
A scientific session of the Physical Sciences Division of the
Russian Academy of Sciences (RAS), entitled `Plasmonics',
was held in the Conference Hall of the Lebedev Physical
Institute, RAS on 21 February 2012.

The following reports were put on the session agenda
posted on the website www.gpad.ac.ru of the RAS Physical
Sciences Division:

(1) Kukushkin I V, Murav'ev VM (Institute of Solid State
Physics, RAS, Chernogolovka, Moscow region) ``Terahertz
plasmonics'';

(2) Lozovik Yu E (Institute of Spectroscopy, RAS,
Troitsk, Moscow region) ``Plasmonics and magnetoplasmo-
nics based on graphene and a topological insulator'';

(3) Protsenko I E (P N Lebedev Physical Institute, RAS,
Moscow) ``Dipole nanolaser'';

(4) Vinogradov A P, Andrianov E S, Pukhov A A, Doro-
feenko A V (Institute for Theoretical and Applied Electro-
dynamics, RAS,Moscow),Lisyansky AA (Queens College of
the City University of New York, USA) ``Quantum plasmo-
nics of metamaterials: loss compensation using spasers'';

(5) Klimov V V (Lebedev Physical Institute, RAS, Mos-
cow) ``Quantum theory of radiation of optically active
molecules in the vicinity of chiral nano-meta-particles''.

The papers written on the basis of oral reports 2±5 are
published below.
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Plasmonics and magnetoplasmonics based
on graphene and a topological insulator

Yu E Lozovik

Plasmonics is one of the most rapidly developing interdisci-
plinary branches of physics. From the fundamental point of
view, plasma oscillations in solids comprise collective oscilla-
tions of electron gas density controlled by Coulomb electron
interaction; in the simplest case, the oscillation dispersion law
is defined by the electron concentration in the conduction
band, the permittivity of the medium (of the crystal without
the inclusion of conduction electrons), and their effective
mass. In the general case, for instance, for interband
plasmons, the plasmon dispersion law depends on the
electron band structure. The damping of plasma oscillations

is determined both by single-particle mechanisms of carrier
scattering by impurities, etc. and by Landau damping. In
microscopic terms, the latter corresponds to the decay of a
plasma oscillation quantumÐa plasmonÐ into two single-
particle excitations: an electron and a hole. To state it in
macroscopic terms, as shown by Ginzburg, this decay
constitutes an inverse Vavilov±Cherenkov effect (electron
acceleration by the field of a plasma wave). Plasmon
excitation, for instance, with the help of characteristic
electron losses was employed for the description of solids
(see Refs [1±3] and references cited therein).

Plasmonics emerged from the study of plasmons in low-
dimensional systems and structures and from the develop-
ment of their applications. The specific character of (surface
and local) plasmons in these systems consists in the fact that
the frequency and damping of plasmons in them is defined by
the geometry of the structure and the permittivity of the
environment, because the lines of force of the Coulomb fields
of the interacting electrons also pass through the ambient
medium [4±7]. The last circumstance may be used for creating
supersensitive plasmon sensors (see Ref. [8] and references
cited therein). Plasmon excitation is widely used in surface
spectroscopy [9, 10], and local plasmon excitation is employed
for a giant enhancement of Raman light scattering [11] and of
different nonlinear optical processes (see, for instance,
Ref. [12] and references cited therein). It would be instructive
to produce a complete set of control elements for two-
dimensional, surface plasmon optics (plasmon mirrors,
lenses, etc.). The feasibility of realizing time-resolved surface
plasmon optics has also been discussed, and the first
successful steps in this direction have been reported [13, 14].
The excitation of local plasmons on the tip of a scanning
probe microscope by an incident electromagnetic wave may
be employed for producing under the tip a subwavelength
domain with a strongly enhanced field; this, in turn, was used
for local spectroscopy and nanolithographywith an ultrahigh
spatial resolution which far exceeded the Rayleigh limit (see
Refs [15±17] and references cited therein).

Another possible application of plasmons and plasmon
polaritons is ultrafast information transfer (for instance,
between the elements of a chip), faster than with electron
current pulses. Lastly, an interesting possibility consists in the
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development of quantum plasmonics for quantum infor-
matics, etc.

All these promising applications are significantly limited
by the damping of plasmonsÐ by their finite mean free path.
This impediment can be overcome with the aid of active
plasmonics by using spasersÐplasmon analogs of lasers [18±
20]. In particular, it will be possible by using a spaser in the
form of the tip of a scanning probemicroscope andmeasuring
the loss-induced dips in its generation spectrum to realize
supersensitive spectroscopy with an ultrahigh spatial resolu-
tion [21], which represents, in a sense, a spaser analog of
selective near-field laser spectroscopy [22]. This method may
also be utilized for the supersensitive spaser spectroscopy of
surfaces [23]. Spasers are also the concern of reports to this
session of the Physical Sciences Division of the RAS [24, 25].

Another method of overcoming the specified difficulty
involves the search for and use of radically new systems with a
weak plasmon damping like doped graphene. Below, we
briefly discuss the collective electronic and optical properties
of graphene and topological insulators, which were analyzed
in our work.

From the fundamental standpoint, the keen interest in
grapheneÐa single isolated plane of graphite, which is stable
even without a substrate (see reviews [26±35] and references
cited therein)Ðand in recently discovered (three-dimen-
sional) topological insulators (see reviews [36, 37] and
references cited therein) is due to the fact that in these entirely
different materialsÐgraphene and topological insulator
surfacesÐ there is a two-dimensional electron gas with a
zero effective mass and a zero gap between the conduction
and valence bands. This two-dimensional electron gas is
described by the Dirac equation with a zero mass (as for
neutrinos!), and therefore one may draw an analogy to
ultrarelativistic physics of elementary particles and quark
matter. This leads to a number of interesting effects compris-
ing the absence of backward reflection from potential barriers
at normal incidence (Klein tunneling), weak antilocalization,
and the half-integer quantum Hall effect (observable even at
room temperature!).

A difference from ultrarelativistic particle physics must
also be emphasized: in the Dirac equation for graphene, in
place of the speed of light a quantity 300 times lower appears,
and this equation is valid only in the laboratory frame of
reference (because in the derivation of the effective Dirac
equation for graphene they proceed from the Galilean-
invariant SchroÈ dinger equation).

Certainly, it should be remembered that these are the so-
called envelopes obeying the Dirac equation in an external
field. These envelopes describe the slow modulation (due to
slowly varying external fields) of Bloch functions which
oscillate with a lattice period (used in this case is the adiabatic
approximation which leads for ordinary crystals to the
SchroÈ dinger equation with an effective mass).

The linear dispersion law for graphene was first estab-
lished [38, 39] proceeding from the SchroÈ dinger equation
which took into account the symmetry and the existence of
two sublattices in graphene, within an approximation
accounting for the closest neighbor interaction. But this
linear spectrum (valid up to an energy on the order of 1 eV),
i.e. the presence of Dirac-effective electrons, is associated, as
may be shown, with the symmetry of graphene, and this
property is protected from the presence of impurities and
some other perturbations by symmetry with respect to time
reversal. The role of spin in the Dirac equation is played by

pseudospin which emerges due to the fact that the hexagonal
lattice in graphene may be represented in the form of two
equivalent triangular lattices displaced relative to each other.
The presence of two more components in the Dirac equation
for graphene is associated with the existence of two indepen-
dent valleys in the Brillouin zone for graphene (since the
existence of two sites in the graphene elementary cell results in
two sites in the elementary cell of the reciprocal lattice).

The interest in graphene, of course, is spurred by the
prospect of numerous applications related to its unique
properties. Graphene is one atom thick, so that an extremely
small size as a possible element of nanoelectronics or
optoelectronics is reached in one dimension. It is valid to say
that a new class of materials made its appearance owing to the
discovery of grapheneÐ two-dimensional membranes stable
even without a substrate. Graphene is compatible with the
traditional technology of the planar nanostructure produc-
tion (unlike, for instance, nanotubes). It may posses a high
electron mobility even at room temperature, and its thermal
conductivity is significantly higher than that of copper.
Furthermore, the intrinsic strength of graphene is 200 times
greater than the strength of steel. Owing to these remarkable
properties, graphene shows promise for making coatings of
solar batteries and screens, new composite nanomaterials,
ultracapacitors, and nanoelectronic elements.

An interesting property of graphene consists in the
possibility of changing its transport characteristics upon
adsorption of molecules, etc., which opens the prospect of
making supersensitive nanosensors on its basis.

An important property of graphene is the possibility of
easily controling the density of electrons or holes with the help
of external control electrodes (or external chemical doping).

Such a property may be employed for transistors, though
only for analog transistors, not digital ones. This is due to the
absence of an energy gap in graphene, because there is no way
of blocking the electric current in digital transistors. How-
ever, opening the gap with the aid of geometrical quantiza-
tionÐby using graphene tapes or bigraphene in a transverse
electric fieldÐwill permit the employment of such systems in
digital transistors as well. The application of concentration
guiding with control electrodes in a bilayer graphene system
was proposed for making a system of two separated layers of
Dirac electrons and holes of equal concentrations. Possible in
this system is the Bose±Einstein condensation (BEC) of dipole
pairs or excitons from spatially separated electrons and holes
in a magnetic field [40±42] (which exist in graphene only in a
magnetic field owing to the absence of backward reflection of
electrons) or their Bardeen±Cooper±Schrieffer (BCS) type
pairing (see Refs [43±52]) due to Coulomb attraction (similar
to the pairing in a three-dimensional excitonic insulator [53,
54]), which leads to the appearance of undamped electric
currents in each of the layers in the system under considera-
tion. The difference between a graphene bilayer and a bilayer
of paired electrons and holes with a nonzeromass [55] consists
in the absence of the ordinary BEC±BCS crossover (without a
magnetic field) upon lowering the pairing particle concentra-
tion and the existence of an angular factor associated with the
spinor nature of the Dirac wave function, the factor which
suppresses backward scattering. The system considered here
may be utilized as a dissipation-free information transfer line.
A similar system of spatially separated Dirac electrons and
holes and their pairing and superfluidity may be realized by
independent doping with the help of independent control
electrodes for the opposite surfaces of the superthin film of a

1036 Conferences and symposia Physics ±Uspekhi 55 (10)



topological insulator (see Ref. [56] and references cited
therein). Heavy doping may give rise to intrinsic super-
conductivity in graphene (see Ref. [57] and references cited
therein).

The specific character of the graphene's band structure
results in interesting features of its dielectric response: to the
existence of a singularity in the low-frequency range (like for a
metal, though weaker), to highly unusual optical properties
[58], and to a weak damping of quasiparticles in it. These
properties show good promise ofmaking photonic crystals on
the base of graphene which has a photonic gap in the far-
infrared spectral region hardly blurred by damping (unlike
that in metals) [59].

The possibility of controling the electron concentration in
graphene with the aid of control electrodes opens the door to
graphene-based plasmonics [60±64]. In particular, it is
possible to make plasmon waveguides and plasmon switches
using the specially profiled coatings and control electrodes on
graphene. Critically important additional virtues of graphene
for plasmonics are a weak damping, a long mean free path of
plasmons in it, and the capability of working in the terahertz
frequency range. The weak damping opens the way for the
development of a graphene-based quantum plasmonics or
single-plasmonics.

It will be of interest to control plasmons in graphene and
nanomaterials based on it with the help of an external
magnetic field (see Ref. [62] and references cited therein).
We analyzed the properties of polaritons in an optical
microcavity with graphene embedded into it (Fig. 1) and
their properties in the terahertz frequency range [63, 64]. We
also considered the TE and TM modes in graphene which
borders on two adjacent media with a low dielectric contrast

between them. In the frequency range where the imaginary
part of the permittivity is small, the properties of the system
turned out to be critically dependent on the low dielectric
contrast between the media. This leads to a leakage of surface
waves, which permits making an ultrahigh-sensitivity sensor
on the base of this system [65].

Also of interest is the possibility of controling collective
excitations in graphene as well as polaritons in an optical
microcavity, which graphene is embedded in, with the aid of
Coulomb drag by the electron current in the graphene-
neighboring layer of two-dimensional electron gas in a
quantum well [66].

As noted above, Dirac electrons exist not only in
graphene, but also on the surfaces of recently discovered
new materialsÐ three-dimensional topological insulators
[36, 37]. To date, the two- and three-dimensional realizations
of topological insulators have been studied. The new
paradigm is that topological insulators are not connected
with the emergence of spontaneous symmetry breaking in a
crystal and, in turn, with its attendant order parameter (as in
the case, for example, of magnetics, ferroelectrics, etc.), but
with the emergence of a topological invariant in Hilbert
space, which is determined by the properties of the Bloch
states occupied by electrons. In this sense, there is an analogy
between the properties of topological insulators and the
quantumHall effect in which none of the states in the plateau
region inside the system are conductive, but at the system
boundary there are zero-gap chiral states (a unidirectional
current determined by the direction of the magnetic field)
protected from the influence of impurities, etc. by the
existence of a topological invariant in Hilbert space. This
picture is especially simple in sufficiently strong magnetic
fields, where the drift approximation applies to electrons and
the topological invariant has a simple meaning: it charac-
terizes the connectivity of drift electron trajectories [67]. In
three-dimensional (so-called strong) topological insulators,
there is a gap in the spectrum of bulk states, as in ordinary
insulators, but on the surface they have, owing to the
existence of the topological invariant, zero-gap surface
electron states with zero effective masses of electrons and
holes (as in graphene), which are described by the Dirac
equation with a zero mass.

These states are topologically protected: ordinary, non-
magnetic impurities cannot form a gap and localize these
states owing to the presence of a topological invariant. One of
the important properties of the Dirac equation with a zero
mass is a strict connection between the directions of electron
momentum and spin (of momentum and pseudospin for
graphene).

Owing to a strong spin-orbit interaction, electrons on the
surface of a topological insulator possess a strict correlation
between the spin and momentum directions: their spin is
perpendicular to the momentum, and this property was
experimentally revealed by angle- and spin-resolved photo-
electron spectroscopy. A similar strict connection between
electronmomentum and pseudospin (and not spin!) is true for
graphene owing to the mathematical equivalence of the Dirac
equations with a zero mass for both systems, which this
connection follows from.

This connection leads, in particular, to unusual properties
of plasmons on the surface of topological insulators (see
Refs [68±70]). In quantum terms, a plasmon may be
represented as a coherent superposition of excited pairs of
electrons and holes shifted in momenta, which correspond for

pl pol

ge0 � 1

k? k
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Figure 1. Polariton (pol) in an optical microcavity wherein graphene is

embedded; pl is a plasmon, and g is a photon.
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doped graphene to both intraband �g � g 0� and interband
�g 6� g 0� transitions, so that the plasmon production operator
is defined by the linear superposition of the electron
production and annihilation operators:

Q�q �
X
pgg 0

C g 0g
pq b�p�qg 0bpg ;

where p and q are the two-dimensional momenta.
The plasmon dispersion law can be found by way of

linearization of the equations of motion for Dirac electrons,
which corresponds to a random phase approximation. The
validity of the random phase approximation is defined by the
dimensionless quantum parameter equal to the ratio between
the characteristic energy of Coulomb interaction and the
quantum kinetic energy. For Dirac electrons with a linear
dispersion law, this ratio is independent of the electron
concentration and is equal to the effective fine-structure
constant in which the speed of light is replaced by the
electron velocity entering into the Dirac equation for a
topological insulator (and graphene), and the charge squared
is divided by the permittivity of the surrounding medium.
This permittivity is high for topological insulators, and the
random phase approximation, therefore, holds true.

Related to the preferential value of plasmonmomentum is
the preferential momentum of the electrons and holes, which
define the plasmon production operator. Because of the strict
momentum±spin connection for Dirac electrons, preferential
spin emerges as well. Thus, a plasma wave in a topological
insulator is always associated with a spin wave! Moreover, an
uncompensated total spin polarization emerges in the
production of a plasmon (Fig. 2). In the scattering of a spin-
plasmon by the nonuniformities of an electric or magnetic
field, the angular diagram turns out to be strongly anisotropic
and consists of two lobes (Fig. 3).

Interesting effects occur when a magnetic impurity layer
or a film of magnetic material is deposited onto the surface
of a topological insulator. The external exchange interaction
(noninvariant with respect to time reversal) of this layer with
Dirac electrons induces a gap in the spectrum of the Dirac
electrons, and the topological insulator becomes a quantum
magnetoelectric: an external electric field induces (apart
from the ordinary electric polarization of the volume) a
magnetic moment, while a magnetic field induces an electric

dipole moment. This gives rise, notably, to appearing
quantized nondiagonal Hall conductivity, and therefore to
the quantum Faraday and Hall effectÐquantized rotations
of the polarization plane of transmitted or reflected electro-
magnetic waves (in the absence of an external magnetic
field!). The chiral properties of the system give rise to chiral
properties of the excitons inside the topological insulator gap
(dependence of the energy on the sign of angular momentum
projection). That is why these chiral excitons make a
resonance contribution to the nondiagonal conductivity of
the system, which may greatly enhance the Faraday effect in
comparison with its quantized magnitude (defined only by
the fine-structure constant) (see Refs [71, 72] and references
cited therein).

The Coulomb field of the electrons located above the
surface of a topological insulator with two-dimensional (2D)
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Figure 2. Average value of the spin induced by one plasmon in a two-

dimensional Dirac gas on the surface of a topological insulator as a

function of its wave vector divided by the Fermi velocity. Parameter rs is

the dimensionless coupling constant for Dirac electrons (the effective fine-

structure constant).
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Figure 3.Angular diagram of scattering by nonuniformities of an electric (a) andmagnetic (b) field for a spin-plasmon with amomentum p � 0:2 (divided
by the Fermi velocity). F?m , F km are the magnetic form factors, and Fe is the electric form factor.
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chiral electrons induces a magnetic polarization which is
equivalent, owing to the symmetry of the problem, to the
presence of image magnetic monopoles (similarly to image
charges). For a sufficiently dense 2D-electron gas, the
emerging total external magnetic field of all the image
monopoles may be considered to be uniform and propor-
tional to the surface density of the external electrons and the
magnetic monopole charge. This field can manifest itself in
the Hall effect for the external electrons and in a change in the
dispersion law of their plasma oscillations. For a rarefied
system of external electrons, theymust exhibit theAharonov±
Bohm effect onmagnetic fluxes associated with foreign image
monopoles and, therefore, be anionsÐ fractional statistics
particles (see paper [73] and references cited therein).
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Theory of the dipole nanolaser

I E Protsenko

1. Introduction
This paper is concerned with the theoretical investigation
into the coherent generation of the dipole moment of a
metallic nanoparticle, when a localized plasmon resonance is
excited in it with the use of a generator (an atom, a quantum
dot, etc.) in which an inverse electron state population is
realized. The generator and the nanoparticle experience a
near-field interaction. This nano-dimensional systemÐa
`dipole' nanolaser (DNL)Ðemits a coherent electromag-
netic field when threshold conditions are fulfilled. We derive
basic and simplified DNL equations, discuss the threshold
lasing conditions and the DNL features associated with
incoherent dipole moment generation, and take a look at
several DNL-based facilities (broadband optical modula-
tors, highly efficient light-emitting devices), as well as
possible DNL designs and further lines of their theoretical
investigation.

Research into the resonance interaction of electromag-
netic radiation with metallic particles have a long-standing
history [1±3]. Today, these studies are on the rise, and a new
field of physicsÐnanoplasmonics [4]Ðhas made its appear-
ance, which is related to the development of nanotechnologies
and the emergence of new practical tasks: to control light in
optoelectronics [5, 6], enhance the efficiency of solar elements
using metallic nanoparticles [7], etc. Metallic nanoparticles
possessing localized plasmon resonances (LPRs) may be
employed as antennas in the optical and near-infrared
regions [8], including the production of nano-dimensional
lasers. The method of coherent radiation generation and the
dipole nanolaser based on this were proposed in patent [9]; the
corresponding theory was elaborated in Refs [10±17] and
applied, for instance, in Refs [18, 19]. Independently of and
practically simultaneously with Ref. [9], the authors of
patent [20] came up with a method of generating surface
plasmons and a device for surface plasmon amplification by
stimulated emission of radiation (spaser), which is close to the
DNL. The theory of spacers was elaborated inRef. [21] and in
other work. Also investigated was the possibility of compen-
sating losses in active media with metallic nanoparticles [22];
this loss compensation takes place both in DNLs and in
spasers. Several experiments have been carried out with
devices close to the DNL, which were operated both below
[23, 24] and above [25, 26] the lasing threshold; the complete
bibliography of DNL and spaser research is hard to expound
on in this short report.

The aim of this paper is to briefly outline the theory of
DNLs and to consider some of its new features. The DNL

theory is based on the well-known equations of a single-mode
laser [27], in which the electromagnetic field mode is replaced
with the dipole moment arising from the resonance oscilla-
tions of the nanoparticle electron density. The quantum of
linear electron density oscillations is a boson, like the
quantum of an electromagnetic field (EMF), and coherent
(laser) generation of electron density oscillations is therefore
possible, similarly to coherent generation of EMF bosons.
The feasibility of laser generation of not only EMF quanta,
but also other bosons, for instance, Bose±Einstein conden-
sates of atoms in traps [28], was emphasized earlier. Basic
DNL equations substantiate the possibility of coherent
generation not only of the dipole moment and radiation but
of other laser effects in DNL-like systems as well. The
elaboration of the basic equations results in progressively
more realistic models of the DNL and its related devices. In
doing so, it is possible to employ the well-known approaches
of laser theory, for instance, in the description of spontaneous
emission into a mode [29, 30], as well as of classical
electrodynamics, for instance, in the description of DNL
modes [3]. Those effects which are of little significance in
`classical' laser theory quite often turn out to be highly
important for the DNL like, for instance, nonthreshold
lasing [30] or local field effects [31]. Elaborating the basic
DNL equations leads to models different from their analogs
in laser theory; in particular, the equations for the DNL in an
external field with the inclusion of spontaneous emission into
a mode [17] are significantly different from the equations
for an ordinary laser with external signal injection [27]. The
DNL theory is highly instructive, because it combines, in
a natural way, the classical effects of the nonlinear dynamics
of oscillatory systems (threshold effects, bistability, etc.) and
the special features of quantum electrodynamics (sponta-
neous emission, quantum noise, single-photon emission).
This all makes the DNL an interesting subject of basic
research, but its practical applications are equally interest-
ing.

The paper outline is as follows. In Section 2, we offer the
derivation of DNL equations, which is more general than in
Ref. [10], without invoking the quasistatic approximation and
the assumption that the nanoparticle dimensions are negli-
gibly small. In Section 3, we simplify the basic equations: they
are brought to the form of Ref. [10] convenient for applica-
tions; validity conditions of the equations are discussed and
many-atom DNL equations are considered. Sections 4 and 5
are concerned with the DNL oscillation conditions and point
to the possibility of bifurcations in lasing, when the direction
of dipoles changes in a step-wise manner; also included is the
incoherent (spontaneous) generation of the dipole moment of
a few-atom DNL. In summary, we discuss the prospects of
DNL theory development.

2. Basic equations of the dipole nanolaser
A simpleDNLdesign comprises ametallic nanoparticle and a
nearby emitting two-level system (atom, molecule, quantum
dot, etc.) in which the population inversion of its states is
effected with the aid of an incoherent external pump: a
broadband light pulse, injection current, and so forth.
(Fig. 1a). The localized plasmon resonance frequency oLPR

of the metallic nanoparticle is close to the transition
frequency o2 of the two-level system; the particles experience
resonance interaction via EMF.

The equations for a two-level system [32] in an external
resonance field EE � e�E�t� exp �ÿiot� � E��t� exp �iot�� are
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well known, where e is a unit vector, and the amplitude E�t�
varies more slowly than exp �ÿiot�. In the approximation of
slowly varying amplitudes, one has

_D � 2ile

�h
�Es� ÿ E�s� ÿ tÿ1�DÿD0� ; �1�

_s � �id2 ÿ G2�sÿ i
le

�h
ED ; �2�

where D is the population inversion; l is the real dipole
matrix element; tÿ1 and G2 are the relaxation rates of the
population of the upper level in the two-level system and of
its dipole moment, respectively; D0 is the pump-induced
equilibrium value of population inversion in the absence of
the field, and d2 � oÿ o2 5o2; the dipole moment of the
two-level system d̂2 � l �s exp �iot� � s� exp �ÿiot��, and its
magnetic moment is assumed to be zero; the resonance
frequency of the transition between the states is o2 � oLPR.

We replace s in Eqn (2) by Bose operator a, �a�; a� � 1,
and atD � ÿ1 arrive at the equation of motion for the dipole
moment d̂0 � l0�a exp �iot� � a� exp �ÿiot�� of the nanopar-
ticle, i.e. the linear dipole (harmonic oscillator) in the
resonance EMF:

_a � �idÿ GLPR�a� i
l0e

�h
E ; �3�

where d � oÿ oLPR 5oLPR, GLPR is the LPR linewidth, and
amay be termed the plasmon annihilation operator.

The two-level system is treated as a point dipole. The
finite nanoparticle dimensions should be taken into con-
sideration: the two-level system may be located closely to
the nanoparticle, so that the field of the system changes
markedly over the domain occupied by the nanoparticle. As
a rule, the nanoparticle dimensions are smaller than the
EMF wavelength, and the quasistatic approximation there-
fore applies inside the nanoparticle, and the polarization
(the dipole moment of a unit volume) is the same
throughout the nanoparticle [4]. Let us introduce the Bose
operator p�r� of polarization amplitude, a � �V p�r� dV,
where V is the nanoparticle volume. The commutation
relations � p�r�; p��r 0�� � Vd�rÿ r 0� ensure that �a; a�� � 1
for the Bose operator a; r and r 0 are the radius vectors of the
points inside the nanoparticle. The equation of motion for
p�r� has the form

_p�r� � �idÿ GLPR� p�r� � i
l0e

V�h
E�r� :

By integrating both sides of this equation over the nanopar-
ticle volume, we obtain

_a � �idÿ GLPR�a� i
m0
�h

�Em ;
�4�

�Em�r� � Vÿ1
�
V

eme�r 0�E�r 0� d3r 0;

where �Em is the nanoparticle volume-averaged projection of
the external field amplitude onto the polarizationmode under
excitation (in the present case, onto the direction of the
nanoparticle's dipole moment), em is the unit vector aligned
with the nanoparticle's dipole moment, and r is the nanopar-
ticle center distance from the two-level system. For a spherical
nanoparticle, �Em�r� � E�r� in the quasistatic approximation,
which can be directly verified.

Now, it is possible to describe the interaction, via an
alternating electric field, between the two-level system and the
metallic nanoparticle, which are located in a uniform
transparent medium with a refractive index n2 and separated
by some distance. The electric field induced by the particle in
the seat of the two-level system will be denoted by the
subscript 02, while the field produced by the two-level system
in the seat of the nanoparticle will be denoted by the subscript
20.We use Eqns (1)±(3) to arrive at the system of equations of
motion for both dipolesÐ the particle and the two-level
systemÐwith the inclusion of their dipole±dipole interac-
tion:

_D � 2i
le02

�h
�s�E02 ÿ E�02s� ÿ tÿ1�DÿD0� ; �5�

_s � �id2 ÿ G2�sÿ i
le02

�h
E02D ; �6�

_a � �idÿ GLPR�a� i



l0e20E20

�
V

�h
; �7�

where h. . .iV signifies averaging over the nanoparticle volume.
By using the expression for the Fourier component of the

dipole radiation [33], the approximation of slowly varying
amplitudes, and the spectral decomposition of E02�t� and
E20�t� into Fourier integrals, it is possible to show that the
electric field amplitudes entering into equations (5)±(7) are
written down as

le02E02�t� � ÿ m0m
r 3

x�k2r�s
�
tÿ n2r

c0

�
;

�8�
l0e20E20�t� � ÿ m0m

r 3
x ��k2r�a

�
tÿ n2r

c0

�
;

x�r� � exp �ir���1ÿ r 2 ÿ ir� � cos2 yr�r 2 � 3irÿ 3�� ;
where r � k2r, r is the observation point distance from the
dipole, k2 � n2o=c0, n is a unit vector directed from the dipole
to the point of observation, and yr is the angle between n and
parallel vectors d0; 2; this angle will be determined below. In
the second of expressions (8), x � appears, while x enters into
the first one, because the fields from particle 0 to particle 2
and vice versa propagate in opposite directions. On the right
sides of expressions (8) there are dipole polarization ampli-
tudes delayed by a time n2r=c0 taken for the EMF to travel the
interparticle distance.

Equations (5)±(8) constitute the DNL basic equations.
Their variables are the population inversionD and the dipole
moments s and a. Electromagnetic fields do not enter into the

1

3

2

n2

n1

r

j

3

1

2

a b

Figure 1.DNL diagrams: (a) metallic nanoparticle 1 is separated from the

two-level systemÐquantum dot 3Ðby a dielectric sublayer 2; (b) `core±

shell' type DNL.
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equations, and the fields outside of the DNL may be
determined from expressions (8) and the corresponding
expressions for the magnetic fields of the dipoles. In the
DNL, the place of a field mode is occupied by nanoparticle
polarization (dipole moment) mode a, which gave rise to the
name `dipole' nanolaser. Instead of the polarization of the
nanoparticle, it is possible to consider the field inside it; in the
quasistatic approximation and under the excitation of a
`dipole' mode, this field differs from the polarization only by
a factor standing for the electric susceptibility of the
nanoparticle material. In a similar way, it is possible to
derive equations when another electron density oscillation
mode, for instance, the quadrupole one with a different LPR
frequency, rather than the dipole mode, is excited in the
nanoparticle. The oscillation modes for the field (or polariza-
tion) inside and outside spherical particles are exactly known
[3]: they may be applied to analyzing the DNL with large
spherical particles, when the quasistatic approximation is
invalid inside them. For small nonspherical nanoparticles, it
is possible to use the quasistatic approximation when
describing the particle polarizations (the fields inside the
particles) and multipole expansions to describe the fields
outside the particles [33].

Equations (5)±(8) are operator equations, and their
variables are fluctuating quantities with intrinsic quantum
fluctuations and those caused by dissipation. One way to
solve such equations involves the employment of spectral
decompositions and the addition of Langevin forces, as was
done in Ref. [30]. To analyze the DLN, we replace below
equations (5)±(8) with equations for the averages and
`uncouple' correlations (an analog of the moments method
in statistical theory): higher-order moments, i.e., the averages
of the products of fluctuating quantities, are replaced by
lower-order momentsÐby the products of the averages.

3. Simplified equations, their validity conditions,
and conditions for dipole nanolaser oscillation
Let us assume that the interparticle distance is short, so that
the EMF delay time tr � n2r=c0 is short in comparison with
the characteristic time of change of variables, and in Eqns (8)
we can write

s
�
tÿ n2r

c0

�
� s�t� ÿ tr

ds
dt

; a

�
tÿ n2r

c0

�
� a�t� ÿ tr

da

dt
:

�9�

For sufficiently short r, when tr ds=dt5 s�t� and
tr da=dt5 a�t�, the derivatives on the right-hand sides of
expressions (9) can be neglected, and then the system of
equations (5)±(7) assumes the form

_D � 2i�O �inta�sÿ Oints�a� ÿ tÿ1�DÿD0� ; �10�
_s � �id2 ÿ G2�s� iOintaD ; �11�
_a � �idÿ GLPR�aÿ i�O �ints ; �12�

where the coupling constant

Oint � x�k2r� m0 m
�hr 3

; �O �int �
1

V

�
V

O �int dV ; �13�

Oint � Oint�r�, �O �int � �O �int�r�, and r is the two-level system
distance from the nanoparticle center. For a spherical
nanoparticle of radius a, in the quasistatic approximation,

when k2a < k2r5 1, it turns out that �O �int � O �int. On the other
hand, beyond the quasistatic approximation and for small
particles, when k2a5 1 and k2r5 1, we may put �Oint � Oint,
correct to at least � a=r5 1. Therefore, for small spherical
nanoparticles if nothing else, it may be assumed that the
condition �Oint � Oint is always fulfilled with a high accuracy.

DNL equations (10)±(13) coincide with single-mode laser
equations, for instance (on changing the notation) with
Eqns (3.2) from Ref. [27]. This signifies that it is possible to
directly take advantage of several results of laser theory in the
DNL analysis, including the possibility of the coherent
generation of a nanoparticle dipole moment by analogy with
the coherent EMF mode generation in a conventional laser.
As in the latter, the DNL may have a lasing threshold,
although DNLs quite often turn out to be `nonthreshold'
(see below), unlike ordinary lasers which are nonthreshold
only under special conditions [30].

Let us estimate when it is possible to neglect retardation in
Eqns (8). The DNL operates (reaches a stationary mode, etc.)
with a characteristic rate � GLPR, i.e., _s=s � _a=a � GLPR.
The LPR quality factor Q � oLPR=�2GLPR�. Considering
these relations, we find the smallness condition for the delay
time tr � n2r=c0:

n2r

c0
GLPR � n2r

c0

oLPR

2Q
� k2r

2Q
5 1 or r5 rcr � 2Q

k2
: �14�

Figure 2 depicts the dependence of Q on the radius a of a
spherical gold nanoparticle in water, n2 � 1:33. For the peak
value of Q � 33:8 for a � 19 nm and lLPR � oLPR=c0 �
560 nm, we obtain the validity condition for equations (10)±
(12): r5 rcr � 4:53 mm. Therefore, when the atom is located
at a distance of, say, 40 nm from the particle surface (although
so long a distance is unnecessary), neglecting the small atomic
dimensions we have r � 0:06 mm5 rcr � 4:53 mm. Even at
QLPR � 10Ðwhich is often the case in experimentsÐ
r � 0:065 rcr � 1:34, i.e., there is a safety margin of
1.5 orders of magnitude. This signifies that the retardation
in Eqns (10)±(12) may be neglected.

Equations (10)±(12) can be generalized to describe
DNLs of various designs: for instance, when there are
N > 1 two-level systems (atoms) rather than one, each of
the systems is located at a distance rm from the nanoparticle
center, as in Fig. 1b. Using the subscript m to mark the
variables and parameters relating to the corresponding
atom and introducing the variables �D � Nÿ1

PN
m�1 Dm and

S � Nÿ1
PN

m�1 O
�
msm averaged over the atomic ensemble,

where Om is defined by expression (13) with r � rm, one can

10

30

QLPR

20

0.02 0.06 0.08 a, mm

1

2

Au
a

Figure 2. LPR quality factor as a function of the radius of a gold

nanoparticle in water: 1Ðresult of an approximate solution to the

dispersion equation [3], and 2Ðexact solution of this equation.
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obtain, in lieu of formulas (10)±(12), the following equations

_�D � 2i�a�Sÿ S�a� ÿ tÿ1� �DÿD0� ; �15�
_S � �i�d2 � Odd

�D� ÿ G2

�
S� ij�Oj2a �D ; �16�

_a � �idÿ GLPR�aÿ iNS : �17�

The factorN in the last termon the right-hand side of Eqn (17)
points to the contribution made byN atoms to the generation
of a nanoparticle's dipole moment. A peculiar feature of
Eqn (16) is the nonlinear resonance shift Odd

�D, where the
quantityOdd describing `local field' effects in the DNL, which
are associated with atomic interactions via the EMF [31], is
defined by expression (13) averaged over all atoms, with r
being the interatomic distance. It may be shown that Odd is a
real quantity. The inclusion of Odd fluctuations permits
describing the effects of inhomogeneous broadening (`self-
broadening') in many-atom DNLs.

4. Oscillation conditions for the dipole nanolaser
We revert to Eqns (10)±(12). Dipole matrix elements m0; 2
enter into expression (13) for the coupling constant, but
polarizabilities, whose calculation is carried out at will for
metallic nanoparticles, are more convenient to use than m0; 2.
In Ref. [10], it was shown that jm0j2 � a0r�hGLPR and
jm2j2 � a2r�hG2, where a0r and a2r are the respective resonance
polarizabilities of the nanoparticle and the two-level system.
Whence, and from expression (13), it is possible to obtain
jOintj2=�G2G� � jxj2ja0ra2rj=r 6.

The nontrivial stationary solution of Eqns (10)±(12) is well
known, in particularD� Dth� �1�d 2=G 2

LPR�G2GLPR=jOintj2.
Apart from the nontrivial solution, there is a trivial stationary
solution a � s � 0, D � D0. When the pump exceeds the
threshold value, D0 > Dth, the trivial solution becomes
unstable, and the nontrivial solution is realized, giving rise
to the coherent generation of the dipole moment. Since the
population of the upper state in the two-level system does not
exceed unity,Dth < 1 becomes the necessary condition for the
generation, which is fulfilled for a sufficiently strong interac-
tion between the particles. In the case of reaching exact
resonance o � o2 � oLPR, the necessary condition for DNL
oscillation is given as follows

Dÿ1th �
jOintj2
G2GLPR

> 1

or

jxj2 ja0ra2rj
r 6

> 1 ; �18�

i.e., the two-level system should be sufficiently close to the
nanoparticle, so that their center distance r satisfies the
inequality r < rcr � jxj1=3ja0ra2rj1=6.

The DNL threshold corresponds to the strongest interac-
tion between the particles, i.e., according to inequality (18) to
the maximum of the quantity jxj2=r 6 in yr for a fixed r. An
analysis made with the use of formulas (8) for a spherical
nanoparticle suggests that the value of jxj2=r 6 is greatest when
cos yr equals 1 or 0, i.e., when the dipoles are directed parallel
or perpendicular to the segment connecting them; this also
follows from symmetry considerations. The maximum at
cos yr � 1 corresponds to 0 < k2r < rbif, and in this case the
near-field interaction of the dipoles prevails over their far-
field interaction. The maximum at cos yr � 0 corresponds to

k2r > rbif Ð the prevalent far-field interaction of the dipoles.
At the point k2r � rbif � �5�

�����
37
p �1=2= ���

2
p � 2:35, the dipole

interaction energies at cos yr � 1 and at cos yr � 0 are equal
and jx�rbif�j2=r 6

bif � 0:154. Therefore, as the value of k2r
changes, in going across k2r � rbif bifurcation occurs: a
stepwise change in the direction of dipole polarizations and
the DNL radiation directivity. If advantage it taken of the
variable r � k2r, the DNL oscillation condition (18) is
conveniently written in dimensionless quantities:

A

��x�r���2
r 6

> 1 ;
�19�

x�r� � 2 exp �ir��irÿ 1� ; 0 < r4rbif ;
exp �ir��1ÿ r 2 � ir� ; rbif < r < rcr � k2rcr ;

�

whereA � ja0ra2rjk 6
2 . Figure 3 depicts the dependence rcr�A�.

The lasing is possible when 0 < r < rcr. In this case, when
A > Abif, twoDNL oscillationmodes are possible. The first is
realized when 0 < r < rbif and the dipoles are parallel to the
segment connecting them, and the second when rbif < r < rcr
and the dipoles are perpendicular to the segment connecting
them. Accordingly, the far-field radiation patterns of the
dipoles in these modes will be rotated relative to each other:
this property may be employed for controling the DNL
radiation. Several oscillation modes and the corresponding
bifurcations may also exist for nonspherical nanoparticles.
For rbif < r < rcr, the degeneracy shows up in directions of
the dipoles in the plane perpendicular to the segment
connecting the particle centers; in this case, the atom must
be treated as a three-level system rather than a two-level one.

Let us estimate the value of A for a gold spherical particle
7 nm in radius. Let us assume that the two-level system
(molecule) resides on a dielectric shell of a nanoparticle in
water; the refractive index of the shell is little different from
water's refractive index n2 � 1:33; these conditions are close
to the experimental ones accepted in Ref. [25]. We utilize the
parameters of the two-level system as inRef. [10] and the same
parameters and formulas for calculating the dielectric
function of gold and the polarizability of a gold nanoparticle
as in Ref. [34]. In this case, lLPR � 525 nm (in a vacuum), and
A � 6:28� 10ÿ4, which corresponds to rcr � 0:378. The
greatest center-to-center distance of the particles is rcr �
rcrlLPR=�2pn2� � 24 nm. In Ref. [25], for lLPR � 520 nm the

1

2

3 rAu

AAu

rbif

Abif

0 2 4 6 8 10 A

r

Figure 3. For a given value of A, the DNL oscillation is possible when

r < rcr�A�, which is indicated with a solid curve. The curve break

corresponds to rbif; on exceeding it, the direction of the dipoles becomes

perpendicular to their connecting straight line. The magnitude of AAu and

the critical value of rAu correspond to a DNL made of a spherical gold

nanoparticle and a quantum dot in silicon.
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distance between a shell surrounding a gold spherical particle
of radius 7 nm and the center of this particle was equal to
22 nm, i.e., our estimates bear out the possibility of lasing in
Ref. [25].

By way of a second example, let us consider a DNL
comprising a gold (or silver) spherical nanoparticle of radius
10 nm and a quantum dot in silicon. By using the dielectric
function of silicon [35], we find that lLPR � 876 �804� nm,
A � 7:8 �6:7�, and the dipoles may be spaced at a center-to-
center distance r < rcr � 100 �83� nm. The corresponding
points for the gold nanoparticle are indicated in Fig. 3; for
this particle, A � AAu > Abif � 7, and the dipoles may there-
fore be directed along as well as across their connecting
straight line. These estimates suggest that the necessary
condition for DNL oscillation can be fulfilled in real systems.

5. Inclusion of incoherent dipole nanolaser oscillation
In this section we consider, following report [14], DNL
equations in the next approximation of the moments
method, including the averages of quadratic quantities,
which will permit describing the incoherent dipole moment
oscillationÐan analog of incoherent oscillation, including
the subthreshold one, in an ordinary laser [29]. Under
incoherent oscillation conditions, the average values of the
dipole moments hsi � hai � 0, but the corresponding ener-
gies, or the squares of the moduli of the dipole moments, are
hs�si 6� 0 and ha�ai 6� 0.

In equations (10)±(12) we go over from operators a and s
to their binary combinations: the operator of the number
of plasmons, n0 � a�a, and G � iGÿ1tot�Oints�aÿ O �inta

�s�,
where Gtot � GLPR � G2. In lieu of D it is more convenient to
use the operator n2 of the upper level population of the two-
level system: D � 2�n2 ÿ 1=2�. We put d0; d5GLPR;G2 and
consider the resonance case (which is more general than in
Ref. [14]) and assume that there are N atoms equally spaced
from a metal nanoparticle, for instance, on a dielectric shell
(Fig. 1b). By differentiating the products of the operators and
employing Eqns (10)±(12), we find that

_G � ÿ2GtotG� 2gplN

�
n0

�
n2 ÿ 1

2

�
� n2
2N

�
; �20�

_n0 � ÿ2GLPRn0 � GtotG ; �21�

_n2 � ÿGtotGÿ n2
t
� j ; �22�

where j is the rate of pumping of an individual atom,
gpl � 2jOintj2=Gtot � 4G2GLPR=�DthGtot�, n0 is the number of
plasmons per atom, and the total number of generated
plasmons is Nn0. In equations (20)±(22), the variables are
the averages of the operators, and correlations are neglected,
i.e., the averages are uncoupled: hn0n2i � hn0ihn2i. In the
derivation of equations (20)±(22), advantage was taken of the
quantum-mechanical identity s�s � n2 [36], with the con-
sequence that the term n2=�2N � responsible for the incoherent
generation of a nanoparticle's dipole moment emerged in the
square brackets on the right-hand side of Eqn (20). This term,
which is proportional to n2, makes a contribution to plasmon
generation irrespective of the existence of population inver-
sion: the greater N, the smaller is this term.

Figure 4 depicts the dependence of the number of
plasmons generated by a DNL with N � 100 atoms on the
pumping rate expressed in GLPR units at Dth � 0:9 and the
same G2 as in Ref. [10], i.e., G2 � G2R � G2NR, where the

radiative width of the line of the two-level system (a quantum
dot) is G2R � 1=t � 1 ns, the nonradiative linewidth
�hG2NR � �egacT, �e is the electron charge, T is the temperature
[K], gac � 0:5� 10ÿ6 eV Kÿ1; T � 300 K and GLPR � 300G2R

(curve 1), GLPR � 10G2R (curve 2), and GLPR � 3G2R

(curve 3).
If the laser oscillation threshold is considered as a sharp

acceleration of the growth in the number of plasmons upon
increasing the pump current (the threshold in the number of
plasmons), this threshold turns out to be evident only for
curve 3, when the LPR Q factor is quite high. Curves 1 and 2
correspond to `nonthreshold' lasing. No less important than
the existence or the absence of the threshold in the number of
plasmons are the conditions for oscillation line narrowing to a
value smaller than GLPR, which have not been investigated so
far but may be found using the approach suggested in
Ref. [30]. In view of the results of work [30], it may be
assumed that inequality (18) remains the necessary condition
for line narrowing even for `nonthreshold' DNLs, which are
described by curves like 1 and 2 in Fig. 4. It is significant that
equations (20)±(22) predict a much higher pumping rate near
the threshold: j � GLPR instead of j � 1=t5GLPR in the case
of equations (10)±(12) disregarding the energy loss for
incoherent subthreshold generation.

When N � 1, GLPR 5G2 (a low-Q LPR), Gtot 4 1=t, the
number of plasmons n0 5 1, and the pumping rate is not too
high, j5GLPR, it is possible to neglect the term � n0 in
Eqn (20) and adiabatically eliminate G from Eqns (20)±(22)
by putting _G � 0. After this, only a single equation remains:
_n2 � ÿ�tÿ1 � gpl=2�n2 � j. One can see from this equation
that the electron lifetime in the upper state of the two-level
system significantly shortens due to the presence of the
metallic nanoparticle: under ordinary conditions gpl �
GLPR 4 tÿ1. This fact can be utilized for making broadband
optical modulators with metallic nanoparticles [16].

In circumstances where gpl � GLPR 4 tÿ1, upon adiabatic
elimination of G it is possible to neglect the term n2=t in the
equation for n2. This signifies that the atom radiates primarily
to the nanoparticle's `dipole' mode and that the radiation to
its other modes with frequencies different from the dipole
mode frequency is negligible. Therefore, the number of
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Figure 4. Number of plasmons generated by a DNL as a function of the

pumping rate of each of N � 100 atoms, with the proviso that the

population inversion be equal to 0.9 and the LPR linewidth be equal to

300 (curve 1), 30 (curve 2), and 3 (curve 3) atomic radiation linewidths. The

threshold character of oscillation is evident in curve 3.
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modes to which the atom may spontaneously radiate is
limited, and in this sense the nanoparticle is similar to a
photonic crystal. In this case, the stationary number of
plasmons n0 � j=�2GLPR� increases linearly with pump
current, and there is no oscillation threshold in the number
of plasmons, but the DNL linewidth may decrease to values
smaller than GLPR, as with a nonthreshold laser [30]. It is
noteworthy that, although there is absorption in the metallic
nanoparticle, the number of photons delivered by the two-
level system and reradiated by the particle is not so small in
comparison with the number of photons emitted by the two-
level system in the absence of the nanoparticle, the pump rate
being the same in both cases. Indeed, metallic nanoparticle
cross sections for absorption and scattering under the LPR
conditions may be in the ratio of 1:2 [4], i.e., only every third
photon delivered by the atom will participate in nanoparticle
heating, while the remaining photons will go to its dipole
radiation. In this case, the reradiation rate is approximately
tGLPR times (i.e., an order of magnitude or more) higher than
the emission rate of the atom in the absence of the
nanoparticle. Therefore, from the standpoint of converting
the current of a high-power pump, the ensemble of atoms near
the nanoparticle constitutes a highly efficient nano-dimen-
sional light-emitting device.

6. Conclusions
The dipole nanolaser is a quantum electronic system remark-
able for its basic properties and its possible practical
applications. The uniqueness of the DNL lies, in particular,
in the fact that it resides `at the boundary' of the domain
where quantum effects are significant, like spontaneous
emission to an oscillation mode, as are classical nonlinear
effects like the excitation of self-oscillations, etc. In the
foregoing, it was impossible to consider all DNL-related
quantum effects involving, for instance, superluminescence
in DNL ensembles, oscillation line narrowing in overcoming
the threshold, etc. Many classical nonlinear effects were not
considered, either, like the DNL bistability in an external
resonance field [14, 15]. Also of interest is to analyze a few-
atom DNLÐ like a logic cell (a qubit) for a quantum
computer, for instance, of the `controlled NOT' type [37]. In
the subthreshold generation, DNLs may be employed as
efficient nanodimensional light emitters. To improve the
efficiency of solar batteries and photodetectors, use can be
made of a device `inverse' to the DNL: when a nanoparti-
cleÐan optical antennaÐreceives a photon and transmits it
via its near field to, for instance, a photocurrent-producing
quantum dot. Extensive literature [7] is concerned with
research aimed at improving the efficiency of solar elements
with the help of metallic nanoparticles; the promise of
quantum dot-based photoelectric converters, even without
nanoantennas, is also recognized [38], but DNL photodetec-
tors have not been considered so far. It is hard to foresee all
promising DNL applications.

Different schemes of practical DNL realization are
possible: notably, in the form of a metallic nanoparticle in a
dielectric shell, on the surface of which the active atoms or
molecules (for instance, dye molecules adsorbed from a
solution with the nanoparticles) are located (Fig. 1b). This
DNL scheme has been experimentally realized [25]. Calcula-
tions of this type of DNL can also be performed in the
framework of the `core±shell' nanoparticle model. The shells
are treated as continuous media with corresponding (com-
plex) refractive indices. Calculations for spherical nanoparti-

cles can be performed using the well-known modes of a
spherical cavity [3] without invoking the quasiclassical
approximation. Also possible is the employment of a
`nanoparticle±two-level system' model, similar to the model
presented above, with several radiating atoms (molecules).
Another DNL scheme incorporates a nanoparticle antenna
placed on the surface, say, of a semiconductor; located at a
small (up to several dozen nanometers) depth below the
surface is an active layerÐa pÿn junction, a quantum well,
or a layer of quantum dots. There are examples of the
practical implementation of such systems, and the enhance-
ment of their electro- and photoluminescence due to metallic
nanoparticles is well known [23, 24]. A theoretical descrip-
tion of this type of DNL must take into consideration the
plane interfaces of the media and the electrodynamics of
dipoles in stratified media [39]. Also conceivable are
combinations of various DNL schemes, for instance, of
metallic nanoparticles with active shells residing on semi-
conductor surfaces.

The DNL theory, relying on rather simple equations, is
developing systematically, providing a way for describing
complex DNL schemes, predicting new effects, and helping in
the planning of experiments. This enables the researcher to
make analytical estimates using the results of theoretical
quantum electronics, plasmonics, and the theory of radia-
tion±matter interactions. Next, by applying numerical tech-
niques, it will be possible to carry out comprehensive
simulations of experiments, as soon as they are planned in
Russia.
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Quantum plasmonics of metamaterials:
loss compensation using spasers

A P Vinogradov, E S Andrianov, A A Pukhov,
A V Dorofeenko, A A Lisyansky

1. Introduction
Recent years have seen the development of a new field of
opticsÐquantum plasmonicsÐwhich combines the advan-
tages of plasmonics and quantum electronics [1±25].
Although plasmonics deals with wave phenomena, it oper-
ates on a scale much shorter than the light wavelength in a
vacuum, which endows plasmonics with many features of
near-field optics and creates a demand for plasmonics from
modern nanotechnologies. In the first place, mention should
be made of SERS (surface enhanced Raman scattering), the
SPASER (surface plasmon amplification by stimulated
emission of radiation), nanodimensional light sources [26±
30], and numerous metamaterial-based devices [17, 31, 32]:
energy concentrators and transmission lines on the order of
several dozen nanometers in size, a superlens with a resolution
exceeding the diffraction limit, cloakings, hyperlenses [33±
40], etc. The small dimensions of these objects introduce
quantum effects into their dynamics.

Since the principle of metamaterials operation is under-
lain by the plasmon resonance of metallic nanoparticles
(NPs), artificial metamaterials exhibit rather high energy
loss. The existence of losses in metamaterial-based devices

gives rise to energy transfer inside of them, which is effected
by near fields. The necessary and sufficient condition for the
energy transfer by evanescent waves is the emergence of a
phase difference among `interfering' evanescent harmonics
[41]. The emerging dephasing of harmonics, which form an
ideal image, shows up in their destructive interference and
breaking of the ideal image [42]. To compensate for the loss,
the authors of Refs [43±51] proposed the employment of
active (amplifying) media in artificial metamaterials. How-
ever, it follows from the foregoing that the ideal image is
broken not only by energy dissipation, but also amplification
in the medium. It is required that as precise as possible a loss
compensation be achieved [43, 52, 53].

The utilization of active media in metamaterials leads
inevitably to the formation of nanolasers inside of them.
Among nanolasers, mention should be made of the dipole
nanolaser [8, 10], the spaser [11, 54], and the magnetic-mode
nanolaser [48, 49]. From the standpoint of loss compensation
inmetamaterials, spasers, whose experimental realization was
reported in Ref. [55], have the greatest promise as a base
element. Schematically, the spaser constitutes a quantum-
plasmon device which consists of inversely excited two-level
quantum dots (QDs) (a two-level tunneling system, TLS)
surrounding plasmon NPs (the more realistic treatment of a
four-level system does not introduce qualitatively new
properties (see Refs [50, 56, 57])). The principle of spaser
operation is similar to that of lasers: light amplification
ensured by population inversion in combination with feed-
back, which is produced by the stimulated emission of a
quantum system. To fulfill the conditions for stimulated
emission by an inverted quantum system in the field of the
wave previously radiated by this system, the quantum system
is placed in a cavity, which localizes the generated mode. In a
spaser, the role of photons is played by surface plasmons
(SPs) of an NP. The localization of plasmons on the NP [11,
49, 54] furnishes the conditions for feedback realization. To
state it in different terms, the generation and amplification of
theNP's near-fields occur in spasers. The amplification of SPs
proceeds due to radiationless energy transfer from QDs. The
process relies on the dipole±dipole interaction (or any other
near-field interaction [58]) between a QD and a plasmon NP.
This mechanism can be treated as the principal one, because
the probability of radiationless plasmon excitation is
�krNPÿTLS�ÿ3 times higher than the probability of radiative
photon emission [15] (rNPÿTLS is the center-to-center distance
of the NP and the QD, k � 2p=l, where l is the wavelength in
a vacuum). Therefore, the efficient energy transfer from the
QD to the NP is achieved due to the short distance between
them, despite the fact that the plasmon resonance Q factor is
rather low. 1 Due to the high efficiency of this process, an
external optical wave which propagates through the metama-
terial interacts with entire spasers rather than separately with
the amplifying medium and separately with plasmon parti-
cles.

Like a laser, a spaser constitutes a self-oscillating system.
Its dipole moment executes free-running oscillations whose
frequency and amplitude are determined by the balance
between pumping and dissipation. An external field can only
synchronize the spaser operation, i.e., make the dipole
moment oscillate at the frequency of the external field. The
weak dependence of the amplitude of these oscillations on the
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external field makes difficult the employment of spasers as
nanodimensional devices, but these difficulties are not
insurmountable. In particular, Stockman [12] came up with
the idea that a spaser operating in the transient mode can be
used as an amplifier. Therefore, spaser physics is interesting
enough to be a research subject in its own right. Spaser
physics constitutes a new area of opticsÐquantum plasmo-
nics. For the development of metamaterial electrodynamics,
however, of interest is the consideration of structuresmade up
of ordered linear or two-dimensional spaser arrays rather
than the treatment of a single spaser. In this case, collective
interactions between spasers may significantly change the
oscillation conditions and the properties of free-running
spaser self-oscillations, and even give rise to new effects or
instabilities in these structures. In this connection, along with
plasmons localized on plasmon particles, of special interest
are plasmons traveling along one-dimensional objects like
wire, a chain of nanoparticles, or a groove in a metal [61±64].
The presence of an amplifying medium results in the
amplification of one-dimensional plasmons [4, 23, 44, 65].
Although the presently existing theoretical estimates and
experimental realizations in the area of quantum plasmonics
rely on quite simple models, they show the promise of using
spasers in the development of the elements of optical
information facilities and optical computers.

In this report, we consider both individual and collective
behavior of spasers in above-threshold oscillation.

2. Equations of spaser `motion'
Since the SP wavelength lSP is much shorter than the
radiation wavelength l in a vacuum [15, 16], the spatial
derivatives in the Maxwell equations are much greater than
the temporal ones. Neglecting the latter permits describing
the plasmon field in the quasistatic approximation [66, 67]. It
turned out that this is also true when the spaser operates even
in the radiating nanoantenna mode, i.e., when the Joule loss
in a nanoparticle is lower than the radiative loss. Considering
themodes of a small spherical NP of radius rNP 5 l shows the
plasmon resonance frequency coincides with the frequency at
which the NP is a half-wave antenna (resonator): a half of the
plasmon wavelength fits into the sphere diameter [66].

Below, we shall consider the excitation of only the
principal (dipole) SP mode with a frequency oSP. For a silver
NP surrounded by silicon oxide �SiO2�, the permittivity
values are well known [68]. Assuming that the NP radius
rNP � r � 10 nm, we estimate the dipole moment of the NP
near the plasmon resonance: mNP � 200 D. The dipole
moment of a typical QD of size rTLS � 10 nm is mTLS � 20 D
[69]. The NP±QD interaction adheres to a dipole±dipole one:
V � �hOR � mNP mTLS=r

3, and the constant of this interaction
(the Rabi frequency OR) turns out to be two orders of
magnitude lower than the oscillation frequency [22]. This
permits us to apply the slowly varying amplitudes approxima-
tion below.

At the plasmon resonance frequency, the NP polarization
is described by the oscillator equation with eigenfrequency
equal to the plasmon resonance frequency:

�dNP � o2
SPdNP � 0 : �1�

This oscillator is quantized in the standard way [59, 70]: the
Bose operators are introduced in this case for the production
�~̂a y�t�� and annihilation �~̂a�t�� of a dipole SP excited in theNP,
which satisfy the commutation relation �~̂a�t�; ~̂a y�t�� � 1, and

the Hamiltonian is expressed as

ĤSP � �hoSP ~̂a y ~̂a : �2�

In the case of a spherical NP, the electric dipole mode field
is uniform inside the NP, E1 � ÿl1=r 3NP, and has the form
E1�ÿl1=r 3� 3�l1r�r=r 3 outside. The vector of a unit dipole
moment l1 is a dimensional quantity, and henceforward we
shall explicitly write the factor jl1j.

The energy �hoSP of one plasmon is expressed as [71]

W1 � 1

8p

�
VNP

o
qRe e
qo

����
oSP

E1E
�
1 dVNP � jl1j2

6r 3NP

o
qRe e
qo

����
oSP

;

�3�

whereVNP is the NP volume. Hence, the field produced by the
NP can be written out as

E �
�������������������������������

3�hr 3NP

jl1j2 qRe e=qo

s
E1�r��~̂a� ~̂a y� ;

and accordingly the dipole moment of the NP is d̂NP �
lNP�~̂a� ~̂a y�, where

lNP �
��������������������������

3�hr 3NP

qRe eNP=qo

s
l1

jl1j2
:

This is consistent [20, 21] with the `classical' definition of the
dipole moment [72]:

dNP � eNP�o� ÿ eM
eNP�o� � 2eM

E1r
3
NP :

To describe the quantum dynamics of an NP and the two-
level QD of a spaser, use can bemade of amodel Hamiltonian
in the form [8, 54, 73]

Ĥ � ĤSP � ĤTLS � V̂� Ĝ ; �4a�

where ĤTLS is the Hamiltonian of the two-level QD [16, 54,
74]:

ĤTLS � �hoTLS ~̂s y ~̂s ; �4b�

operator V̂ � ÿd̂NPÊTLS defines the interaction between the
two-level QD and the NP, and operator Ĝ describes the
relaxation and pumping effects [74]. The operator of the QD
dipole moment is d̂TLS � lTLS�~̂s�t� � ~̂s y�t��, where ~̂s � jgihej
is the transition operator between the excited jei and ground
jgi states of the QD, and lTLS � hejd̂TLSjgi is the transition
dipole moment of the QD. Therefore, one obtains

V̂ � �hOR�~̂a y � ~̂a ��~̂s y � ~̂s� ;

where the Rabi frequency

OR � lNP lTLS ÿ 3�lTLS er��lNP er�
�hr 3

;

and er is a unit vector: er � r=r.
We assume that theQD transition frequency is close to the

SP frequency, oSP � oTLS, and seek the solution in the form
~̂a�t� � â�t� exp �ÿiot� and ~̂s�t� � ŝ�t� exp �ÿiot�, where â�t�
and ŝ�t� are slowly varying amplitudes. Then, neglecting
rapidly oscillating terms � exp ��2iot� (the rotating wave
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approximation [74]), the interaction operator V̂ can be
written out in the form of the Jaynes±Cummings Hamilto-
nian [70]:

V̂ � �hOR�â yŝ� ŝ yâ� : �4c�
We proceed from Hamiltonian (4) and employ the

standard commutation relations �â; â y� � 1̂, �ŝ y; ŝ� � D̂ for
operators â�t�, ŝ�t� and the population inversion operator
D̂�t� to arrive at the following Heisenberg equations of
motion [8, 75]:

_̂
D � 2iOR�â yŝÿ ŝ yâ� ÿ D̂ÿ D̂0

tD
; �5�

_̂s �
�
idÿ 1

ts

�
ŝ� iORâD̂ ; �6�

_̂a �
�
iDÿ 1

ta

�
âÿ iORŝ ; �7�

where d � oÿ oTLS and D � oÿ oSP are frequency mis-
matches. The QD population inversion operator
D̂�t�� n̂e�t�ÿn̂g�t�, where n̂e � jeihej and n̂g � jgihgj are the
operators of the upper and lower QD level populations, with
n̂e � n̂g � 1. It should be emphasized that the population
inversion operator D̂�t� is `slow' on the strength of its
definition. The contribution of relaxation and pumping
effects, which is denoted by operator Ĝ in Eqn (4a), is
described in Eqns (5)±(7) by terms proportional to the
relaxation rates tÿ1D , tÿ1s , and tÿ1a , and the operator D̂0

describes the population inversion produced by extraneous
pumping in the QD [70, 74].

Strong dissipation in the NP makes this quantization
scheme approximate and at the same time permits neglecting
quantum correlations [8, 10]. This allows treating D̂�t�, ŝ�t�,
and â�t� as complex quantities and replacing the Hermitian
conjugation by the complex one [8, 10, 12, 43]. In this case, the
quantity D�t�, which has the meaning of the difference
between upper and lower level populations, will assume only
real values, because the corresponding operator is Hermitian.
The quantities s�t� and a�t� have the meanings of dimension-
less complex oscillation amplitudes of the dipole moments of
the QD and the SP, respectively. Therefore, the spaser
equations (5)±(7) in this approximation are single-mode
optical Bloch equations [74].

3. Stationary spaser oscillation mode
Apart from the trivial solution a � 0, s � 0, D � D0 stable
below the oscillation threshold, the system of equations (5)±
(7) also has a nontrivial stationary solution:

a � exp �ij�
2

���������������������������
�D0 ÿDth�ta

tD

s
; �8a�

s � exp �ic�
2

���������������������������������������������������
�D0 ÿDth��d 2

SP � tÿ2a �ta
O 2

RtD

s
; �8b�

D � Dth ; �8c�
which corresponds to stationary spaser oscillation with a
frequency o � �oSPta � oTLSts�=�ta � ts�, and the phases j
and c satisfy the relation

cos �cÿ j� � 1������������������������������
1� t 2a �dÿ D�2

q :

This solution is stable when the pumping D0 exceeds the
threshold value

Dth � 1� D2t 2a
O 2

Rtats
: �8d�

In this case, the stationary value of population inversion is
fixed at the value of D � Dth and ceases to increase with
enhancing pumping (Fig. 1) [8, 12, 43].

4. Transition to stationary oscillations, Rabi oscillations
The use of spaser-based metamaterials implies that this
medium will modify the electromagnetic wave propagating
through the medium. However, one would think that the
existence of an eigenfrequency and an oscillation amplitude in
a spaser is an impediment to the employment of spasers as
inclusions which actively interact with the outer wave [6]. The
interaction efficiency can be improved by operating in a
transient mode. M Stockman's numerical experiments [12]
suggest that a spaser exhibits complicated, strongly nonlinear
dynamics during the transient regime. In this case, the spaser
oscillation amplitude may be several times higher than the
amplitude both of initial and of stationary spaser oscillations,
i.e., the spaser can operate as an amplifier.

The transition of a spaser to stationary self-oscillations is
defined by three characteristic times: the NP and QD
polarization relaxation times ta and ts, and the population
inversion relaxation time tD. Due to high losses in metals, the
time ta proves to be shortest. The experimental value is ta �
�10ÿ14ÿ10ÿ13� s [76], which coincides with the estimate
obtained from classical electrodynamics [43]. Typical experi-
mental values of remaining lifetimes are ts � 10ÿ11 s and
tD � 10ÿ13 s [77±79]. Therefore, for a metallic NP and a
semiconductor QD, we obtain the following time scales:
ta < tD 5 ts. The total self-oscillation settling time is
defined by the longest time, � ts.

Numerical simulations have shown that the character of
the transient process is heavily dependent on the initial value
of the NP's dipole moment amplitude a�0�. For an initially
`cold' spaser, a�0�5 1, and the electric field of the NP is
weaker than the field of the QD. In this case, the energy goes
from the QD to the NP, and the a�t� value tends to the
stationary value (8a). For a high initial amplitude a�0�4 1,
which may be achieved under the excitation of the NP by a
nanosecond optical pulse [6, 12], the transient process is more
complicated and proceeds two stages [22]. During the first

D0

Dth D
0
0

a
;s
;D

Unstable solution

Stable solution

1

2

Figure 1. Stable stationary values of a (curve 1), s (curve 2), and D (solid

line) amplitudes. The unstable solution, which manifests itself for

D > Dth, is shown by a dashed line. The stable and unstable solutions at

some pumping rate D0 � D 00 are marked with black circles.
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stage, theQDpasses time in the strongNP field and the spaser
self-oscillation amplitude experiences Rabi oscillations with a
characteristic period tR � 2p=OR. As this takes place, the
energy flux periodically changes its direction from the NP to
the QD and vice versa. Over a time of order ta ln ja�0�j, these
oscillations decay due to dissipation in the NP and the QD.
During the second stage, the spaser exhibits dynamics
characteristic for small a�0�, when the spaser oscillation
amplitude tends monotonically to the stationary value. For
the time relation ta < tD 5 ts typical for the spaser, its
dynamics depend only slightly on tD. The total duration of
the transient mode is on the order of ts (Fig. 2).

The frequency of oscillations observed in numerical
simulations can be easily estimated in the case of exact
resonance d � D � 0. By omitting the terms responsible for
relaxation and pumping, which may be done at the initial
stage of the process when all spaser variables are distant from
their stationary values, we arrive at the reduced system of
equations

_a � ÿiORs ; �9�
_s � iORaD ; �10�
_D � 2iOR�a �sÿ s �a� : �11�

Substitution of Eqn (9) and its conjugate into Eqn (11) gives
the Newton equation

d2jaj
dt 2
� qU

ÿjaj�
qa

�12�

for a `particle' of unit mass with coordinate jaj, which moves

in the potentialU�jaj� � 0:5�O 2
Rjaj4 ÿ C1O 2

Rjaj2�, where C1 is

the integration constant [22]. The stable equilibrium position

for this `particle' is jajstable �
�����������
C1=2

p � � ja�0�j2 �D�0�=2�1=2,
and the frequency of small oscillations about this equilibrium

position is given by

O � 2
��a�0���OR : �13�

This expression coincides with the frequency of Rabi
oscillations which emerge under the interaction of a two-
level QDwith a classical harmonic field of amplitude a�0� or a
quantized field with the number of photons approaching
â y�0�â�0� � n � ja�0�j2 [70].

5. Spaser in the field of an external optical wave,
and spaser synchronization
Let us consider now the NP and QD dynamics in the field of
an external optical wave E�t� � E cos �nt�. Considering the
external electric field as being classical and restricting
ourselves to the dipole interaction, we write out the system's
Hamiltonian in the form

Ĥeff � Ĥ� �hO1�~̂a y � ~̂a ��exp �int� � exp �ÿint��
� �hO2�~̂s y � ~̂s��exp �int� � exp �ÿint�� ; �14�

where Ĥ is defined by expression (4), andO1 � ÿlNPE=�h and
O2 � ÿlTLSE=�h are the coupling constants of the NP and the
QD to the external field.

As before, the equations of motion are the Heisenberg
equations for the slowly varying amplitudes of operators â, ŝ,
and D̂:

_̂
D � 2iOR�â yŝÿ ŝ yâ� � 2iO2�ŝÿ ŝ y� ÿ D̂ÿ D̂0

tD
; �15�

_̂s �
�
idE ÿ 1

ts

�
ŝ� iORâD̂� iO2D̂ ; �16�

_̂a �
�
iDE ÿ 1

ta

�
âÿ iORŝÿ iO1 : �17�

Here, dE � nÿ oTLS and DE � nÿ oSP are frequency mis-
matches in the external optical field.

System of equations (15)±(17) has three stationary
solutions fai; si;Dig, i � 1; 2; 3. A linear stability analysis of
these solutions: a�t�ÿ ai� exp �lt�, s�t�ÿsi � exp �lt�, and
D�t� ÿDi � exp �lt� showed that only the solutions located
in the lower branch of the curves depicted in Figs 3a and 3b
are stable �Re l < 0�. For a zeromismatchDE � dE � 0 in the
absence of the field, the points indicated in Fig. 3a correspond
to the points indicated in Fig. 1. For a nonzero mismatch, the
stable solution branch D�E � exists only when the field
amplitude is sufficiently large: E > Esynch�DE� (Fig. 3b).

Therefore, the value Esynch�DE� is the lower boundary of
the domain in which the spaser can by locked by an external
wave. Such threshold behavior is typical for nonlinear
systems experiencing external action, and the range of
parameters E and DE in which locking occurs is termed the
Arnold tongue [80±82]. The boundary of the Arnold tongue
can be qualitatively obtained by treating the external wave as
a perturbation.

In the zero approximation in the field amplitudeE, system
(15)±(17) has the stationary solution (5)±(7). Let us find the
solution in the first approximation in the field amplitude E.
By substituting a � jaj exp �ij� and s � jsj exp �ic� into
Eqn (17), we obtain

djaj
dt

exp �ij� � i
dj
dt
jaj exp �ij�

�
�
iDE ÿ 1

ta

�
jaj exp �ij� ÿ iORjsj exp �ic� ÿ iO1 : �18�

0

0

D ÿ2

2

4

ln jaj

jsj

0.5

0.6

0.8

1

2

Figure 2. Spaser dynamics for jsj � 0:5, ta � 10ÿ14 s, ts � 10ÿ11 s,

tD � 10ÿ13 s, and OR � 1013 sÿ1. White dots correspond to the initial

conditions for two trajectories emerging from a�0� � 40� 25i, s�0� � 0:9,
D�0� � 0:05 (solid line) and from a�0� � 5, s�0� � 0:65, D�0� � 0:9
(dashed line). The stationary state is indicated with a black dot. Curves 1

and 2 correspond to the projections of these trajectories onto the plane

jsj � 0:5.
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We divide both sides of Eqn (18) by jaj exp �ij� to bring the
imaginary part of the equation to the form

_j � DE ÿ OR
jsj
jaj cos �cÿ j� ÿ O1

jaj cosj : �19�

Substituting the quantities (8) into Eqn (19) in place of jaj, jsj,
and cos �cÿ j� yields the equations of motion [8, 22] of an
overdamped `particle' with a coordinate j:

_j � ÿ qF�j�
qj

�20�

in the potential F�j� � ÿDEj� O1 sinj=jaj.
The phase dynamics are the sliding of this `particle' over

the potential profile in a viscous liquid. For jO1j < jaDEj,
there occurs a unidirectional motion. The particle velocity
oscillates with the period tending to infinity as the critical
situation jO1j � jaDEj is approached. For jO1j > jaDEj, the
particle finds itself in one of the minima of the potential
function F�j�, which corresponds to the synchronization
mode: the oscillation phase j is `locked' and ceases to vary
in time. Therefore, the spaser's Arnold tongue is wedge-
shaped in the low-field domain E5 �hOR=mNP.

Numerical simulations have shown that the boundary of
the locking domain is described by the curve Esynch�DE�
(Fig. 4). Outside of this domain, the solution irregular in
time, which corresponds to chaotic spaser behavior.

Notice that a spaser which has reached the stationary state
responds to the long-term �4 ts� action of an external field in
a qualitatively different manner than does a spaser exposed to
a `pulsed' �5 tD� external field, when the change in popula-
tion inversion caused by the external field may be disre-
garded. While in the former case the response is nonlinear,
in particular in a weak field E � Esynch�DE� the dipole
moment does not depend on the external field at all and is
defined by the frequency mismatch and the pumping level
(Fig. 5), in the latter case the spaser's dipole moment is
proportional to the external field [50, 56, 57].

In the absence of pumping �D0 � ÿ1�, the solution of
optical Bloch equations yields the answer close to the
predictions of the classical theory describing the response of
a single NP: the real part of an NP's dipole moment can
assume both positive and negative values, depending on the
frequency, but its imaginary part is always positive. This
corresponds to the energy transfer from the external field to
the spaser. In the presence of a pump close in frequency to the
spaser oscillation frequency, the imaginary part of the dipole
moment may assume negative values for certain values of DE,
which corresponds to the energy transfer from the spaser to
the external field (Fig. 6) [20].

0.03 0.07
0

0.2

0.4

0.6

0.8

1.0
bD

mTLSE=�hOR

Esynch

0.03 0.07
0

0.2

0.4

0.6

0.8

1.0
aD

Stable
solution

Unstable
solution

mTLSE=�hOR

Figure 3. Stationary value of the population inversion D as a function

of the external field amplitude for ta � 10ÿ14 s, ts � 10ÿ11 s, tD �
0:5� 10ÿ14 s, and OR � 1013 sÿ1: (a) DE � dE � 0, and (b) DE �
dE � 1011 sÿ1.

m N
P
E
=�h
O R

D
E , 10 12

s ÿ1

jaj

1.25

0

ÿ1.25

0.3

0.1

0.04

0.08

Figure 4. Dimensionless NP dipole moment as a function of external

optical field amplitude E and frequency mismatch DE. The speckle

structure for small amplitudes of the external field corresponds to chaotic

behavior of the dipole moment.

EL

0 0.02 0.04 0.06

mNPE=�hOR

0.3

0.2

0.1

jd N
P
=m

N
P
j

Figure 5. Amplitude of the NP dipole moment as a function of the

magnitude of the external field for a zero mismatch.
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It should be emphasized that for a given magnitude of
external field there are two frequencies at which the imaginary
part of the dipole moment turns to zero, i.e., complete
compensation occurs (see Fig. 6). These points lie on the
complete compensation curveE � Ecom�DE� (Fig. 7), which is
defined by the expression [20]�

mNPEcom�DE�
�h

�2

� 1

4

�
ÿ tDt 3s

ta
D 4
E �D0ORt 3s

mTLS
mNP

D 3
E

tD

ÿ
�
ts
tD
ÿ O 2

RD0
tat 2s
tD

�
D 2
E

��
tsDE

mTLS
mNP

� taOR

�ÿ2
:

�21�

As DE ! 0, expression (21) changes into�
mNPE

�h

�2

� �D0 ÿDth�D 2
E

�
t 2s
tDta

�
:

Therefore, E/�D0ÿDth�1=2DE, and this curve lies inside of
the Arnold tongue [20].

Figure 7 depicts the phase difference between the NP
dipole moment and the external field, which was obtained by

the numerical solution of system (15)±(17). The discontinuity
line, or the compensation line Ecom�DE�, corresponds to a
phase difference p, when the imaginary part of the dipole
moment is equal to zero. In this case, the real part of the NP
dipole moment turns out to be negative.

If the external field amplitude corresponds to a point lying
below the compensation curve, the energy is transferred from
the spaser to the field, and as the wave field propagates over
the system of spasers, its amplitude should increase,
approaching the value Ecom�DE�. When the point lies above
the curve, the energy will be absorbed inside the spaser, and
the wave will attenuate and tend to the same value of
amplitude. It is therefore expected that a wave will propagate
over the system, whose amplitude will stably tend to the value
defined by the level of spaser pumping and the frequency
mismatch.2

The above reasoning relies on our analysis of the behavior
of a single spaser. Moving from a single spaser to a spaser
system may give rise to collective effects due to interspaser
interaction, which may qualitatively change the picture of
wave propagation through the active metamaterial.

6. Collective excitations of a spaser chain
So, we have ascertained that a spaser may synchronize its
operation under the action of an external field. However, to
make metamaterials requires the knowledge of how a spaser
system works. In this case, collective interspaser interaction
may significantly change the operating conditions and result
in new effects. Indeed, since the times of Huygens it has been
known that self-oscillating systems may synchronize their
operation in the presence of even a weak interaction between
them [81, 82]. Similar phenomena may also take place in a
spaser system.

Below, we consider the collective interaction of spaser
self-oscillations in the course of lasing above threshold by the
simplest example of a linear spaser array. Two scenarios of
the operation of the spaser system are possible in this case.
First, the operation of all spasers may be synchronized,
resulting in their in-phase operation. Second, a scenario is
possible whereby the QD excitation will be transferred to
their collective mode [2, 23, 65, 83, 84]. The role of collective
mode is played by the dipolemoment wave traveling along the
chain of plasmon nanoparticles (see Ref. [60] and references
cited therein).

For small frequency departures from the plasmon
frequency, the dispersion relation for the wave of dipole
moments traveling over an NP chain assumes the form

o�k� � oSP � gi
o2

1

oSP
cos �kb� ; �22�

whereo2
1 � r 3NPo

2
pl=�3b 3�, g1 � 1 for longitudinal modes, and

g1 � ÿ2 for transverse ones [60]. This solution becomes
meaningless for k < k0 � o=c, when the mode turns into a
leaky one (see Ref. [85]), i.e., the radiation of photons occurs.
For a single spaser, the radiationless excitation of plasmons
prevails over the emission of photons for �k0rNPÿTLS�3 5 1,
where rNPÿTLS defines the characteristic scale of the system. In

R
e
(d

N
P
=
m N

P
),
Im

(d
N
P
=m

N
P
)

0.2

0.1

0ÿ2 ÿ1

0

1 2

DE, 1012 sÿ1

Figure 6. Real (solid curve) and imaginary (dashed curve) parts of the NP

dipolemoment as functions of frequencymismatchDE for an external field

amplitude exceeding the locking threshold, E > Esynch�DE�.

m N
P
E
=�h
O

R

DE, 10
12 sÿ1ÿ1.25

1.25

0

ÿp

p

j
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0.08

Figure 7. Dependence of j � tanÿ1 �Im dNP=Re dNP� on external field

amplitude E and mismatch DE. The smooth part of the surface corre-

sponds to the Arnold tongue region in which the spaser is synchronized by

the external field. In the discontinuity line Ecom�DE�, where j � p, the
energy losses are precisely compensated.

2 We emphasize: if a weak wave propagating over the system of spasers in

the stochastic regime (outside of the Arnold tongue) were amplified, the

system would be unstable. It would then be possible to observe sponta-

neous excitation of a wave with its amplitude defined by the `compensa-

tion line'.
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the case of the collective mode, for a scale length r we must
take kÿ1, i.e., for k < k0 we obtain �k0r�3 5 1, and the energy
will be transferred primarily to photons. Owing to the mutual
synchronization of the spasers �k � 0�, an effect similar to
that considered in Ref. [14], where all spasers radiate in the
same direction, should be observable in this situation.

The dipole±dipole interaction between the neighboring
spasers gives rise to additional terms in Hamiltonian (4).
Along with OR, ONPÿNP Ð the coupling constant between
nearest-neighbor NPs, ONPÿTLS Ð the coupling constant
between the QD and the neighboring NPs, and OTLSÿTLS Ð
the coupling constant between the nearest-neighbor QDs,
appear.

The inclusion of ONPÿNP alone leads to the solution in the
form of a harmonic wave with the dispersion equation

ok � oa � O eff
NPÿNP cos �kb� ;

where O eff
NPÿNP � 2ONPÿNPta=�ta � ts�. This solution exists

provided that the pumping exceeds the threshold value equal
to

Dth�k� � 1� �O eff
NPÿNPts�2 cos2 �kb�

O 2
Rtats

:

Despite the superficial similarity between the dispersion
equations for the waves propagating over an NP chain and a
spaser chain, there is a fundamental difference between these
systems. First, the amplitude of waves propagating over the
spaser chain is fixed and determined by the pumping level:

an; k � 1

2
exp �ij�

�����������������������������������������������������������������������������
D0 ÿ 1� �O eff

NPÿNPts�2 cos2 �kb�
O 2

Rtats

�
ta
ts

s
:

�23�
This autowave is different from solutions like solitons and
kinks, which are known for other nonlinear systems [86],
being a purely harmonic wave. Second, while the linear array
of NPs obeys the superposition principle, an unusual
situation takes place in the case of the chain of spasers: all
autowaves, with the exception of the one with k � �p=2b, are
unstable, and any initial perturbation evolves into this wave.

The inclusion of QD interactionwith the neighboringNPs
changes the situation qualitatively. The threshold pumping
level becomes

Dth�k� � 1� �tsO eff
NPÿNP�2 cos2 �kb��

OR � 2ONPÿTLS cos �kb�
�2tats ;

and the stability condition coincides with the condition for
the minimum of Dth�k� (Fig. 8).

One can see from Fig. 8 that a critical value exists for the
coupling constant

O �NPÿTLS �
1

2
�tsO eff

NPÿNP�2OR

which separates frequency-dispersive waves from waves with
k � �p=b or k � 0 (Fig. 9). Waves with k < k0 cannot travel
along the linear chain, because they become leaky waves in
this case [85].

7. Conclusion
There is a great demand for devices capable of manipulating
light in domains smaller than the optical wavelength, i.e.,

measuring about ten nanometers: SNOM (scanning near-
field microscopy), SERS, optoelectronic devices, etc. It is
evident that coherent nanodimensional sources of optical
radiation, i.e., nanolasers, rank with these devices. Among
the possible ways of their realization is the spaser, with a
plasmon nanoparticle fulfilling the function of a laser cavity.

However, it turns out that a spaser can be employed not
only as a separate, ultrafast (with a response time of several
femtoseconds) device, but also as an active inclusion in
nanocomposites, including metamaterials. Indeed, a spaser-
based composite material constitutes a new nonlinear object
of research with unique properties. The spaser experiences
Rabi oscillations in the transition to a stationary spasing
mode, and therefore the properties of this material can be
controlled by the intensity of external optical perturbation. In
the stationary mode, the material reacts to the perturbation
frequency by going from stochastic oscillations to the
propagation of plasmon autowaves; the amplitude of the
propagating waves depends only slightly on the amplitude of
the incoming signal and is controlled primarily by the
pumping level. These materials may show promise and find
application in optoelectronics and metaplasmonics.
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Using chiral nano-meta-particles
to control chiral molecule radiation

V V Klimov, D V Guzatov

1. Introduction
Currently, owing to the development of nanotechnologies,
new areas of optics havemade their appearanceÐnanooptics
and nanoplasmonics, whose subjects are the highly nontrivial
properties of optical fields on the nanoscale and their
practical applications [1, 2]. Among the most important
advantages in this area is the capability of exerting effective
control over the radiation of ordinary atoms and molecules
with the help of nanoparticles [surface enhanced Raman
scattering (SERS), surface enhanced fluorescence (SEF)] [3±
6]. Interesting effects have also been discovered in the
investigation of the influence of chiral nanoparticles or
nanoparticles of metamaterials with a negative refractive
index on the radiation of ordinary molecules [7, 8].

More complex optically active (chiral) molecules are of
greater interest because they form the basis of life. This brings
up the natural question: Is it possible to efficiently and
arbitrarily control the radiation of chiral molecules and use
this for various biomedical applications (for instance, for
separating racemic mixtures)? We show in our paper that this
control is possible if advantage is taken of nanoparticles made
of metamaterials (see, for instance, Refs [9, 10]).

2. Chirality and optical activity
Chirality is the property of a system not to coincide with its
mirror image under arbitrary rotations and translations [11].
It follows from this definition that, first, chirality is a
geometric property of objects and, second, this property
may be inherent only in spatial, i.e. three-dimensional,
objects. The most important chiral objects are aminoacids
and sugars which can exist, in principle, in the form of right or
left enantiomers. However, of the utmost significance is the
fact that the right enantiomers of aminoacids and the left
enantiomers of sugars are not encountered in living nature. It
is precisely this asymmetry that makes extremely important
the optical investigations of these and kindred phenomena.
The possibility of these investigations relies on the circum-
stance that chiral molecules quite often possess the property
of optical activity, i.e. react to light with different polariza-
tions in different ways. In particular, when linearly polarized
light is incident on optically active molecules, its plane of
polarization changes (rotates) and the degree of this rotation
is defined by the factor

nleft ÿ nright
nleft � nright

� molecular size

wavelength
5 1 ; �1�

where nleft and nright are the refractive indices for the left- and
right-polarized waves.

The absorption of waves with different circular polariza-
tion is also different, and the degree of this difference is
defined by the factor

Aleft ÿ Aright

Aleft � Aright
� molecular size

wavelength
5 1 ; �2�

where Aleft and Aright are the absorption coefficients for the
left- and right-polarized waves. Since the molecular size is
usually small in comparison with optical wavelengths, the
optical activity effects are quite weak. Despite this smallness,
the effects of rotation of the polarization plane and circular
dichroism enjoy wide application in the exploration of
different conformations of biomolecules.

By applying the methods of nanooptics and nano-
plasmonics, it is possible to significantly (by 4±6 orders of
magnitude!) enhance these extremely weak effects by using
nanostructured chiral metamaterials [12] or even the clusters
of nonchiral nanoparticles [13].

Our aim is to learn to control precisely the emission of light
by chiral molecules (and not the absorption of light) with the
help of chiral nano-meta-particles (see below what this is).

3. Chiral molecules
To solve the problem of controling the light emission by chiral
molecules requires, first of all, recognizing the difference
between `ordinary' and `optically active' (chiral) molecules.
Ordinary molecules are characterized only by the electric
dipole moment, and their light±matter interaction Hamilto-
nian is of the form

Hint � ÿdE ; �3�

where d is the dipole transition moment between the ground
and excited states, and E is the electric field strength at the
point of location of the molecule. This Hamiltonian does not
permit describing the effects of optical activity in principle.

Chiral (optically active) molecules possess both electric
andmagnetic transitionmoments [14, 15]. In this case, when a
spiral is considered as the model of a chiral molecule, for right
molecules, in which the electric and magnetic transition
moments are parallel, the Hamiltonian for their interaction
with an electromagnetic field takes the form

Hint � ÿdEÿmH ; �4�

while for left molecules, for which the electric and magnetic
transitionmoments are antiparallel, theHamiltonian for their
interaction with an electromagnetic field is given by

Hint � ÿdE�mH : �5�

In expressions (4) and (5), d and m are the dipole transition
moments between the ground and excited states in the right
molecule, and E and H are the strengths of the electromag-
netic field at the point of its location.

4. Chiral nano-meta-particles
Controling the radiation of chiral molecules calls for the
efficient `mixing' of electric and magnetic fields, chiral nano-
meta-particles being ideally suited for this purpose. In the
simplest case, we may consider for such a particle a plasmon
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chiral nanoparticle, i.e., a layered nanoparticle (a nanodimen-
sion: a dimension shorter than the wavelength) whose core
comprises gold, and the shell consists of natural sugar. In the
general case, the constitutive equations of the substance of a
chiral nano-meta-particle have the form [16]

D � e�E� Z rotE� ; B � m�H� Z rotH� ; �6�

whereD, E andB,H are the induction and strength of electric
and magnetic fields, respectively, e, m are the permittivity and
permeability of the material of the chiral medium, and Z is the
chirality dimensional parameter. The chirality dimensionless
parameter is conveniently introduced by the expression
w � oZ=c.

One can see from formulas (6) that, as in the case of
optically active molecules [see expressions (4) and (5)],
entangling of electric and magnetic phenomena occurs, and
such nanoparticles would be expected to efficiently interact
with chiral molecules. We note that the constitutive equations
correspond to so-called chiral (bi-isotropic) media [17], to
state it in more formal terms.

Even a small chirality of a nanoparticle leads to a
significant change in its resonance optical properties.
Figure 1 shows the dependence of the resonance properties
of a chiral plasmon spherical nanoparticle on the permittivity
and the permeability. Figure 1a corresponds to the case of a
zero-chirality nano-meta-particle. As is evident from this
figure, an ordinary plasmon resonance occurs at e � ÿ2,
which is hardly dependent on the permeability of the
nanoparticle. The situation becomes significantly different
when the nanoparticle has an arbitrarily small admixture of
chirality (Fig. 1b) because the interaction of electric and
magnetic oscillations results in a significant change in the
resonance structure, i.e., a chiral plasmon resonance appears.
It is precisely the chiral plasmon resonance that makes it
possible to exert efficient selective control over the radiation
of chiral molecules.

5. Quantum theory of the radiation of a chiral molecule
near a chiral nano-meta-sphere
As discussed in the Introduction, the rate of spontaneous
emission depends significantly on the nanoenvironment, and
in this section we shall consistently describe the quantum
theory of spontaneous emission by a chiral molecule residing
near a chiral nanoparticle [18].

Fermi's golden rule [19] is fully applicable in the chiral
case, and the spontaneous relaxation probability can be
described by the well-known expression

G � 2p
�h

X
final

��h initial jHintj finali
��2 r�o� ; �7�

where r�o� is the density of final states, Hint �
ÿÿd̂Ê�r0��ÿ ÿm̂Ĥ�r0�

�
is the interaction Hamiltonian

between the electromagnetic field and the chiral molecule,
d̂ � er̂ and m̂ � ÿi�he=�2mc� �r̂� HH� are the electric and
magnetic dipole moment operators, and finally

Ê�r� � i
X
s

ase�s; r� ÿ a ys e
��s; r����

2
p ;

Ĥ�r� �
X
s

ash�s; r� � a ys h
��s; r����

2
p

are the quantized electromagnetic field operators (index s
numbers the modes).

By and large, the quantization of the electromagnetic field
reduces to finding the eigenmodes e�s; r�, h�s; r� of the system,
and these modes are termed photons. In our case, unfortu-
nately, the ordinary notions of photons (TE and TM modes)
are inapplicable and the entire quantization procedure is to be
constructed anew. To do this, we assume that our system, a
molecule and a nanoparticle, is placed in an infinitely large
spherical resonator with an ideally conducting wall (Fig. 2).
After this, the photon mode inside the sphere may be sought
in the form of an expansion in terms of vector spherical
harmonics [20]:

emn�r� � AL
mn�NwL

mn �MwL
mn� � AR

mn�NwR
mn ÿMwR

mn� ; �8�

with combinations of TE and TM harmonics entering into
this expression, and indices L and R pertaining to left- and
right-polarized plane waves in free space with respective wave
numbers

kL � k0
�����
em
p

1ÿ w
�����
em
p ; kR � k0

�����
em
p

1� w
�����
em
p :

The photon mode outside the particle is sought in the form of
a combination of diverging and converging spherical TE and
TM waves [20]:

emn�r� � C �1�mn Nf �1�mn � C �2�mn Nf �2�mn �D �1�mnMf �1�mn �D �2�mnMf �2�mn :

�9�
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Figure 1. Chiral plasmon resonance in a spherical particle with k0a � 0:1:
(a) w � 0, and (b) w � 0:1.
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Figure 2. Geometry of electromagnetic field quantization in the presence

of a chiral sphere.

October 2012 Conferences and symposia 1055



By imposing the continuity boundary conditions for the
tangential field strength components and applying normal-
ization to one photon throughout the space, it is possible to
derive explicit expressions for all coefficients entering into
expressions (8) and (9) [18]. The resultant dispersion equation
has two solutions which correspond to two types of photons.
These photon types will be referred to as A and B. For w � 0,
the A type photons reduce to TM photons, and the B type
photons reduce to TE photons. The final state density for
photons of any type, r�o� � L=�p�hc�, is independent, in
accordance with the Courant theorem [21], of the presence
of finite-sized particles.

By using the derived expressions and writing the mole-
cular transition matrix elements as d0 � hejd̂jgi and
ÿim0 � hejm̂jgi, the spontaneous emission rate (7) for an
arbitrary chiral molecule near an arbitrary bi-isotropic sphere
may be represented as the sum of decay rates to A- and B-type
photons. For instance, for the decay rate to A type photons
we have

gAeg � gA;ÿ1eg � gA; 1eg � gA; 0eg ; �10�

where

gA;ÿ1eg � k0

2�hr 20

X1
n�1

2n� 1

1� jOnj2

�
����d0x ÿ id0y�

ÿ
c 0n�k0r0� � TA

n z �1�
0

n �k0r0�
�

ÿOn�d0y � id0x�
ÿ
cn�k0r0� � LA

n z
�1�
n �k0r0�

�
�On�m0x ÿ im0y�

ÿ
c 0n�k0r0� � LA

n z
�1� 0
n �k0r0�

�
ÿ �m0y � im0x�

ÿ
cn�k0r0� � TA

n z �1�n �k0r0�
����2 ; �11�

gA; 1eg � k0

2�hr 20

X1
n�1

2n� 1

1� jOnj2

�
���On�d0y ÿ id0x�

ÿ
cn�k0r0� � LA

n z
�1�
n �k0r0�

�
ÿ �d0x � id0y�

ÿ
c 0n�k0r0� � TA

n z
�1� 0
n �k0r0�

�
� �m0y ÿ im0x�

ÿ
cn�k0r0� � TA

n z �1�n �k0r0�
�

ÿOn�m0x � im0y�
ÿ
c 0n�k0r0� � LA

n z
�1� 0
n �k0r0�

����2 ; �12�

gA; 0eg � 2

�hk0r 40

X1
n�1

�2n� 1�n�n� 1�
1� jOnj2

�
���d0zÿcn�k0r0� � TA

n z �1�n �k0r0�
�

�Onm0z

ÿ
cn�k0r0� � LA

n z
�1�
n �k0r0�

����2 ; �13�

andTA
n ,L

A
n , andOn are some coefficients which are expressed

in terms of the Bessel functions and which depend only on the
properties of the sphere [18]. Similar expressions are obtained
for the rate of decay to B photons [18].

6. Analysis of results and illustrations
Expressions (11)±(13) virtually exhaust the problem of
spontaneous radiation by an arbitrary molecule residing
near a chiral sphere of arbitrary composition and size.
Unfortunately, these expressions are cumbersome, which
hinders their understanding and interpretation. In the most
interesting case of a nanosphere, expressions (11)±(13)may be
simplified. However, instead of the formal derivation of

asymptotics, below we consider the spontaneous emission
by chiral molecules, which are located near a chiral nano-
meta-particle, in the framework of a quasistatic (and
quasiclassical) approximation [22]. As will be clear, this
more physical approach agrees nicely with the exact solution
(11)±(13) and permits a complete understanding of the
physics of the processes.

The near fields produced by the molecule, which is
described by oscillating electric and magnetic dipole
moments with amplitudes d0 and ÿim0, have the well-known
form

E0 � 3r�rd0� ÿ r 2d0
r 5

; H0 � ÿ
i
ÿ
3r�rm0� ÿ r 2m0

�
r 5

; �14�

where r is the radius vector emanating from the sphere center
to the point of observation. In expressions (14) and further,
the factor of monochromatic time dependence is omitted.

The near fields (14) induce dipole moments in the
nanoparticle:

dd � aEEE0�r0� � aEHH0�r0� ; �15�
dm � aHEE0�r0� � aHHH0�r0� ;

where the electromagnetic polarizabilities of the chiral sphere
are of the form

aEE � a 3 �eÿ 1��m� 2� � 2emw 2

�e� 2��m� 2� ÿ 4emw 2
;

aEH � a 3 3wemi
�e� 2��m� 2� ÿ 4emw 2

; �16�

aHH � aEE�e$ m� ; aHE � ÿaEH :

If it is additionally assumed that the molecule±nanoparticle
distance is small in comparison with the wavelength, and the
radiation intensity of the particle�molecule system is
described by the expression

G / jd0 � ddj2 � jÿ im0 � dmj2 ; �17�

in which the interference between the radiations of the electric
and magnetic dipoles does not take place owing to the
smallness of phase incursion. Substituting expressions (15)
into expression (17) yields

G /
����d0 � aEE

r 30

ÿ
3n�nd0� ÿ d0

�ÿ iaEH
r 30

ÿ
3n�nm0� ÿm0

�����2
�
����m0 � iaHE

r 30

ÿ
3n�nd0� ÿ d0

�� aHH

r 30

ÿ
3n�nm0� ÿm0

�����2: �18�
When the orientation of the molecules is not fixed, as is often
the case in practice, we must perform averaging over it to
obtain

Geff � 4k 3
0 jd0j2
3�h

�
1� 2

r 60
jaEE ÿ ixaEHj2 � jxj2

� 2

r 60
jiaHE � xaHHj2

�
; �19�

where m0 � xd0.
The results of calculations in the framework of quantum

electrodynamics (QED) and in the quasistatic approximation

1056 Conferences and symposia Physics ±Uspekhi 55 (10)



(19) are compared in Fig. 3. One can see from the figure that
the results of this simple theory are in perfect agreement with
the exact QED calculation [see expressions (11)±(13)] for
nanoparticles. The simplicity of interpreting this theory
permits determining the explicit conditions whereat the
radiation of a chiral molecule of one chirality or other will
be suppressed. Realizing this requires that

(i) the system have a chiral plasmon resonance

�e� 2��m� 2� ÿ 4emw 2 � 0 �20�

(this permits enhancing the magnetic fields);
(ii) the electric moment induced in the nanoparticle be

equal to zero:

d0aEE ÿ im0aEH � 0 : �21�
whence, follows the discrimination condition

m � ! ÿ 2d0
d0 � 2m0w

; e � ! ÿ 2m0

m0 � 2d0w
; �22�

i.e., the chiral molecule radiation will be suppressed for these
m and e. At the same time, the radiation from a molecule of

opposite chirality �m0 ! ÿm0� located near the nanoparticle
with parameters (22) will not be suppressed!

To illustrate this effect, Fig. 4 shows the rate of
spontaneous emission by the left-hand chiral molecule and
its ratio to the rate of spontaneous emission by the right-hand
chiral molecule. One can see from this figure that the
radiation by the right-hand molecule is almost suppressed,
when condition (22) is fulfilled (in this case, when e � ÿ0:4
and m � ÿ2, which corresponds to a metamaterial with a
negative refractive index [23]), while the radiation by the left-
hand molecule is enhanced by the chiral plasmon resonance.
As a result, the decay rate for the left-hand molecule is more
than 10 times higher than the decay rate for the right-hand
molecule.We emphasize that such chiralmetamaterials with a
negative refractive index are quite realistic [24].

When it is required to suppress the radiation of the left-
hand molecules and enhance the radiation of the right-hand
ones, in accordance with condition (22) the nanoparticle
metamaterial must have a positive permittivity and a
negative permeability. Suchlike metamaterials are also quite
possible [9, 10].

7. Applications of the effects discovered
Once we have theoretically shown that it is possible to
suppress the radiation of some enantiomers and enhance the
radiation of other ones by selecting the parameters of a chiral
nanoparticle, many prospects open up for the application of
this effect.

First of all, the effect discovered may be employed in the
scanning microscope investigation of samples in which one
type of enantiomers prevails, and so there is no way to
discover and add up by ordinary methods the small amount
of the enantiomer of opposite chirality. However, when a
particle (Fig. 5), whose material is selected in conformity with
conditions (22) so as to suppress the radiation of the bulk of
unwanted molecules, is placed on the tip of a scanning
microscope, only the sought-after molecules will come into
the field of view of the microscope (the quest for extra-
terrestrial life, bioterrorist attacks, etc.).

Of even greater importance is the application of the
theoretical findings to the purely optical separation of
racemic mixtures of biomolecules (Fig. 6). Such mixtures
emerge, inter alia, in the chemical synthesis of medicines.
However, only one specific enantiomer is required to achieve
the correct action. The chemical separation methods in use
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Figure 3. Comparison of the results of calculating the spontaneous

emission rate for a chiral molecule in the framework of QED and in the

quasistatic approximation. The molecule is located near the surface of a

chiral spherical nanoparticle with e � e 0 � i0:1, m � ÿ1:6, w � 0:2, and
k0a � 0:1. The molecule is radially oriented.
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Figure 4. Rate GL=G0 of spontaneous emission by a left-hand molecule (a) and its ratio GL=GR to the rate of spontaneous emission by a right-hand

molecule (b). The molecules are located near a chiral nano-meta-particle with k0a � 0:1, w � 0:2, x � m0z=d0z � 0:1, and e 00 � 0:1.
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today are complicated and expensive, and the development of
a purely optical method for the separation of enantiomers is,
therefore, quite appealing. The findings made above permit,
at least in principle, doing this. The schematic of operation of
a purely optical facility for enantiomer separation is illu-
strated in Fig. 6. In one way or another, the synthesized
molecules are excited in a chamber, whose surface is covered
by nanoparticles corresponding to condition (22). The
enantiomers of one type (say, the `right' ones) rapidly change
to the ground state, while the enantiomers of the other type
(the `left' ones) remain in the excited state. By applying an
ionizing radiation pulse, it is possible to remove the ionized
molecules by an electric field, with the result that only the
desired enantiomers will remain in the reaction chamber. It is
significant that this synthesis technique is not attended by
contamination from by-product chemicals required in the
separation by chemical methods.

8. Conclusion
Thus, the problem of describing the spontaneous emission by
chiral molecules located near a chiral sphere of arbitrary

composition was analytically solved in the framework of
QED, as well as in the quasistatic approximation.

As shown above, when a chiral particle has a negative
refractive index or a negative permeability, the radiation of
nearby right and left molecules may be significantly different.
We emphasize that these results are general and are not
restricted to the case of only one nanoparticle. It has already
been found that the clusters of chiral nano-meta-particles
show even greater promise for controling the radiation
emitted by enantiomers [25].

These findings open the way to a purely optical separation
of drug enantiomers.
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Figure 5.Detection of separate molecules of a given chirality.
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Figure 6. Separation of racemic mixtures of biomolecules.
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