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Theory of the dipole nanolaser

I E Protsenko

1. Introduction
This paper is concerned with the theoretical investigation
into the coherent generation of the dipole moment of a
metallic nanoparticle, when a localized plasmon resonance is
excited in it with the use of a generator (an atom, a quantum
dot, etc.) in which an inverse electron state population is
realized. The generator and the nanoparticle experience a
near-field interaction. This nano-dimensional systemÐa
`dipole' nanolaser (DNL)Ðemits a coherent electromag-
netic field when threshold conditions are fulfilled. We derive
basic and simplified DNL equations, discuss the threshold
lasing conditions and the DNL features associated with
incoherent dipole moment generation, and take a look at
several DNL-based facilities (broadband optical modula-
tors, highly efficient light-emitting devices), as well as
possible DNL designs and further lines of their theoretical
investigation.

Research into the resonance interaction of electromag-
netic radiation with metallic particles have a long-standing
history [1±3]. Today, these studies are on the rise, and a new
field of physicsÐnanoplasmonics [4]Ðhas made its appear-
ance, which is related to the development of nanotechnologies
and the emergence of new practical tasks: to control light in
optoelectronics [5, 6], enhance the efficiency of solar elements
using metallic nanoparticles [7], etc. Metallic nanoparticles
possessing localized plasmon resonances (LPRs) may be
employed as antennas in the optical and near-infrared
regions [8], including the production of nano-dimensional
lasers. The method of coherent radiation generation and the
dipole nanolaser based on this were proposed in patent [9]; the
corresponding theory was elaborated in Refs [10±17] and
applied, for instance, in Refs [18, 19]. Independently of and
practically simultaneously with Ref. [9], the authors of
patent [20] came up with a method of generating surface
plasmons and a device for surface plasmon amplification by
stimulated emission of radiation (spaser), which is close to the
DNL. The theory of spacers was elaborated inRef. [21] and in
other work. Also investigated was the possibility of compen-
sating losses in active media with metallic nanoparticles [22];
this loss compensation takes place both in DNLs and in
spasers. Several experiments have been carried out with
devices close to the DNL, which were operated both below
[23, 24] and above [25, 26] the lasing threshold; the complete
bibliography of DNL and spaser research is hard to expound
on in this short report.

The aim of this paper is to briefly outline the theory of
DNLs and to consider some of its new features. The DNL

theory is based on the well-known equations of a single-mode
laser [27], in which the electromagnetic field mode is replaced
with the dipole moment arising from the resonance oscilla-
tions of the nanoparticle electron density. The quantum of
linear electron density oscillations is a boson, like the
quantum of an electromagnetic field (EMF), and coherent
(laser) generation of electron density oscillations is therefore
possible, similarly to coherent generation of EMF bosons.
The feasibility of laser generation of not only EMF quanta,
but also other bosons, for instance, Bose±Einstein conden-
sates of atoms in traps [28], was emphasized earlier. Basic
DNL equations substantiate the possibility of coherent
generation not only of the dipole moment and radiation but
of other laser effects in DNL-like systems as well. The
elaboration of the basic equations results in progressively
more realistic models of the DNL and its related devices. In
doing so, it is possible to employ the well-known approaches
of laser theory, for instance, in the description of spontaneous
emission into a mode [29, 30], as well as of classical
electrodynamics, for instance, in the description of DNL
modes [3]. Those effects which are of little significance in
`classical' laser theory quite often turn out to be highly
important for the DNL like, for instance, nonthreshold
lasing [30] or local field effects [31]. Elaborating the basic
DNL equations leads to models different from their analogs
in laser theory; in particular, the equations for the DNL in an
external field with the inclusion of spontaneous emission into
a mode [17] are significantly different from the equations
for an ordinary laser with external signal injection [27]. The
DNL theory is highly instructive, because it combines, in
a natural way, the classical effects of the nonlinear dynamics
of oscillatory systems (threshold effects, bistability, etc.) and
the special features of quantum electrodynamics (sponta-
neous emission, quantum noise, single-photon emission).
This all makes the DNL an interesting subject of basic
research, but its practical applications are equally interest-
ing.

The paper outline is as follows. In Section 2, we offer the
derivation of DNL equations, which is more general than in
Ref. [10], without invoking the quasistatic approximation and
the assumption that the nanoparticle dimensions are negli-
gibly small. In Section 3, we simplify the basic equations: they
are brought to the form of Ref. [10] convenient for applica-
tions; validity conditions of the equations are discussed and
many-atom DNL equations are considered. Sections 4 and 5
are concerned with the DNL oscillation conditions and point
to the possibility of bifurcations in lasing, when the direction
of dipoles changes in a step-wise manner; also included is the
incoherent (spontaneous) generation of the dipole moment of
a few-atom DNL. In summary, we discuss the prospects of
DNL theory development.

2. Basic equations of the dipole nanolaser
A simpleDNLdesign comprises ametallic nanoparticle and a
nearby emitting two-level system (atom, molecule, quantum
dot, etc.) in which the population inversion of its states is
effected with the aid of an incoherent external pump: a
broadband light pulse, injection current, and so forth.
(Fig. 1a). The localized plasmon resonance frequency oLPR

of the metallic nanoparticle is close to the transition
frequency o2 of the two-level system; the particles experience
resonance interaction via EMF.

The equations for a two-level system [32] in an external
resonance field EE � e�E�t� exp �ÿiot� � E��t� exp �iot�� are
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well known, where e is a unit vector, and the amplitude E�t�
varies more slowly than exp �ÿiot�. In the approximation of
slowly varying amplitudes, one has

_D � 2ile

�h
�Es� ÿ E�s� ÿ tÿ1�DÿD0� ; �1�

_s � �id2 ÿ G2�sÿ i
le

�h
ED ; �2�

where D is the population inversion; l is the real dipole
matrix element; tÿ1 and G2 are the relaxation rates of the
population of the upper level in the two-level system and of
its dipole moment, respectively; D0 is the pump-induced
equilibrium value of population inversion in the absence of
the field, and d2 � oÿ o2 5o2; the dipole moment of the
two-level system d̂2 � l �s exp �iot� � s� exp �ÿiot��, and its
magnetic moment is assumed to be zero; the resonance
frequency of the transition between the states is o2 � oLPR.

We replace s in Eqn (2) by Bose operator a, �a�; a� � 1,
and atD � ÿ1 arrive at the equation of motion for the dipole
moment d̂0 � l0�a exp �iot� � a� exp �ÿiot�� of the nanopar-
ticle, i.e. the linear dipole (harmonic oscillator) in the
resonance EMF:

_a � �idÿ GLPR�a� i
l0e

�h
E ; �3�

where d � oÿ oLPR 5oLPR, GLPR is the LPR linewidth, and
amay be termed the plasmon annihilation operator.

The two-level system is treated as a point dipole. The
finite nanoparticle dimensions should be taken into con-
sideration: the two-level system may be located closely to
the nanoparticle, so that the field of the system changes
markedly over the domain occupied by the nanoparticle. As
a rule, the nanoparticle dimensions are smaller than the
EMF wavelength, and the quasistatic approximation there-
fore applies inside the nanoparticle, and the polarization
(the dipole moment of a unit volume) is the same
throughout the nanoparticle [4]. Let us introduce the Bose
operator p�r� of polarization amplitude, a � �V p�r� dV,
where V is the nanoparticle volume. The commutation
relations � p�r�; p��r 0�� � Vd�rÿ r 0� ensure that �a; a�� � 1
for the Bose operator a; r and r 0 are the radius vectors of the
points inside the nanoparticle. The equation of motion for
p�r� has the form

_p�r� � �idÿ GLPR� p�r� � i
l0e

V�h
E�r� :

By integrating both sides of this equation over the nanopar-
ticle volume, we obtain

_a � �idÿ GLPR�a� i
m0
�h

�Em ;
�4�

�Em�r� � Vÿ1
�
V

eme�r 0�E�r 0� d3r 0;

where �Em is the nanoparticle volume-averaged projection of
the external field amplitude onto the polarizationmode under
excitation (in the present case, onto the direction of the
nanoparticle's dipole moment), em is the unit vector aligned
with the nanoparticle's dipole moment, and r is the nanopar-
ticle center distance from the two-level system. For a spherical
nanoparticle, �Em�r� � E�r� in the quasistatic approximation,
which can be directly verified.

Now, it is possible to describe the interaction, via an
alternating electric field, between the two-level system and the
metallic nanoparticle, which are located in a uniform
transparent medium with a refractive index n2 and separated
by some distance. The electric field induced by the particle in
the seat of the two-level system will be denoted by the
subscript 02, while the field produced by the two-level system
in the seat of the nanoparticle will be denoted by the subscript
20.We use Eqns (1)±(3) to arrive at the system of equations of
motion for both dipolesÐ the particle and the two-level
systemÐwith the inclusion of their dipole±dipole interac-
tion:

_D � 2i
le02

�h
�s�E02 ÿ E�02s� ÿ tÿ1�DÿD0� ; �5�

_s � �id2 ÿ G2�sÿ i
le02

�h
E02D ; �6�

_a � �idÿ GLPR�a� i



l0e20E20

�
V

�h
; �7�

where h. . .iV signifies averaging over the nanoparticle volume.
By using the expression for the Fourier component of the

dipole radiation [33], the approximation of slowly varying
amplitudes, and the spectral decomposition of E02�t� and
E20�t� into Fourier integrals, it is possible to show that the
electric field amplitudes entering into equations (5)±(7) are
written down as

le02E02�t� � ÿ m0m
r 3

x�k2r�s
�
tÿ n2r

c0

�
;

�8�
l0e20E20�t� � ÿ m0m

r 3
x ��k2r�a

�
tÿ n2r

c0

�
;

x�r� � exp �ir���1ÿ r 2 ÿ ir� � cos2 yr�r 2 � 3irÿ 3�� ;
where r � k2r, r is the observation point distance from the
dipole, k2 � n2o=c0, n is a unit vector directed from the dipole
to the point of observation, and yr is the angle between n and
parallel vectors d0; 2; this angle will be determined below. In
the second of expressions (8), x � appears, while x enters into
the first one, because the fields from particle 0 to particle 2
and vice versa propagate in opposite directions. On the right
sides of expressions (8) there are dipole polarization ampli-
tudes delayed by a time n2r=c0 taken for the EMF to travel the
interparticle distance.

Equations (5)±(8) constitute the DNL basic equations.
Their variables are the population inversionD and the dipole
moments s and a. Electromagnetic fields do not enter into the
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Figure 1.DNL diagrams: (a) metallic nanoparticle 1 is separated from the

two-level systemÐquantum dot 3Ðby a dielectric sublayer 2; (b) `core±

shell' type DNL.

October 2012 Conferences and symposia 1041



equations, and the fields outside of the DNL may be
determined from expressions (8) and the corresponding
expressions for the magnetic fields of the dipoles. In the
DNL, the place of a field mode is occupied by nanoparticle
polarization (dipole moment) mode a, which gave rise to the
name `dipole' nanolaser. Instead of the polarization of the
nanoparticle, it is possible to consider the field inside it; in the
quasistatic approximation and under the excitation of a
`dipole' mode, this field differs from the polarization only by
a factor standing for the electric susceptibility of the
nanoparticle material. In a similar way, it is possible to
derive equations when another electron density oscillation
mode, for instance, the quadrupole one with a different LPR
frequency, rather than the dipole mode, is excited in the
nanoparticle. The oscillation modes for the field (or polariza-
tion) inside and outside spherical particles are exactly known
[3]: they may be applied to analyzing the DNL with large
spherical particles, when the quasistatic approximation is
invalid inside them. For small nonspherical nanoparticles, it
is possible to use the quasistatic approximation when
describing the particle polarizations (the fields inside the
particles) and multipole expansions to describe the fields
outside the particles [33].

Equations (5)±(8) are operator equations, and their
variables are fluctuating quantities with intrinsic quantum
fluctuations and those caused by dissipation. One way to
solve such equations involves the employment of spectral
decompositions and the addition of Langevin forces, as was
done in Ref. [30]. To analyze the DLN, we replace below
equations (5)±(8) with equations for the averages and
`uncouple' correlations (an analog of the moments method
in statistical theory): higher-order moments, i.e., the averages
of the products of fluctuating quantities, are replaced by
lower-order momentsÐby the products of the averages.

3. Simplified equations, their validity conditions,
and conditions for dipole nanolaser oscillation
Let us assume that the interparticle distance is short, so that
the EMF delay time tr � n2r=c0 is short in comparison with
the characteristic time of change of variables, and in Eqns (8)
we can write

s
�
tÿ n2r

c0

�
� s�t� ÿ tr

ds
dt

; a

�
tÿ n2r

c0

�
� a�t� ÿ tr

da

dt
:

�9�

For sufficiently short r, when tr ds=dt5 s�t� and
tr da=dt5 a�t�, the derivatives on the right-hand sides of
expressions (9) can be neglected, and then the system of
equations (5)±(7) assumes the form

_D � 2i�O �inta�sÿ Oints�a� ÿ tÿ1�DÿD0� ; �10�
_s � �id2 ÿ G2�s� iOintaD ; �11�
_a � �idÿ GLPR�aÿ i�O �ints ; �12�

where the coupling constant

Oint � x�k2r� m0 m
�hr 3

; �O �int �
1

V

�
V

O �int dV ; �13�

Oint � Oint�r�, �O �int � �O �int�r�, and r is the two-level system
distance from the nanoparticle center. For a spherical
nanoparticle of radius a, in the quasistatic approximation,

when k2a < k2r5 1, it turns out that �O �int � O �int. On the other
hand, beyond the quasistatic approximation and for small
particles, when k2a5 1 and k2r5 1, we may put �Oint � Oint,
correct to at least � a=r5 1. Therefore, for small spherical
nanoparticles if nothing else, it may be assumed that the
condition �Oint � Oint is always fulfilled with a high accuracy.

DNL equations (10)±(13) coincide with single-mode laser
equations, for instance (on changing the notation) with
Eqns (3.2) from Ref. [27]. This signifies that it is possible to
directly take advantage of several results of laser theory in the
DNL analysis, including the possibility of the coherent
generation of a nanoparticle dipole moment by analogy with
the coherent EMF mode generation in a conventional laser.
As in the latter, the DNL may have a lasing threshold,
although DNLs quite often turn out to be `nonthreshold'
(see below), unlike ordinary lasers which are nonthreshold
only under special conditions [30].

Let us estimate when it is possible to neglect retardation in
Eqns (8). The DNL operates (reaches a stationary mode, etc.)
with a characteristic rate � GLPR, i.e., _s=s � _a=a � GLPR.
The LPR quality factor Q � oLPR=�2GLPR�. Considering
these relations, we find the smallness condition for the delay
time tr � n2r=c0:

n2r

c0
GLPR � n2r

c0

oLPR

2Q
� k2r

2Q
5 1 or r5 rcr � 2Q

k2
: �14�

Figure 2 depicts the dependence of Q on the radius a of a
spherical gold nanoparticle in water, n2 � 1:33. For the peak
value of Q � 33:8 for a � 19 nm and lLPR � oLPR=c0 �
560 nm, we obtain the validity condition for equations (10)±
(12): r5 rcr � 4:53 mm. Therefore, when the atom is located
at a distance of, say, 40 nm from the particle surface (although
so long a distance is unnecessary), neglecting the small atomic
dimensions we have r � 0:06 mm5 rcr � 4:53 mm. Even at
QLPR � 10Ðwhich is often the case in experimentsÐ
r � 0:065 rcr � 1:34, i.e., there is a safety margin of
1.5 orders of magnitude. This signifies that the retardation
in Eqns (10)±(12) may be neglected.

Equations (10)±(12) can be generalized to describe
DNLs of various designs: for instance, when there are
N > 1 two-level systems (atoms) rather than one, each of
the systems is located at a distance rm from the nanoparticle
center, as in Fig. 1b. Using the subscript m to mark the
variables and parameters relating to the corresponding
atom and introducing the variables �D � Nÿ1

PN
m�1 Dm and

S � Nÿ1
PN

m�1 O
�
msm averaged over the atomic ensemble,

where Om is defined by expression (13) with r � rm, one can

10

30

QLPR

20

0.02 0.06 0.08 a, mm

1

2

Au
a

Figure 2. LPR quality factor as a function of the radius of a gold

nanoparticle in water: 1Ðresult of an approximate solution to the

dispersion equation [3], and 2Ðexact solution of this equation.
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obtain, in lieu of formulas (10)±(12), the following equations

_�D � 2i�a�Sÿ S�a� ÿ tÿ1� �DÿD0� ; �15�
_S � �i�d2 � Odd

�D� ÿ G2

�
S� ij�Oj2a �D ; �16�

_a � �idÿ GLPR�aÿ iNS : �17�

The factorN in the last termon the right-hand side of Eqn (17)
points to the contribution made byN atoms to the generation
of a nanoparticle's dipole moment. A peculiar feature of
Eqn (16) is the nonlinear resonance shift Odd

�D, where the
quantityOdd describing `local field' effects in the DNL, which
are associated with atomic interactions via the EMF [31], is
defined by expression (13) averaged over all atoms, with r
being the interatomic distance. It may be shown that Odd is a
real quantity. The inclusion of Odd fluctuations permits
describing the effects of inhomogeneous broadening (`self-
broadening') in many-atom DNLs.

4. Oscillation conditions for the dipole nanolaser
We revert to Eqns (10)±(12). Dipole matrix elements m0; 2
enter into expression (13) for the coupling constant, but
polarizabilities, whose calculation is carried out at will for
metallic nanoparticles, are more convenient to use than m0; 2.
In Ref. [10], it was shown that jm0j2 � a0r�hGLPR and
jm2j2 � a2r�hG2, where a0r and a2r are the respective resonance
polarizabilities of the nanoparticle and the two-level system.
Whence, and from expression (13), it is possible to obtain
jOintj2=�G2G� � jxj2ja0ra2rj=r 6.

The nontrivial stationary solution of Eqns (10)±(12) is well
known, in particularD� Dth� �1�d 2=G 2

LPR�G2GLPR=jOintj2.
Apart from the nontrivial solution, there is a trivial stationary
solution a � s � 0, D � D0. When the pump exceeds the
threshold value, D0 > Dth, the trivial solution becomes
unstable, and the nontrivial solution is realized, giving rise
to the coherent generation of the dipole moment. Since the
population of the upper state in the two-level system does not
exceed unity,Dth < 1 becomes the necessary condition for the
generation, which is fulfilled for a sufficiently strong interac-
tion between the particles. In the case of reaching exact
resonance o � o2 � oLPR, the necessary condition for DNL
oscillation is given as follows

Dÿ1th �
jOintj2
G2GLPR

> 1

or

jxj2 ja0ra2rj
r 6

> 1 ; �18�

i.e., the two-level system should be sufficiently close to the
nanoparticle, so that their center distance r satisfies the
inequality r < rcr � jxj1=3ja0ra2rj1=6.

The DNL threshold corresponds to the strongest interac-
tion between the particles, i.e., according to inequality (18) to
the maximum of the quantity jxj2=r 6 in yr for a fixed r. An
analysis made with the use of formulas (8) for a spherical
nanoparticle suggests that the value of jxj2=r 6 is greatest when
cos yr equals 1 or 0, i.e., when the dipoles are directed parallel
or perpendicular to the segment connecting them; this also
follows from symmetry considerations. The maximum at
cos yr � 1 corresponds to 0 < k2r < rbif, and in this case the
near-field interaction of the dipoles prevails over their far-
field interaction. The maximum at cos yr � 0 corresponds to

k2r > rbif Ð the prevalent far-field interaction of the dipoles.
At the point k2r � rbif � �5�

�����
37
p �1=2= ���

2
p � 2:35, the dipole

interaction energies at cos yr � 1 and at cos yr � 0 are equal
and jx�rbif�j2=r 6

bif � 0:154. Therefore, as the value of k2r
changes, in going across k2r � rbif bifurcation occurs: a
stepwise change in the direction of dipole polarizations and
the DNL radiation directivity. If advantage it taken of the
variable r � k2r, the DNL oscillation condition (18) is
conveniently written in dimensionless quantities:

A

��x�r���2
r 6

> 1 ;
�19�

x�r� � 2 exp �ir��irÿ 1� ; 0 < r4rbif ;
exp �ir��1ÿ r 2 � ir� ; rbif < r < rcr � k2rcr ;

�

whereA � ja0ra2rjk 6
2 . Figure 3 depicts the dependence rcr�A�.

The lasing is possible when 0 < r < rcr. In this case, when
A > Abif, twoDNL oscillationmodes are possible. The first is
realized when 0 < r < rbif and the dipoles are parallel to the
segment connecting them, and the second when rbif < r < rcr
and the dipoles are perpendicular to the segment connecting
them. Accordingly, the far-field radiation patterns of the
dipoles in these modes will be rotated relative to each other:
this property may be employed for controling the DNL
radiation. Several oscillation modes and the corresponding
bifurcations may also exist for nonspherical nanoparticles.
For rbif < r < rcr, the degeneracy shows up in directions of
the dipoles in the plane perpendicular to the segment
connecting the particle centers; in this case, the atom must
be treated as a three-level system rather than a two-level one.

Let us estimate the value of A for a gold spherical particle
7 nm in radius. Let us assume that the two-level system
(molecule) resides on a dielectric shell of a nanoparticle in
water; the refractive index of the shell is little different from
water's refractive index n2 � 1:33; these conditions are close
to the experimental ones accepted in Ref. [25]. We utilize the
parameters of the two-level system as inRef. [10] and the same
parameters and formulas for calculating the dielectric
function of gold and the polarizability of a gold nanoparticle
as in Ref. [34]. In this case, lLPR � 525 nm (in a vacuum), and
A � 6:28� 10ÿ4, which corresponds to rcr � 0:378. The
greatest center-to-center distance of the particles is rcr �
rcrlLPR=�2pn2� � 24 nm. In Ref. [25], for lLPR � 520 nm the

1

2

3 rAu

AAu

rbif

Abif

0 2 4 6 8 10 A

r

Figure 3. For a given value of A, the DNL oscillation is possible when

r < rcr�A�, which is indicated with a solid curve. The curve break

corresponds to rbif; on exceeding it, the direction of the dipoles becomes

perpendicular to their connecting straight line. The magnitude of AAu and

the critical value of rAu correspond to a DNL made of a spherical gold

nanoparticle and a quantum dot in silicon.
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distance between a shell surrounding a gold spherical particle
of radius 7 nm and the center of this particle was equal to
22 nm, i.e., our estimates bear out the possibility of lasing in
Ref. [25].

By way of a second example, let us consider a DNL
comprising a gold (or silver) spherical nanoparticle of radius
10 nm and a quantum dot in silicon. By using the dielectric
function of silicon [35], we find that lLPR � 876 �804� nm,
A � 7:8 �6:7�, and the dipoles may be spaced at a center-to-
center distance r < rcr � 100 �83� nm. The corresponding
points for the gold nanoparticle are indicated in Fig. 3; for
this particle, A � AAu > Abif � 7, and the dipoles may there-
fore be directed along as well as across their connecting
straight line. These estimates suggest that the necessary
condition for DNL oscillation can be fulfilled in real systems.

5. Inclusion of incoherent dipole nanolaser oscillation
In this section we consider, following report [14], DNL
equations in the next approximation of the moments
method, including the averages of quadratic quantities,
which will permit describing the incoherent dipole moment
oscillationÐan analog of incoherent oscillation, including
the subthreshold one, in an ordinary laser [29]. Under
incoherent oscillation conditions, the average values of the
dipole moments hsi � hai � 0, but the corresponding ener-
gies, or the squares of the moduli of the dipole moments, are
hs�si 6� 0 and ha�ai 6� 0.

In equations (10)±(12) we go over from operators a and s
to their binary combinations: the operator of the number
of plasmons, n0 � a�a, and G � iGÿ1tot�Oints�aÿ O �inta

�s�,
where Gtot � GLPR � G2. In lieu of D it is more convenient to
use the operator n2 of the upper level population of the two-
level system: D � 2�n2 ÿ 1=2�. We put d0; d5GLPR;G2 and
consider the resonance case (which is more general than in
Ref. [14]) and assume that there are N atoms equally spaced
from a metal nanoparticle, for instance, on a dielectric shell
(Fig. 1b). By differentiating the products of the operators and
employing Eqns (10)±(12), we find that

_G � ÿ2GtotG� 2gplN

�
n0

�
n2 ÿ 1

2

�
� n2
2N

�
; �20�

_n0 � ÿ2GLPRn0 � GtotG ; �21�

_n2 � ÿGtotGÿ n2
t
� j ; �22�

where j is the rate of pumping of an individual atom,
gpl � 2jOintj2=Gtot � 4G2GLPR=�DthGtot�, n0 is the number of
plasmons per atom, and the total number of generated
plasmons is Nn0. In equations (20)±(22), the variables are
the averages of the operators, and correlations are neglected,
i.e., the averages are uncoupled: hn0n2i � hn0ihn2i. In the
derivation of equations (20)±(22), advantage was taken of the
quantum-mechanical identity s�s � n2 [36], with the con-
sequence that the term n2=�2N � responsible for the incoherent
generation of a nanoparticle's dipole moment emerged in the
square brackets on the right-hand side of Eqn (20). This term,
which is proportional to n2, makes a contribution to plasmon
generation irrespective of the existence of population inver-
sion: the greater N, the smaller is this term.

Figure 4 depicts the dependence of the number of
plasmons generated by a DNL with N � 100 atoms on the
pumping rate expressed in GLPR units at Dth � 0:9 and the
same G2 as in Ref. [10], i.e., G2 � G2R � G2NR, where the

radiative width of the line of the two-level system (a quantum
dot) is G2R � 1=t � 1 ns, the nonradiative linewidth
�hG2NR � �egacT, �e is the electron charge, T is the temperature
[K], gac � 0:5� 10ÿ6 eV Kÿ1; T � 300 K and GLPR � 300G2R

(curve 1), GLPR � 10G2R (curve 2), and GLPR � 3G2R

(curve 3).
If the laser oscillation threshold is considered as a sharp

acceleration of the growth in the number of plasmons upon
increasing the pump current (the threshold in the number of
plasmons), this threshold turns out to be evident only for
curve 3, when the LPR Q factor is quite high. Curves 1 and 2
correspond to `nonthreshold' lasing. No less important than
the existence or the absence of the threshold in the number of
plasmons are the conditions for oscillation line narrowing to a
value smaller than GLPR, which have not been investigated so
far but may be found using the approach suggested in
Ref. [30]. In view of the results of work [30], it may be
assumed that inequality (18) remains the necessary condition
for line narrowing even for `nonthreshold' DNLs, which are
described by curves like 1 and 2 in Fig. 4. It is significant that
equations (20)±(22) predict a much higher pumping rate near
the threshold: j � GLPR instead of j � 1=t5GLPR in the case
of equations (10)±(12) disregarding the energy loss for
incoherent subthreshold generation.

When N � 1, GLPR 5G2 (a low-Q LPR), Gtot 4 1=t, the
number of plasmons n0 5 1, and the pumping rate is not too
high, j5GLPR, it is possible to neglect the term � n0 in
Eqn (20) and adiabatically eliminate G from Eqns (20)±(22)
by putting _G � 0. After this, only a single equation remains:
_n2 � ÿ�tÿ1 � gpl=2�n2 � j. One can see from this equation
that the electron lifetime in the upper state of the two-level
system significantly shortens due to the presence of the
metallic nanoparticle: under ordinary conditions gpl �
GLPR 4 tÿ1. This fact can be utilized for making broadband
optical modulators with metallic nanoparticles [16].

In circumstances where gpl � GLPR 4 tÿ1, upon adiabatic
elimination of G it is possible to neglect the term n2=t in the
equation for n2. This signifies that the atom radiates primarily
to the nanoparticle's `dipole' mode and that the radiation to
its other modes with frequencies different from the dipole
mode frequency is negligible. Therefore, the number of
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Figure 4. Number of plasmons generated by a DNL as a function of the

pumping rate of each of N � 100 atoms, with the proviso that the

population inversion be equal to 0.9 and the LPR linewidth be equal to

300 (curve 1), 30 (curve 2), and 3 (curve 3) atomic radiation linewidths. The

threshold character of oscillation is evident in curve 3.
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modes to which the atom may spontaneously radiate is
limited, and in this sense the nanoparticle is similar to a
photonic crystal. In this case, the stationary number of
plasmons n0 � j=�2GLPR� increases linearly with pump
current, and there is no oscillation threshold in the number
of plasmons, but the DNL linewidth may decrease to values
smaller than GLPR, as with a nonthreshold laser [30]. It is
noteworthy that, although there is absorption in the metallic
nanoparticle, the number of photons delivered by the two-
level system and reradiated by the particle is not so small in
comparison with the number of photons emitted by the two-
level system in the absence of the nanoparticle, the pump rate
being the same in both cases. Indeed, metallic nanoparticle
cross sections for absorption and scattering under the LPR
conditions may be in the ratio of 1:2 [4], i.e., only every third
photon delivered by the atom will participate in nanoparticle
heating, while the remaining photons will go to its dipole
radiation. In this case, the reradiation rate is approximately
tGLPR times (i.e., an order of magnitude or more) higher than
the emission rate of the atom in the absence of the
nanoparticle. Therefore, from the standpoint of converting
the current of a high-power pump, the ensemble of atoms near
the nanoparticle constitutes a highly efficient nano-dimen-
sional light-emitting device.

6. Conclusions
The dipole nanolaser is a quantum electronic system remark-
able for its basic properties and its possible practical
applications. The uniqueness of the DNL lies, in particular,
in the fact that it resides `at the boundary' of the domain
where quantum effects are significant, like spontaneous
emission to an oscillation mode, as are classical nonlinear
effects like the excitation of self-oscillations, etc. In the
foregoing, it was impossible to consider all DNL-related
quantum effects involving, for instance, superluminescence
in DNL ensembles, oscillation line narrowing in overcoming
the threshold, etc. Many classical nonlinear effects were not
considered, either, like the DNL bistability in an external
resonance field [14, 15]. Also of interest is to analyze a few-
atom DNLÐ like a logic cell (a qubit) for a quantum
computer, for instance, of the `controlled NOT' type [37]. In
the subthreshold generation, DNLs may be employed as
efficient nanodimensional light emitters. To improve the
efficiency of solar batteries and photodetectors, use can be
made of a device `inverse' to the DNL: when a nanoparti-
cleÐan optical antennaÐreceives a photon and transmits it
via its near field to, for instance, a photocurrent-producing
quantum dot. Extensive literature [7] is concerned with
research aimed at improving the efficiency of solar elements
with the help of metallic nanoparticles; the promise of
quantum dot-based photoelectric converters, even without
nanoantennas, is also recognized [38], but DNL photodetec-
tors have not been considered so far. It is hard to foresee all
promising DNL applications.

Different schemes of practical DNL realization are
possible: notably, in the form of a metallic nanoparticle in a
dielectric shell, on the surface of which the active atoms or
molecules (for instance, dye molecules adsorbed from a
solution with the nanoparticles) are located (Fig. 1b). This
DNL scheme has been experimentally realized [25]. Calcula-
tions of this type of DNL can also be performed in the
framework of the `core±shell' nanoparticle model. The shells
are treated as continuous media with corresponding (com-
plex) refractive indices. Calculations for spherical nanoparti-

cles can be performed using the well-known modes of a
spherical cavity [3] without invoking the quasiclassical
approximation. Also possible is the employment of a
`nanoparticle±two-level system' model, similar to the model
presented above, with several radiating atoms (molecules).
Another DNL scheme incorporates a nanoparticle antenna
placed on the surface, say, of a semiconductor; located at a
small (up to several dozen nanometers) depth below the
surface is an active layerÐa pÿn junction, a quantum well,
or a layer of quantum dots. There are examples of the
practical implementation of such systems, and the enhance-
ment of their electro- and photoluminescence due to metallic
nanoparticles is well known [23, 24]. A theoretical descrip-
tion of this type of DNL must take into consideration the
plane interfaces of the media and the electrodynamics of
dipoles in stratified media [39]. Also conceivable are
combinations of various DNL schemes, for instance, of
metallic nanoparticles with active shells residing on semi-
conductor surfaces.

The DNL theory, relying on rather simple equations, is
developing systematically, providing a way for describing
complex DNL schemes, predicting new effects, and helping in
the planning of experiments. This enables the researcher to
make analytical estimates using the results of theoretical
quantum electronics, plasmonics, and the theory of radia-
tion±matter interactions. Next, by applying numerical tech-
niques, it will be possible to carry out comprehensive
simulations of experiments, as soon as they are planned in
Russia.
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Quantum plasmonics of metamaterials:
loss compensation using spasers

A P Vinogradov, E S Andrianov, A A Pukhov,
A V Dorofeenko, A A Lisyansky

1. Introduction
Recent years have seen the development of a new field of
opticsÐquantum plasmonicsÐwhich combines the advan-
tages of plasmonics and quantum electronics [1±25].
Although plasmonics deals with wave phenomena, it oper-
ates on a scale much shorter than the light wavelength in a
vacuum, which endows plasmonics with many features of
near-field optics and creates a demand for plasmonics from
modern nanotechnologies. In the first place, mention should
be made of SERS (surface enhanced Raman scattering), the
SPASER (surface plasmon amplification by stimulated
emission of radiation), nanodimensional light sources [26±
30], and numerous metamaterial-based devices [17, 31, 32]:
energy concentrators and transmission lines on the order of
several dozen nanometers in size, a superlens with a resolution
exceeding the diffraction limit, cloakings, hyperlenses [33±
40], etc. The small dimensions of these objects introduce
quantum effects into their dynamics.

Since the principle of metamaterials operation is under-
lain by the plasmon resonance of metallic nanoparticles
(NPs), artificial metamaterials exhibit rather high energy
loss. The existence of losses in metamaterial-based devices

gives rise to energy transfer inside of them, which is effected
by near fields. The necessary and sufficient condition for the
energy transfer by evanescent waves is the emergence of a
phase difference among `interfering' evanescent harmonics
[41]. The emerging dephasing of harmonics, which form an
ideal image, shows up in their destructive interference and
breaking of the ideal image [42]. To compensate for the loss,
the authors of Refs [43±51] proposed the employment of
active (amplifying) media in artificial metamaterials. How-
ever, it follows from the foregoing that the ideal image is
broken not only by energy dissipation, but also amplification
in the medium. It is required that as precise as possible a loss
compensation be achieved [43, 52, 53].

The utilization of active media in metamaterials leads
inevitably to the formation of nanolasers inside of them.
Among nanolasers, mention should be made of the dipole
nanolaser [8, 10], the spaser [11, 54], and the magnetic-mode
nanolaser [48, 49]. From the standpoint of loss compensation
inmetamaterials, spasers, whose experimental realization was
reported in Ref. [55], have the greatest promise as a base
element. Schematically, the spaser constitutes a quantum-
plasmon device which consists of inversely excited two-level
quantum dots (QDs) (a two-level tunneling system, TLS)
surrounding plasmon NPs (the more realistic treatment of a
four-level system does not introduce qualitatively new
properties (see Refs [50, 56, 57])). The principle of spaser
operation is similar to that of lasers: light amplification
ensured by population inversion in combination with feed-
back, which is produced by the stimulated emission of a
quantum system. To fulfill the conditions for stimulated
emission by an inverted quantum system in the field of the
wave previously radiated by this system, the quantum system
is placed in a cavity, which localizes the generated mode. In a
spaser, the role of photons is played by surface plasmons
(SPs) of an NP. The localization of plasmons on the NP [11,
49, 54] furnishes the conditions for feedback realization. To
state it in different terms, the generation and amplification of
theNP's near-fields occur in spasers. The amplification of SPs
proceeds due to radiationless energy transfer from QDs. The
process relies on the dipole±dipole interaction (or any other
near-field interaction [58]) between a QD and a plasmon NP.
This mechanism can be treated as the principal one, because
the probability of radiationless plasmon excitation is
�krNPÿTLS�ÿ3 times higher than the probability of radiative
photon emission [15] (rNPÿTLS is the center-to-center distance
of the NP and the QD, k � 2p=l, where l is the wavelength in
a vacuum). Therefore, the efficient energy transfer from the
QD to the NP is achieved due to the short distance between
them, despite the fact that the plasmon resonance Q factor is
rather low. 1 Due to the high efficiency of this process, an
external optical wave which propagates through the metama-
terial interacts with entire spasers rather than separately with
the amplifying medium and separately with plasmon parti-
cles.

Like a laser, a spaser constitutes a self-oscillating system.
Its dipole moment executes free-running oscillations whose
frequency and amplitude are determined by the balance
between pumping and dissipation. An external field can only
synchronize the spaser operation, i.e., make the dipole
moment oscillate at the frequency of the external field. The
weak dependence of the amplitude of these oscillations on the
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