
Abstract. We discuss the fluid state of matter at high tempera-
ture and pressure. We review the existing ways in which the
boundary between a liquid and a quasigas fluid above the critical
point are discussed. We show that the proposed `thermody-
namic' continuation of the boiling line, the `Widom line', exists
as a line near the critical point only, but becomes a bunch of
short lines at a higher temperature. We subsequently propose a
new `dynamic' line separating a liquid and a gas-like fluid. The
dynamic line is related to different types of particle trajectories
and different diffusion mechanisms in liquids and dense gases.
The location of the line on the phase diagram is determined by
the equality of the liquid relaxation time and the minimal period
of transverse acoustic excitations. Crossing the line results in
the disappearance of transverse waves at all frequencies, the

diffusion coefficient acquiring a value close to that at the critical
point, the speed of sound becoming twice the particle thermal
speed, and the specific heat reaching 2kB. In the high-pressure
limit, the temperature on the dynamic line depends on pressure
in the same way as does the melting temperature. In contrast to
the Widom line, the proposed dynamic line separates liquid and
gas-like fluids above the critical point at arbitrarily high pres-
sure and temperature. We propose calling the new dynamic line
the `Frenkel line'.

1. Introduction

Many of the terms in physics are determined not so rigorously
as those used in mathematics. In most cases, the use of
insufficiently rigorous terms and definitions does not lead to
serious difficulties; it is only sufficient that the expressions
that relate various physical quantities be true. At the same
time, in some cases, at a certain stage it is required that the
terminology be refined in order to clarify the picture of a
physical phenomenon.

The term `fluid' is usually utilized to determine a flowable
state of a substance that does not retain its shape, i.e., it is
applicable to both a liquid and a gas. A liquid is a condensed
state of a substance, i.e., in contrast to a gas, it retains its
volume, it has a free surface, and at low temperatures it is
capable of sustaining a negative pressure (uniform tension).
Upon heating in some range of pressures, the liquid under-
goes a first-order phase transition into a gas phase. The curve
of the liquid±gas phase equilibrium on the P ±T plane ends at
a critical point. At pressures and temperatures exceeding the
critical values (P > Pc, T > Tc), the properties of the
substance in the isotherms and isobars change continuously;
the substance in this case is assumed to be in the state of a
supercritical fluid, in which there is no difference between the
gas and the liquid [1]. A supercritical fluid can be considered
as a strongly compressed gas or as a liquid with a reduced
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density (the density of the liquid near the critical point is a
factor of 2±3.5 less than the density of this liquid at low
temperatures and pressures near the triple point). The
viscosity and the diffusion coefficients in a supercritical fluid
occupying the regionnear the critical pointhavevalues thatare
intermediate between those typical of the liquid and the gas.

For most substances, the pressures and temperatures
corresponding to the state of a supercritical fluid are hard to
achieve; therefore, investigations of supercritical fluids were
limited for a long time. In recent decades, however, a true
boom has occurred in the investigation of this exotic state of
substance. From the physical point of view, of most interest is
the P ±T region near the critical point, where the so-called
anomalous behavior is observed, i.e., anomalously strong
dependences of the majority of physical properties on the
temperature and pressure. For metals, the behavior of the
physical properties is complicated by the electron subsystem
and Coulomb interaction effects; in particular, a metal±
insulator transition occur near the critical point [2].

An additional stimulus for investigations of the proper-
ties of fluids in recent years has been the wide industrial
application of `supercritical' technologies. Supercritical fluids
are extremely strong solvents and are widely used for waste
processing, extraction (in chemistry and pharmacology), as
reaction media, etc. [1]. The leader in the industrial applica-
tion of supercritical fluids is carbon dioxide, CO2, since this
compound can relatively easily be transferred to a super-
critical state (Pc � 73 atm, Tc � 31 �C); in addition, CO2 is
inexpensive and nontoxic. Thewide technological application
of supercritical fluids, especially in chemistry and biology, has
led to the necessity of a thorough investigation of the
supercritical state of the substances. The Journal of Super-
critical FluidsÐa journal that is completely devoted to the
study of the properties of fluids and to their applicationÐhas
been issued since 1988. Several thousand papers concerning
this research area have been published. At the same time, it is
not completely clear how, even if not rigorously but at least
constructively, to determine the region on the phase diagram
were a supercritical fluid exists.

2. Supercritical fluid

In standard equilibrium P ±T phase diagrams of substances
there are regions of stability of three aggregate statesÐsolid,
liquid, and gaseousÐseparated by phase boundaries. Most
frequently, the region of supercritical fluid in a schematic
phase diagram is assumed to lie for T > Tc and P > Pc [3]
(Fig. 1a). There are also some other definitions of the field of
existence of the supercritical fluid, e.g., as a region located for
only T > Tc or for only P > Pc, or as a region in which any of
these conditions are fulfilled (T > Tc or P > Pc). In any case,
the line of the first-order phase transition (boiling curve) does
not fall into the region of the supercritical fluid. It is also
unclear where the region of existence of the `true' liquid phase
is located. Sometimes, it is assumed that the regionof the liquid
phase is that part of the phase diagram lying above themelting
curve, where the conditions P < Pc and T < Tc are fulfilled
simultaneously, while the remaining part of the liquid-phase
region located for P > Pc is called undercritical fluid.

Many researchers, naturally, understand the conditional
character of the term `supercritical' fluid and schematically
depict the region of its existence near the critical point
(Fig. 1b). There is a certain reason for such an approach,
since most properties of substances have anomalously strong

temperature and pressure dependences just near the critical
point, in the so-called critical region. For most real sub-
stances, the conditional size of the critical region does not
exceed several dozen percent, as compared to the values of Tc

and Pc. In our opinion, it is more reasonable to call such a
region the near-critical fluid, since the critical behavior of the
properties of substances near the critical point is also
observed for T < Tc and P < Pc.

In reality, such definitions of the region of existence of
supercritical fluid are not only unconstructive but also
frequently lead to wrong conclusions. All these definitions
implicitly suggest that the parameters P and T change along
the isotherms or isobars; in this case, for T > Tc, P > Pc the
gas±liquid transition line is not intersected, i.e., all properties
of the substance vary continuously. At the same time, it is
obvious that for any points on the P ±T plane in the region of
stability of liquid and gaseous phases there are trajectories
connecting these points which both intersect and do not
intersect the line of the phase transition (Fig. 1b). The
schematic representation of the region of stability of the
supercritical fluid in the phase diagram shown in Fig. 1a is
not too constructive, first of all, since the structure and
properties of fluids change far from the critical point quite
smoothly. For example, no difference exists near the melting
curve in the structure and properties of the fluid along the
melting curve on different sides of point A inFig. 1a (the point
of intersection of the melting curve and the T � Tc line). In

Supercritical
êuid

Gas

Liquid

Crystal

A

Critical
point

Triple
point

T � Tc

P � Pc

T
em

p
er
at
u
re

Pressure

a

II

IIII

Near-critical êuid
Gas

Liquid

Crystal

B

C

Triple
pointT

em
p
er
at
u
re

Pressure

b

Figure 1. (a) Traditionally accepted region of supercritical fluid limited by

the critical isotherm and isobar in the crystal±liquid±gas phase diagram.

Point A, which is determined by the intersection of the critical isotherm

and melting curve, is not a physically preferred point in the melting curve.

(b) Region of near-critical fluid in the phase diagram and the illustration of

the well-known fact that between two points in gas and liquid (B and C)

there are always paths with a continuous variation of properties (path I)

and paths that pass through the boiling curve (path II).
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addition, to the right of point A the T � Tc line lies in the
region of stability of the crystalline phase, i.e., for the
supercritical fluid to exist, it is necessary that not only the
condition T > Tc but also the condition T > Tm (where Tm is
the melting point) be fulfilled. In real substances, this point
lies in the region of superhigh pressures (P4Pc); for
example, point A in Fig. 1a for argon lies at P � 60Pc, and
for water atP � 300Pc. Correspondingly, in the isotherms for
T4Tc, the fluid shows no qualitative changes in the structure
and properties when the line P � Pc intersects.

At first glance, the problem concerning the location of the
region of the state of the supercritical fluid in the phase
diagram seems to be forced and purely terminological.
However, this is by no means the case: the problem of the
existence of a conditional boundary between the supercritical
fluid and `true' liquid for P > Pc does exist in reality. This is
related primarily to the fact that the conceptions concerning
the nature of the liquid state changed noticeably to the end of
the 20th century.

In the first half of the 20th century, beginning from the van
der Waals model, approaches in which liquid was considered
as a dense nonideal gas predominated. To a significant extent,
these approaches (although already in a modern mathema-
tical language) serve to date as a basis for the theory of liquids
[4]. At the same time, it has become understood in recent
decades that near themelting point liquids havemuchmore in
common with solids than with gases. The density of liquids is
much closer to that of solids and, in spite of the absence of
long-range order, liquids are characterized by a rather clearly
pronounced short-range order. The zero value of the shear
modulus of liquids, which is responsible for their fluidity,
takes place only at low frequencies. At sufficiently high
frequencies, liquids behave like solids: they have a `solid-like'
spectrum of excitations, moduli of shear elasticity close to
`solid-like' ones, etc. [5±10]. As a result, many physical
quantities (heat capacity, thermal conductivity, electrical
conductivity, etc.) change only slightly upon the melting of a
crystal, in spite of the loss of long-range order. The vitrifica-
tion of liquids upon sufficiently rapid cooling also reflects the
proximity of the solid and liquid states. Glasses at low
temperatures are solids and differ from crystals only in the
absence of long-range order in their structure. The continuous
transition of liquids into glasses with decreasing temperature
indicates the existence of solid-like properties inmelts on small
time scales. Thus, there is a certain `dyarchy' in the physics of
the liquid state: in the majority of first-principles approaches,
liquids are considered as a dense gas with a moderately strong
particle±particle interaction, whereas numerous experimental
facts point to a genetic affinity of the liquid and solid states.
No consistent first-principles theory of such solid-like liquids
has been developed so far; there are only various empirical
approaches [11±13].

A vivid manifestation of the solid-like properties of
liquids was the discovery of phase transformations in melts
[14, 15]. It turned out that substances in a liquid state at
various temperatures and pressures can have radically
different short-range-order structures and, correspondingly,
markedly different properties [14]. Sharp or smeared phase
transformations between the different states (phases) of one
and the same liquid, which are analogous to phase transfor-
mations between different crystalline phases, can occur with
changes in the parameters P and T. Obviously, such a
behavior of liquids agrees poorly with the conception of a
liquid state as that of a condensed structureless gas.

The specificity of the structure of liquid metals, liquid
semiconductors, and network covalent melts was recognized
quite long ago; at the same time, liquid rare gases and simple
molecular liquids had, until recently, been considered as
quasigaseous fluids. However, it has been established in
recent years that these liquids at temperatures close to their
melting points also have a solid-like spectrum of acoustic
excitations in the case of small wavelengths and have a certain
short-range-order structure [16, 17].

In recent decades, regions of superhigh pressures (P4Pc)
and high temperatures (T > Tc) have become accessible for
experimental investigations (i.e., the regions of stability of the
liquid state to the right of point A along the melting curve in
Fig. 1a). The corresponding pressures for liquid rare gases
and simple molecular substances are on the order of several
kilobars; for metals and covalent substances, they are several
hundred kilobars. For many substances, the transformations
between different liquid modifications occur precisely in such
a region. This is the case, for instance, for liquid phosphorus
[18, 19]; therefore, the authors of paper [19] supposed that
the phase transformation in liquid phosphorus is a transi-
tion between a supercritical molecular fluid and the liquid
high-pressure phase of phosphorus. In reality, the phase
transition in liquid phosphorus near the melting curve
occurs in the region that is quite far from the critical point
(P�1 GPa � 120Pc, and T � 1300 K � 1:3Tc). It is obvious
that the state of liquid phosphorus at these parameters hardly
resembles the state of a supercritical fluid near the critical
point. It was, for example, established that the structure of the
liquid argon near the melting curve does not change qualita-
tively with increasing temperature up to T � 4Tc, and to
pressures P � 103Pc [17], which means that the consideration
of the state of liquid phosphorus forP > 100Pc andT > Tc as
a supercritical fluid thatwas suggested in paper [19] appears to
be wrong.

In the case of an isobaric increase in temperature at
pressures exceeding the critical value, the density of a liquid
decreases, and at sufficiently high temperatures the liquid
becomes similar to a dense structureless gas. A further heating
leads in real substances to their partial ionization and a
transition into a plasma state at temperatures of 104ÿ106 K,
whereas an increase in the liquid temperature is not formally
restricted in the case of model systems of particles. It can be
supposed that in the PÿT and rÿT phase diagrams (r is the
density of the substance) a line (or a narrow band) should be
observed that separates the state of the `true' liquid with a
solid-like spectrumof excitations andwith clearly pronounced
short-range-order peculiarities from the state of a super-
critical fluid with a random-packing structure. Therefore,
the question concerning the place of the quasigaseous super-
critical fluid in the phase diagram, including its place at
superhigh pressures (P4Pc), is quite reasonable.

3. `Thermodynamic' extrapolation
of the boiling curve: Widom line

3.1 Hypercritical `ridges' of thermodynamic anomalies
A rather obvious but, as we show below, not too constructive
approach to the solution to this problem is the consideration
of the lines of thermodynamic anomalies in the hypercritical
region. Indeed, an anomalous behavior of most of the
thermodynamic characteristics is observed at temperatures
and pressures exceeding critical values.
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The correlation length x for thermodynamic fluctuations
diverges at the critical point [20]. Near the critical point, a
critical behavior of physical quantities that are determined by
the second derivatives of the Gibbs thermodynamic potential
is observed; for example, the compressibility coefficient bT,
thermal expansion coefficient aP, and heat capacity cP go
through maxima upon varying pressure or temperature. All
these quantities near the critical point are proportional to a
power function of the correlation length x, and the positions
of their maxima on the PÿT plane are close to each other [20,
21]. This is also the case for the density fluctuations
zT�h�DN �2i=hN i� �qr=qP�T, where �qr=qP�T is the deriva-
tive of the density with respect to pressure at a constant
temperature.

Thus, there is a whole set of `lines of maxima' of various
thermodynamic quantities in the hypercritical region, and all
these lines merge asymptotically into a single line when
approaching the critical point. Each of these lines can be
considered as a continuation of the line of liquid±gas phase
equilibrium. Smearing of the maxima of each of these
quantities and the maxima's diminishing in height form
something resembling a mountain ridge; so, these lines of
maxima were called `ridges' [22±24].

Information on the positions of ridges on the PÿT plane
is quite important; in particular, the positions of the ridges
determine the maxima of such important technological
characteristics as the dissolving capacity of a supercritical
fluid, and the rates of chemical reactions in the fluid, etc. [1].
It turned out that the experimentally determined lines of
ridges are close to isochore and exhibit a moderate decrease
in density with increasing temperature; the divergence
between the lines of the different ridges and the isochore
increases when moving away from the critical point [22±24].
Most investigations of the hypercritical region have been
focused on studies of ridges connected with the density
fluctuations [22].

Stanley [21] suggested that the line of the maxima of the
correlation length of fluctuations in the isotherms be called a
`Widom line'. Since the lines of maxima near the critical point
merge in fact into a single line, it was suggested that this name
be used in a wider sense, for designating lines of maxima of
any quantities that are determined by the second derivatives
of the Gibbs thermodynamic potential. It should be noted
that Benjamin Widom himself does not consider the lines of
hypercritical anomalies as some special lines. In the literature,
a Fisher±Widom line, which separates two modes of attenua-
tion of spatial correlations in liquids [25], and the symmetry
line in the lattice model of the liquid [26] are encountered
more frequently. Nevertheless, since Widom contributed so
much to the development of the theory of critical phenomena,
Stanley suggested that the line of maxima of the correlation
length be called the Widom line in his honor.

Stanley and colleagues [27, 29, 30] and Artemenko et al.
[28] also noted that similar lines should exist in the case of
liquid±liquid transformation if such a transformation is a
first-order phase transition ending in a critical point at high
temperatures. Notice that the `thermodynamic' continuations
of the lines of liquid±liquid transitions are quite reasonable. It
is precisely the Widom lines for the liquid±liquid transforma-
tions that correspond to the maximum of fluctuations
between two types of short-range orders. The authors of
Ref. [21] supposed that the dynamics of particles in liquids
should also change qualitatively near the Widom line. It
should be noted that such lines will also occur as extensions

of lines of isomorphic transitions in crystals into the
hypercritical region, for example, for the gÿa transition in
crystalline Ce.

Computer simulations with the use of various interaction
potentials between particles make it possible to establish that
we may speak of a sufficiently definite Widom line for the
liquid±liquid transition only in the case of temperatures and
pressures that exceed the critical values by nomore than a few
dozen percent [27±30]. At greater distances from the critical
point, the ridges for different quantities diverge and can be
observed both experimentally and in computer simulation at
temperatures of up to �1:5ÿ2�Tc. A systematic investigation
of the behavior of the maxima of various quantities for
liquid±gas transitions in the hypercritical region was per-
formed in our recent work [31, 32].

3.2 Widom lines for a van der Waals fluid
and for a fluid of Lennard-Jones particles
One of the simplest and most known equations of state for
fluids is the van der Waals equation, which in the reduced
variables Tr � T=Tc, Pr � P=Pc, and rr � r=rc is written
down as

�Pr � 3r 2
r ��3ÿ rr� � 8Trrr : �1�

The properties of the van der Waals equation have been
studied quite well: analytical expressions have been obtained
in this model for the majority of the thermodynamic
characteristics of liquids and gases in the region below the
critical point [33]. At the same time, as strange as this can
seem, the behavior of the van der Waals model of the fluid in
the hypercritical region of the P and T parameters has been
studied insufficiently. In terms of the van der Waals model, it
is not a very complex problem to obtain analytical expres-
sions for the lines of hypercritical anomalies [32]. Earlier,
Nishikawa et al. [22] analyzed the behavior of the line of
maxima of density fluctuations:


DN 2
�

hN i � kBT

�
qr
qT

�
T

� zT :

It has been established that the position of the line of maxima
of the density fluctuations on the isotherms satisfies the
equation

rr � 3ÿ2T 1=3
r ; �2�

and that this line ends at the zero density and zero pressure at
T � 3:375Tc (Fig. 2). In Ref. [22], an erroneous assumption
was made that the maxima of other thermodynamic quan-
tities on the isotherms should lie approximately on the same
line. In reality, as will be shown below, all the ridges diverge
already at an insignificant distance from the critical point.

The isothermal compressibility in the van der Waals
model is written as

bT � rÿ1
�
qr
qP

�
T

� ÿ �rr ÿ 3�2
6rr
�ÿ 4Tr � rr�rr ÿ 3�2� :

The line of maxima of the compressibility bT obeys the
equation

Tr � rr�3ÿ rr�3
2�3� rr�

�3�

1064 V V Brazhkin, A G Lyapin, V N Ryzhov, K Trachenko, Yu D Fomin, E N Tsiok Physics ±Uspekhi 55 (11)



and ends at its own `critical' point: it disappears at
Tr � 1:1556, Pr � 1:2848, and rr � 0:64575 (see Fig. 2). The
line of maxima of the heat capacity cP coincides with the
isochore rr � 1 and in the (P, T ) coordinates is described by
the equation

Tr � 3

4
� 1

4
Pr ; �4�

thus being a direct continuation of the line of the gas±liquid
equilibrium [33] (see Fig. 2). The thermal expansion coeffi-
cient is written down as

aP � ÿ 1

r

�
qr
qT

�
P

� 4�rr ÿ 3�
3rr�rr ÿ 3�2 ÿ 12Tr

:

The line of maxima of the thermal expansion coefficient a
corresponds to the equation

Tr � �3ÿ 2rr��3ÿ rr�2
4

: �5�

Similar to the line of maxima of density fluctuations, this line
ends at zero pressure and zero density at T � 6:75Tc (see
Fig. 2).

Although all lines of maxima are described by different
equations, they are close to one another in the vicinity of a
critical point. For estimations, all lines of extrema can be

assumed to be coincident if the values of the temperature in
lines at the same pressure differ by no more than 1%, which
approximately corresponds to the accuracy of measurements
of the corresponding quantities and to the errors in the results
of numerical simulations. For a van der Waals fluid, the
extrema of different thermodynamic quantities merge, in fact,
into a single Widom line only for T < 1:07Tc and P < 1:25Pc

(Fig. 2a). Notice that the analytical expressions that were
obtained for the lines of hypercritical anomalies in the van der
Waals model are of independent interest as well [32].

Although for the van der Waals fluid the lines of maxima
of the density fluctuations and of the maxima of the thermal
expansion coefficient extend formally up to zero pressures,
and the line of maxima of the heat capacity goes formally into
the region of infinite temperatures, the amplitudes of all
maxima fall off quite rapidly upon moving away from the
critical point (Figs 3, 4). As a conditional criterion for the
actual disappearance of a maximum, it is suitable to consider
the ratio of the corresponding thermodynamic quantity in the
maximum to the magnitude of this quantity at a density that
differs by 10% from the density in the maximum. If this ratio
is less than 1.01 (the excess of the maximum over the
background is less than 1%), the ridge can be assumed to be
actually smeared. When using this criterion, the lines of all
maxima, in fact, end at relatively small temperatures and
pressures (see Fig. 2):

Tr � 1:59 ; Pr � 2:78 ; rr � 0:83 for aP ;

Tr � 1:44 ; Pr � 2:13 ; rr � 0:74 for zT ;

Tr � 1:73 ; Pr � 3:9 ; rr � 1 for cP :
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Figure 2. (a)PÿT and (b) rÿT phase diagrams for a van derWaals liquid,

which display theoretically calculated lines of maxima of specific heat cP
(dashed line), thermal expansion coefficient aP (dashed±dotted line),

thermal fluctuations zT (dotted line), and compressibility bT (thin solid

line). The thick solid line corresponds to the liquid±gas boundary. The

insets show enlarged parts of Figs 2a and 2b, where the corresponding lines

end at the points at which the quantity changes in the isothermswithin 1%.

The arrow in the inset to Fig. 2a indicates the point below which all four

lines of the maxima converge (with an accuracy not worse than 1%) into a

single Widom line.
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Figure 3. Dependence of the thermal expansion coefficient aP on (a) the

pressure, and (b) the density for a van der Waals system at temperatures

T=Tc � 1:01 (solid line), T=Tc � 1:05 (dashed line), and T=Tc � 1:1
(dashed±dotted line).
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It is interesting that in the van derWaalsmodel the lines of
maxima of thermodynamic quantities correspond to a
decrease in the density with increasing temperature (Fig. 2b),
and only the line of maxima of the specific heat cP lies on the
isochore. According to paper [22], the physical cause of the
fact that the lines of maxima of density fluctuations and of
maxima of the correlation length x correspond to a decrease
in the density is related to an increase in the effective volume
`captured' by the molecules with increasing temperature.

Let us now consider the lines of maxima of different
physical quantities in the hypercritical region for a system of
particles with a Lennard-Jones interaction potential

U�r� � Arÿ12 ÿ Brÿ6 :

It is well known that the Lennard-Jones potential well
reproduces the behavior of many molecular substances and
rare gases. The thermodynamic and kinetic properties of a
system of Lennard-Jones particles have been studied using
computer simulation in thousands of papers; however, a
systematic analysis of the behavior of thermodynamic
quantities in the hypercritical region has been performed
only recently [31, 32].

Thebehavior of themaximaofbT,aP, cP, and zT quantities
has been calculated (see Appendix). The results are summar-
ized in Fig. 5. With increasing temperature and pressure, the
maxima of all these quantities decrease rapidly and become
smeared (Figs 6, 7). The criterion of the almost complete
disappearance of the maxima was chosen in the same way as
earlier for the van der Waals model. Figure 5a also shows the
experimental positions of the maxima for cP and zT for argon
andneon [34]. ThemaximaofbT, aP, cP, and zT are tracedwith
increasing temperature up toTr < �2ÿ2:5�. The temperatures

of the `ends' of the lines of maxima are� 1:1Tc for bT ,� 2Tc

for zT, � 2:8Tc for aP, and � 2:5Tc for cP.
It is seen from Fig. 5a that the lines corresponding to the

hypercritical maxima for argon and neon agree rather well
with the results of numerical simulations. Qualitatively, the
behavior of the lines of hypercritical anomalies is similar to
that observed for the van der Waals model. Most lines
correspond to a decrease in the density with increasing
temperature, and only the line of maxima of the heat capacity
cP lies close to the isochore and somewhat deviates toward
greater densities for Tr > 2.

Summing up, it may be concluded that the thermody-
namic continuation of the line of gas±liquid phase equili-
brium represents a single line at a distance from the critical
point equal to only several dozen percent in temperature and
pressure, and upon moving further from the critical point it
transforms into a rapidly expanding bunch of lines, which
adjoins the isochore on the side of low densities and ends at
Tr � 2ÿ2:5 and Pr � 10ÿ15.

The quantities zT and bT are related to the definition of the
correlation length x [20]:�

R

x

�2

� �rkBTbT�ÿ1 ;

where R is the Debye attenuation length estimated as

R 2 �
�
dr r 2C2�r;T � ;
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and C2�r;T � is the direct correlation function. It is hardly
possible to restore the position of the line of maxima of the
correlation length even in terms of the van der Waals model.
Usually, it is assumed that the isotherms of the correlation
length behave like those of the density fluctuations [22]. The
correlation length, which is related to density fluctuations, is
determined from the expression [20]
ÿ

r�0� ÿ r
�ÿ
r�r� ÿ r

�� � exp �ÿr=x�
r

: �6�
The complicated dependence of x on the volume cannot be

obtained analytically; it strongly depends on the approxima-
tions accepted. The position of themaximumof the quantity x
in the isotherm depending on the volume is even more
sensitive to the approximations involved and to the proce-
dure of achieving self-consistency. In any case, the line of
maxima of x lies inside the bunch of the other lines and, in
fact, ends at Tr � 2.

Thus, the idea of the `thermodynamic' extension of the
liquid±gas equilibrium curve with the aim of conditionally
separating a `true' liquid from a supercritical fluid at super-
high pressures (P4Pc) does not prove its value. The
thermodynamic continuation in reality represents a rapidly
expanding region ending at P � �10ÿ15�Pc. In fact, this
bunch of lines lies inside the region of `near-critical' fluid
shown in Fig. 1b.

Recently, Simeoni et al. [35] have undertaken an attempt
to extrapolate the Widom lines for argon into the region of
superhigh pressures on the basis of experimental data on the
positions of the maximum of heat capacity cP in the
isotherms. As was already said above, the maxima of cP
actually become completely smeared for Tr > 2:5, and the
allowance for such conditional maxima performed in the
range of 2:5 < Tr < 3:1made in Ref. [35] is incorrect. A slight
deviation of the line of maxima of cP into the region of greater
densities at high temperatures for both a Lennard-Jones
liquid and for real fluids (Ar, Ne; see Fig. 5a) is related to
the fact that far in the hypercritical region the quantity cP
itself increases with increasing pressure (see inset to Fig. 7a).
As a result, the position of a smeared maximum of a small
height is shifted effectively into the region of higher densities
and pressures.

In any case, the extrapolation of this curve into the region
of superhigh pressures (Pr � 100) that was performed in
paper [35] makes no sense, since for Pr > 20 there are no
thermodynamic anomalies, and the Widom line (or bunch of
lines) ends there.

3.3 Batschinski separatrix
Concluding the consideration of special lines of `thermo-
dynamic origin' in the phase diagram of fluids, it is necessary
to mention one more important curve, namely, the
Batschinski separatrix, which has recently frequently been
called the Zeno line [36±38]. This line corresponds to the
equation

PV � RT ; �7�

i.e., to the condition of the formal coincidence of the equation
of state of a fluid with the equation of state of an ideal gas.
A I Batschinski [36] was first to show that in terms of the van
der Waals model this line is straight in the (r;T ) coordinates.
From the physical point of view, moving along this line
reflects the formal compensation of the attraction and
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repulsion potentials. In most of later work, the behavior of
this line was analyzed only in the (r;T ) coordinates for model
and real systems [37±39]. At the same time, it is of interest to
consider the behavior of not only the Zeno line but also other
lines that are determined by the condition PV=�RT ��const,
both on the rÿT and PÿT planes [32].

The equations for the lines defined by the condition
PV=�RT � � const for the van derWaals model have the form

Tr � 3rr�3ÿ rr�
8ÿ k�3ÿ rr�

: �8�

Here, it should be taken into account that the condition
PV=�RT � � const in the given variables is written as
Pr=�rrTr� � k, and the condition PV=�RT � � 1 corresponds
to k � 8=3.

Figure 8 displays lines corresponding to the condition
PV=�RT � � const for a van der Waals fluid, and for a model
system of particles interacting via a Lennard-Jones potential.
The behavior of these lines for PV=�RT � < 1 and for
PV=�RT � > 1 is quite different. The line that is determined
by Eqn (7) separates two regions of the fluid: the `soft' fluid
with a low density, in which the condition PV=�RT � < 1 is
fulfilled, and a more `rigid' fluid with an enhanced density, in
which the inequality PV=�RT � > 1 is kept (see Fig. 8);
therefore, the line PV � RT can be called a separatrix. The
Batschinski separatrix is the only line from the given family of
lines which ends at the zero values of the density and pressure,
i.e., it is `sewn' to that in the ideal gas model. Although the
Batschinski separatrix is of independent interest and at the
near-critical temperatures qualitatively separates fluid with a

low (quasigas-like) density from that with an enhanced
(liquid-like) density, it cannot serve as a conditional bound-
ary between a liquid and a supercritical fluid at superhigh
pressures. The Batschinski separatrix for a van der Waals
fluid ends at T � 3:375Tc, i.e., at the same temperature as the
line of maxima of density fluctuations does. This coincidence
is, of course, not accidental; it is related to the circumstance
that the line of maxima of density fluctuations corresponds to
the zero second derivative of the density with respect to
pressure. For an ideal gas, this derivative is equal to zero at
all temperatures; therefore, the line of maxima of density
fluctuations at the zero pressure is also sewn to with the
equation of state for an ideal gas: PV � RT. The coincidence
of the Batschinski separatrix with the line of maxima of
density fluctuations at zero pressure will naturally take place
for all fluids.

4. `Dynamic' separation between a liquid
and a fluid: Frenkel lines

4.1 Rigid liquids and soft fluids
Thus, to distinguish a `true' solid-like liquid from a quasigas-
like fluid at superhigh pressures, other criteria are necessary.

It turns out that, as a possible criterion, it is appropriate to
consider the difference in the dynamic rather than thermo-
dynamic characteristics of the liquid and supercritical fluid.
We think that the most important point in the context of this
review is that the types of trajectories of particle motion and
the mechanisms of diffusion in liquids and gases are different.
In gases, the kinetic energy of particles significantly exceeds
the interaction energy between them, and the diffusion is
determined by the free motion of particles and processes of
interparticle collisions (ballistic collision-dominated regime).
In liquids, the energy of interaction between the particles is
relatively large at low temperatures and the diffusion process,
just as in crystals and glasses, is determined by activated
jumps of atoms and molecules (vibrational hopping trans-
port). The trajectories of particle motion in liquids and gases
thus have a qualitatively different character. In the time
intervals between the jumps, the particle in fact vibrates near
a local equilibrium position. At a temperature close to the
melting point and in the supercooled liquid state, the
characteristic time between particle jumps for distances
comparable with interparticle distances (the relaxation time
t � in a liquid) significantly exceeds the time of the shortest
period of particle vibrations, t0 � 2p=o0, where o0 is the
maximum frequency of acoustic excitations (on the order of
theDebye frequency).This factwas first notedbyYa IFrenkel
more than 80 years ago [11]. In recent decades, the approach
in which the liquid is considered as an almost harmonic
oscillating system with rather rare particle jumps has been
successfully applied to the description of the thermodynamic
and dynamic properties of liquids [12, 13].

As temperature increases, the relaxation time in a liquid
decreases and, when it becomes comparable with the period
of particle vibrations, the possibility of the time-related
separation of the behavior of particles into vibrational and
hopping already disappears.When t � < t0, a transition to the
ballistic collision-dominated regime of diffusion occurs.
Therefore, we can suppose that the condition

t � � t0 ; or
t �

t0
� 1 ; �9�
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corresponds to a crossover from the solid-like to quasigas-like
regime of diffusion. It is precisely condition (9) that can serve
as a constructive definition of a dynamic line separating a
solid-like rigid liquid and a quasigas soft fluid at superhigh
pressures [40, 41].

The definition of t � as the average time necessary for a
particle to become displaced by an average interatomic
distance extends the definition of the relaxation time in
liquidÐ in the spirit of J C Maxwell [42] and Ya I Frenkel
[11]Ð to the quasigas regime of diffusion, in which no
vibrational motion of a particle between the jumps occurs.

The characteristic trajectories of particle motion for
various regimes are displayed in Fig. 9. Naturally, the
transition from the vibrational-hopping mechanism of
particle motion in liquids to the collisional one is rather
smeared in temperature; in reality, a smooth crossover
occurs from one regime to the other. However, as is shown
below, condition (9) not only determines the change in the
type of trajectories of the particle motion, but also corre-
sponds to a qualitative change in the elastic, dynamic, and
thermodynamic characteristics of the liquid.

It should be noted that the following formula is frequently
used for the estimation of t �:

t � � t0 exp

�
Eact

kBT

�
; �10�

where Eact is the activation energy for a particle jump, and kB
is the Boltzmann constant. According to formula (10), the
inequality t � > t0 is valid at finite values ofEact and arbitrary
temperatures. However, at high temperatures, when the
magnitude of kBT becomes significantly larger than the
height Eact of the barrier for the particle jump, expression
(10) is already inapplicable. Note that the activation energy is
determined by the potential energy of particle interaction;
therefore, the transition to the quasigas regime of diffusion
should occur when the kinetic thermal energy K of particles
becomes comparable with the potential energy of their
interaction:

3kBT

2
� Epot : �11�

For most substances, the kinetic to potential energy ratio
K=Epot at the melting temperature is substantially less than
unity. The particles, in this case, reside mainly in the region of
the action of the potential, and upon melting relatively long-
lived regions with a clearly pronounced short-range order are
retained. We will return to this point in Section 4.7.

As was noted earlier, a liquid at temperatures close to the
melting point has a finite value of the shear modulus and a
solid-like oscillation spectrum at high frequencies [5±10, 43,
44]. Transverse-phonon type oscillations exist in liquids at
frequencies exceeding the value of the inverse relaxation time:
o > o � � 2p=t �. Certainly, these oscillations are strongly
anharmonic and formally have a high damping coefficient.
When the relaxation time becomes comparable to the
minimum time t0 of vibrations, this condition cannot be
fulfilled, since only frequencies o < o0 are possible in
liquids, and even the most short-wavelength transverse
oscillations are lost from the oscillation spectrum of liquids
for t � < t0. When t � < t0, the shear modulus of the
substance is equal to zero at all frequencies o < o0 possible
in liquids. At higher frequencies, o > 2p=t � > o0, the shear
modulus will formally remain finite, but the natural trans-
verse vibrations, which are possible only at frequencies
o < o0, will be absent in the fluid. It should be noted that
the zero value of the static shear modulus is frequently
considered as the main criterion for the difference between the
liquid state and the solid state. The zero value of the shear
modulus, but now in the entire spectrum of possible frequencies,
is the main feature that distinguishes the soft fluid from the rigid
liquid.

Condition (9) indicates the proximity of the values of t �

and t0. In reality, there is a rather wide distribution of both
quantities, and the case at hand is an approximate equality
(to an accuracy of a few dozen percent) of the average values
of t � and t0. If a particle undergoes only one±two vibrations
between the jumps, it is difficult to correctly determine the
magnitude of t0, and the resolving of motion into vibrational
and hopping regimes becomes impossible. At the same time,
the spectrum of natural excitations of the liquid is a well-
definite property, and the disappearance of all excitations
like transverse acoustic vibrations from this spectrum occurs
in a narrow temperature range. As a result, we can quite
reasonably speak of a dynamic line that separates the two
mechanisms of particle motion. The minimum period of
vibrations t0 and the change in the regime of particle motion
can be determined directly from a visual analysis of
trajectories obtained by computer modeling (see Fig. 9). At
the same time, more reliable results can be obtained based on
an analysis of autocorrelation functions of the particle

40

P
ar
ti
cl
e
d
is
p
la
ce
m
en
t

P
ar
ti
cl
e
d
is
p
la
ce
m
en
t

r � 1, T � 1.325

r � 0.5, T � 4.5

r � 1, T � 1.325

r � 0.5, T � 4.5

r � 2, T � 70

r � 1, T � 100

r � 2, T � 70

r � 1, T � 100

30

20

10

4

2

0

ÿ2

ÿ1.4
ÿ1.6
ÿ1.8
ÿ2.0
ÿ2.2

3,5

3,0

8

6

20

18

16

14

0 2 4 6 8 10 12
Time

2 3 4 5

2 3 4 5 6

11.2 11.6

1,0 1,5

Time Time

a

b c

d e

Figure 9. (a) Examples of the particle trajectories (coordinate x) for a

Lennard-Jones liquid under various conditions. (b±e) Enlarged fragments

outlined in figure a. In the case of (b) and (c), vibrational motion

dominates in the particle motion; (d) and (e) correspond to predomi-

nantly collisional motion of particles.

November 2012 Where is the supercritical êuid on the phase diagram? 1069



motion:

Fs�q; t� � 1

N

�XN
j�1

exp
h
iq
ÿ
rj�t� ÿ rj�0�

�i�
;

where rj is the radius of the jth particle.
Usually, these functions are used to analyze particle

motion in viscous supercooled liquids in a state close to the
vitreous state [45, 46]. However, a thorough analysis shows
that the ballistic, vibrational, and collisional mechanisms of a
particle motion all manifest themselves in the behavior of
given correlation functions [47]. Figure 10 displays the
evolution of the correlation functions for a Lennard-Jones
liquid with increasing temperature along isochores. It is seen
that the second derivatives of functions qualitatively change
their behavior with the change in the dynamic regime of
particle motion.

A phase transition, including that of a dynamic type, is, as
a rule, accompanied by the divergence of some quantity at the
point of transformation. Condition (9) determines a cross-
over in the dynamic behavior of the system. As a more
rigorous criterion of the dynamic line, an analogy with
percolation transitions can be used. We will discuss here the
high-temperature state of fluid. Let t � be the time of the
displacement of a given particle by an average interatomic
distance. If the projection of the momentum of the particle
onto the vector of its displacement changes sign at least once
in this time period, such a particle will be considered to be
vibrating. It is obvious that such particles will exist even in the
state of a rarefied gas. The fraction of such particles grows
with decreasing temperature, and at a certain temperature an
infinite percolation cluster extending over the entire fluid

consisting of vibrating particles arises. It can be assumed that
it is precisely at this temperature that high-frequency
transverse excitations arise in the excitation spectrum of the
fluid.

4.2 `Fast' sound and phase transformations
in rigid liquids
In many liquids, a positive dispersion of acoustic excitations
is observedÐan increase in the sound velocity with decreas-
ing wavelength. This phenomenon of positive dispersion,
which is sometimes called fast sound or high-frequency
sound [10, 16, 35, 48], is related precisely to the crystal-like
behavior of liquids at high frequencies. Ya IFrenkel predicted
that the velocity of longitudinal sound in liquids at frequen-
cies o > o � � 2p=t � should increase from �B=r�1=2 to
��B� 4=3G�=r�1=2 (where B is the compressibility modulus
of the liquid, and G is the shear modulus), since at high
frequencies the shear modulus of liquids is nonzero [11]. For
viscous liquids, this phenomenon was revealed rather long
ago [6, 7]. Later on, a more rigorous theoretical basis was
constructed for the description of this behavior, which was
based on the formalism of `memory functions' and the theory
of coupled modes [43, 44, 49, 50]. Notice that the loss of the
`high-frequency sound' can also be revealed from an analysis
of correlation functions of particle motion (see Fig. 10). It is
obvious that the dynamic line determined by condition (9)
establishes the upper bound of temperatures at which the
phenomenon of fast sound can be observed.

For t �4 t0, a clearly pronounced short-range order exists
around each atom or molecule of the liquid in a time
corresponding to many particle vibrations; when t � < t0,
only random packing of particles is possible in liquids. It is
precisely liquids with a definite short-range order that can
undergo phase transformations under the effect of changes in
pressure and temperature [14]. When describing the behavior
of such liquids, it is insufficient to introduce one order
parameter (density); it is also necessary to consider the local
structure of the short-range order in the melt. At the same
time, a quasigas-like fluid with a random packing of particles,
just like a gas, is unambiguously characterized by the density.
It is obvious that the phase transformations in liquids with a
change in the type of short-range order can occur only at
temperatures that are substantially lower than the dynamic
line determined by condition (9).

4.3 Viscosity and diffusion in liquids and fluids
As follows from an analysis of data for various substances,
condition (9) is fulfilled qualitatively near the critical point. In
addition, it is known that liquids lose their solid-like
vibrational spectrum in the vicinity of the critical point; a
transition to a ballistic collisional type of particle motion is
observed [51, 52]. The viscosity and the diffusion coefficient
near the critical point have finite values, in contrast to the
majority of other thermodynamic characteristics. It is known
that all supercritical fluids possess close values of the
diffusion coefficient (D � 10ÿ8 m2 sÿ1) and close values of
viscosity [lying in the narrow range of Z � �10ÿ5ÿ10ÿ4� Pa s]
near the critical point. These values are intermediate between
those characteristic of gases and liquids at temperatures close
to the melting point. The characteristic values of the diffusion
coefficient near the critical point (e.g., D � 2� 10ÿ8 m2 sÿ1

for argon) are just the ones corresponding to the times of
atomic jumps t �, which are comparable to the time t0 of a
single atomic vibration. In this case, the diffusion root-mean-
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square displacement of a particle is hx 2i1=2 � 1 A
�

at
t � 10ÿ12 s.

The relaxation time t � in this context can be treated as the
average time of a jump to a distance equal to the interparticle
spacing; consequently, this time t � is related to the corre-
sponding diffusion coefficient D for liquid as

t � � a 2

6D
;

where a is the average shortest interparticle distance. Then,
condition (9) can be rewritten as

D � a 2

6t0
: �12�

At moderate pressures P < �5ÿ10�Pc, the compression
of the fluid in the region of a soft fluid corresponding to the
quasigas density (to the left from the Batschinski line) mainly
occurs due to a decrease in the `free' volume, and t0 changes
only slightly. As the pressure increases to 102Pc, the
magnitude of t0 changes by no more than several dozen
percent, whereas the diffusion coefficient changes in the range
from the melting point to the crossover temperature by
several orders of magnitude (5±10 orders of magnitude for
viscous liquids, and 1±2 orders for liquid rare gases). The
magnitude of a 2 also changes insignificantly in the given
range of pressures; in addition, both quantities, t0 and a 2,
decrease with increasing pressure, i.e., the ratio a 2=t0 changes
to an even smaller extent. As a result, we can choose in the
initial range of pressures the line of the constant value of the
diffusion coefficient (D � const) as the conditional line
separating a rigid liquid from a soft fluid. If we choose as D
the magnitude of the diffusion coefficient in the critical point,
Dc, the line determined by the condition

D � Dc �13�

will represent the dynamic continuation of the curve of the
liquid±gas equilibrium. Note that the condition of constant
viscosity, in contrast to the condition of constant diffusion,
cannot be used as an approximation for the line of crossover
t � � t0, since the viscosity not only is inversely proportional
to the diffusion coefficient, but also is proportional to
temperature and rapidly increases with compression along
the line of constant diffusion. As a result, the lines of constant
viscosity move with increasing temperature into the region of
smaller densities, and at sufficiently high temperatures they
even extend into the region of small (up to zero) pressures.

Naturally, the determination of the line of dynamic
continuation of the boiling line based on condition (13) is
only approximate. First, the condition t � � t0 corresponds to
a sufficiently extended crossover, and the relation of the
beginning of the line to the critical point is arbitrary.
Second, we cannot neglect the change in the ratio a 2=t0 in
the case of significant compression.

It is important to note that the dynamic line corre-
sponds to a qualitative change in the temperature depen-
dences of the diffusion coefficient and viscosity. Indeed, we
have t � � exp �Eact=kBT � at low temperatures; consequently,
D � exp �ÿEact=kBT �. At the same time, at high tempera-
tures t � � a=Vth � 1=T 1=2, where Vth is the thermal velocity
of particles, and for a rarefied gasD � T 1=2, while for a dense
gas D � T a, where a is an index (close to 1/2) weakly

changing with temperature [53]. Thus, the exponential
temperature dependence of the diffusion coefficient near the
dynamic line should be replaced by a power law. The viscosity
at low temperatures also depends on temperature exponen-
tially: Z � exp �Eact=kBT �. This follows from both the
Stokes±Einstein relationship Z � T=D, and the Maxwell
relationship Z � G1t �, where G1 is the high-frequency limit
of the shear modulus, whose value only weakly changes with
temperature. At high temperatures, we have for the viscosity
the relationship Z � T b, where b is a quantity close to 1/2.
This follows both from the Stokes±Einstein relationship and
from the Maxwell relationship with allowance made for the
fact that G1 � T in the high-temperature limit [54]. Conse-
quently, the exponential decrease in the viscosity should be
replaced near the dynamic line by a power-law dependence
with increasing temperature.

Notice in conclusion of this section that a similar behavior
should be characteristic of the thermal conductivity: the
decrease in the thermal conductivity with increasing tempera-
ture in a rigid liquid should be replaced by its increase upon
further heating in the range of the soft fluid.

4.4 Sound velocity and the thermal velocity of particles
At P � 102Pc, the density reaches solid-like values, r � 3rc,
in the line of the constant magnitude of the diffusion
coefficient. The change of t0 upon further compression can
be estimated in terms of the Gr�uneisen model, according to
which the Debye frequency increases with increasing density
aso0 � rg, where g is the Gr�uneisen constant [55]. In the case
of liquids, one can introduce the Gr�uneisen pseudoconstant
[55]. For solids, the typical values are g � 1ÿ3. For such
fluids as molecular liquids and liquid rare gases, g � 2ÿ 2:5
[55, 56]. Taking into account that a 2 � rÿ2=3, a weak increase
in the diffusion coefficient should be observed in the dynamic
line for these liquids at very high pressures with increasing
pressure and density:

D � r 1:3ÿ1:8 :

Since the values of the Gr�uneisen pseudoconstant at
superhigh pressures are unknown for most melts, we
estimate the change in t0 upon compression in another way.
To this end, we consider the qualitative difference in the
character of particle motion in a liquid and in a quasigas
fluid. In a liquid with a solid-like spectrum of vibrations, in
the Debye approximation we haveo0 � 2p=t0 � Vsk0, where
Vs is the sound velocity in liquid, and k0 is themaximum value
of the effective wave vector (k0 � p=a). Consequently,
t0 � 2p=o0 � 2a=Vs. On the other hand, in the ballistic
regime of motion in the high-temperature limit the displace-
ment of a particle by a distance a in fact corresponds to a
single jump and occurs in a time t � � a=Vth, where Vth is the
thermal velocity of particles. Thus, condition (9) for the
crossover from the vibrational to ballistic regimes can be
written as 2a=Vs � a=Vth, or

Vs � 2Vth : �14�

The requirement that the thermal velocity of particles
achieve half the velocity of sound in a condensed medium as a
condition for the change in the regime of particle motion is
quite reasonable from the physical point of view. The
numerical factor 2 arises due to the fact that for most
shortwavelength excitations the neighboring particles move
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in antiphase, and their relative thermal velocity is equal to
the sound velocity. In the gas phase, these two velocities
are not independent, since the propagation of sound is by
itself determined by the thermal motion of particles and
depends only on temperature: Vth � �3kBT=m�1=2 and Vs �
�nkBT=m�1=2, where n is the index of the gas adiabat (n � 5=3
for a monatomic gas, and n � 7=5 for a diatomic gas), and m
is the mass of the particles. At the same time, the propagation
of sound in a dense fluid is mainly determined by the
interaction between the particles, whereas the sound velocity
is determined by the high-frequency compression and shear
moduli of the fluid and its density. Along the isochores,
the moduli, as a rule, change insignificantly [34]; conse-
quently, the sound velocities in the isochores also only
weakly depend on temperature. At the same time, the
thermal velocity of a classical particle decreases to zero with
decreasing temperature, whereas at high temperatures it
increases unrestrictedly. As a result, for each liquid at any
density there is a temperature range in which the sound
velocity and the thermal velocity of particles become
comparable. The achievement of condition (14) with increas-
ing temperature means that the particle stops `feeling' the
elasticity of the medium, similar to how the elasticity of the
medium is not `felt' by macroscopic objects that collide with
relative supersonic velocities.

It should be noted that since the moduli of a substance are
primarily determined by the potential energy of the particle
interaction, condition (14), in fact, means that the kinetic and
potential energies of particles in a condensed medium are
comparable [see condition (11)]. At the same time, the
proportionality coefficient in condition (11) can differ
substantially from unity. Indeed, the barrier height for a
particle jump is determined by elastic moduli, which, in turn,
are second derivatives of the interaction energy with respect
to volume, i.e., not only the absolute magnitude of the
potential energy is of importance, but also the character of
interparticle interaction. This was first noted by S M Stishov
in paper [57], where it was shown that the potential energy of
interaction Epot for a van der Waals fluid near the critical
point is close in magnitude to kBT, whereas for a Coulomb
plasma with a compensating background in the form of a
degenerate electron gas the following relationship is fulfilled
near the critical point: Epot � 3kBT.

It should be also emphasized that conditions (9) and (14)
are almost equivalent only at solid-like densities of the liquid,
where the Debye approximation for the sound velocity is
fulfilled. As a result, the condition Vs � 2Vth will correspond
to the change in the diffusion regimes for pressures
P > 102Pc. Thus, the dynamic line of the crossover at low
pressures corresponds to the line of almost constant diffusion
and, beginning with some sufficiently high pressures, to the
condition of the closeness of the values of sound velocity and
doubled particle's thermal velocity.

4.5 Thermal energy and heat capacity
Although the zone of the change in the diffusion regime has a
`dynamic' nature, the thermodynamic functions also have
specific features in the vicinity of the line of changing the
diffusion mechanisms. This is related to the disappearance of
transverse-phonon excitations for t � < t0. At temperatures
close to the melting point, the solid-like nature of the
spectrum of excitations in liquids at all frequencies
(2p=t � < o5o0) has the effect that the heat capacity of the
melt becomes close to that of the corresponding crystal,

cV � 3kB (per particle) [34, 58]. With increasing temperature
and with a corresponding decrease in t �, the contribution to
heat capacity from transverse excitations decreases and the
heat capacity becomes 2kB after the complete disappearance
of transverse-phonon type excitations in the shortwavelength
part of the spectrum [58]. At high density of the liquid, the
contribution from the longitudinal excitations may be
thought of as only weakly changing with increasing tempera-
ture up to values corresponding to the condition t � � t0. In
this case, the thermal energy of the liquid, according to paper
[58], is given by the expression

E

N
� kBT

�
3ÿ

�
t0
t

�3�
: �15�

A further increase in temperature and the corresponding
decrease in the density lead to a transition from a dense fluid
to an almost ideal gas, to a decrease in the contribution
caused by longitudinal excitations, and to a further decrease
in the heat capacity (per particle) to `gas-like' values of
cV � �3=2� kB.

Certainly, such an approach is approximate, and the
conception of longitudinal-phonon type excitations is by no
means completely correct in the vicinity of the temperatures
of the crossover in the diffusion regime. Nevertheless, the
following estimate

cV � 2kB �16�

for the `dynamic' line seems to be quite reasonable. At low
pressures, the condition cV�T � � 2kB does not completely
correspond to dynamic crossover because of the effect of
near-critical anomalies on the heat capacity. The temperature
of the disappearance of transverse excitations is related to a
certain change in the temperature dependence of cV�T �. The
resolving of the excitations in liquid into transverse and
longitudinal vibrations and jumps is rather arbitrary and,
from the thermodynamic point of view, the transition will be
merely smeared.

4.6 Dynamic line: computer simulation
and experimental data
It was shown in Sections 4.1±4.5 that, on the basis of principal
criterion (9), expressions (11), (13), (14), and (16) can be
obtained for estimating the position of the dynamic line
partitioning a liquid into two zones with different types of
particle trajectories. For illustration, we performed computer
molecular-dynamics calculations (see Appendix) and con-
structed lines determined by conditions (9), (11), (13), (14),
and (16) for the fluids of real substances (Ar, Ne, and N2)
based on the data of NIST compilation [34] and for model
systems of particles with a Lennard-Jones potential and soft-
sphere potential U�r� � Arÿn with different exponents n in
the repulsion potential (see also Refs [40, 41]). Recall that the
Lennard-Jones potential rather well reproduces the behavior
of many molecular substances and rare gases, whereas the
soft-sphere potential describes the behavior of the substance
in the superhigh-pressure limit, when the attractive part of the
interaction potential can be neglected. In calculations, we
used conditions of the exact equality for all the criteria:
t � � t0, 3kBT=2 � Epot, D � Dc, Vs � 2Vth, and cV � 2kB.
The magnitude of t0 was estimated both from an analysis of
particle trajectories and from the correlation functions of
particle motion.
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The positions of all lines in the PÿT and rÿT phase
diagrams are shown in Figs 11±14. Good agreement is seen
between the lines constructed on the basis of different criteria.
That the difference between the temperatures in different lines
is equal to several dozen percent should not be surprising,
since the coefficients of proportionality in Eqns (9), (13), (14),
and (16) and especially in Eqn (11) can substantially differ
from unity. Thus, in the dynamic line we have 3kBT=2�5Epot

for a system of particles with a Lennard-Jones potential. At
low pressures (P < 10Pc), the lines determined by conditions
(14) and (16) slightly deviate from the main line (9) due to the
effect of hypercritical anomalies and the invalidity of the
Debye approximation at low densities of the fluid. In
addition, for a system of soft spheres with n � 12, points of
calculated minima of viscosity are shown, which are almost
coincident with the position of the dynamic line.

Good agreement between experimental data for fluids of
real substances and calculated values for a system of particles
interacting via a Lennard-Jones potential is evidenced (see
Fig. 12). Recently, the method of inelastic X-ray scattering
was used to study the dynamics of excitations in liquid argon
and nitrogen at various pressures and temperatures [35, 48]. It
turned out that a qualitative change is observed in the
spectrum of excitations at certain parameters; namely, a
positive dispersion of acoustic excitations is observed at
higher pressures, i.e., an increase in the sound velocity with

decreasing wavelength, whereas at lower pressures no positive
dispersion manifests itself. The authors of Ref. [35] ascribed
(erroneously, in our opinion) the point of the change in the
type of the excitation spectra to the extension of the Widom
line. It is obvious that the regions of loss of fast sound for
argon [35] and nitrogen [48] fluids are located near the
calculated dynamic lines (see Fig. 12).
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For a system of soft spheres, the positions of all lines
determined applying different criteria agree well with each
other (see Figs 13, 14). Thus, the dynamic line of the change in
the type of particle trajectories, in contrast to theWidom line,
is not related to the existence of the boiling line and critical
point. Consequently, the dynamic line of the change in the
type of particle trajectories and diffusion regime will also take
place in those macromolecular and colloid systems in which
the liquid±gas transition is completely absent [59±61].

Figure 15 displays the temperature dependences of the
viscosity of liquid Ne and N2 at various pressures. It is seen
that the regions of the change in the type of dependences in
which the exponential descending dependence is replaced by
an increasing power-law dependence correspond in tempera-
ture to the position of the dynamic line.

Figure 16 depicts the experimental and calculated depend-
ences of theheat capacity cV along the isobar and isochore.The
heat capacity decreases smoothly from 3kB to �3=2� kB (per
particle), and the dynamic line approximately satisfies the
condition (16): cV � 2kB. The figure also demonstrates the
behavior of the heat capacity in terms of the simplified model
[58] [seeEqn (15)], according towhich themain contribution to
thedecrease in theheat capacity comes from thedisappearance
of transverse waves from the excitation spectrum.

4.7 Dynamic line and melting line in the phase diagram
It should be emphasized that dynamic lines, in contrast to the
Widom line, are appropriate to an increase in density (see
Figs 11±14). At superhigh pressures, the following relation-
ship is valid for the lines of dynamic crossover: r � T k, where
k � 0:2ÿ0:3. This relationship between the density and
temperature is fulfilled to a good accuracy along the lines of

the change in the diffusion mechanisms both for real
molecular substances and for model systems with a Len-
nard-Jones potential and the soft-sphere potential with
n � 12 (see Figs 11±13).

It should be noted that the behavior of systems with a
power-law pairwise potential, including a system of Lennard-
Jones particles, becomes at superhigh pressures similar to the
behavior of a system of soft spheres [62]. For the last system,
as for any system of particles with a homogeneous potential,
scaling relationships exist for all physical quantities along the
lines in the phase diagram, where the similitude of phase
trajectories is retained [63±66]. For thermodynamic proper-
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ties that are determined by the nonideal part of the partition
function, this follows from theKlein theorem [62±64].Hoover
et al. [65] suggested, based on qualitative considerations, that
for a system of soft spheres certain scaling relationships
should also be fulfilled for kinetic characteristics. Later on,
this was more rigorously proved by Zhakhovskii [66]. For the
melting curve of the system of soft spheres, the relationship
r � T

3=n
m is fulfilled [62]. At n � 12, we have r � T

1=4
m . For the

pressure P and magnitudes of the B andG1 moduli along the
melting curve of the system of soft spheres at n � 12, an
identical functional dependence (P, B, G1 � T

5=4
m ) is

observed, while the dependence D � T
5=12
m � r5=3 can be

seen for the diffusion coefficient [65, 66]. Notice that the
lines of constant diffusion converge with themelting curve for
the system of soft spheres, since the diffusion coefficient
increases unrestrictedly along the melting curve [66]. For
Lennard-Jones particles, the D � Dc line joins with the
melting curve at P � 104Pc and r � 10rc (see Fig. 11).

It can be noted that the functional dependences r�T � and
D�r� for the melting curve of the system of soft spheres and
for the dynamic line of the change in the mechanism of
diffusion are rather close, which appears to be not by mere
chance. The type of phase trajectories in the line of the change
in the character of diffusion for the system of soft spheres is
also retained upon scaling the velocities and coordinates of
particles, just as in the melting curve. Thus, the same
functional relationships are fulfilled in the line of crossover
of themechanism of diffusion for soft spheres, as in the case of
the melting curve. This is also the case for Lennard-Jones
particles at superhigh pressures. It can be concluded that the
dynamic line of the change in the diffusion mechanism for the
system of particles with an m=n potential at high pressures
runs similar to the melting curve, i.e., the zone of `true' liquid
and the very dynamic line do not disappear at any pressures.

The smaller the exponent n in the repulsion potential of
soft spheres, the wider the region of the low-temperature
solid-like liquid (see Figs 13, 14). For the pressure dependence
of the temperature of the dynamic line, the following relation-
ship is approximately fulfilled: T d�P� � �60=n�Tm�P�. For
the Lennard-Jones system and the system of soft spheres with
n � 12, the temperature of the dynamic line in isobars is
approximately five times greater than the melting tempera-
ture (see Figs 11, 13). For metals, in view of their softer
repulsion potential at superhigh pressures, this ratio is even
greater. In contrast, as the exponent increases in the repulsion
potential, the region of solid-like liquid narrows, and for
n > 60 the crystal formed by soft spheres melts directly into a
quasigas fluid. In particular, condition (16), cV � 2kB, is
fulfilled near the melting curve at n � 60. For n > 60, the
dynamic line lies below the melting curve and establishes a
line of demarcation between the low-temperature harmonic
state of the crystal with well-defined transverse acoustic
phonons and the high-temperature hard-sphere-crystal
anharmonic state, in which the particles move mainly
ballistically outside the domain of the action of the interac-
tion potential. Condition (9), t � � t0, in this case means that
the particle in the crystal moves almost harmonically and
ballistically for comparable time periods.

For a system of hard spheres, which is the limiting case of
a system of soft spheres, the absence of the solid-like liquid
with transverse phonon excitations is obvious. For hard
spheres, the potential energy of interaction is zero, namely
cV � �3=2� kB at all temperatures, and the harmonic vibra-
tions in the crystal of hard spheres are absent.

The ratio of the kinetic energy of particles to the potential
energy of their interaction in the melting lines of soft spheres
varies from zero for the system with n � 3 to infinity as
n!1 (hard spheres) (Fig. 17).

It is well known that the liquid±gas curve in the phase
diagram is absent for a system of particles with a large
repulsion exponent and small region of attraction; instead,
there is a line of an isostructural transition with a critical point
in the crystalline state [59, 60]. The dynamic line in such
systems apparently will separate states of the crystal with
different types of excitations in the hypercritical region of a
given isostructural transition. Consequently, in many macro-
molecular and colloidal systems, in which the liquid±gas
transition is totally absent, the dynamic line will lie in the
region of stability of the solid phase and separate the
harmonic and anharmonic states of the crystal.

The systems of particles with a soft-sphere interaction
potential have been actively studied in several hundred
papers. However, the fact concerning the existence of
critical values in the region of large n, at which qualitative
changes in the behavior of the system occur, had not been
realized earlier. The kinetic and potential energies in the
melting curve become comparable at n � 27, and condition
(16) is fulfilled at n � 60. Thus, the melts of systems of soft
spheres with n � 10 and with n � 100 near the melting line
feature qualitative differences: high-frequency transverse
excitations can propagate in the first melt, whereas they do
not propagate in the second one. Correspondingly, the
diffusion process in a liquid of soft spheres proceeds for
n > 60 via a large number of small ballistic type jumps, and
no vibrations of particles near the equilibrium positions are
observed in such liquids. Earlier work on computer simula-
tion of diffusion in the hard-sphere liquid did not indeed
reveal the vibrational-hopping mechanism, which for a long
time even served as an argument against the possibility of
the existence of the hopping mechanism of diffusion in
liquids entirely [67]. In reality, diffusion in a hard-sphere
liquid and in a soft-sphere liquid for n5 60 (e.g., at n � 12)
near the melting temperature is of a qualitatively different
character.
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Figure 17. Ratio of the kinetic energy to the potential energy for a soft-
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potential.
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These results are very important for the understanding of
differences in the vitrification phenomena in liquids and of
geometrical jamming in the systems of hard and soft spheres
with increasing density. The problem of the similarity and
difference between these phenomena has been actively dis-
cussed in recent years [68, 69]. At very large n �n > 100ÿ150�,
the liquid±glass transition in a supercooled melt occurs in the
state of soft quasigas fluid, just as the glass transition in a hard-
sphere liquid, and is determined by the conditions of geome-
trical confinement (jamming). Thus, vitrification in the
systems of soft spheres for n5 100 and of almost hard spheres
with n > 100 is of a qualitatively different character. It is
obvious that the temperature dependences of the viscosity and
diffusion coefficients near the glass transition temperature in
these two cases should differ qualitatively.

It should be noted that the dynamic line under considera-
tion lies at very high temperatures (� 104 K) and pressures
(10 GPa) for metallic, ionic, and covalent melts; therefore,
these experimental conditions are experimentally accessible
only in shock-wave investigations. At the same time, the
dynamic line for many molecular liquids and liquid rare
gases lies in the range of high pressures that is accessible for
experimental physics. Thus, it can be expected that the
transition from a solid-like liquid to a quasigas-like fluid for
neon at a pressure of 3GPa should be observed at temperature
T � 1000 K, which is approximately five times greater than
the melting temperature. For many macromolecular and
colloidal systems, the dynamic line also lies in the experimen-
tally accessible range.

In conclusion, note once more that, earlier, attempts were
undertaken to relate the qualitative changes in the excitation
spectrum of supercritical fluids with the extrapolation of the
Widom line [35]. It should be emphasized that, in reality, the
Widom line and the dynamic line corresponding to the change
in the diffusion mechanism have different natures. The
Widom line represents several lines continuing the liquid±gas
line, which adjoin the isochore from the side of the lowered
density and end at T � �2ÿ2:5�Tc and P � �10ÿ15�Pc. At
the same time, the dynamic line corresponds to the increase in
the density with increasing temperature and does not
terminate in the region of superhigh pressures and tempera-
tures (P > 104Pc andT > 102Tc).Moreover, the dynamic line
is not formally related to the liquid±gas transition; it can also
exist for systems in which the boiling curve and the critical
point are entirely absent.

4.8 Frenkel line

Frenkel was a theoretician physicist. By this, I wish to

emphasize that he was primarily interested in what occurs in

real objects, and the mathematical methods he employed served

his physics rather than vice versa, in contrast to what sometimes

happens with representatives of the modern generation of

scientists. The validity of this statement follows, it can be

said, from each page of his book about liquids. He asks: ``What

occurs in reality and how can this be explained?''Ðand asks

himself this question precisely, rather than in a form like:

``Here is an elegant theory. Does it work? If the experiment

contradicts it, this appears to mean that the experiments are

erroneous... .''

I E Tamm [70]

As was already said above, the concept of a liquid as a state of
matter with a certain short-range order and a crystal-like
spectrum of excitations at high frequencies became com-

monly accepted only at the end of the 20th century.
However, as far back as the 1930s, Ya I Frenkel in the Soviet
Union developed a kinetic theory of liquids precisely on the
basis of the similarity of features of the liquid and solid states
[11]. Many of Frenkel's views, e.g., concerning the hole
structure of liquids or his mechanistic estimates of the
activation energy for diffusion, are excessively simplified or
erroneous from the standpoint of the modern theory of
liquids. Nevertheless, most of the qualitative conclusions
following from Frenkel's models proved to be true. It was
precisely Frenkel who correctly introduced the concept of
liquid relaxation time t � and gave a microscopic interpreta-
tion of Maxwell's relaxation time [42]. The differentiation of
the types of particle motion in liquids into vibrations near
positions of local equilibrium and jumps between these
positions is, to a certain extent, arbitrary, especially at
comparable values of t � and t0. Nevertheless, the results of
computer simulation for the systems of particles with
different types of interaction potentials show that such a
differentiation is quite reasonable. Moreover, the introduc-
tion of the concept of a relaxation time makes it possible to
circumvent the insolvable (in modern theoretical physics)
problem of the calculation of energy barriers between
various states in a system with a large number of interacting
particles.

Frenkel showed that in liquids at high frequencies (higher
than the inverse relaxation time) transverse shear waves
should propagate. He noted in book [11] that the absence of
the experimental observation of the propagation of shear
waves in liquids appears to be related to the small magnitude
of the relaxation time for most melts. Moreover, Frenkel
showed that longitudinal waves in liquids should propagate in
the entire frequency range, but the character of their
propagation should change at frequencies on the order of
the inverse relaxation time, i.e., he predicted the phenomenon
of fast sound. For many viscous liquids, the existence of both
transverse acoustic excitations and of positive dispersion of
longitudinal waves was established experimentally several
decades (!) later. When describing the increase of the
relaxation time observed with decreasing temperature,
Frenkel noted that the very process of glass transition
indicates that the division of substances into solids and
liquids is rather arbitrary; it is made from practical considera-
tions and depends on the duration of the observation process.
Thus, Frenkel, in fact, was a creator of the kinetic approach to
the theory of glass transitions.

Nevertheless, Frenkel's work in this field did not receive
proper appreciation from contemporaries. His treatment of
liquids based on their similarity with solids rather than with
gases was too unconventional, differing too much from
traditional concepts which had been developed for centuries.
Frenkel's monograph,Kinetic Theory of Liquids [11], in many
ways was ahead of its time. Frenkel himself certainly realized
that his theory was rough and approximate. In the preface to
the first edition of the book, he noted that ``the publication of
a book devoted to the kinetic theory of liquids may seem to be
untimely.'' At the same time, Frenkel believed that three
circumstances lent justification: (1) he had dealt with these
problems for more than 20 years and many results remained
unpublished; (2) a very limited number of physicists had the
right understanding of the principles of the kinetic theory of
liquids, and (3) ``a description of a new theory, even in a crude
and incomplete form, will favor the attraction of attention of
other scientists to this subject and the acceleration of its
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further development.'' Nevertheless, the Frenkel theory even
in the Soviet Union was mainly employed to describe the
behavior of only viscous liquids in a state close to glass
transition, i.e., it was implicitly supposed that there is a
qualitative difference between liquids with high and low
viscosities. In reality, the difference is only quantitative: for
ultraviscous liquids in a state close to glass transition, the
relaxation time is t � � 102 s, whereas for the majority of
molecular andmetallic liquids close to the state ofmelting, one
finds t � � 10ÿ12ÿ10ÿ11 s. In the middle of the 20th century,
themost easily available sources of ultrasoundwere thosewith
frequencies ranging � 108ÿ109 Hz. Transverse vibrations at
these frequencies propagate only in liquids with relaxation
times t � > 10ÿ9ÿ10ÿ8 s and viscosities Z > 1ÿ10 Pa s. The
employment of the methods of Brillouin scattering [5±7],
inelastic neutron scattering, and recently also inelastic X-ray
scattering [8, 9]made it possible to extend the investigations of
thedynamics of liquids into the rangeof higher frequencies, up
to the frequency of order 1013 Hz (the maximum feasible in
condensed media). At these frequencies, the transverse
acoustic waves can propagate in all liquids, including liquid
metals, liquid rare gases, and molecular liquids. Thus, in the
70 years after Frenkel developed his model, it became clear
conclusively that no qualitative difference exists in the
dynamics of excitations of liquids such as silica melt and
water or liquid gallium. Note, however, that to date in many
textbooks for students there are statements that the transverse
acoustic waves cannot propagate in liquids, in contrast to
those in solids.

Ya I Frenkel's range of interests was very wide: it involved
the electron theory of solids, the physics of the condensed
state and the physics of the atomic nucleus, general problems
of quantum mechanics and electrodynamics, astrophysics,
and geophysics. In the majority of fields, he obtained notable
results. His name was given to a whole number of physical
objects and phenomena: the Frenkel exciton, Frenkel defects,
the Bohr±Frenkel±Wheeler liquid-drop model of atomic
nuclei, etc. Since Frenkel's work on the kinetic theory of
liquids was underestimated in due time, we suggest that the
line determined by the condition t � � t0 be called the Frenkel
line. The thus-defined Frenkel line separates a rigid liquid
with a solid-like spectrum of excitations at high frequencies
and hopping mechanism of diffusion (it is just such a liquid
that was considered by Frenkel) from a soft (quasigas) fluid,
in which the spectrum does not contain transverse acoustic
excitations and the diffusion is dominated by particle
collisions. Thus, any liquid in the hypercritical region can
exist in two qualitatively different statesÐ low-temperature
and high-temperatureÐand the Frenkel line represents a
boundary between these states.

5. Conclusions

As discussed above, the thermodynamic continuation of the
boiling curve into the hypercritical region (Widom line) and
the line of the change in the type of dynamics of particle
motion (Frenkel line) lead to qualitatively different results
(Fig. 18). The Widom line, in fact, represents a wide bunch of
lines continuing the boiling line, which adjoin the isochore on
the side of lower densities, and ending at T � �2ÿ2:5�Tc and
P � �10ÿ15�Pc. In contrast, the Frenkel line represents a
narrow band which is not formally restricted in pressure or
temperature. This line exists even in systems in which the
boiling curve and critical point are wholly absent. It is

precisely this line that is constructively suited for the role of
the boundary between a liquid and a quasigas type super-
critical fluid. In many macromolecular and colloidal systems,
where no liquid±gas transition is observed at all, the dynamic
line can lie not only in the region of liquid stability, but also in
the region of stability of the solid phase and separate
harmonic and anharmonic states of crystal.

First-principles theories of the liquid state that `start' from
a dense gas describe the soft fluid above the Frenkel line,
whereasmost of the experimental data have been obtained for
the low-temperature `rigid' state of liquids. At pressures
P < �10ÿ102�Pc, the condition of the constant magnitude
of the diffusion coefficient, D�Dc, where Dc is the value of
the diffusion coefficient near the critical point, can be used for
the estimation of the position of the Frenkel line. For
P > 10Pc, the condition of the equality of the sound velocity
to the doubled thermal velocity of particles and the condition
of a decrease in the heat capacity of the liquid to a magnitude
of cV�2kB (per particle) can also be used for the same
purpose. Note that the sound velocity can easily be measured
in shock-wave investigations at pressures up to a megabar
range. As an experimental criterion of the intersection of the
Frenkel line, the observation of the disappearance of positive
dispersion of acoustic waves in liquids can also be used at
present. In the future, with a further development of the
methods of inelastic X-ray scattering, the direct observation
of the loss of transverse acoustic excitations in liquids upon
reaching the Frenkel line will be possible as well.
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6. Appendix: Calculation methods

Most of the calculation details are highlighted in the original
papers, including our work [31, 32, 40, 41]. Some calculations
were performed specially for this review. For convenience, it
is reasonable to briefly describe the main aspects of the
calculations.

To illustrate properties of the liquid and gas phases for the
Lennard-Jones system, we used both literature data [71±73]
and computer simulation by themolecular-dynamicsmethod.
In the literature there is a wide spectrum of data concerning
this system. One of the most complete investigations into the
Lennard-Jones system was performed in Meier's dissertation
[72], where such data as the equation of state, internal energy,
heat capacity at constant volume, diffusion constant, and
shear and bulk viscosities, were presented for the Lennard-
Jones system atmore than a hundred points ofP andT. Thus,
a large database was accumulated for this system.We used the
results of Ref. [72] for studying various properties of the
system at low temperatures. Based on the interpolation of the
data on the equations of state and energy, values of the
isothermal compressibility b � �1=r�=�qr=qP�T, thermal
expansion a � ÿ�1=r�=�qr=qT �P, and thermal fluctuations
hDN 2i=N 2 � �qr=qP�T have been obtained. The heat capa-
city at constant pressure was calculated by differentiating
enthalpy along the isobars.

To separate the quasigas and liquid mechanisms of
particle motion far from the critical point, the thermody-
namic and dynamic properties of the system at high densities
and temperatures should be known. Such data were absent in
the available literature. Therefore, we performed computer
simulation of the properties of the Lennard-Jones system
along the melting curve and in the vicinity of this curve on the
liquid side [31, 40, 41].

The melting curve of the Lennard-Jones system was
calculated, at high temperatures as well, in Ref. [73]. In our
work, we calculated the diffusion coefficient, shear viscosity,
elasticity modulus at the infinite frequency, and the liquid
relaxation time along the melting curve at temperatures of up
to T � 100:0 in reduced Lennard-Jones units [40, 41]. In
addition, we calculated the thermodynamic and transport
properties of the system along some isochores (r � 0:85, 1.0,
1.15, 1.3, 1.56) and isotherms (T � 10:0, 20.0, 30.0, 50.0); this
permitted us to accumulate data for high densities and
temperatures, which, together with available literature data,
were used for an analysis of the behavior of the system. The
equations of motion were integrated using the velocity form
of the Verlet algorithm. Depending on the density, the
number of particles in our simulation was varied from
N � 1000 to N � 4000. The cutoff radius of the interaction
potential was chosen to be rc � 2:5s. Let us recall that the
cutoff radius does not affect the dynamic properties of the
system. In our simulation, the system was thermalized for
5� 105 steps; after this, we calculated the properties of
interest over an interval of 3� 106 steps. The time step was
chosen to be dt � 0:001 (in Lennard-Jones units). The

diffusion coefficient was calculated using the Einstein for-
mula, and the viscosity was calculated via the Kubo formula.

The position of the critical point for the Lennard-Jones
system has been widely discussed in the literature. However,
to date there are some discrepancies in the determination of
the critical parameters. In this review, we used the following
values of the critical temperature, density, and pressure (in
Lennard-Jones units): Tc � 1:31, rc � 0:314, andPc � 0:129.
The kinetic energy per particle is K=N � 3kBT=2, and the
potential energy corresponds to the total interaction energy.
In the case of the pairwise potential, a complicating circum-
stance is the change in the sign of the potential energy; for the
Lennard-Jones system, the potential energy was taken in the
form Epot�ELJ�V �ÿELJ�V0�� P0�V0 ÿ V �, where the V0

value corresponded to the volume at a maximum possible
negative pressure P0 at the zero temperature. The high-
frequency limit of the shear modulus of the liquid, G1, was
calculated via formulas suggested in Ref. [54]. The compres-
sibility modulus was determined using the equation of state as
B � bÿ1 � r�qr=qP�T.

The diffusion coefficients for real substances were
calculated from the Stokes±Einstein relationship D � T=Zr0,
where r0 is the effective size of the particle, using the
experimentally determined values of the viscosity [34]. The
lines of the constant ratio of the particle velocities for real
substances (argon and nitrogen) were obtained from the
experimental sound velocities and calculated thermal velo-
cities vth � �3kBT=m�1=2. Upon simulation, the velocities of
longitudinal and transverse components of sound were
calculated from the data on the density and on the compres-
sion and shear moduli: vs � �B=r�1=2, and vst � �G1=r�1=2,
respectively. The magnitude of t0 was estimated from an
analysis of both trajectories of atom motion (see Fig. 9) and
autocorrelation functions of particle motion (see Fig. 10). The
relaxation time t in the liquid was determined as the average
time of particle displacement by an interatomic distance.
Correspondingly, this time can be estimated from the
diffusion coefficient as t � rÿ2=3=�6D�. Note that t0 can be
estimated reliably only at sufficiently low temperatures,
where the vibrational mechanism in liquids is well deter-
mined, whereas t can be calculated from the diffusion
coefficients at all temperatures. We calculated t0 and t along
the isochores and extrapolated the temperature dependences
up to their intersection. The accuracy of determining the
temperature of the dynamic crossover, t � t0, is
��20ÿ30�%; the error in the calculations of other quantities
is less than 10%.

Notice that the liquid relaxation time is frequently
determined from the expression t � � Z=G1, which `works'
well in the case of high-viscosity liquids. However, for a fluid
with a low viscosity, this expression formally gives very small
values of t �. The reason is that in the case of such a definition
the relaxation time corresponds to the shortest time of the
change in the local configuration existing around the particle,
and no particle's jump occurs in this time. The expressions
t � � a 2=D and t � � Z=G1 coincide (with allowance for the
Stokes±Einstein relationship) at G1 � rT. The quantity rT
(which is, in fact, the ideal-gas pressure) for fluids is
frequently considered as the translational part of the total
quantity G1.

In the line of the change in the dynamic mechanism, a
qualitative change occurs in the trajectories of particle motion
(see Fig. 9). The magnitude of t �, just as of t0, can be
estimated directly from an analysis of trajectories of atomic
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motion (see Fig. 9); in this case, good agreement with the
estimate t � � a 2=D is obtained. The constant values of the
ratio of sound velocities for real fluids were determined by
`sewing' lines D � Dc, vs=vth � const, and vst=vth � const at
P � 102Pc. The average value of the constants proved to be
2.2. The experimental data for cV�T;P�, cP�T;P�, r�T;P�, etc.
for Ar, Ne, and N2 were taken from the database of the
National Institute of Standards and Technology (NIST) [34].
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