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Quantum plasmonics of metamaterials:
loss compensation using spasers

A P Vinogradov, E S Andrianov, A A Pukhov,
A V Dorofeenko, A A Lisyansky

1. Introduction
Recent years have seen the development of a new field of
opticsÐquantum plasmonicsÐwhich combines the advan-
tages of plasmonics and quantum electronics [1±25].
Although plasmonics deals with wave phenomena, it oper-
ates on a scale much shorter than the light wavelength in a
vacuum, which endows plasmonics with many features of
near-field optics and creates a demand for plasmonics from
modern nanotechnologies. In the first place, mention should
be made of SERS (surface enhanced Raman scattering), the
SPASER (surface plasmon amplification by stimulated
emission of radiation), nanodimensional light sources [26±
30], and numerous metamaterial-based devices [17, 31, 32]:
energy concentrators and transmission lines on the order of
several dozen nanometers in size, a superlens with a resolution
exceeding the diffraction limit, cloakings, hyperlenses [33±
40], etc. The small dimensions of these objects introduce
quantum effects into their dynamics.

Since the principle of metamaterials operation is under-
lain by the plasmon resonance of metallic nanoparticles
(NPs), artificial metamaterials exhibit rather high energy
loss. The existence of losses in metamaterial-based devices

gives rise to energy transfer inside of them, which is effected
by near fields. The necessary and sufficient condition for the
energy transfer by evanescent waves is the emergence of a
phase difference among `interfering' evanescent harmonics
[41]. The emerging dephasing of harmonics, which form an
ideal image, shows up in their destructive interference and
breaking of the ideal image [42]. To compensate for the loss,
the authors of Refs [43±51] proposed the employment of
active (amplifying) media in artificial metamaterials. How-
ever, it follows from the foregoing that the ideal image is
broken not only by energy dissipation, but also amplification
in the medium. It is required that as precise as possible a loss
compensation be achieved [43, 52, 53].

The utilization of active media in metamaterials leads
inevitably to the formation of nanolasers inside of them.
Among nanolasers, mention should be made of the dipole
nanolaser [8, 10], the spaser [11, 54], and the magnetic-mode
nanolaser [48, 49]. From the standpoint of loss compensation
inmetamaterials, spasers, whose experimental realization was
reported in Ref. [55], have the greatest promise as a base
element. Schematically, the spaser constitutes a quantum-
plasmon device which consists of inversely excited two-level
quantum dots (QDs) (a two-level tunneling system, TLS)
surrounding plasmon NPs (the more realistic treatment of a
four-level system does not introduce qualitatively new
properties (see Refs [50, 56, 57])). The principle of spaser
operation is similar to that of lasers: light amplification
ensured by population inversion in combination with feed-
back, which is produced by the stimulated emission of a
quantum system. To fulfill the conditions for stimulated
emission by an inverted quantum system in the field of the
wave previously radiated by this system, the quantum system
is placed in a cavity, which localizes the generated mode. In a
spaser, the role of photons is played by surface plasmons
(SPs) of an NP. The localization of plasmons on the NP [11,
49, 54] furnishes the conditions for feedback realization. To
state it in different terms, the generation and amplification of
theNP's near-fields occur in spasers. The amplification of SPs
proceeds due to radiationless energy transfer from QDs. The
process relies on the dipole±dipole interaction (or any other
near-field interaction [58]) between a QD and a plasmon NP.
This mechanism can be treated as the principal one, because
the probability of radiationless plasmon excitation is
�krNPÿTLS�ÿ3 times higher than the probability of radiative
photon emission [15] (rNPÿTLS is the center-to-center distance
of the NP and the QD, k � 2p=l, where l is the wavelength in
a vacuum). Therefore, the efficient energy transfer from the
QD to the NP is achieved due to the short distance between
them, despite the fact that the plasmon resonance Q factor is
rather low. 1 Due to the high efficiency of this process, an
external optical wave which propagates through the metama-
terial interacts with entire spasers rather than separately with
the amplifying medium and separately with plasmon parti-
cles.

Like a laser, a spaser constitutes a self-oscillating system.
Its dipole moment executes free-running oscillations whose
frequency and amplitude are determined by the balance
between pumping and dissipation. An external field can only
synchronize the spaser operation, i.e., make the dipole
moment oscillate at the frequency of the external field. The
weak dependence of the amplitude of these oscillations on the
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external field makes difficult the employment of spasers as
nanodimensional devices, but these difficulties are not
insurmountable. In particular, Stockman [12] came up with
the idea that a spaser operating in the transient mode can be
used as an amplifier. Therefore, spaser physics is interesting
enough to be a research subject in its own right. Spaser
physics constitutes a new area of opticsÐquantum plasmo-
nics. For the development of metamaterial electrodynamics,
however, of interest is the consideration of structuresmade up
of ordered linear or two-dimensional spaser arrays rather
than the treatment of a single spaser. In this case, collective
interactions between spasers may significantly change the
oscillation conditions and the properties of free-running
spaser self-oscillations, and even give rise to new effects or
instabilities in these structures. In this connection, along with
plasmons localized on plasmon particles, of special interest
are plasmons traveling along one-dimensional objects like
wire, a chain of nanoparticles, or a groove in a metal [61±64].
The presence of an amplifying medium results in the
amplification of one-dimensional plasmons [4, 23, 44, 65].
Although the presently existing theoretical estimates and
experimental realizations in the area of quantum plasmonics
rely on quite simple models, they show the promise of using
spasers in the development of the elements of optical
information facilities and optical computers.

In this report, we consider both individual and collective
behavior of spasers in above-threshold oscillation.

2. Equations of spaser `motion'
Since the SP wavelength lSP is much shorter than the
radiation wavelength l in a vacuum [15, 16], the spatial
derivatives in the Maxwell equations are much greater than
the temporal ones. Neglecting the latter permits describing
the plasmon field in the quasistatic approximation [66, 67]. It
turned out that this is also true when the spaser operates even
in the radiating nanoantenna mode, i.e., when the Joule loss
in a nanoparticle is lower than the radiative loss. Considering
themodes of a small spherical NP of radius rNP 5 l shows the
plasmon resonance frequency coincides with the frequency at
which the NP is a half-wave antenna (resonator): a half of the
plasmon wavelength fits into the sphere diameter [66].

Below, we shall consider the excitation of only the
principal (dipole) SP mode with a frequency oSP. For a silver
NP surrounded by silicon oxide �SiO2�, the permittivity
values are well known [68]. Assuming that the NP radius
rNP � r � 10 nm, we estimate the dipole moment of the NP
near the plasmon resonance: mNP � 200 D. The dipole
moment of a typical QD of size rTLS � 10 nm is mTLS � 20 D
[69]. The NP±QD interaction adheres to a dipole±dipole one:
V � �hOR � mNP mTLS=r

3, and the constant of this interaction
(the Rabi frequency OR) turns out to be two orders of
magnitude lower than the oscillation frequency [22]. This
permits us to apply the slowly varying amplitudes approxima-
tion below.

At the plasmon resonance frequency, the NP polarization
is described by the oscillator equation with eigenfrequency
equal to the plasmon resonance frequency:

�dNP � o2
SPdNP � 0 : �1�

This oscillator is quantized in the standard way [59, 70]: the
Bose operators are introduced in this case for the production
�~̂a y�t�� and annihilation �~̂a�t�� of a dipole SP excited in theNP,
which satisfy the commutation relation �~̂a�t�; ~̂a y�t�� � 1, and

the Hamiltonian is expressed as

ĤSP � �hoSP ~̂a y ~̂a : �2�

In the case of a spherical NP, the electric dipole mode field
is uniform inside the NP, E1 � ÿl1=r 3NP, and has the form
E1�ÿl1=r 3� 3�l1r�r=r 3 outside. The vector of a unit dipole
moment l1 is a dimensional quantity, and henceforward we
shall explicitly write the factor jl1j.

The energy �hoSP of one plasmon is expressed as [71]

W1 � 1

8p

�
VNP

o
qRe e
qo

����
oSP

E1E
�
1 dVNP � jl1j2

6r 3NP

o
qRe e
qo

����
oSP

;

�3�

whereVNP is the NP volume. Hence, the field produced by the
NP can be written out as

E �
�������������������������������

3�hr 3NP

jl1j2 qRe e=qo

s
E1�r��~̂a� ~̂a y� ;

and accordingly the dipole moment of the NP is d̂NP �
lNP�~̂a� ~̂a y�, where

lNP �
��������������������������

3�hr 3NP

qRe eNP=qo

s
l1

jl1j2
:

This is consistent [20, 21] with the `classical' definition of the
dipole moment [72]:

dNP � eNP�o� ÿ eM
eNP�o� � 2eM

E1r
3
NP :

To describe the quantum dynamics of an NP and the two-
level QD of a spaser, use can bemade of amodel Hamiltonian
in the form [8, 54, 73]

Ĥ � ĤSP � ĤTLS � V̂� Ĝ ; �4a�

where ĤTLS is the Hamiltonian of the two-level QD [16, 54,
74]:

ĤTLS � �hoTLS ~̂s y ~̂s ; �4b�

operator V̂ � ÿd̂NPÊTLS defines the interaction between the
two-level QD and the NP, and operator Ĝ describes the
relaxation and pumping effects [74]. The operator of the QD
dipole moment is d̂TLS � lTLS�~̂s�t� � ~̂s y�t��, where ~̂s � jgihej
is the transition operator between the excited jei and ground
jgi states of the QD, and lTLS � hejd̂TLSjgi is the transition
dipole moment of the QD. Therefore, one obtains

V̂ � �hOR�~̂a y � ~̂a ��~̂s y � ~̂s� ;

where the Rabi frequency

OR � lNP lTLS ÿ 3�lTLS er��lNP er�
�hr 3

;

and er is a unit vector: er � r=r.
We assume that theQD transition frequency is close to the

SP frequency, oSP � oTLS, and seek the solution in the form
~̂a�t� � â�t� exp �ÿiot� and ~̂s�t� � ŝ�t� exp �ÿiot�, where â�t�
and ŝ�t� are slowly varying amplitudes. Then, neglecting
rapidly oscillating terms � exp ��2iot� (the rotating wave
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approximation [74]), the interaction operator V̂ can be
written out in the form of the Jaynes±Cummings Hamilto-
nian [70]:

V̂ � �hOR�â yŝ� ŝ yâ� : �4c�
We proceed from Hamiltonian (4) and employ the

standard commutation relations �â; â y� � 1̂, �ŝ y; ŝ� � D̂ for
operators â�t�, ŝ�t� and the population inversion operator
D̂�t� to arrive at the following Heisenberg equations of
motion [8, 75]:

_̂
D � 2iOR�â yŝÿ ŝ yâ� ÿ D̂ÿ D̂0

tD
; �5�

_̂s �
�
idÿ 1

ts

�
ŝ� iORâD̂ ; �6�

_̂a �
�
iDÿ 1

ta

�
âÿ iORŝ ; �7�

where d � oÿ oTLS and D � oÿ oSP are frequency mis-
matches. The QD population inversion operator
D̂�t�� n̂e�t�ÿn̂g�t�, where n̂e � jeihej and n̂g � jgihgj are the
operators of the upper and lower QD level populations, with
n̂e � n̂g � 1. It should be emphasized that the population
inversion operator D̂�t� is `slow' on the strength of its
definition. The contribution of relaxation and pumping
effects, which is denoted by operator Ĝ in Eqn (4a), is
described in Eqns (5)±(7) by terms proportional to the
relaxation rates tÿ1D , tÿ1s , and tÿ1a , and the operator D̂0

describes the population inversion produced by extraneous
pumping in the QD [70, 74].

Strong dissipation in the NP makes this quantization
scheme approximate and at the same time permits neglecting
quantum correlations [8, 10]. This allows treating D̂�t�, ŝ�t�,
and â�t� as complex quantities and replacing the Hermitian
conjugation by the complex one [8, 10, 12, 43]. In this case, the
quantity D�t�, which has the meaning of the difference
between upper and lower level populations, will assume only
real values, because the corresponding operator is Hermitian.
The quantities s�t� and a�t� have the meanings of dimension-
less complex oscillation amplitudes of the dipole moments of
the QD and the SP, respectively. Therefore, the spaser
equations (5)±(7) in this approximation are single-mode
optical Bloch equations [74].

3. Stationary spaser oscillation mode
Apart from the trivial solution a � 0, s � 0, D � D0 stable
below the oscillation threshold, the system of equations (5)±
(7) also has a nontrivial stationary solution:

a � exp �ij�
2

���������������������������
�D0 ÿDth�ta

tD

s
; �8a�

s � exp �ic�
2

���������������������������������������������������
�D0 ÿDth��d 2

SP � tÿ2a �ta
O 2

RtD

s
; �8b�

D � Dth ; �8c�
which corresponds to stationary spaser oscillation with a
frequency o � �oSPta � oTLSts�=�ta � ts�, and the phases j
and c satisfy the relation

cos �cÿ j� � 1������������������������������
1� t 2a �dÿ D�2

q :

This solution is stable when the pumping D0 exceeds the
threshold value

Dth � 1� D2t 2a
O 2

Rtats
: �8d�

In this case, the stationary value of population inversion is
fixed at the value of D � Dth and ceases to increase with
enhancing pumping (Fig. 1) [8, 12, 43].

4. Transition to stationary oscillations, Rabi oscillations
The use of spaser-based metamaterials implies that this
medium will modify the electromagnetic wave propagating
through the medium. However, one would think that the
existence of an eigenfrequency and an oscillation amplitude in
a spaser is an impediment to the employment of spasers as
inclusions which actively interact with the outer wave [6]. The
interaction efficiency can be improved by operating in a
transient mode. M Stockman's numerical experiments [12]
suggest that a spaser exhibits complicated, strongly nonlinear
dynamics during the transient regime. In this case, the spaser
oscillation amplitude may be several times higher than the
amplitude both of initial and of stationary spaser oscillations,
i.e., the spaser can operate as an amplifier.

The transition of a spaser to stationary self-oscillations is
defined by three characteristic times: the NP and QD
polarization relaxation times ta and ts, and the population
inversion relaxation time tD. Due to high losses in metals, the
time ta proves to be shortest. The experimental value is ta �
�10ÿ14ÿ10ÿ13� s [76], which coincides with the estimate
obtained from classical electrodynamics [43]. Typical experi-
mental values of remaining lifetimes are ts � 10ÿ11 s and
tD � 10ÿ13 s [77±79]. Therefore, for a metallic NP and a
semiconductor QD, we obtain the following time scales:
ta < tD 5 ts. The total self-oscillation settling time is
defined by the longest time, � ts.

Numerical simulations have shown that the character of
the transient process is heavily dependent on the initial value
of the NP's dipole moment amplitude a�0�. For an initially
`cold' spaser, a�0�5 1, and the electric field of the NP is
weaker than the field of the QD. In this case, the energy goes
from the QD to the NP, and the a�t� value tends to the
stationary value (8a). For a high initial amplitude a�0�4 1,
which may be achieved under the excitation of the NP by a
nanosecond optical pulse [6, 12], the transient process is more
complicated and proceeds two stages [22]. During the first

D0

Dth D
0
0

a
;s
;D

Unstable solution

Stable solution

1

2

Figure 1. Stable stationary values of a (curve 1), s (curve 2), and D (solid

line) amplitudes. The unstable solution, which manifests itself for

D > Dth, is shown by a dashed line. The stable and unstable solutions at

some pumping rate D0 � D 00 are marked with black circles.
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stage, theQDpasses time in the strongNP field and the spaser
self-oscillation amplitude experiences Rabi oscillations with a
characteristic period tR � 2p=OR. As this takes place, the
energy flux periodically changes its direction from the NP to
the QD and vice versa. Over a time of order ta ln ja�0�j, these
oscillations decay due to dissipation in the NP and the QD.
During the second stage, the spaser exhibits dynamics
characteristic for small a�0�, when the spaser oscillation
amplitude tends monotonically to the stationary value. For
the time relation ta < tD 5 ts typical for the spaser, its
dynamics depend only slightly on tD. The total duration of
the transient mode is on the order of ts (Fig. 2).

The frequency of oscillations observed in numerical
simulations can be easily estimated in the case of exact
resonance d � D � 0. By omitting the terms responsible for
relaxation and pumping, which may be done at the initial
stage of the process when all spaser variables are distant from
their stationary values, we arrive at the reduced system of
equations

_a � ÿiORs ; �9�
_s � iORaD ; �10�
_D � 2iOR�a �sÿ s �a� : �11�

Substitution of Eqn (9) and its conjugate into Eqn (11) gives
the Newton equation

d2jaj
dt 2
� qU

ÿjaj�
qa

�12�

for a `particle' of unit mass with coordinate jaj, which moves

in the potentialU�jaj� � 0:5�O 2
Rjaj4 ÿ C1O 2

Rjaj2�, where C1 is

the integration constant [22]. The stable equilibrium position

for this `particle' is jajstable �
�����������
C1=2

p � � ja�0�j2 �D�0�=2�1=2,
and the frequency of small oscillations about this equilibrium

position is given by

O � 2
��a�0���OR : �13�

This expression coincides with the frequency of Rabi
oscillations which emerge under the interaction of a two-
level QDwith a classical harmonic field of amplitude a�0� or a
quantized field with the number of photons approaching
â y�0�â�0� � n � ja�0�j2 [70].

5. Spaser in the field of an external optical wave,
and spaser synchronization
Let us consider now the NP and QD dynamics in the field of
an external optical wave E�t� � E cos �nt�. Considering the
external electric field as being classical and restricting
ourselves to the dipole interaction, we write out the system's
Hamiltonian in the form

Ĥeff � Ĥ� �hO1�~̂a y � ~̂a ��exp �int� � exp �ÿint��
� �hO2�~̂s y � ~̂s��exp �int� � exp �ÿint�� ; �14�

where Ĥ is defined by expression (4), andO1 � ÿlNPE=�h and
O2 � ÿlTLSE=�h are the coupling constants of the NP and the
QD to the external field.

As before, the equations of motion are the Heisenberg
equations for the slowly varying amplitudes of operators â, ŝ,
and D̂:

_̂
D � 2iOR�â yŝÿ ŝ yâ� � 2iO2�ŝÿ ŝ y� ÿ D̂ÿ D̂0

tD
; �15�

_̂s �
�
idE ÿ 1

ts

�
ŝ� iORâD̂� iO2D̂ ; �16�

_̂a �
�
iDE ÿ 1

ta

�
âÿ iORŝÿ iO1 : �17�

Here, dE � nÿ oTLS and DE � nÿ oSP are frequency mis-
matches in the external optical field.

System of equations (15)±(17) has three stationary
solutions fai; si;Dig, i � 1; 2; 3. A linear stability analysis of
these solutions: a�t�ÿ ai� exp �lt�, s�t�ÿsi � exp �lt�, and
D�t� ÿDi � exp �lt� showed that only the solutions located
in the lower branch of the curves depicted in Figs 3a and 3b
are stable �Re l < 0�. For a zeromismatchDE � dE � 0 in the
absence of the field, the points indicated in Fig. 3a correspond
to the points indicated in Fig. 1. For a nonzero mismatch, the
stable solution branch D�E � exists only when the field
amplitude is sufficiently large: E > Esynch�DE� (Fig. 3b).

Therefore, the value Esynch�DE� is the lower boundary of
the domain in which the spaser can by locked by an external
wave. Such threshold behavior is typical for nonlinear
systems experiencing external action, and the range of
parameters E and DE in which locking occurs is termed the
Arnold tongue [80±82]. The boundary of the Arnold tongue
can be qualitatively obtained by treating the external wave as
a perturbation.

In the zero approximation in the field amplitudeE, system
(15)±(17) has the stationary solution (5)±(7). Let us find the
solution in the first approximation in the field amplitude E.
By substituting a � jaj exp �ij� and s � jsj exp �ic� into
Eqn (17), we obtain

djaj
dt

exp �ij� � i
dj
dt
jaj exp �ij�

�
�
iDE ÿ 1

ta

�
jaj exp �ij� ÿ iORjsj exp �ic� ÿ iO1 : �18�

0

0

D ÿ2

2

4

ln jaj

jsj

0.5

0.6

0.8

1

2

Figure 2. Spaser dynamics for jsj � 0:5, ta � 10ÿ14 s, ts � 10ÿ11 s,

tD � 10ÿ13 s, and OR � 1013 sÿ1. White dots correspond to the initial

conditions for two trajectories emerging from a�0� � 40� 25i, s�0� � 0:9,
D�0� � 0:05 (solid line) and from a�0� � 5, s�0� � 0:65, D�0� � 0:9
(dashed line). The stationary state is indicated with a black dot. Curves 1

and 2 correspond to the projections of these trajectories onto the plane

jsj � 0:5.
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We divide both sides of Eqn (18) by jaj exp �ij� to bring the
imaginary part of the equation to the form

_j � DE ÿ OR
jsj
jaj cos �cÿ j� ÿ O1

jaj cosj : �19�

Substituting the quantities (8) into Eqn (19) in place of jaj, jsj,
and cos �cÿ j� yields the equations of motion [8, 22] of an
overdamped `particle' with a coordinate j:

_j � ÿ qF�j�
qj

�20�

in the potential F�j� � ÿDEj� O1 sinj=jaj.
The phase dynamics are the sliding of this `particle' over

the potential profile in a viscous liquid. For jO1j < jaDEj,
there occurs a unidirectional motion. The particle velocity
oscillates with the period tending to infinity as the critical
situation jO1j � jaDEj is approached. For jO1j > jaDEj, the
particle finds itself in one of the minima of the potential
function F�j�, which corresponds to the synchronization
mode: the oscillation phase j is `locked' and ceases to vary
in time. Therefore, the spaser's Arnold tongue is wedge-
shaped in the low-field domain E5 �hOR=mNP.

Numerical simulations have shown that the boundary of
the locking domain is described by the curve Esynch�DE�
(Fig. 4). Outside of this domain, the solution irregular in
time, which corresponds to chaotic spaser behavior.

Notice that a spaser which has reached the stationary state
responds to the long-term �4 ts� action of an external field in
a qualitatively different manner than does a spaser exposed to
a `pulsed' �5 tD� external field, when the change in popula-
tion inversion caused by the external field may be disre-
garded. While in the former case the response is nonlinear,
in particular in a weak field E � Esynch�DE� the dipole
moment does not depend on the external field at all and is
defined by the frequency mismatch and the pumping level
(Fig. 5), in the latter case the spaser's dipole moment is
proportional to the external field [50, 56, 57].

In the absence of pumping �D0 � ÿ1�, the solution of
optical Bloch equations yields the answer close to the
predictions of the classical theory describing the response of
a single NP: the real part of an NP's dipole moment can
assume both positive and negative values, depending on the
frequency, but its imaginary part is always positive. This
corresponds to the energy transfer from the external field to
the spaser. In the presence of a pump close in frequency to the
spaser oscillation frequency, the imaginary part of the dipole
moment may assume negative values for certain values of DE,
which corresponds to the energy transfer from the spaser to
the external field (Fig. 6) [20].
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Figure 3. Stationary value of the population inversion D as a function

of the external field amplitude for ta � 10ÿ14 s, ts � 10ÿ11 s, tD �
0:5� 10ÿ14 s, and OR � 1013 sÿ1: (a) DE � dE � 0, and (b) DE �
dE � 1011 sÿ1.
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Figure 4. Dimensionless NP dipole moment as a function of external

optical field amplitude E and frequency mismatch DE. The speckle
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behavior of the dipole moment.
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Figure 5. Amplitude of the NP dipole moment as a function of the

magnitude of the external field for a zero mismatch.
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It should be emphasized that for a given magnitude of
external field there are two frequencies at which the imaginary
part of the dipole moment turns to zero, i.e., complete
compensation occurs (see Fig. 6). These points lie on the
complete compensation curveE � Ecom�DE� (Fig. 7), which is
defined by the expression [20]�

mNPEcom�DE�
�h

�2

� 1

4

�
ÿ tDt 3s

ta
D 4
E �D0ORt 3s

mTLS
mNP

D 3
E

tD

ÿ
�
ts
tD
ÿ O 2

RD0
tat 2s
tD

�
D 2
E

��
tsDE

mTLS
mNP

� taOR

�ÿ2
:

�21�

As DE ! 0, expression (21) changes into�
mNPE

�h

�2

� �D0 ÿDth�D 2
E

�
t 2s
tDta

�
:

Therefore, E/�D0ÿDth�1=2DE, and this curve lies inside of
the Arnold tongue [20].

Figure 7 depicts the phase difference between the NP
dipole moment and the external field, which was obtained by

the numerical solution of system (15)±(17). The discontinuity
line, or the compensation line Ecom�DE�, corresponds to a
phase difference p, when the imaginary part of the dipole
moment is equal to zero. In this case, the real part of the NP
dipole moment turns out to be negative.

If the external field amplitude corresponds to a point lying
below the compensation curve, the energy is transferred from
the spaser to the field, and as the wave field propagates over
the system of spasers, its amplitude should increase,
approaching the value Ecom�DE�. When the point lies above
the curve, the energy will be absorbed inside the spaser, and
the wave will attenuate and tend to the same value of
amplitude. It is therefore expected that a wave will propagate
over the system, whose amplitude will stably tend to the value
defined by the level of spaser pumping and the frequency
mismatch.2

The above reasoning relies on our analysis of the behavior
of a single spaser. Moving from a single spaser to a spaser
system may give rise to collective effects due to interspaser
interaction, which may qualitatively change the picture of
wave propagation through the active metamaterial.

6. Collective excitations of a spaser chain
So, we have ascertained that a spaser may synchronize its
operation under the action of an external field. However, to
make metamaterials requires the knowledge of how a spaser
system works. In this case, collective interspaser interaction
may significantly change the operating conditions and result
in new effects. Indeed, since the times of Huygens it has been
known that self-oscillating systems may synchronize their
operation in the presence of even a weak interaction between
them [81, 82]. Similar phenomena may also take place in a
spaser system.

Below, we consider the collective interaction of spaser
self-oscillations in the course of lasing above threshold by the
simplest example of a linear spaser array. Two scenarios of
the operation of the spaser system are possible in this case.
First, the operation of all spasers may be synchronized,
resulting in their in-phase operation. Second, a scenario is
possible whereby the QD excitation will be transferred to
their collective mode [2, 23, 65, 83, 84]. The role of collective
mode is played by the dipolemoment wave traveling along the
chain of plasmon nanoparticles (see Ref. [60] and references
cited therein).

For small frequency departures from the plasmon
frequency, the dispersion relation for the wave of dipole
moments traveling over an NP chain assumes the form

o�k� � oSP � gi
o2

1

oSP
cos �kb� ; �22�

whereo2
1 � r 3NPo

2
pl=�3b 3�, g1 � 1 for longitudinal modes, and

g1 � ÿ2 for transverse ones [60]. This solution becomes
meaningless for k < k0 � o=c, when the mode turns into a
leaky one (see Ref. [85]), i.e., the radiation of photons occurs.
For a single spaser, the radiationless excitation of plasmons
prevails over the emission of photons for �k0rNPÿTLS�3 5 1,
where rNPÿTLS defines the characteristic scale of the system. In

R
e
(d
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P
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Im
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)
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Figure 6. Real (solid curve) and imaginary (dashed curve) parts of the NP

dipolemoment as functions of frequencymismatchDE for an external field

amplitude exceeding the locking threshold, E > Esynch�DE�.
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Figure 7. Dependence of j � tanÿ1 �Im dNP=Re dNP� on external field

amplitude E and mismatch DE. The smooth part of the surface corre-

sponds to the Arnold tongue region in which the spaser is synchronized by

the external field. In the discontinuity line Ecom�DE�, where j � p, the
energy losses are precisely compensated.

2 We emphasize: if a weak wave propagating over the system of spasers in

the stochastic regime (outside of the Arnold tongue) were amplified, the

system would be unstable. It would then be possible to observe sponta-

neous excitation of a wave with its amplitude defined by the `compensa-

tion line'.
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the case of the collective mode, for a scale length r we must
take kÿ1, i.e., for k < k0 we obtain �k0r�3 5 1, and the energy
will be transferred primarily to photons. Owing to the mutual
synchronization of the spasers �k � 0�, an effect similar to
that considered in Ref. [14], where all spasers radiate in the
same direction, should be observable in this situation.

The dipole±dipole interaction between the neighboring
spasers gives rise to additional terms in Hamiltonian (4).
Along with OR, ONPÿNP Ð the coupling constant between
nearest-neighbor NPs, ONPÿTLS Ð the coupling constant
between the QD and the neighboring NPs, and OTLSÿTLS Ð
the coupling constant between the nearest-neighbor QDs,
appear.

The inclusion of ONPÿNP alone leads to the solution in the
form of a harmonic wave with the dispersion equation

ok � oa � O eff
NPÿNP cos �kb� ;

where O eff
NPÿNP � 2ONPÿNPta=�ta � ts�. This solution exists

provided that the pumping exceeds the threshold value equal
to

Dth�k� � 1� �O eff
NPÿNPts�2 cos2 �kb�

O 2
Rtats

:

Despite the superficial similarity between the dispersion
equations for the waves propagating over an NP chain and a
spaser chain, there is a fundamental difference between these
systems. First, the amplitude of waves propagating over the
spaser chain is fixed and determined by the pumping level:

an; k � 1

2
exp �ij�

�����������������������������������������������������������������������������
D0 ÿ 1� �O eff

NPÿNPts�2 cos2 �kb�
O 2

Rtats

�
ta
ts

s
:

�23�
This autowave is different from solutions like solitons and
kinks, which are known for other nonlinear systems [86],
being a purely harmonic wave. Second, while the linear array
of NPs obeys the superposition principle, an unusual
situation takes place in the case of the chain of spasers: all
autowaves, with the exception of the one with k � �p=2b, are
unstable, and any initial perturbation evolves into this wave.

The inclusion of QD interactionwith the neighboringNPs
changes the situation qualitatively. The threshold pumping
level becomes

Dth�k� � 1� �tsO eff
NPÿNP�2 cos2 �kb��

OR � 2ONPÿTLS cos �kb�
�2tats ;

and the stability condition coincides with the condition for
the minimum of Dth�k� (Fig. 8).

One can see from Fig. 8 that a critical value exists for the
coupling constant

O �NPÿTLS �
1

2
�tsO eff

NPÿNP�2OR

which separates frequency-dispersive waves from waves with
k � �p=b or k � 0 (Fig. 9). Waves with k < k0 cannot travel
along the linear chain, because they become leaky waves in
this case [85].

7. Conclusion
There is a great demand for devices capable of manipulating
light in domains smaller than the optical wavelength, i.e.,

measuring about ten nanometers: SNOM (scanning near-
field microscopy), SERS, optoelectronic devices, etc. It is
evident that coherent nanodimensional sources of optical
radiation, i.e., nanolasers, rank with these devices. Among
the possible ways of their realization is the spaser, with a
plasmon nanoparticle fulfilling the function of a laser cavity.

However, it turns out that a spaser can be employed not
only as a separate, ultrafast (with a response time of several
femtoseconds) device, but also as an active inclusion in
nanocomposites, including metamaterials. Indeed, a spaser-
based composite material constitutes a new nonlinear object
of research with unique properties. The spaser experiences
Rabi oscillations in the transition to a stationary spasing
mode, and therefore the properties of this material can be
controlled by the intensity of external optical perturbation. In
the stationary mode, the material reacts to the perturbation
frequency by going from stochastic oscillations to the
propagation of plasmon autowaves; the amplitude of the
propagating waves depends only slightly on the amplitude of
the incoming signal and is controlled primarily by the
pumping level. These materials may show promise and find
application in optoelectronics and metaplasmonics.
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