
A scientific session of the Physical Sciences Division of the
Russian Academy of Sciences (RAS), entitled `Plasmonics',
was held in the Conference Hall of the Lebedev Physical
Institute, RAS on 21 February 2012.

The following reports were put on the session agenda
posted on the website www.gpad.ac.ru of the RAS Physical
Sciences Division:

(1) Kukushkin I V, Murav'ev VM (Institute of Solid State
Physics, RAS, Chernogolovka, Moscow region) ``Terahertz
plasmonics'';

(2) Lozovik Yu E (Institute of Spectroscopy, RAS,
Troitsk, Moscow region) ``Plasmonics and magnetoplasmo-
nics based on graphene and a topological insulator'';

(3) Protsenko I E (P N Lebedev Physical Institute, RAS,
Moscow) ``Dipole nanolaser'';

(4) Vinogradov A P, Andrianov E S, Pukhov A A, Doro-
feenko A V (Institute for Theoretical and Applied Electro-
dynamics, RAS,Moscow),Lisyansky AA (Queens College of
the City University of New York, USA) ``Quantum plasmo-
nics of metamaterials: loss compensation using spasers'';

(5) Klimov V V (Lebedev Physical Institute, RAS, Mos-
cow) ``Quantum theory of radiation of optically active
molecules in the vicinity of chiral nano-meta-particles''.

The papers written on the basis of oral reports 2±5 are
published below.
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Plasmonics and magnetoplasmonics based
on graphene and a topological insulator

Yu E Lozovik

Plasmonics is one of the most rapidly developing interdisci-
plinary branches of physics. From the fundamental point of
view, plasma oscillations in solids comprise collective oscilla-
tions of electron gas density controlled by Coulomb electron
interaction; in the simplest case, the oscillation dispersion law
is defined by the electron concentration in the conduction
band, the permittivity of the medium (of the crystal without
the inclusion of conduction electrons), and their effective
mass. In the general case, for instance, for interband
plasmons, the plasmon dispersion law depends on the
electron band structure. The damping of plasma oscillations

is determined both by single-particle mechanisms of carrier
scattering by impurities, etc. and by Landau damping. In
microscopic terms, the latter corresponds to the decay of a
plasma oscillation quantumÐa plasmonÐ into two single-
particle excitations: an electron and a hole. To state it in
macroscopic terms, as shown by Ginzburg, this decay
constitutes an inverse Vavilov±Cherenkov effect (electron
acceleration by the field of a plasma wave). Plasmon
excitation, for instance, with the help of characteristic
electron losses was employed for the description of solids
(see Refs [1±3] and references cited therein).

Plasmonics emerged from the study of plasmons in low-
dimensional systems and structures and from the develop-
ment of their applications. The specific character of (surface
and local) plasmons in these systems consists in the fact that
the frequency and damping of plasmons in them is defined by
the geometry of the structure and the permittivity of the
environment, because the lines of force of the Coulomb fields
of the interacting electrons also pass through the ambient
medium [4±7]. The last circumstance may be used for creating
supersensitive plasmon sensors (see Ref. [8] and references
cited therein). Plasmon excitation is widely used in surface
spectroscopy [9, 10], and local plasmon excitation is employed
for a giant enhancement of Raman light scattering [11] and of
different nonlinear optical processes (see, for instance,
Ref. [12] and references cited therein). It would be instructive
to produce a complete set of control elements for two-
dimensional, surface plasmon optics (plasmon mirrors,
lenses, etc.). The feasibility of realizing time-resolved surface
plasmon optics has also been discussed, and the first
successful steps in this direction have been reported [13, 14].
The excitation of local plasmons on the tip of a scanning
probe microscope by an incident electromagnetic wave may
be employed for producing under the tip a subwavelength
domain with a strongly enhanced field; this, in turn, was used
for local spectroscopy and nanolithographywith an ultrahigh
spatial resolution which far exceeded the Rayleigh limit (see
Refs [15±17] and references cited therein).

Another possible application of plasmons and plasmon
polaritons is ultrafast information transfer (for instance,
between the elements of a chip), faster than with electron
current pulses. Lastly, an interesting possibility consists in the
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development of quantum plasmonics for quantum infor-
matics, etc.

All these promising applications are significantly limited
by the damping of plasmonsÐ by their finite mean free path.
This impediment can be overcome with the aid of active
plasmonics by using spasersÐplasmon analogs of lasers [18±
20]. In particular, it will be possible by using a spaser in the
form of the tip of a scanning probemicroscope andmeasuring
the loss-induced dips in its generation spectrum to realize
supersensitive spectroscopy with an ultrahigh spatial resolu-
tion [21], which represents, in a sense, a spaser analog of
selective near-field laser spectroscopy [22]. This method may
also be utilized for the supersensitive spaser spectroscopy of
surfaces [23]. Spasers are also the concern of reports to this
session of the Physical Sciences Division of the RAS [24, 25].

Another method of overcoming the specified difficulty
involves the search for and use of radically new systems with a
weak plasmon damping like doped graphene. Below, we
briefly discuss the collective electronic and optical properties
of graphene and topological insulators, which were analyzed
in our work.

From the fundamental standpoint, the keen interest in
grapheneÐa single isolated plane of graphite, which is stable
even without a substrate (see reviews [26±35] and references
cited therein)Ðand in recently discovered (three-dimen-
sional) topological insulators (see reviews [36, 37] and
references cited therein) is due to the fact that in these entirely
different materialsÐgraphene and topological insulator
surfacesÐ there is a two-dimensional electron gas with a
zero effective mass and a zero gap between the conduction
and valence bands. This two-dimensional electron gas is
described by the Dirac equation with a zero mass (as for
neutrinos!), and therefore one may draw an analogy to
ultrarelativistic physics of elementary particles and quark
matter. This leads to a number of interesting effects compris-
ing the absence of backward reflection from potential barriers
at normal incidence (Klein tunneling), weak antilocalization,
and the half-integer quantum Hall effect (observable even at
room temperature!).

A difference from ultrarelativistic particle physics must
also be emphasized: in the Dirac equation for graphene, in
place of the speed of light a quantity 300 times lower appears,
and this equation is valid only in the laboratory frame of
reference (because in the derivation of the effective Dirac
equation for graphene they proceed from the Galilean-
invariant SchroÈ dinger equation).

Certainly, it should be remembered that these are the so-
called envelopes obeying the Dirac equation in an external
field. These envelopes describe the slow modulation (due to
slowly varying external fields) of Bloch functions which
oscillate with a lattice period (used in this case is the adiabatic
approximation which leads for ordinary crystals to the
SchroÈ dinger equation with an effective mass).

The linear dispersion law for graphene was first estab-
lished [38, 39] proceeding from the SchroÈ dinger equation
which took into account the symmetry and the existence of
two sublattices in graphene, within an approximation
accounting for the closest neighbor interaction. But this
linear spectrum (valid up to an energy on the order of 1 eV),
i.e. the presence of Dirac-effective electrons, is associated, as
may be shown, with the symmetry of graphene, and this
property is protected from the presence of impurities and
some other perturbations by symmetry with respect to time
reversal. The role of spin in the Dirac equation is played by

pseudospin which emerges due to the fact that the hexagonal
lattice in graphene may be represented in the form of two
equivalent triangular lattices displaced relative to each other.
The presence of two more components in the Dirac equation
for graphene is associated with the existence of two indepen-
dent valleys in the Brillouin zone for graphene (since the
existence of two sites in the graphene elementary cell results in
two sites in the elementary cell of the reciprocal lattice).

The interest in graphene, of course, is spurred by the
prospect of numerous applications related to its unique
properties. Graphene is one atom thick, so that an extremely
small size as a possible element of nanoelectronics or
optoelectronics is reached in one dimension. It is valid to say
that a new class of materials made its appearance owing to the
discovery of grapheneÐ two-dimensional membranes stable
even without a substrate. Graphene is compatible with the
traditional technology of the planar nanostructure produc-
tion (unlike, for instance, nanotubes). It may posses a high
electron mobility even at room temperature, and its thermal
conductivity is significantly higher than that of copper.
Furthermore, the intrinsic strength of graphene is 200 times
greater than the strength of steel. Owing to these remarkable
properties, graphene shows promise for making coatings of
solar batteries and screens, new composite nanomaterials,
ultracapacitors, and nanoelectronic elements.

An interesting property of graphene consists in the
possibility of changing its transport characteristics upon
adsorption of molecules, etc., which opens the prospect of
making supersensitive nanosensors on its basis.

An important property of graphene is the possibility of
easily controling the density of electrons or holes with the help
of external control electrodes (or external chemical doping).

Such a property may be employed for transistors, though
only for analog transistors, not digital ones. This is due to the
absence of an energy gap in graphene, because there is no way
of blocking the electric current in digital transistors. How-
ever, opening the gap with the aid of geometrical quantiza-
tionÐby using graphene tapes or bigraphene in a transverse
electric fieldÐwill permit the employment of such systems in
digital transistors as well. The application of concentration
guiding with control electrodes in a bilayer graphene system
was proposed for making a system of two separated layers of
Dirac electrons and holes of equal concentrations. Possible in
this system is the Bose±Einstein condensation (BEC) of dipole
pairs or excitons from spatially separated electrons and holes
in a magnetic field [40±42] (which exist in graphene only in a
magnetic field owing to the absence of backward reflection of
electrons) or their Bardeen±Cooper±Schrieffer (BCS) type
pairing (see Refs [43±52]) due to Coulomb attraction (similar
to the pairing in a three-dimensional excitonic insulator [53,
54]), which leads to the appearance of undamped electric
currents in each of the layers in the system under considera-
tion. The difference between a graphene bilayer and a bilayer
of paired electrons and holes with a nonzeromass [55] consists
in the absence of the ordinary BEC±BCS crossover (without a
magnetic field) upon lowering the pairing particle concentra-
tion and the existence of an angular factor associated with the
spinor nature of the Dirac wave function, the factor which
suppresses backward scattering. The system considered here
may be utilized as a dissipation-free information transfer line.
A similar system of spatially separated Dirac electrons and
holes and their pairing and superfluidity may be realized by
independent doping with the help of independent control
electrodes for the opposite surfaces of the superthin film of a
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topological insulator (see Ref. [56] and references cited
therein). Heavy doping may give rise to intrinsic super-
conductivity in graphene (see Ref. [57] and references cited
therein).

The specific character of the graphene's band structure
results in interesting features of its dielectric response: to the
existence of a singularity in the low-frequency range (like for a
metal, though weaker), to highly unusual optical properties
[58], and to a weak damping of quasiparticles in it. These
properties show good promise ofmaking photonic crystals on
the base of graphene which has a photonic gap in the far-
infrared spectral region hardly blurred by damping (unlike
that in metals) [59].

The possibility of controling the electron concentration in
graphene with the aid of control electrodes opens the door to
graphene-based plasmonics [60±64]. In particular, it is
possible to make plasmon waveguides and plasmon switches
using the specially profiled coatings and control electrodes on
graphene. Critically important additional virtues of graphene
for plasmonics are a weak damping, a long mean free path of
plasmons in it, and the capability of working in the terahertz
frequency range. The weak damping opens the way for the
development of a graphene-based quantum plasmonics or
single-plasmonics.

It will be of interest to control plasmons in graphene and
nanomaterials based on it with the help of an external
magnetic field (see Ref. [62] and references cited therein).
We analyzed the properties of polaritons in an optical
microcavity with graphene embedded into it (Fig. 1) and
their properties in the terahertz frequency range [63, 64]. We
also considered the TE and TM modes in graphene which
borders on two adjacent media with a low dielectric contrast

between them. In the frequency range where the imaginary
part of the permittivity is small, the properties of the system
turned out to be critically dependent on the low dielectric
contrast between the media. This leads to a leakage of surface
waves, which permits making an ultrahigh-sensitivity sensor
on the base of this system [65].

Also of interest is the possibility of controling collective
excitations in graphene as well as polaritons in an optical
microcavity, which graphene is embedded in, with the aid of
Coulomb drag by the electron current in the graphene-
neighboring layer of two-dimensional electron gas in a
quantum well [66].

As noted above, Dirac electrons exist not only in
graphene, but also on the surfaces of recently discovered
new materialsÐ three-dimensional topological insulators
[36, 37]. To date, the two- and three-dimensional realizations
of topological insulators have been studied. The new
paradigm is that topological insulators are not connected
with the emergence of spontaneous symmetry breaking in a
crystal and, in turn, with its attendant order parameter (as in
the case, for example, of magnetics, ferroelectrics, etc.), but
with the emergence of a topological invariant in Hilbert
space, which is determined by the properties of the Bloch
states occupied by electrons. In this sense, there is an analogy
between the properties of topological insulators and the
quantumHall effect in which none of the states in the plateau
region inside the system are conductive, but at the system
boundary there are zero-gap chiral states (a unidirectional
current determined by the direction of the magnetic field)
protected from the influence of impurities, etc. by the
existence of a topological invariant in Hilbert space. This
picture is especially simple in sufficiently strong magnetic
fields, where the drift approximation applies to electrons and
the topological invariant has a simple meaning: it charac-
terizes the connectivity of drift electron trajectories [67]. In
three-dimensional (so-called strong) topological insulators,
there is a gap in the spectrum of bulk states, as in ordinary
insulators, but on the surface they have, owing to the
existence of the topological invariant, zero-gap surface
electron states with zero effective masses of electrons and
holes (as in graphene), which are described by the Dirac
equation with a zero mass.

These states are topologically protected: ordinary, non-
magnetic impurities cannot form a gap and localize these
states owing to the presence of a topological invariant. One of
the important properties of the Dirac equation with a zero
mass is a strict connection between the directions of electron
momentum and spin (of momentum and pseudospin for
graphene).

Owing to a strong spin-orbit interaction, electrons on the
surface of a topological insulator possess a strict correlation
between the spin and momentum directions: their spin is
perpendicular to the momentum, and this property was
experimentally revealed by angle- and spin-resolved photo-
electron spectroscopy. A similar strict connection between
electronmomentum and pseudospin (and not spin!) is true for
graphene owing to the mathematical equivalence of the Dirac
equations with a zero mass for both systems, which this
connection follows from.

This connection leads, in particular, to unusual properties
of plasmons on the surface of topological insulators (see
Refs [68±70]). In quantum terms, a plasmon may be
represented as a coherent superposition of excited pairs of
electrons and holes shifted in momenta, which correspond for

pl pol
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Figure 1. Polariton (pol) in an optical microcavity wherein graphene is

embedded; pl is a plasmon, and g is a photon.
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doped graphene to both intraband �g � g 0� and interband
�g 6� g 0� transitions, so that the plasmon production operator
is defined by the linear superposition of the electron
production and annihilation operators:

Q�q �
X
pgg 0

C g 0g
pq b�p�qg 0bpg ;

where p and q are the two-dimensional momenta.
The plasmon dispersion law can be found by way of

linearization of the equations of motion for Dirac electrons,
which corresponds to a random phase approximation. The
validity of the random phase approximation is defined by the
dimensionless quantum parameter equal to the ratio between
the characteristic energy of Coulomb interaction and the
quantum kinetic energy. For Dirac electrons with a linear
dispersion law, this ratio is independent of the electron
concentration and is equal to the effective fine-structure
constant in which the speed of light is replaced by the
electron velocity entering into the Dirac equation for a
topological insulator (and graphene), and the charge squared
is divided by the permittivity of the surrounding medium.
This permittivity is high for topological insulators, and the
random phase approximation, therefore, holds true.

Related to the preferential value of plasmonmomentum is
the preferential momentum of the electrons and holes, which
define the plasmon production operator. Because of the strict
momentum±spin connection for Dirac electrons, preferential
spin emerges as well. Thus, a plasma wave in a topological
insulator is always associated with a spin wave! Moreover, an
uncompensated total spin polarization emerges in the
production of a plasmon (Fig. 2). In the scattering of a spin-
plasmon by the nonuniformities of an electric or magnetic
field, the angular diagram turns out to be strongly anisotropic
and consists of two lobes (Fig. 3).

Interesting effects occur when a magnetic impurity layer
or a film of magnetic material is deposited onto the surface
of a topological insulator. The external exchange interaction
(noninvariant with respect to time reversal) of this layer with
Dirac electrons induces a gap in the spectrum of the Dirac
electrons, and the topological insulator becomes a quantum
magnetoelectric: an external electric field induces (apart
from the ordinary electric polarization of the volume) a
magnetic moment, while a magnetic field induces an electric

dipole moment. This gives rise, notably, to appearing
quantized nondiagonal Hall conductivity, and therefore to
the quantum Faraday and Hall effectÐquantized rotations
of the polarization plane of transmitted or reflected electro-
magnetic waves (in the absence of an external magnetic
field!). The chiral properties of the system give rise to chiral
properties of the excitons inside the topological insulator gap
(dependence of the energy on the sign of angular momentum
projection). That is why these chiral excitons make a
resonance contribution to the nondiagonal conductivity of
the system, which may greatly enhance the Faraday effect in
comparison with its quantized magnitude (defined only by
the fine-structure constant) (see Refs [71, 72] and references
cited therein).

The Coulomb field of the electrons located above the
surface of a topological insulator with two-dimensional (2D)
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Figure 2. Average value of the spin induced by one plasmon in a two-

dimensional Dirac gas on the surface of a topological insulator as a

function of its wave vector divided by the Fermi velocity. Parameter rs is

the dimensionless coupling constant for Dirac electrons (the effective fine-

structure constant).
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Figure 3.Angular diagram of scattering by nonuniformities of an electric (a) andmagnetic (b) field for a spin-plasmon with amomentum p � 0:2 (divided
by the Fermi velocity). F?m , F km are the magnetic form factors, and Fe is the electric form factor.
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chiral electrons induces a magnetic polarization which is
equivalent, owing to the symmetry of the problem, to the
presence of image magnetic monopoles (similarly to image
charges). For a sufficiently dense 2D-electron gas, the
emerging total external magnetic field of all the image
monopoles may be considered to be uniform and propor-
tional to the surface density of the external electrons and the
magnetic monopole charge. This field can manifest itself in
the Hall effect for the external electrons and in a change in the
dispersion law of their plasma oscillations. For a rarefied
system of external electrons, theymust exhibit theAharonov±
Bohm effect onmagnetic fluxes associated with foreign image
monopoles and, therefore, be anionsÐ fractional statistics
particles (see paper [73] and references cited therein).
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