtained during the seventh year of WMAP observations. The maps are

produced in galactic coordinates.
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confidence level of 95% [76], the ILC map was also noted to
exhibit `complex noise properties'.3

Phase analysis of a signal is based on the fact that the
multipole coefficients a`m present in formula (1) are complex
and that they can be represented as

a`m � ja`mj exp �if`m� ; �12�

where f`m is the phase of the �`;m� harmonic. It follows from
(2) that for m � 0 and all `, f`; 0 � 0, and f`;ÿm � ÿf`m. The
Fourier modes of homogeneous and isotropic Gaussian fields
have real and complex parts whose distributions are indepen-
dent of each other. Therefore, if the primary inhomogeneities
of density represent a homogeneous and isotropic field in
space, they lead to phases f`m that are independently and
homogeneously distributed within the interval �0; 2p� [107,
108], which is precisely consistent with relation (6).

The rigorous definition of a homogeneous and isotropic
Gaussian random field requires the amplitude to be Rayleigh
distributed and the phase to be randomly distributed [109]. At

the same time, the central limit theorem guarantees that the
superposition of a large number of random-phase Fourier
modes is Gaussian. Therefore, the requirement that the
distribution of phases be random and homogeneous actually
serves in and of itself as the definition of Gaussianity [107]. If
the data analyzed are non-Gaussian, then, as has been
mentioned, this may signify that either certain mechanisms
in the early Universe gave rise to non-Gaussian density
inhomogeneities or that there are systematic effects not
taken into account.

3.1 Colored phase diagrams and non-Gaussianity
at high multipoles (100 < `̀4 400)
Coles and Chiang [110] were among the first authors who
applied color visualization for the demonstration of phase
relations. Without going into the details of visualization
methods, we note that the most suitable for phase visualiza-
tion is the hue±saturation±brightness (HSB) method. In this
method, the primary colorsÐ red, green, and blueÐcorre-
spond to phases 0, 120�, and 240�, while the complementary
colors (cyan, magenta, and yellow) respectively correspond to
the intermediate phases 60�, 180�, and 300�. As the phase
changes, the colors smoothly `flow' into each other, magenta
becoming red, which is consistent with phases 360� and 0�

being identical.
The method of phase mapmaking was applied in Ref. [80]

to CMB data, with a high resolution achieved in [104].
Figure 5 shows the color encoding of the phase gradient
D` � f`�1;m ÿ f`;m for the FCM and WFM maps in [104].
Although finding the phase gradient for neighboring modes is
the most primitive way of testing phase correlations, the
visible presence of bands in the FCM phase map points to a
strong correlation betweenmultipoles of identical modesm of
multipoles with adjacent `. At the same time, the phase

0.20ÿ0.20

Figure 3. (See in color online.) The ILC CMB map made in galactic

coordinates and based on the data obtained by the WMAP during its

seventh year of work (shown with a resolution of up to `max � 150).
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Multipole moment `

0

Figure 4. (See in color online.) Angular power spectrum `�`� 1�C�`�=�2p�
of a WMAP map for the seventh year of observations [72] and measure-

ment results of the angular power spectrum of temperature fluctuations in

the ACBAR [105] and QUaD [106] experiments. The results are shown for

the multipole region up to ` < 2000, within which the contribution of the

Zel'dovich±Sunyaev effect and of point sources is not too high. The solid

curve shows the simulated spectrum for Lambda Cold Dark Matter

(LCDM) cosmology with parameters determined on the basis of WMAP

results.

3 http://lambda.gsfc.nasa.gov/product/map/m\_products.html
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Figure 5. (See in color online.) Color phase diagram of the gradientD` for

the FCM (upper left triangle) and WFM (lower right triangle) maps. 256

colors reproduce the phase intervals within the �0; 2p� interval for which
phases are taken from the complex representation of harmonics. The

vertical axis shows the multipole numbers ` and the horizontal axis shows

the multipole modes m, m4 `. Owing to the relation a`;m � a �`;ÿm, only
modes with nonnegative m are presented. (See Ref. [80] for the details.)
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diagram for the WFM map shows a homogeneous distribu-
tion of phases consistent with the Gaussianity of the signal.

The authors of Ref. [80] checked the phase `randomness'
more rigorously, using simulations to obtain statistical
estimates of phase deviations [80, 111]. For this,
2000 simulations of random Gaussian fields were per-
formed, which resulted in the deviation from Gaussianity
being revealed for several multipole ranges in the region of
` ' 150, 290, 400, and 500 at a confidence level exceeding
95% [80]. An example of such harmonics, whose phases
deviate significantly from those statistically expected
(` � 350 and 352 for the FCM map) is presented in Fig. 6,
where a structure that is perpendicular to the plane of the
Galaxy and passes through its center is seen on the map. This
was the first discovery of non-Gaussianity in the maps of the
WMAP mission; such a non-Gaussianity is interpreted as the
residual influence of the galactic background.

3.2 Circular statistical analysis
and non-Gaussianity at multipoles with 104 `̀4 50
The phase properties of the WMAP maps were subsequently
verified by other methods. The non-Gaussian properties of
the CMBmaps were demonstrated independently in Refs [81,
112] by analyzing the distributions of phases with the aid of
cluster analysis and circular statistics, which deal with angles.

The phases of multipoles from the range
24 `4 `max � 50 were examined for maps taken from the
WMAP website. Besides the maps of background compo-
nents prepared by the WMAP team for each observational

frequency channel, fivemaps reflecting the difference between
the signal in the observational channel (S) and the ILC signal,
F � Sÿ ILC, were also investigated in Refs [81, 112]. We call
suchmaps `secondary backgroundmaps', to distinguish them
from those obtained by separating components and available
on the WMAP site; the latter are called just the `background
maps'. If cm and fm are the respective phases of a certain
background component and of the ILCmap for a given ` and
all the corresponding values of m, then, according to the
Fisher statistics [113] for angular quantities, we can define a
circular cross-correlation coefficient for each mode `:

Rsf�`� � ` ÿ1
X̀
m�1

cos �fm ÿ cm� : �13�

Figure 7 shows the calculated circular correlation coefficients
between ILC data and background components, as well as
between ILC and the secondary backgrounds for five
frequency bands KÿW. From the figure, it can be seen that
for the first three channels, these coefficients are not large:
they do not exceed the random spread �1s� obtained in the
case of 200 simulations. It is also seen that for all frequency
bands, the functions Rsf�` � are similar to each other in shape,
which reflects the strong correlations between phases in all
channels [81]. Figure 7 also demonstrates that the correlation
between ILC phases and the secondary background compo-
nents looks more significant than in the case of WMAP
backgrounds. Therefore, the behavior (position of maxima
and minima) of the galactic background signal (without
CMB) turns out to be coupled to the ILC CMB signal. The

ÿ0.02

ÿ0.73�10ÿ2 0.55�10ÿ2

0.02

a

b

Figure 6. (See in color online.) Contribution to CMB temperature

variations from two multipoles, ` � 350 and 352, for (a) FCM and

(b) WFM maps in galactic coordinates. The choice of multipoles is

determined by the discovery of phase coupling for harmonics with

D` � 2 in the FCM map. The structure seen in the FCM map at j ' 0

and p, which is perpendicular to the plane of the Galaxy and passes

through its center, vanishes in the WFM maps obtained by Weiner

filtration, making them practically Gaussian for these multipoles. (See

the details in Ref. [80].)
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Figure 7.The circular correlation coefficient between the phases of the ILC

CMB signal and of galactic components in the channels KÿW versus the

harmonic number `. The thick line corresponds to the result of correlations
with the phases of the background component, made available by the

WMAP. The thin line corresponds to data of the background obtained

from the difference between the generalWMAP signal in the given channel

and the ILCCMB signal. The shaded region shows the level of uncertainty

1s, determined from the results of 200 random simulations. (See also

Refs [81, 112].)
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manifestation of correlations is especially noticeable in the
11th multipole within the frequency bands Ka, Q, V, and W,
and also in the entireW channel, where the radiation of dust is
dominant. We note that the 11th multipole belongs to the
range of spatial harmonics 104 `4 20, within which the
radiation from the galactic plane, arriving from the region of
angles jbj < 10�, is particularly significant. All the above
points to the existence of a residual signal of galactic
components in the cleaned CMB signal. The residual
influence of the Galaxy on the cleaned signal can even be
demonstrated by a one-dimensional scan, for example, at the
declination d � 41� (Fig. 8) [114], where a shallow tempera-
ture minimum is noticeable in the ILC map in the vicinity of
the Galaxy.

3.3 Phase correlations between neighboring multipoles
and random walk in phase space
To test the statistical independence of the phases f`;m for odd
and even `, trigonometric moments

Si�`� � ` ÿ1
X̀
m�1

sin �f`;m� ; Ci�`� � ` ÿ1
X̀
m�1

cos �f`;m� �14�

were used in [98] and the average angle for a given multipole `
was calculated as the arctangent of the ratio of the mean sine
and cosine values for multipoles with fixed `:

Y�`� � arctan
Si�`�
Ci�`� : �15�

Here, in a homogeneous and isotropic randomGaussian field
generated by primary fluctuations, homogeneity in the
distribution of phases leads to homogeneity of the mean
angles Y�`� and to the absence of correlations between the
angles Y�`� characterizing multipoles of different `. At the
same time, such a correlation was found in [98]. First of all,
the authors of [98] confirmed the coaxiality of the quadrupole
and octupole components (see Section 6) manifested within
the approach in Ref. [98] by the values of Y�`� for ` � 2 and
` � 3 being close to each other. Moreover, they showed that
such a fact (coaxiality) is not unique. For example, it was
shown that a similar phenomenon ofY�`� being close to each
other is observed in the galactic coordinate system in the case
of phases of certain multipole pairs with D` � 1 (i.e., a

correlation exists between neighboring even and odd multi-
poles, ` � 18:19, 28.29, 33.34, etc.), and also with D` � 2
(` � 5:7, 23.25, 33.35, etc.) in the ecliptic coordinate system.

Moreover, the authors of Ref. [98] proposed a random
walk algorithm for the mean angles Y�`� and revealed a
significant discrepancy between the mean angle behavior in
the case of even and odd harmonics, which is particularly
clearly manifested in the ILC CMB map made in the galactic
coordinate system. Along with the differences in the values of
multipole coefficients C` for harmonics with even and odd `,
to be discussed in Section 10, this result points to spatial
parity violation in the WMAP data. The authors of Ref. [98]
explain the origin of the non-Gaussianity by both instru-
mental and possible cosmological reasons.

4. Instability of the reconstruction
of the lower cosmic microwave background
multipoles (24 `̀4 10)

To understand the cross-correlation properties of the ILC
backgroundmaps as a possible reason for non-Gaussianity, a
numerical test [93] was performed using 10,000 simulations
for the input CMBmaps with a randomGaussian signal [86].
Starting from the 10,000 primary simulated CMB maps, the
same number ofmaps inLCDMcosmology were obtained by
adding the galactic background and further reconstructing
the CMB by the ILC method (we call such maps output
maps). Figure 9 shows histograms of the number of events
P�K`� depending on K`, the correlation coefficient between
the input (or output) map and the map of the background
component for each simulation and each harmonic `.

The shape of the distribution function for the input
quadrupole component is in good agreement with the shape
of the function P�K � � A�1ÿ K 2�, where A is a normal-
ization factor. The dependence P�K � shown in the upper-left
coner of Fig. 9 �` � 2� is used in determining the first moment
hK i � ÿ0:00043 and the second moment hK 2i � 0:19934 of
P�K � [115, 116]. A similar analysis can be performed for the
output maps. From Fig. 9, it can be seen that the distribution
function for the quadrupole is shifted significantly, with
hK i ' ÿ0:254 for the dispersion s 2 � hK 2i ÿ hK i2 '
0:1454. In the case of quadrupole and octupole components,
not only is the center of gravity of the distribution function for
the output signal shifted, but the shape of this function is also
distorted. For ` � 4, a virtually total correspondence is
observed between the input and output maps. For the
harmonics ` � 5, 7, 9, a distortion of the distribution
function is once again observed, which is due to the influence
of background components. As can be seen from Fig. 9,
application of the ILC method (to be more precise, the LILC
method, which is one of the modifications of ILC [86] that
reproduces the WMAP ILC map exactly) results in negative
correlations with the background being obtained in the
output maps with a higher probability than positive ones.
The characteristic scales of differences between the input and
output maps for the quadrupole and octupole components
are comparable to the CMB signal itself. As shown in
Ref. [117], these differences are related to the background
components. To demonstrate the above, it is possible to use
the WMAP data to calculate the combination d`;m �
a
�Ka�
`;m ÿ a

�V�
`;m , to which only the background contributes, and

to determine its correlation with the coefficients a`;m for the
output LILC maps (for example, for simulated realization
00008 in [93]). In the case of even multipoles ` � 2, 4, 6, 8, 10
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Figure 8. One-dimensional scans of WMAP maps: (a) ILC, (b) the

radiation of dust in theW-channel, (c) free±free radiation in the V channel

and (d) synchrotron radiation in the K-channel at the declination d � 41�

in the intersection region with the galactic plane (see peaks in Figs b±d).
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pertaining to this CMB realization, the respective coefficients
are K even

n � 0:183, 0.421, 0.323, 0.136, 0.139, while for odd
` � 2n� 1, n � 1; . . . ; 4; K odd

n � 0:908, 0.732, 0.732, 0.686.
Thus, after reconstructing the octupole and other odd
components, the signal is seen to be characterized by a high
level of correlation with the background. Another important
characteristic is the correlation of the residual map (obtained
as the difference between the input and output maps) with the
input one. In the case of even multipoles ` � 2n with
n � 1; . . . ; 5; the respective coefficients are K even

n � ÿ0:218,
ÿ0:458, 0:0152, ÿ0:223, ÿ0:130, while for odd multipoles
` � 2n� 1 with n � 1; . . . ; 4; K odd

n � ÿ0:172, ÿ0:116,
ÿ0:128, ÿ0:011.

Moreover, themethod described for testing the stability of
the CMB signal reconstruction [93] revealed one more
important peculiarity of the method for separating ILC
components, which is related to the quadrupole problem.
We use the same 10,000 input and output maps and examine
the quadrupolemode a2; 0 applying the estimator S � s in2; 0 s

out
2; 0 ,

where sin;out2; 0 � �1 or ÿ2 respectively for the positive or
negative sign of the amplitude a in; out

2; 0 (the indices `in' and
`out' are related to the input and output maps). If the signal is
reconstructed correctly, we should have S � �1. But the
value S � ÿ1 is obtained for 2148 maps out of 10,000
simulated realizations. It can be assumed that such a strong
effect is due to a change of the sign of a2; 0 in the case of those
realizations for which it was primarily positive, s in2; 0 � �1,
and that this change of sign is caused by an infiltration of the
background signal. Indeed, in all background components
within all frequency bands KÿW of the WMAP mission,
a f
2; 0 is negative, s

f
2; 0 � ÿ1. If such an assumption is correct, a

strong influence of the background on the characteristic

discussed exists in the case of 43% of realizations that exhibit
s in2; 0 � �1. We note that harmonics with an even value of
`�m are particularly difficult to reconstruct because the
most powerful part of background components is concen-
trated in the galactic plane, and it mostly contributes to the
modes with even values of `�m. It is also interesting to note
that a forceful change of the sign in the quadrupole
component alters the shape of the reconstructed quadrupole
and resolves the issue of the existence of an `axis of evil' [91];
from this standpoint, such a procedure is similar to modified
methods for component separation [101].

5. Mosaic correlation

In Refs [118, 119], a mosaic correlation method is proposed
for the analysis of a distributed signal, permitting one to
reveal and investigate the possible residual influence of
background components (both extended and determined
by point sources) as the possible cause of non-Gaussianity
within given regions for a given angular scale. The method
has been realized in pixel parametric space. On the basis of
a study of two maps with quite a high resolution and
identical partitioning of the celestial sphere into pixelsÐ
maps of the temperature DT�yi;fi� and background radia-
tion S�yi;fi�, where i is the pixel numberÐ a mosaic
correlation map of a lower resolution is made, where each
pixel (which we call an M-pixel) contains a certain number
of pixels of the primary maps. The M-pixel of a number p
(p � 1; 2; . . . ;N0, where N0 is the total number of pixels on
the sphere) is assigned the value of the correlation
coefficient between the regions belonging to the two
investigated higher-resolution maps and covered by this
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Figure 9. Distribution function P�K � for the cross-correlation of random realizations of the CMB signal and the background component within the

V band for ` � 2ÿ10, indicated in the figure. The dark solid line corresponds to the input signal and the light line to the output signal. (See also Ref. [93].)
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M-pixel. In other words, the correlation coefficient is
calculated for two maps within the solid angle Xp sub-
tended by the given M-pixel. The solid angles Xp are chosen
to be identical and equal to X for all M-pixels; the value of
X (the correlation window) determines the angular scale at
which the correlation is studied. The total correlation
coefficient for two primary maps at an angular scale X has
the form

K�X� � 1

sDTp
sSp

�
X
p

X
�yi;fi�2Xp

ÿ
DT�yi;fi� ÿ DT�Xp�

�ÿ
S�yi;fi� ÿ S�Xp�

�
;

�16�

where s 2
DTp

and s 2
Sp

are the dispersions.
This method permits checking the quality of the CMB

component separation in the case of multifrequency observa-
tions, assuming the correlation between a random Gaussian
signal of the CMB and the background components to be
minimal. The presence of a residual correlated signal in the
CMB data may lead to systematic errors in determining the
angular power spectrum for different multipole ranges [93,
115] and, as a consequence, to a decrease in precision in
determining cosmological parameters. Applying different
correlation windows, we can see that in the distribution of
correlation coefficients for WMAP ILC maps and the maps
of background radiation of dust, there is, in the case of the
correlation window X � 540 0 � 540 0, a shift of ÿ0:26 with
respect to the expected zero value obtained by simulations
with Gaussian smoothing in a window of radius 1� and of the
masking of a region of the Galaxy. This is illustrated by
Fig. 10, where the results are presented of a mosaic

correlation of WMAP maps and of maps of the background
radiation of dust (see Ref. [119] for the details). Besides the
actual shift in the distribution of pixels over the correlation
coefficients, a significant distortion of the shape of this
distribution is to be noted. The medians of the pixel
distributions for mosaic maps at correlation scales 160 0,
300 0, and 540 0 are respectively equal to ÿ0:219, ÿ0:233, and
ÿ0:274. It is interesting to note that the shift in the
distribution of pixels of correlation maps is similar to the
shift arising in the case of a nonstable reconstruction of the
ILC signal in the quadrupole component [93].

The results of application of the above method in the
case of WMAP CMB maps and of dust maps reveal the
existence of a significant signal in the quadrupole compo-
nent of the mosaic field, which leads to the appearance of a
peak in the angular power spectrum. This peak is absent
when calculations are performed of correlations between
the map of simulated Gaussian perturbations and the
radiation distribution of dust. The position of spots on the
quadrupole map points to the presence of a signal related
not only to the ecliptic coordinate system but also to the
equatorial one, which is also observed when other methods
are used [120, 121].

6. Multipole vectors

Already in Ref. [90], a correlation was noticed between the
directions determined by the quadrupole and octupole CMB
components (Fig. 11). A simple quantitative description of
this phenomenon consists in finding a unit vector n̂ such
that the projection of the angular momentum on it has the
maximum dispersion, separately for the quadrupole and
octupole. Specifically, we consider the contribution of

a

ÿ0.74 0.73

d

ÿ0.09 0.08

0.010
C�`�

0.008

0.006

0.004

0.002

0 2 4 6 8
`

c

0.4

0.3

0.2

0.1

0
ÿ1.0 ÿ0.5 0 0.5 1.0

Correlation coefécient

R
el
at
iv
e
n
u
m
b
er

o
f
p
ix
el
s

b

Figure 10. (See in color online.) Results of mosaic correlation between WMAP CMB ILC maps and maps of the background radiation of dust in the

W channel with the correlation window Xp � 540 0 � 540 0. (a) Mosaic map of Mc. (b) Histogram of the pixel distribution over correlation coefficients
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�2s, and �3s in simulated mosaic maps of correlations calculated for 200 random Gaussian fields within the cosmological LCDM model. (See also
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multipoles with a given ` to the anisotropy of the CMB
temperature:

DT`�y;f� �
X̀
m�ÿ`

a`mY`m�y;f� ; �17�

and construct the dispersion as a function of the direction
of n̂:



DT` �n̂L�2DT`

� � X̀
m�ÿ`

m 2
��a`m�n̂���2 ; �18�

where L is the angular momentum operator, the angular
brackets indicate averaging over the celestial sphere, and the
coefficients a`m�n̂� are calculated in a coordinate system with
the third axis coinciding with n̂. Using the data obtained by
the WMAP mission during its first year of work, the authors
of Ref. [90] found the vectors determining the maxima of
dispersion for the quadrupole and for the octupole to be quite
close to each other:

n̂2 � �ÿ0:1145;ÿ0:5265; 0:8424� ;
n̂3 � �ÿ0:2578;ÿ0:4207; 0:8698� :

The scalar product of these vectors, which could be any
number in the interval �0; 1� [dispersion (18) does not change
when the sign of n̂ changes, and therefore the product n̂2n̂3 can
be considered positive], is

n̂2n̂3 � 0:9838 :

The probability of such a coincidence occurring in the case of
a Gaussian map was estimated by the authors of Ref. [90] to
be 1=60.

For a more detailed study of the issue of coaxiality of
multipoles, Copi and co-authors [122, 123] proposed using
the formalism of multipole vectors first introduced by
Maxwell [124], and applied it in investigating the CMB
anisotropy at large scales. A property of these vectors is
their independence from the choice of the coordinate system,
which renders them applicable in tests of the zero statistical
isotropy hypothesis and in searches for directions in the sky
alongwhichmanifestations of non-Gaussianity can occur due
to various reasons: nonstandard physics, the existence of
systematic errors, the residual influence of background
components, the topology of the Universe, and so on [94].

Following [123], the contribution of multipoles with a
given ` to the anisotropy of the CMB temperature can be
represented in a form equivalent to (17),

DT`�y;f� �
X
i1;...;i`

Ki1;...;i` ei1�y;f� . . . ei`�y;f� ;

where the spatial indices ia range values from 1 to 3,
e�y;f� � �sin y cosf; sin y sinf; cos y� is a unit three-dimen-
sional vector directed along �y;f� on the sphere, andKi1;...;i` is
a traceless symmetric real tensor of rank ` in three-dimen-
sional space. This tensor, as well as the set of amplitudes a`m,
has 2`� 1 independent real components. The idea consists in
writing this tensor in the form of a combination of ` unit real
three-dimensional vectors v �`; a�, a � 1; . . . ; ` (2` independent
components altogether) and an overall amplitude A`:

Ki1;...;i` � A`

�
v
�`; 1�
i1
� � � v �`; `�i`

�
TF
;

where �. . .�TF denotes taking the symmetric traceless part. It is
known that such a representation exists and that it is unique,
and therefore the set of unit vectors v �`; a�, together with the
amplitude A`, fully characterizes the multipole component
DT`�y;f�. We note that vectors v �`; a� are defined up to their
signs, because a change of sign of each of these vectors can be
compensated by a change of sign of the amplitudeA`. We also
note thatmultipole vectors are independent of the total power
C` of the temperature multipole with a fixed `: if all the a`m for
a given ` are additionallymultiplied by a common factor, then
A` is also multiplied by this factor, while v �`; a� remains
unchanged. In particular, if the quantity ~a`m � a`m=

������
C`

p
is

used, the multipole vectors v �`; a� depend only on ~a`m, but not
on C`. In this sense, multipole vectors carry information
complementary to the information encoded in the angular
power spectrum, and no assumptions concerning the non-
Gaussianity or statistical isotropy have any influence here.

A relatively simple algorithm for finding multipole
vectors was proposed in Ref. [122], where, given the
coefficients a`m, the multipole vectors are constructed using
a standard harmonic expansion. The complete calculations,
along with recurrence formulas for v �`; a� within this
approach, are presented in Ref. [122]. A program code with
open access also exists.4

The area vectors

w �`; ab� � v �`; a� � v �`;b�

were also introduced in [94, 123]. These vectors are orthogo-
nal to the planes of the `-multipole in which the pairs of
vectors �v �`; a�; v �`; b�� lie, and are also defined up to their signs.
In the case of the quadrupole, there are twomultipole vectors,
v �2; 1� and v �2; 2�, and only a single area vector w �2; 12�; an
octupole is characterized by three multipole vectors and three
area vectors.

The observation made in Refs [94, 123] is that the
quadrupole and octupole planes are close to each other, i.e.,
the directions of the vectorsw �2; 12�,w �3; 12�,w �3; 13�, andw �3; 23�

are correlated at a confidence level exceeding 99%. To be
more precise, the vector w �2; 12� lies nearly in the middle
between the three vectors w �3; 12�, w �3; 13�, and w �3; 23�, while
the results in Ref. [94] lead to the following for the scalar
products (data obtained by the WMAP during three years of
work were used):

w �2; 12� w �3; 12�

jw �2; 12�jjw �3; 12�j � 0:858 ;
w �2; 12� w �3; 13�

jw �2; 12�jjw �3; 13�j � 0:804 ;

w �2; 12� w �3; 23�

jw �2; 12�jjw �3; 23�j � 0:872 :

ÿ0.02 0.02 ÿ0.04 0.04

a b

Figure 11. (See in color online.) The shape (a) of the quadrupole and (b) of

the octupole in the WMAP ILC map based on data obtained during the

seventh year of observations.

4 http://www.phys.cwru.edu/projects/mpvectors/
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All these quantities are close to unity, which precisely signifies
the coaxiality of the quadrupole and octupole. We note that
the octupole vectors w �3; 12�, w �3; 13�, and w �3; 23� are also close
to one another (`planarity' of the octupole).

Moreover, all four area vectors are correlated with the
ecliptic plane and (at a confidence level exceeding 95%) with
the direction of the dipole and the positions of the equinoctial
points. All the above seems to contradict the assumption of
Gaussianity and the statistically isotropic ILC map.

7. Quadrupole statistical anisotropy

Some inflationary models with vector fields predict that
primary scalar perturbations are Gaussian, but statistically
anisotropic. This means that their power spectrum should
depend not only on the length of the wavevector but also on
its direction k̂ � k=k:


F�k�F ��k 0�� � P�k� d�kÿ k 0��1� g�k; k̂�� : �19�

For example, a quite well-reasoned dependence is given in
[25±28]:

g�k; k̂� � g0�k̂ N̂�2 ; �20�

where N̂ is a certain fixed unit vector constant in space and g0
is a constant. Models based on conformal invariance predict
statistical anisotropy of a more general form [56, 57].

Statistical anisotropy of form (19) would be manifested in
the CMB signal as nonzero correlators of multipoles with
different �`;m� [cf. formula (6) for statistically isotropic
perturbations]:

ha`ma �` 0m 0 i 6� 0 for ` 6� ` 0 and=or m 6� m 0 :

A method for searching for this effect was developed in
Refs [125, 126].

Statistical anisotropy in form (20) was indeed discovered
in the WMAP CMB data [126±128] (see also Ref. [69]). Here,

g0 � 0:29� 0:03 ;

i.e., the signal is large in amplitude and is statistically
significant. But the direction of the vector N̂, namely,
�b; l � � �30�; 96��, turned out to be close to the normal of
the ecliptic plane. This is a serious indication that the effect is
due to systematic errors. Most probably, it can be explained
by an asymmetry in the polar pattern of theWMAP receivers
[127] (the authors of [128] do not agree with this interpreta-
tion, however).

8. Minkowski functionals

Minkowski functionals [129] are an effective tool for
investigating the morphology of sets of regions in space
(regions on the celestial sphere in the case of the CMB).
These functionals are actively used in studies of the statistics
of a signal. The historical aspects and the algorithmic details
of this method are described in book [48].We briefly note that
the three-dimensional version of the method was applied in
cosmology back in the 1990s in studies of the distribution of
objects in the Universe [130, 131]. The idea of using
morphological characteristics of a map for describing the
statistical properties of the CMB signal anisotropy has been

described and developed in a series of publications [48, 132±
138].

It is convenient to choose the following field of unit
dispersion as the quantity to be considered, instead of
temperature:

n�y;f� � DT�y;f�
s0

;

where s0 is the dispersion of temperature fluctuations,

s 2
0 � hDT 2i � 1

4p

X
`

�2`� 1�C�`� : �21�

As before, the angular brackets denote averaging over the
celestial sphere. We now fix a certain value of n, and for a
given map construct all the connected regions Ri�n� on a unit
celestial sphere inside which n�y;f� > n. Generally speaking,
the regions Ri�n� are not singly connected, i.e., they may have
holes in them [and inside these holes there may in turn be
regions with n�y;f� > n, which must also be included in the
set fRi�n�g]. It is possible to define three global (i.e., relevant
to the entire sphere) Minkowski functionals:

(1) the normalized area

A�n� � 1

4p

X
i

A
�
Ri�n�

�
;

where A�R� is the area of region R;
(2) the total normalized length of isolines

L�n� � 1

4p

X
i

L
�
Ri�n�

�
;

where L�R� is the length of the perimeter of region R;
(3) the genusG�n�Ðthe difference between the number of

connected regions with n�y;f� > n and the number of
connected regions with n�y;f� < n (a quantity equivalent to
the genus is the Euler characteristic).

It is remarkable that these three functionals fully describe
the morphology of the set of regions fRi�n�g (in a d-
dimensional space, there are d� 1 such functionals). In a
similar manner, it is possible to define three local Minkowski
functionals relevant to an individual part of the sphere,
instead of the whole sphere.

In the analysis of the CMB, another characteristic is often
used instead of the genus:

~G�n� � Nmax�n� �Nmin�n� ÿNsad�n� ;

where Nmax�n�, Nmin�n�, and Nsad�n� are the numbers of
maxima, minima, and saddle points of the function n�y;f�
in all the regions Ri�n�. For the sphere, G�n� � ~G�n� ÿ 1.

In the case of a Gaussian field, the global Minkowski
functionals can be calculated analytically. On a plane, the
normalized functionals are expressed as [48]

A�n� � 1

2
ÿ 1

2
F
�

n���
2
p
�
;

L�n� � 1

8yc
exp

�
ÿ n 2

2

�
; �22�

G�n� � 1

�2p�3=2
1

y 2
c

exp

�
ÿ n 2

2

�
;
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where

F�x� � 2���
p
p

� x

0

exp �ÿx 2� dx

is the error function and yc is the correlation length of the field
defined as

yÿ1c �
����������������������
�HHDT �2�
hDT 2i

s
� s1

s0
;

where s1 is the dispersion of the temperature gradient,

s 2
1 �

1

4p

X
`

`�`� 1��2`� 1�C�`� : �23�

Thus, it is possible to search for deviations from Gaussianity
by checking whether relations such as (22) are satisfied.

Minkowski functionals have been used in verifying the
Gaussianity of WMAP data. The three functionals described
above, as well as a number of other characteristics, were used
in [85] in analyzing the CMB maps obtained by the WMAP
mission during its first year of observations; the results were
compared with those of Gaussian perturbation simulations
with the WMAP noise signal. The authors of Ref. [85] found
that in the analysis of the whole sphere at angular scales
between 1� and 4�, all sorts of statistics are generally
consistent with the assumed Gaussianity of the CMB signal.
At the same time, it was shown that the properties of CMB
arriving from the northern and southern Galactic hemi-
spheres differ significantly. The statistics of the signal from
the southern hemisphere at the 1�ÿ 4� angular scales studied
is, on the whole, consistent with the Gaussianity hypothesis,
while in the case of the northern hemisphere, a number of
peculiarities are observed. Although the area and length
functionals A�n� and L�n� are quite consistent with the
Gaussianity hypothesis, the genus of the northern hemi-
sphere exceeds the expected value at all angular scales, and
at the scale of 3:4�, its amplitude is so high that only one of the
5000 realizations has a higher amplitude for negative thresh-
old values n. Moreover, using the statistics introduced in
Ref. [139] (the length of the skeletal line), as well as other
statistics, the authors of Ref. [85] found the values of the
parameter to be

g � s 2
1

s0s2
;

where s0 and s1 are the respective dispersions of temperature
and its gradient, defined by (21) and (23), and s2 is the
dispersion of the second-order derivatives, which is defined
quite similarly. In 99% of simulations for the northern
hemisphere, the parameter g exceeded the expected value,
while no such effect was observed for the southern hemi-
sphere. We note that before paper [85] was published, an
asymmetry between the genus amplitudes for the northern
and southern hemispheres had already been reported in [84].
However, the results in [84] were obtained for significantly
smaller angular scales than in Ref. [85], and it is therefore
difficult to establish any direct relation between these two
groups of results. In any case, investigation of theMinkowski
genus has demonstrated that the Gaussian model of fluctua-
tions encounters difficulties in describing the WMAP data at
large and intermediate angular scales.

Minkowski functionals have also been used to estimate
the parameter fNL [140] in the model of non-Gaussian
primary perturbations described by formula (8). For this,
the authors generated CMB maps in the framework of that
model and considered their difference from maps calculated
within the model with Gaussian primary inhomogeneities
(actually, as underlined by the authors, at not too large values
of fNL, the expressions forMinkowski functionals in the non-
Gaussian model can be obtained with good precision
analytically). The authors also took various observational
effects complicating the situation into account, such as the
function of a pixel window, `blurring' by the polar diagram,
inhomogeneous noise, and screening masks on the map. On
the basis of the behavior of Minkowski functionals at
different scales and at different levels of non-Guassianity in
model maps, the authors of Ref. [140] obtained constraints on
the non-Gaussianity level for the data obtained by the
WMAP mission during its third year of work, namely, they
obtained the estimate ÿ70 < fNL < 91 at a 95% confidence
level from maps made of combined data from Q� V�W
channels of the WMAP mission smoothed out by a Gaussian
filter at scales of 10 0, 20 0, and 40 0. For the combination of
V�W maps, the obtained estimate ÿ108 < fNL < 64 was
shifted into the region of negative values, and it differed, for
example, from the limit values fNL shifted into the region of
positive values, 27 < fNL< 147, and found in Ref. [141] for
the same data with the aid of the bispectrum.

9. Spherical wavelets

9.1 Non-Gaussian kurtosis
Among the first searches for non-Gaussianity in the
WMAP CMB data, there is a series of studies based on
the analysis by means of wavelets [83, 142]. The first
attempts to apply this technique in searching for non-
Gaussian features were made in the 1990s with the
COBE±DMR (COsmic Background Explorer±Differential
Microwave Radiometer) data [143] with the aid of
Daubechies wavelets, and later with the aid of spherical
wavelets (Spherical Haar WaveletÐSHW) [144]. `Spherical
mexican hat' wavelets (SMHWs) are the most sensitive to
manifestations of non-Gaussianity [145±147].

SMHWs can be constructed with the aid of a Euclidean
wavelet of the Mexican hat type (Mexican hat wavelet,
MHW) using the stereographic projection proposed in
Ref. [148]. A SMHW depends on three parameters: the
general scale R and the coordinates �y;f� of a point on the
sphere playing the role of the pole relative to which the
stereographic projection is realized. For each choice of the
wavelet center, it is convenient to introduce a new coordinate
system (with primed coordinates), whose center is the north
pole. Then the explicit form of the SMHW wavelet is

CS�y;R�

� 1������
2p
p

N�R�

�
1�

�
y

2

�2�2�
2ÿ

�
y

R

�2�
exp

�
ÿ y 2

2R 2

�
; �24�

where

N�R� � R

�
1� R 2

2
� R 4

4

�1=2

�25�
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is a normalization factor. The distance on the tangent plane is
given by the quantity y that is related to the polar angle as

y � 2 tan
y 0

2
;

where y 0 is the polar angle in the primed coordinate system.
The expansion of temperature fluctuations in wavelets has the
standard form

w�R; y;f� �
�
sin y 0 dy 0 df 0CS�R; y 0�DT�y 0;f 0� ;

where the temperature is assumed to be reduced to the primed
coordinate system (precisely for this reason, w depends on y
and f). In practice, a finite number of wavelet centers are
chosen for each scale R, i.e., the wavelet expansion
wi�R� � w�R; yi;fi�, i � 1; . . . ;NR, is restricted to a finite
number of coefficients.

The coefficients of the wavelet expansion wi�R� are
expressed linearly in terms of temperature fluctuations.
Therefore, in the case of the Gaussian CMB signal, these
coefficients must also exhibit Gaussian statistics. To search
for deviations from Gaussianity at a given scale R, several
quantities can be determined. In [83], two simple estimators of
non-Gaussianity were used: the skewness S�R� and the
kurtosis K�R�:

S�R� � 1

NR

XNR

i�1

w 3
i �R�

s 3�R� ; �26�

K�R� � 1

NR

XNR

i�1

w 4
i �R�

s 4�R� ÿ 3 ; �27�

where NR is the number of wavelet coefficients on the scale
R and s�R� is the dispersion of wavelet coefficients on this
scale:

s 2�R� � 1

NR

XNR

i�1
w 2
i �R� : �28�

Using this approach, the authors of Ref. [83] obtained an
excess of the kurtosis K�R� on two successive scales,
R8 � 4:17� and R9 � 5�, in the WMAP CMB data. The
kurtosis at R8 � 4:17� is only realized in 40 cases out of
10,000 for Monte Carlo simulations, which the authors
consider an indication of the non-Gaussianity of the
WMAP map. A similar result is also true for the scale R9.
The authors of [83] found a non-Gaussian signal in the
entire frequency range of the WMAP mission (from 23 to
94 GHz) and showed its frequency independence. It was
also shown that after the addition of a contamination signal
in the form of an overestimated background, no non-
Gaussian signal was revealed by the simulated Gaussian
CMB maps. It was therefore concluded in [83] that the
addition of the galactic background to CMB models does
not give rise to non-Gaussianity if searches are based on the
wavelet analysis, and that galactic background components
are not the source of the discovered non-Gaussianity of the
ILC CMB map. Moreover, the application of this method
has shown that the signal in the northern hemisphere is
consistent with the Gaussian model, while in the southern
hemisphere, as on the entire sphere, the CMB data exhibit
non-Gaussianity.

9.2 Cold Spot
A cold region (Fig. 12) exhibiting a complex structure was
identified in the CMB in [142] using SMHWs. The non-
Gaussianity of the signal in the southern hemisphere was
explained in [142] precisely by the existence of this region. The
galactic coordinates of this region, called the Cold Spot (CS),
are b � ÿ57�, l � 209�. The probability of the signal distribu-
tion being consistent with theGaussian model, if SMHWs are
used, amounts to about 0.2% [142]. The frequency depen-
dence of the signal in the CS region is similar to the one in
other CMB spots. The authors also found that if that zone is
removed, the remaining set of data corresponds to Gaussian
assumptions in the SMHW analysis.

It must be noted, however, that the conclusions in [150]
were criticized in [150], because the use of weight functions
differing from SMHWs (in particular, byGaussian weights of
variable width) does not lead to the revelation of any signal
non-Gaussianity. Thus, the problem of the CS statistical
significance has not yet been fully resolved.

After obtaining indications of the signal non-Gaussianity
at the Cold Spot, as well asmessages on the reduced density of
sources [151] in smoothed-outmaps of the radio surveyNVSS
(NRAO (National Radio Astronomy Observatory) VLA
(Very Large Array) Sky Survey) [152] (which also gave rise
to doubt [153], however), several hypotheses concerning the
origin of the Cold Spot were put forward, which were related
to the integrated Sachs±Wolfe effect [151], the topological
defect [39], the artefact of data analysis [154], and simply a
random deviation [155, 156]. We note that such a spot in the
WMAP CMB map is not unique [154, 155], and that its
properties are mainly determined by low harmonics
�24 `4 20�. The statistics of extragalactic objects in the CS
region in various wavelength ranges does not differ within the
uncertainty from the statistics of other regions in the given
band of galactic latitudes [157]. There are other spots whose
non-Gaussian properties also depend on low ` [158]. More-
over, another interesting point presented in Ref. [154] must be

ÿ0.02 0

a

b c

Figure 12. (a) Position of the non-Gaussian Cold Spot on the sphere in

galactic coordinates. (b) Cold Spot on the ILC WMAP close-up map.

(c) Cold zone on a map for the 408 MHz frequency channel in 1982 [149].
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noted; the CS is also manifested in the data of 1982 in maps of
a low-frequency (408 MHz) survey [149] (see Fig. 12), where
synchrotron radiation contributes significantly to the back-
ground.

9.3 Needlets
To conclude this section, wemention the second generation of
spherical wavelets, namely, needlets, which were introduced
into functional analysis in [159, 160] (Fig. 13). A spherical
needlet is defined as [161]

cj k�y;f� �
������
lj k

p X
`

b

�
`

B j

� X̀
m�ÿ`

Y �`m�y;f�Y`m�yk;fk� ; �29�

where �y;f� are coordinates on the sphere, j is the number of
the needlet harmonic, and lj k is a normalization factor. The
points �yk;fk� that are needlet vertices may coincide with
pixel centers within the given pixelization scheme. The
number B fixes a needlet basis such that it only involves
multipoles from the range ` 2 �B jÿ1;B j�1�, i.e., the function
b�`=B j� corresponds to the window function and is equal to
zero outside the range �B jÿ1;B j�1� [162].

The approach involving needlets was used for estimating
the primary non-Gaussianity, characterized by the parameter
fNL, with the aid of a needlet bispectrum [161]. The advantage
of this approach compared to the usual approach using
harmonic bispectrum (7) consists in the more correct work
with regions covered by masks. The estimate of fNL obtained
in Ref. [161] with the influence of point sources taken into
account is fNL � 84� 40.

10. Angular power spectrum

A remarkable manifestation of non-Gaussian properties of
the WMAP CMB map consists in parity asymmetry, first
noticed in [97]. The simplicity of the approach proposed in
[97] is related to the possibility of only using the CMB
angular power spectrum C`, without having to use maps and
individual harmonics a`m. For a Gaussian random field of
primary perturbations F�k� with a flat power spectrum, the
presence of a plateau in the CMB angular power spectrum is
expected at low multipoles, which is due to the Sachs±Wolfe
effect, namely, to the fact that `�`� 1�C` � const. Spherical
harmonics change as Y`m�n̂� � �ÿ1�`Y`m�ÿn̂� when the
coordinates are reversed. Therefore, an asymmetry in the

angular power spectrum for even and odd harmonics can be
regarded as the asymmetry of the power of even and odd
components of maps. The authors of Ref. [97] found the
power of odd multipoles to systematically exceed the power
of even multipoles of low ` and termed this phenomenon
`parity asymmetry'. To describe such an asymmetry quanti-
tatively, the following quantities are proposed for considera-
tion:

P� �
X

Even `<`max

`�`� 1�C`

2p
;

Pÿ �
X

Odd `<`max

`�`� 1�C`

2p
:

Using the data of the WMAP power spectrum and the
results of Monte Carlo simulations, the authors of Ref. [97]
calculated the ratio P�=Pÿ for the multipole ranges
24 `4 `max, where `max lies between 3 and 23. Comparing
P�=Pÿ for the WMAP data with the similar ratio obtained
for simulated maps allows estimating the quantity p equal to
the fraction of simulated spectra in which P�=Pÿ is less than
or equal to the same quantity for the WMAP map. The value
of p was found to reach its lower boundary at `max � 18,
where p equals 0.004 and 0.001 for the data obtained by the
WMAP mission during five and three years of observations,
respectively. This fact means that there is a preference for
odd multipoles �24 `4 18� in the WMAP data at a
confidence level of 99.6% with a screening mask imposed
on the data, and of 99.76% without any mask. The authors
believe the low amplitude of the WMAP CMB quadrupole
may be part of the same anomaly as the parity asymmetry.
Because the power asymmetry of the CMB signal in the
northern and southern hemispheres is manifested more
strongly in the case of multipoles with 24 `4 19 than
multipoles with 204 `4 40 [86], the authors of Ref. [97]
also believe that the general origin of anomalies (such as the
power asymmetry in the hemispheres, the low quadrupole
amplitude, and the parity asymmetry) lie in the region of
small ` and that the explanation can be either cosmological
or related to the presence of systematic errors in observa-
tions that were not revealed and/or were additionally
introduced in the course of analysis of the data obtained by
the WMAP mission.

11. Conclusion

In this article, we have described certain tests that have been
extensively used during the past decade in searches for and
studies of non-Gaussianity and statistical anisotropy of CMB
data differing in nature.

It is necessary to make several general comments concern-
ing the methods described.
� As was shown for different ranges of multipoles in a

large number of studies, there are indications that the
WMAP CMB data exhibit deviations from Gaussianity,
revealed with the aid of methods involving phase analysis,
cross-correlations with galactic background components,
spherical wavelets, Minkowski functionals, angular power
spectra, etc.
� Different methods for testing non-Gaussian properties

are sensitive to different types of non-Gaussianity manifesta-
tion. For example, phase analysis `sees' residual manifesta-
tions due to galactic background components (or systematic
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Figure 13. Example of a needlet with B � 2 and j � 8 in pixel space [162];

a is the removal angle from the function maximum.
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errors) in the cleaned CMB signal, while at the same time the
bispectrum and other similar methods are not sensitive to this
type of non-Gaussianity.
� Low multipoles of the WMAP CMB data exhibit

deviations from Gaussianity and/or statistical isotropy
practically independently of which method is used for testing
this phenomenon.
� The level of primary non-Gaussianity of certain types,

for example, the one described by the parameter fNL, is
estimated by methods that are insensitive to the residual
galactic background. For example, if a background spot is
`shifted' without changing its size, it is possible to obtain a
map with a signal distribution that is Gaussian, determined
from the temperature distribution but with connected phases
of different multipoles.
� Simulation in the framework of the ideas of Gaussian

and statistically isotropic primary perturbations and stan-
dard LCDM cosmology serves as an important tool for
understanding the observational process, analyzing data,
and estimating the confidence level. Simulations involving
non-Gaussian and/or statistically anisotropic primary per-
turbations under certain concrete assumptions concerning
their properties are also useful. However, if the CMBhas non-
Gaussian properties of another, as yet unrevealed, nature
differing from the one inherent in the model, the use of the
latter approachmay impose restrictions on our interpretation
of the data.
�We have at our disposal a sole realization of data from

the real CMB, whose characteristics are certainly not known
because the true CMB signal is screened by the galactic
background, smoothed out by the non-Gaussian beam
pattern, and added up with the noise. For any single, even
Gaussian, CMB realization, it is in principle possible to
choose a test that would reveal its `false' non-Gaussianity,
already because, first, observations provide a limited set of
data and, second, these data are taken from the primary
array, which is certain to contain non-Gaussian systematic
errors and contributions from background radiation. The
issue of the correct estimation of the statistical reliability of
peculiarities revealed a posteriori is still under debate.

The prospects for developments along the line of research
discussed in this article are related to enhancement of the
precision of experiments and to an even more accurate
estimation of contamination factors that reduce our depen-
dence on the a priori information in the course of Monte
Carlo simulations. Experiments exhibiting high sensitivity,
such as the Planck mission covering a broad range of
frequencies and having better resolution, will permit check-
ing the results obtained by the WMAP mission and will
probably correct the results of searches for primary non-
Gaussianity.
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