
Abstract. A rheological model and a thermodynamic model are
proposed for describing the melting of an ultrathin lubricant
film between atomically flat solid surfaces. Hysteresis phenom-
ena are considered, allowing for the stress and strain depen-
dence of the lubricant shear modulus. The self-similar regime of
lubricant melting is studied taking the additive noncorrelated
noise of basic parameters into account. The regions of dry,
sliding, and stick±slip friction are determined in the phase
diagram. Shear stress time series are obtained by numerically
analyzing the Langevin equation and are then subjected to
multifractal fluctuation analysis. The dependence of the sta-
tionary friction force on the lubricant temperature and on the
shear velocity of rubbing surfaces is investigated.

1. Introduction

Elucidation of the causes underlying friction between solid
bodies is of paramount importance from both the theoretical
and the practical standpoints [1±3]. On the one hand, the
development of nanotechnologies and creation of new high-
tech instruments, such as computer memory-storage devices
and micromotors, require a deep understanding of friction
processes [4±10]. On the other hand, there is still no consistent
theory of the phenomenon of friction, despite numerous

attempts to create it. Many ongoing physical studies are
focused on nanosize systems because their behavior differs
from that of classical solid bodies; besides, these studies have
important practical implications. For example, friction nodes
or atomically flat surfaces separated by thin lubricant layers
can be used in position control systems of microdevices for
which minimal friction between moving parts is a major
design criterion.

In the last 20 years, experimental [1, 2, 4±6, 11±13] and
theoretical [1, 14, 15] studies, combined with computer
simulations [16±24], have greatly promoted understanding
physical mechanisms of sliding friction between rubbing
surfaces separated by an ultrathin layer (less than ten atomic
diameters) of liquid fluid. It is shown experimentally that the
film becomes increasingly thinner as friction continues; first,
its physical properties change in a quantitative manner, and
then distinctive qualitative changes occur [1, 2, 5, 6, 11],
manifested as a non-Newtonian flow mechanism and the
substitution of ordinary melting by glass transition (after
which the lubricant film nonetheless continues to behave as a
fluid). Such behavior, known in tribology as `mixed lubrica-
tion,' is an intermediate friction state characterized by the
transition from bulk properties to boundary ones.

In thinner films, the changes are more pronounced
because they have a qualitative character. Specifically,
such films can undergo first-order phase transitions into
solid-like or liquid-like phases [4±6, 17, 18, 24], whose
properties (e.g., viscosity) cannot be described in terms
applicable to bulk liquids. Thin films exhibit a yield stress
that normally characterizes the degree of degradation of a
solid body, while their molecular diffusion and relaxation
times can be ten orders of magnitude higher than the
respective times in bulk fluids or even films that are only
slightly thicker.

A V Khomenko, I A Lyashenko Sumy State University,

ul. Rimskogo-Korsakova 2, 40007 Sumy, Ukraine

Tel. +38 (0542) 333 155

E-mail: khom@mss.sumdu.edu.ua, nabla04@ukr.net

Received 16 August 2011, revised 31 May 2012

Uspekhi Fizicheskikh Nauk 182 (10) 1081 ± 1110 (2012)

DOI: 10.3367/UFNr.0182.201210f.1081

Translated by Yu VMorozov; edited by AM Semikhatov

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 05.70.Ce, 05.70.Ln, 47.15.gm, 62.20.Qp, 64.60. ± i, 68.35.Af, 68.60. ± p

Statistical theory of the boundary friction

of atomically flat solid surfaces in the presence of a lubricant layer

A V Khomenko, I A Lyashenko

DOI: 10.3367/UFNe.0182.201210f.1081

Contents

1. Introduction 1008
2. Phase dynamics of friction of ultrathin lubricant films 1009

2.1 Experimental method and a model of phase transitions of the intermittent friction state; 2.2 Non-Newtonian

properties of molecularly thin films and theoretical approaches to their description

3. Nonlinear model of melting of an ultrathin lubricant film 1014
3.1 Basic equations; 3.2 Transition conditions; 3.3 Hysteresis phenomena in the stress dependence of the shear

modulus; 3.4 Hysteresis phenomena in the strain dependence of the shear modulus

4. Effect of fluctuations on the melting of an ultrathin lubricant film 1022
4.1 Dynamic phase diagram; 4.2 Stress time series; 4.3 Multifractal fluctuation analysis of self-similar time series

5. Thermodynamic representation of boundary friction 1026
5.1 Free energy; 5.2 Stationary states and phase diagrams; 5.3 Friction force; 5.4Melting kinetics; 5.5 Intermittent state

6. Conclusion 1032
References 1033

Physics ±Uspekhi 55 (10) 1008 ± 1034 (2012) # 2012 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



This review describes the dynamic properties of films in
the boundary state, e.g., in the case where transitions occur
between different types of dynamic states during sliding.
Recent experiments with mica, quartz, metal oxide, and
monomolecular surfactant surfaces separated during sliding
by various organic fluids and aqueous solutions [4±6, 12, 13]
have demonstrated that such phase transitions are the rule
rather than the exception. They manifest themselves in the
appearance of stick±slip motion similar to the one arising in
dry friction between solid surfaces [25], characterized by
periodic transitions between two or more dynamic states
during stationary sliding.

Our aim in this review is to consider phenomenological
models describing the behavior of ultrathin lubricant films in
the presence of friction between atomically flat solids with the
use of both deterministic and stochastic approaches.

In Section 2, we describe characteristics of the boundary
friction state with special reference to the geometry of a
tribologic experiment. The main focus in the discussion of
various models of the stick±slip behavior is on the concept of
phase transitions of molecular layers from solid-like to
liquid-like states and vice versa, giving rise to a variety of
kinetic friction states, with special reference to the non-
Newtonian properties of molecularly thin liquid films. A
generalized Stribeck±Hersi diagram is presented to illustrate
new tribologic regimes. Theoretical mechanistic and rheolo-
gic approaches to the description of the boundary friction
state are analyzed. We conclude that the two models allow
taking both thermodynamic and shear melting of the
lubricant into consideration; for this reason, they are the
focus of this review.

In Section 3, we present our nonlinear model of melting of
an ultrathin lubricant film based on the concept of a
viscoelastic medium possessing heat conductivity and taking
hysteresis phenomena and the temperature dependence of
viscosity into account. Phase portraits of melting-mode
kinetics corresponding to different relations between relaxa-
tion times of shear stress, strain, and temperature of the
lubricant are presented. Thermal and elastic parameters at
which friction decreases are determined.

Stick±slip lubrication dynamics, recently attracting much
attention at both the atomic [6, 13, 26, 27] and macroscopic
[12, 14, 15] levels, are explained based on the random nature
of shear stress and strain components (Section 4). Under real
conditions, rubbing bodies have originally rough surfaces
exhibiting a system of dimples and projections. The stochastic
model of stick±slip friction ensues from the fractal nature of
rubbing bodies. It is shown that temperature noise results in
self-similar behavior of stress time series (in this case, the time
series are multifractal). Therefore, the introduction of
random forces (noises) must take account of surface rough-
ness and irregularities that do not appear explicitly in the
model.

A thermodynamic model describing a first-order phase
transition between structural states of a lubricant in the
boundary lubrication state is considered in Section 5. It is
shown that the lubricant melts when the temperature
increases as well as when a shift of rubbing surfaces after
elastic strains (stresses) exceed a critical value. A phase
diagram containing dry and fluid friction regions is devel-
oped. A mechanical analog of a tribologic system was used
to analyze the dependence of the friction force on the
lubricant temperature and relative shear rate of rubbing
surfaces. The experimentally observable stick±slip friction

behavior is described as the main cause of the wear of
rubbing parts [28]. Factors responsible for stick±slip friction
are elucidated.

2. Phase dynamics of friction
of ultrathin lubricant films

2.1 Experimental method and a model
of phase transitions of the intermittent friction state
Investigations of the properties of ultrathin lubricant layers
require special high-tech equipment as dictated by their
molecular size. Despite all the difficulties, however, there are
experimental units and relevant methods that allow measur-
ing the thickness, viscosity, friction coefficients, shear
components of viscous and elastic stresses, and other proper-
ties of molecular layers.

A typical setup of a mechanical analog of the tribologic
system is shown in Fig. 1. Here, a spring with a stiffness K is
connected with a block of massM placed on a smooth surface
and separated from it by an h-thick lubricant layer. The free
end of the spring is set in motion with a fixed velocityV0. The
motion of the block creates a friction force F that hampers its
movement. In general, the block and spring velocities (V and
V0, respectively) do not coincide due to the oscillating nature
of the force F responsible for the stick±slip motion of the
block.

The simplest method to measure dynamic lubricant
parameters in the presence of friction between two solid
surfaces is to use two small atomically flat surfaces deposited
onto spherical or cylindrical rubbing surfaces. This principle
was used in designing a surface force apparatus (SFA) and
atomic force microscope [29±33].

The distance between rubbing surfaces is measured in the
SFA by optic interference techniques in which white light
passes through and normally to the interacting surfaces. The
passed beam is focused onto a spectrometer that splits it into
components of different wavelengths. The analysis of the
resulting spectrum of color bands allows determining the
shape of the rubbing surfaces and the distance between them
(with an accuracy of 0.1 nm). In addition, the contact area
A � 1ÿ104 mm2 can be determined (with an accuracy of
�5%). The SFA is also used to measure normal and shear
components of the action force and the applied load L (with
an accuracy of �1% and �5%, respectively). The chamber
containing the rubbing surfaces is wholly filled with the liquid
lubricant of interest, which is not squeezed from between the
friction surfaces under the load and thus facilitates conduct-
ing the experiment. The abovemethods were used to carry out
experiments with atomically flat mica [5, 6, 12, 13, 34-36],
quartz [37], and sapphire [38] surfaces, polymer chains [39],
surface active compounds [32, 40], protein compositions [41],
and metallic layers deposited on mica surfaces [42] served as
lubricants.

X V

V0Kh
F

M

L

Figure 1. Schematic of a tribologic system.
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Figure 2a shows typical friction trajectories obtained with
an SFA for two sliding mica surfaces separated by a lubricant
layer (� 1 nm hexadecane). Figure 2b presents the results of
an experiment with spherical molecules of octamethylcyclote-
trasiloxane (OMCTS) and shows the peaks of the stick±slip
behavior representing solid-like and liquid-like film states [4,
18]; these data show first the static friction force Fs (dry
friction) and then the kinetic friction force Fk (liquid friction).
In this experiment, the shear velocity V0 (see Fig. 1) and
temperature are constant. The friction force Fmonotonically
increases at the initial stage, to be replaced thereafter by the
stick±slip behavior. As follows from a comparison of Figs 2a
and 2b, the ordering of chain molecules takes more time than
that of spherical ones, i.e., the latent period of the former is
longer [3]. Also worthy of note is the fact that the established
stick±slip behavior in the case of spherical molecules is
practically stationary (the Fs and Fk values do not change
with time).

Computer simulation of molecular dynamics has demon-
strated that during sliding, a thin intersurface film undergoes
a first-order phase transition between solid-like and liquid-
like states [17, 18, 43]; this transition may be the cause of the
observed stick±slip behavior of the simple isotropic liquid
enclosed between two solid crystal surfaces. According to
such an interpretation, the stick±slip behavior arises from
sharp changes in flow characteristics of the film during
transition [18, 24], rather than from their gradual continuous
variations. The relevant model shown schematically in Fig. 3a
suggests that during the phase transition, the internal friction
force varies in a stick±slip manner rather than continuously.
The resultant stick±slip behavior is also different, for
example, the peaks are sharper, and the behavior may

terminate after a certain critical velocity Vc is exceeded,
yielding to kinetic sliding behavior [44, 45]. We note that the
displacement by only two lattice constants during sliding as
shown in Fig. 3 is in contrast to a significantly greater one in
many practical problems. This type of friction is most
frequently observed in experiments with smooth surfaces
and liquid lubricants or condensed vapors [4, 6, 16].
Simulation of many properties of ultrathin liquid films [17,
18] undergoing a shift between molecularly flat surfaces has
thus far provided the best interpretation of experimental data
in the case illustrated by Fig. 2.

The `shear melting' concept has been introduced to
explain the stick±slip motion observed at a constant tempera-
ture of the friction surface [15, 22]; Fig. 3 illustrates the stick±
slip behavior. An initially solid-like (stick) lubricant is sharply
converted into the liquid-like (slip) phase as a result of
disordering after a certain critical yield stress s is exceeded,
with the top surface slightly going up. Further motion is
accompanied by wall compression under the effect of load L
(see Fig. 1), and the lubricant sticks again.

As noted above and as is shown in what follows, the two
states of a thin intersurface film cannot be identified with bulk
liquid or solid phases [6, 13]. The properties of these film
states are usually different from those of bulk phases and it is
more correct to consider them as solid-like and liquid-like
states or, possibly, as dynamic and static `epitaxial' states,
because these states arise only in intersurface films whose
properties are determined not only by interactions between
lubricant molecules (as in bulk liquids) but also by the
constraint and epitaxial interactions between film and sur-
face atoms. Results ofmolecular dynamics simulation suggest
that chain molecules in solid-like and liquid-like (adhesion,
sliding) states have a similar structure [24].

To conclude this section, we note that the stick±slip
motion behavior with which most of this review deals was
observed by Bowden and Tabor more than 50 years ago [2]
when they experimented on the influence of the molecular
weight of polymers on the friction coefficient. In the stick±slip
motion behavior, the sliding rate periodically varies in time,
because sliding periods alternate with periods of `adhesion'
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Figure 2. Dependence of the total friction force F on time t in an

experiment on the friction between two atomically flat surfaces in the

surface force apparatus at the onset of motion at the instant t � 0. The
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between contacting surfaces. However, there is no consistent
theory yet to describe all the peculiarities of stick±slip friction.
One of the objectives of this review is to describe the stick±slip
behavior of boundary friction between two atomically flat
solid surfaces separated by a nonpolar lubricant film a few
atomic diameters thick, without taking physicochemical
processes into account.

2.2 Non-Newtonian properties of molecularly thin films
and theoretical approaches to their description
Some authors [32] suggest a higher degree of ordering in a
lubricant due to wall compression at which the density
distribution function becomes more pronounced while the
lubricant remains a `true' liquid. Others have shown in
numerical experiments [17, 18] that liquids crystallize in the
presence of discrete films as thick as a fewmolecular layers. It
is argued in [6] that both views are well substantiated, because
the results of simulating liquids enclosed between smooth
structureless surfaces indicate that each molecule is likely to
be captured by them without losing the ability to rapidly pass
from one surface to the other. Thus, the ordering and the high
diffuse mobility normal to the surfaces coexist. There is a
probability that even in the presence of long-range order
parallel to structural surfaces, the molecules frozen into each
of the trapping centers can hop between them (and the
surfaces) with rates characteristic of bulk liquids. Evidently,
these intersurface films have unique properties, qualitatively
and quantitatively distinguishing them from large-volume
liquid phases.

As shown in Ref. [11], relaxation times of liquids enclosed
between two solid surfaces can increase by many orders of
magnitude compared even with relaxation times of liquid
films only a few angstroms thicker. Moreover, the processes
of molecular reordering in such thin films are correlated at
large distances [46]. Recent numerical studies have confirmed
the opinion that phase transitions in thin liquid films are
associated with coordinated movements of a large number of
molecules with different characteristic times [47].

Rather long relaxation times of chain molecules are
responsible for `memory effects'. If rubbing surfaces are
stopped for a time ts and then set in motion in the same
direction andwith the same speed, the stationary state needs a
time depending on ts to set in. In certain cases, however, the
stationary state develops instantaneously, as shown in
Ref. [6]. For viscous liquids, the frictional flow law holds:

s � Z_e ; �2:1�
where s is the stress causing the lubricant flow, Z is the
viscosity, and e is the strain, whose derivative is related to the
velocity of motion.

When rubbing surfaces stop �_e � 0�, the stresses, in
accordance with (2.1), must instantaneously relax to zero.
However, such relaxation does not occur because, after a
ts-long stop, the motion continues with the previously
established stick±slip friction behavior [6]. If the stresses had
relaxed more quickly, the renewal of the stick±slip behavior
after the stop would have been preceded by a monotonic
increase in the friction force. The observed featureÐ inherent
only in ultrahigh layersÐoccurs because the lubricant
separating the friction surfaces at rest remains squeezed
between them in the same state as before the stop. There-
fore, ultrathin lubricant films may exhibit properties of solid
bodies at temperatures at which bulk lubricants behave as
liquids.

A sharp decrease in the peak friction force F (see Fig. 2)
suggests the jump-like character of film melting and accom-
panying variations of friction. That is why it was noted in
Ref. [6] that melting originating at a certain point of the
contact zonemust rapidly spread over the entire contact zone.
This process seems to be analogous to fragile destruction in a
solid body, at which a fresh crack rapidly extends over the
entire material. Also, this phenomenon resembles a sharp
increase in the velocity of grain boundary sliding in non-
equilibrium grain boundaries due to the confluence of their
liquid-like parts after the critical value of shear stress s is
reached [48].

According to [6], the liquid-like state is characterized by
an effective viscosity Zeff that is many orders of magnitude
greater than that of a bulk liquid and is non-Newtonian. The
non-Newtonian properties of hydrocarbonate films are also
manifested in the behavior of the kinetic friction force Fk

independent of sliding velocity. This means that the effective
viscosity decreases upon increasing the shear velocity; in other
words, a film in the liquid-like state undergoes shear-related
thinning [49, 50]. It was shown under different sliding
conditions [4, 24] that two surfaces remain separated by
several layers of liquid, even if their thickness and structure
somewhat change. Moreover, these many-layer liquids
undergo dynamic phase transitions of more than one type,
manifesting themselves in the existence of various stick±slip
motion behaviors in other tribologic systems [4, 11, 16, 21].

In the stick±slip mode, friction forces typically decrease as
the temperature increases; stick±slip sliding totally disappears
after the temperature exceeds a certain critical value Tc, while
the liquid continues to move uniformly in the liquid-like
kinetic mode [6]. Static and kinetic friction coefficients also
decrease at increased temperatures due to the lowering of the
activation energy barrier for molecular jumps at a higher
temperature, when the film becomes more liquid-like. On the
other hand, such characteristics of stick±slip friction as the
ratio of static to kinetic friction force �Fs=Fk� remain roughly
constant [51] or increase only insignificantly with tempera-
ture, despite the complete disappearance of the static
component of Fs at a critical temperature Tc. According to
Ref. [6], the abrupt disappearance of static friction at a
temperature above Tc resembles its rapid disappearance
after the critical velocity Vc is exceeded. The higher the
sliding velocity, the more liquid-like or `nonsolid-like' the
film becomes and the longer the time t0 needed to solidify
again.

According to [6], the validity of the phase transitionmodel
is confirmed by the fact that film molecules reach the fully
liquid-like state with maximum disorder when the sliding
velocity V and temperature T exceed certain high values.
Thus, any further increase in V or T cannot further increase
disorder at a given load. Because the solidification time t0
depends on film conditions when sliding ceases, the aforesaid
answers the question of why t0 becomes V- and T-indepen-
dent when their certain values are exceeded. These maximum
critical values must be other thanVc andTc, corresponding to
the cessation of the stick±slip behavior; they are higher than
Vc and Tc and can be regarded as the velocities and
temperatures at which the order parameter (or the Debye±
Waller factor) of the film being shifted [18] drops to a
minimum and no longer changes, despite a further increase
in V or T [6].

Peculiarities of the boundary friction state arising have
long been the focus of attention of many researchers. In 1902,
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the German scientist R H Stribeck experimentally found the
dependence of the friction coefficient on the rotational
velocity of a bearing in the presence of a lubricant [3, 52].
This dependence was later called the Stribeck±Hersi diagram
(Fig. 4). It is widely applied in tribology to represent the
known friction states for thin lubricant layers. Figure 4 shows
the friction force F as a function of the argument AZbV=h,
where A is the contact area, Zb is the bulk viscosity of the
lubricant, and h is the lubricant thickness. The emerging
mechanical stresses are defined in a standard way, s � F=A,
and the shear strain rate _e � V=h. For thin lubricant layers,
the friction force is given by the classical equation for the
Couette flow:

F � AVZb
h
� AZb _e ; s � F

A
� VZb

h
� Zb _e : �2:2�

The diagram shows the boundary friction state at a small
lubricant thickness. This state in the given situation is of great
importance because it is realized at the beginning of bearing
movement. As the bearing continues to move, the lubricant
spreads out, and the hydrodynamic mode develops. The
elastohydrodynamic (EHD) state occurs at the boundary
between mixed and hydrodynamic lubrication zones. In
conformity with the Stribeck±Hersi diagram, boundary
lubrication has a high friction coefficient m; accordingly, this
state is characterized by a high dissipation energy accom-
panied by heating and, possibly, destruction of moving parts.
That is why studies of the boundary friction state have
important practical applications. The advent of modern
instruments made it possible to directly observe processes in
the contact zone [31]. Characteristically, recent experiments
confirm many conclusions made by researchers in the 20th
century.

As shown above, the boundary friction state is responsible
for a variety of effects that are not included in the Stribeck±
Hersi diagram, however. For this, a new friction map has
been proposed [7], in agreement with experimental data [5, 6,
12, 13, 31±42]. This map is the generalized Stribeck±Hersi
diagram1 (Fig. 5). As the load L increases, the Newtonian

flow of a viscous liquid in the EHD mode passes to the
boundary state. Themaximum friction force occurs at largeL
and a small lubricant thickness h (static friction Fs). If the
velocity also increases, the stick±slip behavior sets in and a
further increase inV leads to a constant velocity-independent
value of the friction coefficient m and, accordingly, to a
constant kinetic friction force Fk.

Non-Newtonian shear thinning is observed at a smaller
load in thicker lubricant films. The friction force has a
maximum at a point with the Deborah number (the ratio of
the natural relaxation time of the boundary lubricant to the
sliding time in the stick±slip mode) De � 1 [6, 53].

The main friction characteristic relevant in applications is
the friction coefficient m relating the friction force to the load
L applied to the rubbing surfaces [3]:

F � mL : �2:3�

This law dates back to 1508, when it was established by
Leonardo da Vinci, but the precise formulation was given by
Amontons 200 years later, and the law was therefore called
the Amontons law. It follows from (2.3) that the friction force
is independent of the contact area. In 1785, Coulomb
generalized the Amontons law by including the surface
adhesion C:

F � C� mL : �2:4�

According to Amontons±Coulomb law (2.4), friction due to
interaction between surfaces exists even at a zero load L. It is
especially true for boundary friction when a thin lubricant
layer does not completely prevent interaction between the
rubbing surfaces. Moreover, friction can partly destroy
boundary layers and thereby create direct contact zones for
which the first term in the right-hand side of (2.4) becomes
essential.

Empirical relations (2.3) and (2.4) do not describe friction
processes or mechanisms. Therefore, many researchers have
sought to derive them theoretically to obtain a deeper insight
into the nature of boundary friction. At the same time, it has
become increasingly obvious in light of new experimental
data that the Amontons±Coulomb law is by nomeans always
fulfilled, which suggests its approximate character. For
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example, Hardy [54] experimented with two planar surfaces
separated by a boundary layer of aromatic compounds and
showed that the static friction coefficient m decreases with the
load. In other words, m is a function of L in (2.3), at variance
with the law being considered. Hardy explains this discre-
pancy by the fact that low pressure is associated with a
multimolecular lubricant layer lacking the fluidity inherent
in bulk lubricants. Hence, the flow starts after a threshold
internal stress is exceeded. Hardy concludes that increasing
pressure makes the lubricant layer thinner, which accounts
for a change in m; he introduces the dependence of the friction
coefficient on the lubricant layer h. We here focus on such
systems and draw attention to the fact that boundary
lubricant layers have a yield stress that characterizes destruc-
tion in solid bodies.

In Section 3.4, we describe the case of lubricant melting
after stress exceeds a certain critical value found analytically.
In Section 5, we discuss a quantitative thermodynamic model
in which the lubricant thickness h explicitly enters the
dependence for the friction force.

Hardy wrote: ``The lubricant state is neither liquid nor
solid.'' Modern authors speak in terms of solid-like and
liquid-like states differing from equilibrium thermodynamic
phases because the microrelief of rubbing surfaces has an
appreciable effect on the lubricant by breaking the state
symmetry. In this context, Hardy's suggestions are quite
justified and agree with the current views of boundary
friction. Interestingly, what Hardy observed was a very easy
slip [55]. He noticed that rubbing surfaces lubricated with
oxyoleic acid slightly deflected from the horizontal plane,
which caused spontaneous movements of the top surface.
Such rubbing surfaces were difficult to hold in the desired
position. If they were left to themselves, the top plate
immediately slipped from the bottom one. Later, this
behavior was observed by L V Panova (see [3] and the
references therein), who studied surfaces with accurately
processed boundary layers of stearic acid. This phenomenon
is currently called superlubricity and is attracting the
attention of an increasingly greater number of researchers
seeking ways to minimize the size of systems and designing
nanomechanical devices [9, 56].

Hardy's work was continued by Bear and Bowden in
experiments on the pressure dependence of the kinetic friction
force [57]. These authors identified a number of lubricants
and friction surfaces for which the Amontons law is not
necessarily satisfied. Based on these observations, Deryagin
developed a molecular theory of friction [58] in which the
friction force was expressed as

F � m�Ap0 � L� ; �2:5�
where A is the true contact area and p0 is the specific
molecular interaction force. According to Deryagin, the
friction force therefore depends on the surface adhesion
mAp0 and normal pressure mL, which confirms Amontons±
Coulomb law (2.4). Epifanov suggested the following
dependence for the friction force [3, 59]:

F � YA ; �2:6�
Y � Y0 � ksN ; �2:7�

whereY is the resistance to shear,A is the area of shear, and k
is a coefficient. The resistance to shear is in turn determined
by the resistance to shearY0 at a zero normal stress sN and by
the value of sN. Substituting (2.7) in (2.6) yields a binomial

law of friction in the form

F � Y0A� kL : �2:8�
In Epifanov's theory, an increase in the friction force with the
load L is mediated through an increase in the area A.

The last three formulas are important for the discussion of
the thermodynamic theory in Section 5. The friction force is
defined by formulas (5.18) and (5.22), where it is proportional
to the contact area A and does not depend on the load L,
because the consideration is confined to specific friction
conditions for two atomically flat surfaces separated by a
layer of a simple nonpolar lubricant. In that case, the areaA is
close to the area of the rough surfaces and is independent of
the applied pressure. In addition, irrespective of the area of
the surfaces, the distance between them remains constant, i.e.,
the thickness h of the lubricant is independent of time.
Modern techniques facilitate the creation of such condi-
tions. Epifanov concludes that boundary friction forces are
totally determined by shear resistance but are unrelated to the
adhesive strength [3, 59]. Epifanov does not use the notion of
the friction coefficient because it makes no sense. Precisely
such a case is considered below [cf. (2.6) and (5.18)].

The Amontons law and its interpretations discussed
above take no account of the dependence of the friction
force on slip velocity. However, the F�V� dependences have a
different form for different lubricants, friction surfaces,
sliding conditions, etc. The friction may either increase or
decrease with the velocity V and may change nonmonotoni-
cally. An important contribution to the studies of the velocity
dependence of the friction force was made by Bowden [2, 57]
and Akhmatov, Sukhov, et al. (see [3] and the references
therein). However, modern views of this phenomenon are
based on the work of experimenters such as Israelachvili [31]
using more sophisticated techniques for direct observations
and measurement. Tolstoy and Kaplan found that the
dependence F�V� at small slip velocities shows a maximum
[60], which is confirmed by our observations (Fig. 19b in
Section 5.3).

Most surfaces in technical applications (e.g., friction in
bearings) are rough. Bowden suggested the following equa-
tion for the friction of rough metallic surfaces separated by
boundary lubrication [2]:

F � �atM � �1ÿ a�tL
�
A ; �2:9�

where A is the area carrying the load, a is the fraction of the
total area giving rise to metal bridges as a result of squeezing
out or destruction of the lubricant layer, tM is the shear
resistance of the bridges, and tL is the shear resistance of the
lubricant layer. In the case where the surfaces are atomically
flat and are separated by a homogeneous lubricant layer of
the same thickness, a � 0; hence, the formula

F � tLA ; �2:10�
coincides with relation (5.18) in Section 5. Bowden concludes
that the stress tL is constant for a given substance, regardless
of the layer thickness. Based on logical reasoning and
experimental data, Akhmatov generalized [3] Bowden for-
mula (2.9) as

F � �atM�V;T � � �1ÿ a� tL�h;V;T �
�
A : �2:11�

We show in what follows that tL is a function of the
temperature T, the relative shear rate V, and the lubricant
thickness h, in excellent agreement with Akhmatov's conclu-
sions.
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The results of experiments are explained largely based on
the phenomenological concept of the phase transition of a
lubricant film from a liquid-like state to a solid-like one and
back. However, this phase transition, unlike the usual liquid±
solid transition, may be of both first and second orders. The
latter case occurs when the symmetry of the two film states is
altered considerably by the presence of limiting solid bodies
and elastic strain [4, 61].

Stick±slip motion is dealt with in several theoretical
studies. One of the first presents the fundamental material
equation relating the friction force to velocity, coordinates,
and a variable playing the role of the order parameter and
reflecting the degree of filmmelting [14]. In another approach
[61], phase transitions in a lubricant film are considered in
terms of the Landau theory under the assumption of partial
thermodynamic equilibrium of a slowly changing order
parameter, whose square is equal to the shear modulus.

The understanding of the anomalous features of bound-
ary friction described in the preceding paragraphs was
promoted by studies of rheological film properties [5, 6, 12].
Moreover, theoretical representation of lubricants as visco-
elastic media having heat capacity was used to the same effect.
For example, the experimentally observed behavior of an
ultrahigh-lubricant film is described in [15] in terms of the
Ginzburg±Landau equation, in which the order parameter
defines shear melting [16]. A dynamic phase diagram is
constructed, determining the regions of dry, sliding, and
stick±slip friction in the temperature±film thickness coordi-
nates. The phase dynamics in the case of adsorbed molecules
are considered inRefs [51, 62], emphasizing the importance of
shear melting. The study of time series of the friction force
allowed representing the relationship between friction at the
macrolevel and the formation/breakdown of molecular
bonds [23].

Investigations of the influence of noise on friction is of
great theoretical and practical importance, because fluctua-
tions in concrete experimental situations critically affect
frictional behavior, e.g., by providing conditions for redu-
cing friction [1, 20, 22, 63]. Specifically, thermal noise present
in any experiment can transfer an ultrathin lubricant film
from a stable solid-like state to a liquid-like one and thereby
transform dry friction to sliding or stick±slip behavior. That is
why so much attention has been given in recent years to the
effect of noise and unintentional impurities on static and
dynamic friction [20, 64, 65]. These studies have shown that
periodic surfaces are characterized by a lower friction
coefficient in the process of sliding than the nonperiodic ones.

3. Nonlinear model of melting
of an ultrathin lubricant film

3.1 Basic equations
The basis of the proposed approach is the synergetic concept
of phase transition [66±70], which is actually a generalization
of the Landau phenomenological theory in which a phase
transition is described by an order parameter f in powers of
which the free energy F is expanded [71]. The equilibrium
value of f is given by the condition

qF
qf
� h ; �3:1�

where h is an external field and F is the free energy at h � 0.

The process of relaxation to equilibrium is described by
the equation [72]

_f � ÿ 1

Z

�
qF
qf
ÿ h

�
; �3:2�

where Z is the kinetic coefficient, which can be regarded as a
generalized viscosity. If f is close to the equilibrium value
f0 � 0, the linear approximation qF=qf � f=w is used, where
w � qf=qh � �q2F=qf2�ÿ1 is the susceptibility. As a result,
relaxation equation (3.2) linearizes into

t _f � ÿf� wh ; �3:3�
where

t � wZ �3:4�
is the relaxation time.

Landau and Khalatnikov used expressions (3.3) and (3.4)
to study anomalous sound absorption near a second-order
transition point [73], where, as they supposed, the suscept-
ibility tends to infinity, w!1, and the viscosity Z is
practically independent of the temperature T. In the theory
of Landau and Khalatnikov, the abnormally high value of t
corresponds to the freezing process.

For a viscoelastic medium, the shear modulus G plays the
role of the inverse susceptibility. In the case of the viscoelastic
transition and a displacement-type (martensitic) transition,
the modulusG tends to zero near the transition point, and the
relaxation time tends to infinity [74, 75]. Some authors (see,
e.g., [76]) used the fact that the generalized susceptibility is
virtually independent of temperature and the viscosity
increases appreciably at the glass-transition temperature.
Hence, the abnormally high susceptibility characterizes
phase transitions, while the abnormally high kinetic coeffi-
cient (viscosity) is associated with freezing.

Under experimental conditions, lubricants are viscous
liquids behaving like amorphous solids; they are character-
ized by high effective viscosity and yield stress [6, 77, 78].
Bearing this inmind and based on the rheologic description of
a viscoelastic medium exhibiting the property of heat
conductivity, we obtained a system of kinetic equations
describing the mutually correlated behavior of shear
stresses s and strains e as well as temperature T, in an
ultrathin lubricant film during friction of atomically flat
mica surfaces [69, 79]. The main assumption of the proposed
approach is that the relaxation equation for s has a
mathematical structure similar to that of Landau±Khalatni-
kov equation (3.3):

ts _s � ÿs� Ge : �3:5�
Here, the first term in the right-hand side describes Debye
relaxation during the time ts � Zs=G determined by the
effective viscosity Zs and the unrelaxed shear modulus
G � G�o�jo!1. By the substitution e=ts ! de=dt, kinetic
equation (3.5) is reduced to a Maxwell-type relation for a
viscoelastic medium widely used in the boundary friction
theory [1, 80]. In the stationary case _s � 0, Eqn (3.5) reduces
to Hooke's law s � Ge.

The relaxation behavior of a viscoelastic lubricant in the
friction process is also described by the Kelvin±Voight
equation [77, 78]

_e � ÿ e
te
� s

Z
; �3:6�
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where te is the strain relaxation time and Z is shear viscosity.
The second term in the right-hand side describes the flow of a
viscous liquid under the effect of the shear stress component.
In the stationary case _e � 0, the expression s � Gee resem-
bling Hooke's law is obtained, where Ge � Z=te � G�o�jo!0

is the relaxed shear modulus. Because (3.5) does not formally
reduce to Kelvin±Voight equation (3.6) [77, 78, 80], we
suppose that the effective Zs � tsG and real Z viscosities do
not coincide. Moreover, we accept the simplest approxima-
tions for temperature dependences Ge�T �, G�T �,
Zs�T � � const:

Z � Z0
T=Tc ÿ 1

; �3:7�

where Z0 is the characteristic value of the viscosity Z at
T � 2Tc due to the very weak temperature dependence of
Ge, G, and Zs, while the real viscosity Z tends to infinity as the
temperature decreases to the critical value Tc [70, 76, 81].
Taken together, Eqns (3.5)±(3.7) make up a new rheological
model, because they reduce to a second-order differential
equation for the stress s and strain e. We emphasize that the
rheologic properties of lubricant films are amenable to
experimental study, which allows constructing the phase
diagram [5, 6].

The synergetic concept [66±70] implies the necessity of a
kinetic equation for the temperature to supplement the
system of equations (3.5), (3.6) containing the order para-
meter s, the conjugate field e, and the driving parameter T.
This equation can be derived from the basic relations of
elasticity theory [80].We start from the expression relating the
time derivative of the entropy S and the internal energy U to
the equilibrium elastic stress sel:

T
dS

dt
� dU

dt
ÿ sel

de
dt

�3:8�

(a change in the amount of heat dQ � T dS in equilibrium). In
the nonequilibrium case of nonuniform heating of the
medium, this relation takes the form

ÿdiv q � dU

dt
ÿ s

de
dt
; �3:9�

where the heat flux is given by the Onsager relation

q � ÿkHT �3:10�

with k being the heat conductivity coefficient and the total
stress s � sel � sv including the viscous component sv.
Subtracting (3.9) from (3.8), using the relations

dS

dt
� qS

qU

�
qU
qT

�
e

dT

dt
� qS
qU

qU
qe

de
dt
�
�
qS
qe

�
U

de
dt

� rcv
T

dT

dt
� 1

T

qU
qe

de
dt
ÿ sel

T

de
dt
; �3:11�

and assuming that the lubricant layer and the atomically flat
mica surfaces have different temperaturesT andTe, we obtain

rcv _T � k
h 2
�Te ÿ T � � sv _e� T

qsel
qT

_e : �3:12�

Here, r is the lubricant density, cv is the specific heat capacity,
and h is the lubricant thickness; also, the equalities
�k=h 2��Te ÿ T � � ÿdiv q and qU=qe � sel ÿ T qsel=qT are
used.

The first term in the right-hand side of (3.12) describes
heat transfer from the lubricant layer to the friction surfaces.
The second term accounts for the dissipative heating of the
viscous liquid flowing under the effect of stresses [82, 83]. The
third term is a heat source governed by the reversible
mechanocaloric effect, for which T�qsel=qT �_e � sel _e in the
linear approximation. As a result, the heat conductivity
equation becomes

rcv _T � k
h 2
�Te ÿ T � � s_e : �3:13�

We introduce measurement units

ss �
�
rcvZ0Tc

tT

�1=2

; es � ss
G0
� te

�
rcvTc

Z0tT

�1=2

; Tc �3:14�

for the respective variables s, e, and T (G0 � Z0=te, and
tT � rh 2cv=k is the heat transfer time). Then the substitution
of _e expressed from (3.6) in (3.13) takes the basic equations
(3.5), (3.6), and (3.13) to the form

ts _s � ÿs� ge ; �3:15�
te _e � ÿe� �Tÿ 1�s ; �3:16�
tT _T � �Te ÿ T � ÿ se� s 2 ; �3:17�

with the constant g � G=G0. Equations (3.15)±(3.17) formally
coincide with the synergetic Lorentz system [66±68] used to
describe phase thermodynamic and kinetic transformations.
Positive feedback between stresses s and temperature T, on
the one hand, and the strain e in (3.16) on the other is
responsible for the melting that causes an increase in e related
to the instability of the solid-like phase. At the same time, the
negative feedback between stresses s, the strain e, and the
temperature T in (3.17) reflects the Le Chatelier principle for
the problem being considered, because it leads to a decrease in
T resulting from the self-organization process.

The aforementioned positive feedback of s and T on e
means that the solid±liquid transition of lubricants is due to
both heating and stresses created by solid surfaces in the
presence of friction [69]. This agrees with the consideration of
the solid-phase instability in the framework of disorder-
induced shear dynamic melting in the absence of thermal
fluctuations [15]. The thermal mean root square deviation of
molecules (atoms) is given by

hu 2i � T

Ga
; �3:18�

where a is the lattice constant or the intermolecular distance.
The mean displacement caused by the shear is found from the
relation

hu 2i � s 2a 2

G 2
: �3:19�

Thus, the proposed approach suggests that the solid±
liquid transition of a lubricant is a result of thermodynamic
and shear melting. We suppose that the lubricant film
becomes more liquid-like and the friction force decreases
with increasing temperature owing to a reduction in the
molecular jump activation energy.

3.2 Transition conditions
As shown in experiment, the stress relaxation time
ts � 10ÿ10 s for organic lubricants at normal pressure [5, 6]
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increases by a few orders of magnitude and reaches macro-
scopic values as the pressure increases. Shear strain takes a
microscopic time te � a=c � 10ÿ12 s to relax, where a � 1 nm;
the speed of sound is c � 103 m sÿ1. Because an ultrathin
lubricant film contains less than ten molecular layers, the
temperature relaxes to Te in a time tT 5 ts. This permits
analyzing system (3.15)±(3.17) in the framework of the
adiabatic approximation, in which the characteristic time
scales satisfy the inequalities

te 5 ts ; tT 5 ts : �3:20�

These inequalities suggest that both the strain e�t� and the
temperature T�t� follow the stress variations s�t�. Based on
the definition of the thermal conductivity w � k=cv, the
effective kinematic viscosity ns � Zs=r, and the speed of
sound c � �G=r�1=2, the second condition in (3.20) can be
conveniently written in the form

h5L ; �3:21�

according to which the lubricant thickness must not be
greater than

L �
���������
wns
rc 2

r
: �3:22�

Then the left-hand sides of Eqns (3.16) and (3.17) can be
equated to zero and the Landau±Khalatnikov equation can
be obtained from (3.15) [72, 73]:

ts _s � ÿ qV
qs

; �3:23�

where the synergetic potential has the form

V � 1

2
�1ÿ g�s 2 � g

�
1ÿ Te

2

�
ln �1� s 2� : �3:24�

In the stationary state _s � 0, potential (3.24) has a minimal
value. At a temperature Te below the critical value

Tc0 � 1� gÿ1 ; g � G

G0
< 1 ; G0 � Z0

te
; �3:25�

this minimum corresponds to s � 0; in this case, there is no
melting and a solid-like state of the lubricant is realized. In the
opposite case Te > Tc0, the stationary stress value is nonzero:

s0 �
�
gTe ÿ �g� 1�

1ÿ g

�1=2
; �3:26�

and increases as the square root of Te, leading to the melting
of the lubricant and its transition to a liquid-like state. The
corresponding stationary strain and temperature values are

e0 � s0
g
; T0 � 1� gÿ1 : �3:27�

We note that the stationary temperature value T0, on the
one hand, coincides with the value in (3.25) but, on the other
hand, differs from Te because the first equality in (3.27) is
realized instead of the relation s0 � e0 in the stationary state.
This means (Tc0 being the minimal temperature at which
solid±liquid transition begins) that the negative feedback of
shear stresses s and strain e on the temperatureT [see the third

term in the right-hand side of Eqn (3.17)] decreases the
lubricant temperature, and hence the self-organization pro-
cess is maintained only in the limit. In the stationary state, the
viscosity during melting becomes Zm � Z0g.

The solid-like state of a lubricant corresponds to shear
stresses s � 0, because Eqn (3.15) falls out of consideration.
Equation (3.16), containing viscous stresses, reduces to the
Debye law describing fast strain relaxation within a micro-
scopic time te � 10ÿ12 s. Thermal conductivity equation
(3.17) takes the form of the simplest expression for tempera-
ture relaxation that contains no terms describing dissipative
heating or the mechanocaloric effect of a viscous medium.

According to (3.16), the appearance of viscous stresses sv
gives rise to a plastic flow of a liquid-like lubricant with the
speed V � h qe=qt [69]. Specifically, in the case of a surface
force apparatus [31, 84, 85], the effective strain amplitude
e � xmax=h in Eqns (3.15)±(3.17) is defined as the ratio of the
strain (deflection) amplitude xmax to the thickness h. The
effective shear rate

_e � eo � V

h
� e

ts
�3:28�

is the product of the strain e and the fluctuation frequency o.
In our problem, e must be understood as the sum of elastic
and viscous components of shear strain.

It was shown in Refs [61, 84] that the plastic flow of a
lubricant layer occurs in the presence of elastic stresses, while
the effects of shear stresses account for the reduced shear
modulus of the lubricant [86]. According to [7], the enhance-
ment of viscous strains

sv � Fv

A
�3:29�

in the boundary friction regime leads to an increase in the
viscous friction force

Fv � ZeffVA
h

; �3:30�

where Zeff is the effective viscosity and A is the contact area.
A comparison of (3.29) and (3.30) gives the expression for

the velocity in terms of stresses:

V � svh
Zeff

: �3:31�

Therefore, enhanced stresses increase the relative displace-
ment rate of the surfaces and cause the lubricant to melt. This
inference is consistent with Maxwell-type relations between
stresses and strains: qs=qt � ÿs=ts � G qe=qt.

3.3 Hysteresis phenomena
in the stress dependence of the shear modulus
3.3.1 Jump-like melting. The Maxwell equation implies the
use of an idealized Hankey model. For the strain dependence
of stresses, this model is represented by the Hooke law s � Ge
for e < em and a constant sm � Gem at e5 em [sm and em are
the maximum values of elastic shear stresses and strains;
s > sm leads to a viscous flow with the strain rate
_e � �sÿ sm�=Z]. In fact, the simplest curve s�e� has two
parts: the steep Hookean section specified by the shear
modulus G is followed by a gently sloping portion corre-
sponding to plastic deformation, whose slope is determined
by the strengthening factor Y < G. Evidently, such a picture
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means that the lubricant shear modulus entering Eqn (3.5)
depends on the stress value [61, 86]. We use the simplest
approximation

G�s� � Y� GÿY

1� �s=sp� b
�3:32�

(where sp is the characteristic value of shear stress) describing
the aforementioned transition of the elastic strain state to the
plastic one. This transition is taken into account by substitut-
ing the constant coefficient g in (3.15) by dependence (3.32) in
the dimensionless form g�s� � G�s�=G0:

g�s� � gy

�
1� yÿ1 ÿ 1

1� �s=a� b
�
; �3:33�

where gy � Y=G0 < 1, a � sp=ss < 1, and y � Y=G < 1 is
the parameter determining the ratio of the slopes of the plastic
and Hookean sections of the strain curve. An expression of
type (3.33), proposed for the first time by Haken [66] to
describe the solid laser radiation mode, was used in earlier
studies [68] for representing first-order phase transition
kinetics. However, that expression contained the square of
the ratio s=sp �b � 2�, and the resulting dependence of the
synergetic potential on the order parameter V�s�was an even
function. The description of structural phase transitions in a
liquid includes third-order invariants responsible for parity
breaking [71]. For this reason, the linear term s=sp �b � 1� is
used instead of the quadratic one �s=sp�2 �b � 2� in
approximation (3.33). We note that dependence (3.40) given
below is no longer even.2

A more comprehensive analytic study was carried out for
b � 2, and we present this case in more detail (the positive-s
region in Fig. 6). In the framework of adiabatic approxima-
tion (3.20), the system of Lorentz equations (3.15)±(3.17) in
which the dependence g�s� must be used instead of g reduces
to Landau±Khalatnikov equation (3.23), as before. But the
coefficient g � G=G0 in synergetic potential (3.24) is replaced
by the parameter gy � Y=G0 < 1 and a term proportional to
yÿ1 ÿ 1 appears:

V � 1

2
�1ÿ gy�s 2 � gy

�
1ÿ Te

2

�
ln �1� s 2�

ÿ 1

2
gya 2�yÿ1 ÿ 1��a 2 ÿ 1�ÿ1

�
�
�Te ÿ 2� ln �1� s 2� � �a 2 ÿ Te � 1� ln

�
1� s 2

a 2

��
:

�3:34�

The dependence V�s� in (3.34) increases monotonically at
small Te and has a minimum at s � 0 corresponding to the
stationary solid-like state (curve 1). Figure 6 shows the
appearance of a plateau (curve 2) at

T 0
c � 1� gÿ1y �

a 2

ygy
�y� gy ÿ 2� � 2a

ygy
D 1=2 ; �3:35�

D � �yÿ 1��a 2 ÿ y��gy ÿ 1� ; �3:36�

and at Te > T 0
c it passes to a minimum corresponding to a

stress s0 6� 0 and to a maximum sm separating the minima at

the points s � 0 and s � s0 (curve 3). As the temperature Te

increases further, the minimum of the `ordered' phase
corresponding to the liquid-like state s � s0 becomes
deeper, while the height of the interphase barrier decreases;
it disappears at the critical valueTc0 � 1� y=gy in (3.25). The
stationary values of shear stresses in the liquid-like state are
(see Figs 6 and 7)

sm
0 �

�
1

2
a 2�gy ÿ 1�ÿ1

�
h
1� aÿ2 ÿ gyaÿ2�Te ÿ 1� ÿ gyy

ÿ1 �D
1=2
0

i�1=2

; �3:37�

D0 �
�
gy�Te ÿ 1�aÿ2 � gyy

ÿ1 ÿ 1ÿ aÿ2
�2

ÿ 4aÿ2�gy ÿ 1��gyyÿ1�Te ÿ 1� ÿ 1
�
; �3:38�

where the upper and lower signs are respectively for the
maximum and minimum of V�s�. At Te 5Tc0, the depen-

2 Odd values of b correspond to the experiment in which the block slips in

opposite directions that are not equivalent from the energy standpoint.
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dence V�s� has the same character as in the absence of a
modulus defect (see curve 4 in Fig. 6).

A characteristic feature of our approach is the energy
barrier inherent in the first-order synergistic transition, i.e.,
the melting of a crystalline lubricant. It is observed only in the
presence of a shear modulus defect. This situation is more
complicated than usual phase transitions: indeed, the sta-
tionary temperature of the system T0 standardly reduces to a
value Te determined by the thermostat. In our case, T0

reduces to the critical value Tc0 of the second-order syner-
getic transition (melting of an amorphous lubricant) that
occurs in the absence of a modulus defect (see Section 3.2).
When the modulus defect is taken into account, the
temperature

T0 � Te � �2ÿ Te� s 2
0

1� s 2
0

; �3:39�

specified by the position of the minimum of dependence
(3.34), (3.40) is realized. According to (3.37)±(3.39), the
stationary system temperature T0 gradually increases from
Tm at Te � T 0

c . The stationary temperature T0 increases
linearly from 0 to Tc0 as the temperature Te increases within
the same range. At Te � Tc0, the value of T0 increases
smoothly after a jump upward. The stationary temperature
T0 decreases after a decrease in Te. As soon as the point T 0

c is
reached [see (3.35)], the value of T0 falls abruptly from Tm to
T 0
c . AtTe < T 0

c , the stationary temperatureT0 becomes equal
to Te again.

In the case b � 1, the synergetic potential is an odd
function of s given by the expression (see Fig. 6)

V � 1

2
�1ÿ gy�s 2 � gy

�
1ÿ Te

2

�
ln �1� s 2� ÿ gy�yÿ1 ÿ 1�a

�
(
sÿ a ln

����1� s
a

����� �Te ÿ 2�
�

a
1� a 2

ln

����1� s
a

����
� a
2�1� a 2� ln �1� s 2� � �1� a 2�ÿ1 arctan s

�)
: �3:40�

The dependence V�s� at s > 0 is analogous to the one in the
case b � 2. The negative semiaxis at Te 5Tc0 shows a very
small minimum of V�s�, accompanied by an infinite increase
in V at s � ÿsp. Hence, negative values of s and e hardly
occur. A cubic equation must be solved to determine the
stationary states of the system; the resulting cumbersome
expressions are not presented here.

3.3.2 Kinetics of a second-order phase transition.
1. The case te 5 ts; tT. Section 3.2 reports a qualitative
analysis of the system of equations (3.15)±(3.17) in the
adiabatic approximation when characteristic relaxation
times satisfy the conditions te; tT 5 ts. In this section, we
discuss the cases where one of the relaxation times is the
minimum one [68, 87]. Specifically, setting te _e � 0 with
te 5 ts; tT in (3.16) gives the relation

e � �Tÿ 1�s : �3:41�
Substituting Eqn (3.41) in Eqns (3.15) and (3.17) and using
the scale ts to measure time, we obtain the system of
equations

_s � ÿs�1ÿ g�Tÿ 1�� ; �3:42�
_T � tÿ1

�
Te ÿ Tÿ s 2�Tÿ 2�� �3:43�

with the parameter t � tT=ts. The phase portrait is char-
acterized by the presence of two singular points, D�Te; 0� and
O
ÿ
1� gÿ1; f�Te ÿ �gÿ1 � 1���gÿ1 ÿ 1�ÿ1g1=2�. Because it is

impossible to obtain the exact solution of the system of
equations (3.42), (3.43) analytically, the phase plane method
[88] is used to find phase portraits of the system. Their exact
form is deduced by numerical integration using the fourth-
order Runge±Kutta method.

The analysis of Lyapunov's parameters

lD � 1

2

�
g�Te ÿ 1� ÿ 1ÿ tÿ1

�
�
�
1�

�������������������������������������������������������������������������������������������������
1� 4tÿ1

�
g�Teÿ 1� ÿ 1

��
g�Teÿ 1� ÿ 1ÿ tÿ1

�ÿ2q �
�3:44�

indicates that point D is a stable node in the precritical region
Te 4Tc0. At such Te values, the singular point O is not
realized, and the system evolves into the stationary solid-like
state corresponding to point D.

An increase in the parameter t � tT=ts leads to the
winding of trajectories around point D. In other words,
relatively small variations of temperature and rapid changes
in stresses are associated with the tendency toward the
development of the stick±slip friction behavior. In the post-
critical region Te > Tc0, point D is a saddle (Fig. 8).

Lyapunov's parameters of the singular point O are given
by

lO � Te ÿ 2gÿ1

2t�gÿ1ÿ 1�

"
1�

�������������������������������������������������������������������
1ÿ 8t

g�Teÿ 1ÿ gÿ1��gÿ1ÿ 1�2
�Teÿ 2gÿ1�2

s #
:

�3:45�
It follows that point O is a stable node when the parameter t is
bounded from above by the quantity

tc � �Te ÿ 2gÿ1�2
8g�Te ÿ 1ÿ gÿ1��gÿ1 ÿ 1�2 ; �3:46�

and is a focus at t > tc.
Thus, stick±slip friction behavior (Fig. 8c) develops in the

postcritical region Te > Tc0 for ts 5 tT; it is characterized by
the frequency

o � 2gÿ1 ÿ Te

2tT�gÿ1 ÿ 1�
�
8t

g�Te ÿ 1ÿ gÿ1��gÿ1 ÿ 1�2
�Te ÿ 2gÿ1�2 ÿ 1

�1=2
�3:47�

and the attenuation factor

a � 1

2
tÿ1T �gÿ1 ÿ 1�ÿ1�Te ÿ 2� : �3:48�

The frequency o decreases while a and tc increase as the
temperature increases in the interval Te > Tc0. In other
words, the excitation of a system leads to the disappearance
of damping oscillations that represent the stick±slip friction
behavior. However, Fig. 8 shows that the stick±slip motion is
promoted by an increase in the parameter t � tT=ts 4 1.

The opposite limit tT 5 ts corresponds to the adiabatic
approximation, representing the standard picture of a phase
transition (lubricant melting). It can be seen from Fig. 8a that
a decrease in the parameter t! 0 permits distinguishing an
MOD segment on the phase portrait of the system towhich all
trajectories rapidly converge with time [68, 87]. The MOD
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segment, whose position depends on the external conditions
(e.g., theTe value) is called the `mainstream' in [89]. Studies of
time-dependent paths covered by a configurative point show
that it rapidly arrives at the MOD segment and slowly moves
over it. In other words, the motion primarily determines the
system kinetics, which accounts for the universal kinetic
picture of phase transitions [89].

2. The case ts 5 te; tT. Setting ts _s � 0 in (3.15) yields the
relation

s � ge : �3:49�

Its substitution in (3.16) and (3.17) gives the system of
equations

_e � ÿe�1ÿ g�Tÿ 1�� ; �3:50�
_T � tÿ1

�
Te ÿ Tÿ e 2g�1ÿ g�� ; �3:51�

where time is measured in units of te and t � tT=te. The phase
portrait is characterized by the presence of singular points
D�Te; 0� and O

ÿ
1� gÿ1; f�Te ÿ �gÿ1 � 1��gÿ1�1ÿ g�ÿ1g1=2�.

Lyapunov's parameters are given by

lD � 1

2

�
g�Te ÿ 1� ÿ tÿ1 ÿ 1

�
�
(
1�

�����������������������������������������������������������������������
1� 4tÿ1

g�Te ÿ 1ÿ gÿ1��
tÿ1 ÿ g�Te ÿ 1ÿ gÿ1��2

s )
; �3:52�

lO � ÿ 1

2
tÿ1
h
1�

�������������������������������������������
1ÿ 8t�Te ÿ 1ÿ gÿ1�

q i
:
�3:53�

Similarly to case 1, point D is a stable node at Te 4Tc0

and a saddle atTe > Tc0. Point O is realized only in the liquid-
like region Te > Tc0, where it is a stable node at small t and a
stable focus at t above the critical value

tc � 1

8
�Te ÿ 1ÿ gÿ1�ÿ1 : �3:54�

The corresponding expressions for the frequency and decre-
ment of oscillation damping are

o � 1

2
tÿ1T

�
8t�Te ÿ 1ÿ gÿ1� ÿ 1

�1=2
; �3:55�

a � �2tT�ÿ1 : �3:56�

The analysis conducted and the phase portraits obtained
indicate that similarly to case 2, the system with a large
parameter t is characterized by damping oscillations, i.e.,
stick±slip motion (Fig. 8c); a decrease in t to t5 1 induces the
dissipative relaxation mode (Fig. 8a). The universality of the
kinetic behavior manifests itself similarly in the adiabatic
limit t! 0 due to the presence of the MOD segment
identified in Fig. 8a, at which the system slowly evolves to
the stationary point O [68, 87].

3. The case tT 5 ts; te. Setting tT _T � 0 in (3.17) yields the
relation

T � Te ÿ se� s 2 ; �3:57�

and Eqns (3.15) and (3.16) take the form

_s � ÿs� ge ; �3:58�

_e � tÿ1
�ÿe� �Te ÿ 1�sÿ s 2�e� s�� ; �3:59�

where time is measured in units of ts and t � te=ts. The phase
portrait has singular points D�0; 0� and

O
���

Te ÿ �gÿ1 � 1��gÿ1�1ÿ g�ÿ1	1=2;��
Te ÿ �gÿ1 � 1���gÿ1 ÿ 1�ÿ1	1=2 �

(see Fig. 8), with the latter realized only in the liquid-like
region Te > Tc0. The corresponding Lyapunov parameters
are

lD � ÿ 1

2
�1� tÿ1�

�
�
1�

���������������������������������������������������������������������������
1� 4tÿ1g�1� tÿ1�ÿ2�Te ÿ 1ÿ gÿ1�

q �
; �3:60�

lO � ÿ 1

2

�
1� tÿ1

Te ÿ 2

gÿ1 ÿ 1

�

� 1�
������������������������������������������������������������������������������
1ÿ 8t

�gÿ1ÿ 1��Teÿ gÿ1ÿ g�Teÿ 1���
t�gÿ1ÿ 1� � Teÿ 2

�2
vuut24 35 : �3:61�

Point D is a stable node at Te 4Tc0 but transforms into a
saddle point upon transition to the post-critical region
Te > Tc0. Point O, which characterizes the liquid-like phase
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at the values of t in the range �tÿ; t��, where
t� � �gÿ1 ÿ 1�ÿ1�3Te � 2ÿ 4gÿ1 ÿ 4g�Te ÿ 1��
� �gÿ1 ÿ 1�ÿ1

n
8
�
gÿ1 � g�Te ÿ 1� ÿ Te

�
� �2gÿ1 � 2g�Te ÿ 1� ÿ Te ÿ 2

�o1=2

; �3:62�

is a stable focus or a stable node at the t values outside the
interval �tÿ; t��. The characteristic frequency

o � 1

2
tÿ1e �gÿ1 ÿ 1�ÿ1

n
8t�gÿ1 ÿ 1��Te ÿ gÿ1 ÿ g�Te ÿ 1��

ÿ �t�gÿ1 ÿ 1� � Te ÿ 2
�2o1=2

�3:63�

and the attenuation factor

a � 1

2
tÿ1e �gÿ1 ÿ 1�ÿ1�t�gÿ1 ÿ 1� � Te ÿ 2

� �3:64�

are comparable at all Te and t values. This is why the stick±
slip friction behavior is virtually absent here, unlike in cases 1
and 2 considered above.

Phase portraits suggest that the universality of the kinetic
behavior of the system is manifested at both te 5 ts and
te 4 ts. In the former case, a universal segment is reached
owing to the rapid change in the strain e�t� while stresses s�t�
remain virtually unaltered (Fig. 8a); in the latter case, the
opposite picture is realized, i.e., s�t� changes very rapidly and
e�t� is almost unaltered. In the intermediate region te � ts,
universality manifests itself only at small initial values of the
strain e�0� and stresses s�0�: e�0�5 e0; s�0�5 s0. Unlike
cases 1 and 2, the universal part of phase trajectories has a
downward, rather than upward, character corresponding to
the deformation curve [61, 90±92].

3.3.3 Kinetics of a first-order phase transition.
1. The case te 5 ts; tT.As in the case of a second-order phase
transition, we consider different limit relations for relaxation
times ts, te, and tT [68, 87] using dependence (3.33) at b � 2
instead of the constant g in the original Eqn (3.15). The
standard analytic analysis of stability of singular points is not
performed for a first-order phase transition because the
resulting expressions are too cumbersome. The phase por-
traits are developed for surface temperatures in the interval
�T 0

c ;Tc0� where the first-order phase transition is realized.
The phase portraits for Te 5Tc0 are analogous to those
considered in Section 3.3.2.

Setting te _e � 0 in (3.16) yields the relation e � �Tÿ 1�s.
Taking it into consideration in Eqns (3.15), (3.17) and using
the scale ts for measuring time leads to system (3.43) and

_s � ÿs
�
1ÿ gy

�
1� yÿ1 ÿ 1

1� �s=a�2
�
�Tÿ 1�

�
: �3:65�

The phase portrait of system (3.65), (3.43) has three
singular points, D�Te; 0�, S�Tm; sm�, and O�T0; s0�, where

Tm
0 � Te ÿ sm

0 em0 � �sm
0 �2 ; �3:66�

em0 �
ÿ
1� �sm

0 �2
�ÿ1ÿ

Te � �sm
0 �2 ÿ 1

�
sm
0 ; �3:67�

and the characteristic values of sm
0 are given by (3.37) and

(3.38).
In the temperature interval of interest, S is a saddle point,

O is a stable node or focus, and D is a stable node. It can be
seen from Fig. 9 how the phase portrait changes upon
increasing the relaxation time ratio t � tT=ts. A comparison
of Figs 8 and 9 shows that trajectories in the vicinity of
point O behave virtually the same as in the case of a second-
order phase transition, i.e., they rapidly converge to the
universal OS segment in the adiabatic limit tT 5 ts (Fig. 9a),
whereas in the opposite limit tT 4 ts, the damping oscillation
mode representing stick±slip motion develops. The main
difference between the two cases is in the appearance of a
separatrix in the region of small stress values, reflecting the
existence of a barrier in the dependence V�s�.

2.The case ts 5 te; tT. Substituting expression (3.33) for g
in the original Eqn (3.15), where we set ts _s � 0, leads to a
cubic equation whose solution can be conveniently written in
the form

s � 1

3
�gye� s 0

� � s 0
ÿ� : �3:68�

Here, the functions

s 0
� �

�
1

2
�2g 3

y e
3 � 27gyea 2yÿ1 ÿ 9gyea 2� �Q 1=2

�1=3
; �3:69�

Q � �3a 2 ÿ g 2
y e

2�3 � 1

4
�9gyea 2 ÿ 27gyea 2yÿ1 ÿ 2g 3

y e
3�2

�3:70�
are introduced.
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Substitution of relation (3.68) in (3.16) and (3.17) gives the
system of equations [cf. (3.50), (3.51)]

_e � ÿe� 1

3
�Tÿ 1��gye� s 0

� � s 0
ÿ� ; �3:71�

t _T � Te ÿ Tÿ 1

3
�gye� s 0

� � s 0
ÿ�
�
eÿ 1

3
�gye� s 0

� � s 0
ÿ�
�
:

�3:72�
The phase portrait of system (3.71), (3.72) has three

singular points (see Fig. 9): D�Te; 0�, S�Tm; em�, and
O�T0; e0�, where characteristic values of Tm

0 and em0 are
given by (3.66) and (3.67). As in case 1, point D is a stable
node, S is a saddle point, and O is an attracting node or a
focus. It is equally clear that the universal character of kinetic
behavior of the system is fairly apparent at tT 5 te (Fig. 9a);
in the opposite limit tT 4 te, the damping oscillation mode
representing stick±slip friction is observed (Fig. 9c). As in
case 1, comparison of the phase portrait of system (3.71),
(3.72) with that for the second-order transition (see Fig. 8)
reveals the appearance of a separatrix in the region of small T
and e values corresponding to the energy barrier that
separates liquid-like and solid-like phases.

3. The case tT 5 ts; te. Setting tT _T � 0 in (3.17) yields
relation (3.57). Its substitution in (3.16) gives Eqn (3.59),
and Eqn (3.15) takes the form [cf. (3.58)]

_s � ÿs� gy

�
1� yÿ1 ÿ 1

1� �s=a�2
�
e : �3:73�

The phase portrait of system (3.59), (3.73) has three
singular points (see Fig. 9): D�0; 0�, S�em; sm�, and
O�e0; s0�, where characteristic values of sm

0 and em0 are given
by (3.37) and (3.67). As in cases 1 and 2, point D is a stable
node, S is a saddle point, and O is an attracting node or a
focus.

Comparison with the phase portrait for the second-order
transition shows that the only complication, as before, is the
appearance of a separatrix in the region of small e or s values.
As in the case of the second-order phase transition, the
universality of the kinetic behavior of the system at both
te 5 ts and te 4 ts is preserved for the first-order transition.

The analysis of the case b � 1 shows that the synergetic
potential is the odd function of s given by expression (3.40).
Phase portraits for all relations of relaxation times are
completely analogous to those at b � 2.

3.4 Hysteresis phenomena
in the strain dependence of the shear modulus
As noted above, the replacement e=ts ! qe=qt reduces
Eqn (3.15) with g�s� � G=G0 � const to a Maxwell-type
relation for the description of a viscoelastic medium. The
Maxwell equation implies the use of the idealized Genki
model. The shear modulus of a lubricant is known to depend
on stress [61, 86]. In Section 3.3, this dependence was taken
into account by using the simplest approximation (3.32)
describing the transition of the elastic deformation mode to
the plastic one. This transition occurs at characteristic values
of shear stresses sp and strain ep.

Dependence (3.32) describes hysteresis duringmelting of a
thin lubricant only in Teÿs coordinates (see Fig. 7). The
deformation curve s�e� is monotonic and permits represent-
ing only a continuous transition. However, experimental data

unambiguously suggest that the melting of a molecularly thin
lubricant film is a jump-like process [5, 6], even if it is
underlain by the second-order phase transition mechanism.
As shown below [90±92], this feature can be described by
replacing the dependence g�s� in (3.15) with the dependence
g�e� � G�e�=G0, where

G�e� � Y� GÿY

1� �e=ep� b
: �3:74�

Here, the value of the parameter b > 0 determining the
character of the potential also plays a key role.

We consider a stationary state in which _s � 0 in (3.15) and
the stresses s in the lubricant do not change. According to
(3.31), this case corresponds to sliding at a constant speed.We
then arrive at an equation resembling the Hooke law:

s � g�e�e ; g�e� � gy

�
1� yÿ1 ÿ 1

1� �e=a� b
�
; �3:75�

where the parameter y � Y=G < 1 and the coefficients
gy � Y=G0 < 1 and a � ep=es are introduced. Formula
(3.75) in the case of a surface force apparatus [84] describes
the dependence s � sel � sv of the overall internal shear
stress in the lubricating material on the deflection amplitude
xmax, where sel and sv � ZeffV=h are the elastic and viscous
components. This means that two situations can be realized,
with the curve s�e� monotonically increasing at small b and
becoming nonmonotonic at

b >
1� ���

y
p

1ÿ ���
y
p : �3:76�

The former case corresponds to the continuous melting of
the lubricant; the latter case is illustrated in detail in Fig. 10.
As stresses increase further up to point A, the lubricant melts
and transition to point B occurs. An even further increase in
stresses causes the deformation to grow monotonically,
while the lubricant remains liquid-like. If the stresses then
decrease, the lubricant preserves its liquid-like structure
down to point C, and thereafter undergoes jump-like
solidification as it passes to point D. It remains solid-like if
stresses continue to decrease. Such transitions are repre-
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Figure 10.Dependence of the stationary value of shear stresses s0 and the

strain e0 in (3.75) at y � 0:2, gy � 0:1, a � 0:3, and b � 3:0 showing a

hysteretic behavior. The inset presents the same dependence at b � 1:0.

October 2012 Statistical theory of the boundary friction of atomically êat solid surfaces in the presence of a lubricant layer 1021



sented in Ref. [93] as first-order phase transitions, but
between states that are not true thermodynamic phases.
The notion of shear melting has been introduced to explain
these transitions [15]. Such a hysteretic behavior has been
observed in experiment [31, 84, 85].

The use of (3.75) yields the abscissas of transition points A
and C:

eA;C � 2ÿ1=ba

"
b�bÿ 1� ÿ 2� b

����������������������������
�1ÿ b�2 ÿ 4b

b

r #1=b
; �3:77�

b � yÿ1 ÿ 1 ;

where point A has the minus sign and point C the plus sign. It
follows from (3.77) that the jump during melting increases as
a increases; as b increases, eA ÿ eC ! 0. Thus, melting and
solidification at large b (small a) proceed at virtually the same
strain value �eA � eC�, but at different stresses s. As before
(see Section 3.2), we assume the shear stress s to be the order
parameter: the lubricant is liquid-like at s > sA and solid-like
at s < sC. In the intermediate region sC < s < sA, the
lubricant state is unstable because it can exist in both phases.

In adiabatic approximation (3.20), with te _e � 0 and
tT _T � 0, we obtain Landau±Khalatnikov equation (3.23)
with the synergetic potential

V � s 2

2
ÿ gy

� s

0

�
s 0 ÿ �2ÿ Te�s 0

1� s 0 2

�
�
�
1� yÿ1 ÿ 1

1� �s 0=aÿ s 0�2ÿ Te�=�a�as 0 2�
�b� ds 0: �3:78�

Figure 11 shows the dependence of stationary shear
stresses s0 on the temperature Te of friction surfaces. When
Te is below the critical value Tc0, there are no stresses in the
lubricant �s � 0� and it is solid-like. As the temperature
increases to TcA, corresponding to point A, the stress
increases but corresponds to the Hookean elastic section of
the dependence shown in Fig. 10; in other words, the lubricant
remains solid-like. After the temperature becomes even
higher in the TcA < Te < TcB interval (TcB corresponds to
point B), the stress persists, and the structure of the lubricant
does not change. At temperatures above TcB, the plastic
section of the dependence shown in Fig. 10 is realized. If the

temperature of the friction surfaces decreases, the lubricant
remains liquid-like while temperatures are still higher than
TcC; the stress persists at TcD < Te < TcC, while at lower
temperatures the lubricant acquires a solid-like structure. The
expression for the critical temperature Tc0 is derived from the
condition qV=qs � 0, where V is synergetic potential (3.78):
Tc0 � 1� y=gy � 1� G0=G (3.25).

4. Effect of fluctuations
on the melting of an ultrathin lubricant film

4.1 Dynamic phase diagram
Any system experiences fluctuations, which are described
mathematically by noises. The noises are introduced in
solving problems with many irregularities, defects, external
impacts, etc., when all relevant factors cannot be objectively
described. Numerous influences can be qualitatively repre-
sented as noise. Taking noises into account allows an initially
idealized model to be brought closer to experiment. We show
below that the presence of fluctuations in a system promotes
the development of experimentally observed stick±slip fric-
tion. The aim of this section is to elucidate causes behind
stick±slip friction.

The stick±slip behavior in which the friction force F
periodically varies with time is shown in Fig. 2b. Random
variations of F are detected by the molecular dynamics
method [20] and confirmed in experiment for surfaces coated
with surfactants under different conditions [94]. Such
irregular behavior was also observed in experiments [4] in
which a 0.8 nm thick tetradecane film (two monolayers) was
used as the lubricant and the shear rate was close to the critical
value.

Evidently, this behavior is due to fluctuations that have an
appreciable effect in view of the system smallness. Tempera-
ture fluctuations can be introduced only for ultrathin
lubricant films composed of a limited number of particles [1,
20, 22, 63]. According to [15], the total mean square
displacement of molecules is the sum of expressions (3.18)
and (3.19), assuming that thermal fluctuations and stresses
are independent. Therefore, strain fluctuations related to
stress oscillations and thermal fluctuations should be con-
sidered separately.

In accordance with the method described in Refs [95±98],
we introduce stochastic terms in the form of additive
noncorrelated noises I 1=2

s x1, I
1=2
e x2, and I

1=2
T x3 into the

right-hand sides of Eqns (3.15)±(3.17) (here, intensities Is, Ie,
and IT are measured in the units of s 2

s , e
2
s t
ÿ2
e , and �Tck=h�2).

The function x�t� is a d-correlated stochastic source (white
noise) [99, 100], whose moments are given by3


xi�t�
� � 0 ;



xi�t� xj�t 0�

� � 2di jd�tÿ t 0� : �4:1�

The distribution of x�t� by values is Gaussian [101],

P�x� � 1������
2p
p

m
exp

�
ÿ x 2

2m 2

�
; �4:2�

where

m 2 � 
x 2�t�� � 2d�0� �4:3�2
0
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Figure 11. Plot of the stationary value of shear stresses s0 versus the

friction surface temperature Te at the parameters in Fig. 10.
3 The factor 2 in (4.1) is chosen to simplify the Fokker±Planck equation

(FPE).
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is the secondmoment of the source, diverging as 1=t at t! 0,
where t is the width of the delta-function, which is always
nonzero in real physical systems.

The discussion in Section 3 shows that an external impact
may trigger self-organization, resulting in an `ordered' state
(melting) of a nonequilibrium system (lubricant). It is known
from the theory of phase transitions that such a state is
formed in a critical mode, i.e., the ordered phase develops as
a self-similar structure without a characteristic scale [102].
The formal property of self-similarity is expressed as the
homogeneity of the distribution function P�x� in the
amplitude x of the hydrodynamic mode responsible for
ordering:

P

�
x

xc

�
� x a

c P�x� : �4:4�

According to (4.4), a change in the resolution scale xc of a
random quantity x results in a multiplicative change in the
probability P of its realization, characterized by an
exponent a. Introducing the rescaled variable y � x=xc and
the distribution function P�y� � y aP�y�, we rewrite (4.4) as

P�x� � xÿa P�y� : �4:5�
This implies the main property of self-similar systems: the
power-series form of the P�x� distribution in the limit of large
and small values of the stochastic variable x when the
function P�y� can be assumed constant. Specifically, the
self-organized criticality mode can be realized in such a
system [103, 104].

This fact can be taken into account by replacing the order
parameter s in all terms in Eqns (3.15)±(3.17) with s a with an
exponent 0 < a < 1. Then the basic equations with stochastic
additions take the form [96, 105±107]

ts _s � ÿs a � ge�
����
Is

p
x1�t� ; �4:6�

te _e � ÿe� �Tÿ 1�s a �
����
Ie

p
x2�t� ; �4:7�

tT _T � �Te ÿ T � ÿ s ae� s 2a �
�����
IT

p
x3�t� ; �4:8�

where dimensionless variables are used. The physicalmeaning
of such a substitution is that the self-similarity requirement is
fulfilled under the assumptions of a nonlinear stress relaxa-
tion and a fractional character of positive and negative
feedback. The adiabaticity condition te; tT 5 ts for time
measured in units of ts leads directly to the Langevin
equation

_s � fa�s� �
�����������
Ia�s�

p
x�t� ; �4:9�

where the force fa�s� and the noise intensity Ia�s� are defined
as

fa�s� � ÿs a � gs a
�
1ÿ �2ÿ Te�da�s�

�
; �4:10�

Ia�s� � Is � g 2�Ie � ITs 2a�d 2
a �s� ; da�s� � �1� s 2a�ÿ1 :

The Langevin equation is a stochastic differential equation
(SDE) because it contains a random force

�����������
Ia�s�

p
x�t�.

Therefore, each its solution is individual and only statistical
characteristics can be considered. For this reason, the
solution probability distribution Pa�s� is considered below
in terms of the stress magnitude.

Multiplying (4.9) by dt yields the differential Langevin
relation

ds � fa�s� dt�
�����������
Ia�s�

p
dW�t� ; �4:11�

where dW�t� �W�t� dt� ÿW�t� � x�t� dt is the Wiener
process with the properties [100]


dW�t�� � 0 ;

ÿ
dW�t��2� � 2 dt : �4:12�

In the Stratonovich approach, there is a correlation
between s�t� and dW, suggesting memory effects [108] in
lubricant films. In other words, such an approach corre-
sponds to Eqn (4.11) with real noise approximated by the
Gaussian white noise. With (4.12), the corresponding FPE
becomes

qPa�s; t�
qt

� ÿ q
qs

�
fa�s�Pa�s; t�

�
� q
qs

� �����������
Ia�s�

p q
qs

�����������
Ia�s�

p
Pa�s; t�

�
: �4:13�

In the course of time, the distribution of solutions of (4.11)
becomes stationary, and its explicit form can be found from
(4.13) at qPa�s; t�=qt � 0:

Pa�s� � Zÿ1 exp
�ÿUa�s�

�
: �4:14�

Distribution (4.14) is determined by the normalization
constant Z and the effective potential

Ua�s� � 1

2
ln Ia�s� ÿ

� s

0

fa�s 0�
Ia�s 0� ds 0: �4:15�

The extremum points of (4.14) are found from the condition
dUa=ds � dIa=dsÿ 2fa � 0. This equation is written expli-
citly as

Te ÿ 2

1� s 2a
� ags aÿ1

�1� s 2a�3
�
2Ie ÿ IT�1ÿ s 2a�� � 1ÿ g

g
: �4:16�

Hence, the abscissas of the extrema of Pa�s� are independent
of the noise intensity Is. Equation (4.16) differs from that in
Ref. [105] by the absence of the coefficient 2 in the second
term. In other words, after a two-fold enhancement of noise
intensities, the results of the analysis based on the study of the
distribution of extrema (construction of phase diagrams,
interpretation of stationary states) using the Stratonovich
calculus coincide with the results obtained in the framework
of the Ito calculus [105]. However, potential (4.15) is not
reduced to the one obtained in [105] by simple renormaliza-
tion of noise intensities, because the difference resides in only
the first term (the presence of the coefficient 1=2). Hence,
there is a difference in the time dependences of stresses.
Because the aim of this review is, inter alia, elucidation of
the time evolution of stresses, we use the Stratonovich
calculus. Previously, in Ref. [105], we analyzed only sta-
tionary states based on the Ito approach.

At a fixed temperatureTe, the phase diagram has the form
shown in Fig. 12, where the lines indicate stability loss ranges
of the system. The straight line

IT � 2Ie �4:17�

emanating from the origin, as follows from (4.16), marks the
boundary of the zero stationary solution s0 � 0. The
maximum of Pa�s� at s � 0 is always present above this
line, but absent below it. The diagram shows four regions
corresponding to different friction states.
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Figure 13 illustrates the unnormalized probability dis-
tribution (4.14) corresponding to points 1±3 in Fig. 12.
Point 1 lies in the dry friction (DF) region of the phase
diagram; therefore, there is a single maximum of the
distribution function at s � 0. The two-phase region (SS) of
the diagram is characterized by the coexistence of the Pa�s�
distribution maxima at zero and nonzero stress values
(point 2). Point 3 is in the region with a single probability
distribution maximum at s0 6� 0 corresponding to the liquid
frictionmode or sliding. The inset in Fig. 13 shows the form of
the distribution in the MSF� SF region. Here, two maxima
of Pa�s� at s0 6� 0 coexist, corresponding to the stick±slip
behavior at which transitions between metastable and stable
liquid friction occur.

The dependences Pa�s� in Fig. 13 are shown in the double
logarithmic scale. It can be seen that the distribution for the
DF and SS curves takes a power-like form. Such behavior
corresponds to the values s5 1 and Is; Ie 5 IT, at which
(4.14) reduces to

Pa�s� � sÿa P�s� ; �4:18�

where

P�s� � Zÿ1gÿ1I ÿ1=2T �1� s 2a�

� exp

�
ÿI ÿ1T gÿ2

� s

0

1ÿ g
�
1ÿ �2ÿ Te�

ÿ
1� �s 0�2a�ÿ1�ÿ

1� �s 0�2a�ÿ2�s 0�a ds 0
�
:

�4:19�

Self-similar systems are known to be characterized by a
homogeneous distribution function [102]. Distribution (4.18)
is homogeneous if function (4.19) is constant. At small stress
values, the pre-exponential factor 1� s 2a ! 1. The integral
in (4.19) makes a minor contribution at s < 0:8 but begins to
rapidly increase after s exceeds a certain value [106]. In
conformity with the structure of expressions (4.18) and
(4.19), this integral makes the leading contribution to the
resulting distribution (4.18), which becomes exponentially
decreasing. The power-like distribution, characteristic of the
self-similar behavior, is realized in a narrow stress range

s < 0:8, as shown in Fig. 13. The self-similarity properties
are lost after the critical stress value is surpassed.

4.2 Stress time series
Equation (4.11) is numerically solved by the Euler method,
although using a different iteration procedure than in
Ref. [109], because (4.11) is a Stratonovich SDE. To enable
the use of the conventional iteration procedure, it is
necessary to pass from the Stratonovich SDE to the
equivalent Ito SDE. With (4.12), Eqn (4.11) corresponds to
the Ito SDE [100, 110]

ds �
�
fa�s� �

�����������
Ia�s�

p q
qs

�����������
Ia�s�

p �
dt�

�����������
Ia�s�

p
dW�t� :
�4:20�

Bearing in mind the definition of the discrete analog of the
random force differential dW�t� � �����

Dt
p

Wi and Eqn (4.10),
we obtain an iteration procedure for solving Eqn (4.20):

si�1 � si �
�
fa�si� �

ag 2s 2aÿ1
i

�
IT�1ÿ s 2a

i � ÿ 2Ie
�

�1� s 2a
i �3

�
Dt

�
�����������������
Ia�si�Dt

p
Wi : �4:21�

The equation is solved in the time interval t 2 �0;T �. For a
specified number of iterations N (the number of time series
points), the time increment is defined as Dt � T=N. The force
Wi has the properties [cf. (4.12)]

hWii � 0 ; hWiWi 0 i � 0; hW 2
i i ! 2 : �4:22�

A random force with the properties of white noise is
adequately represented by the Box±Muller model [111]:

Wi �
������
m 2

p ����������������
ÿ2 ln r1

p
cos �2pr2� ; rn 2 �0; 1� ; �4:23�

where, according to (4.22), the dispersion is m 2 � 2 andWi is
an absolutely random number with properties (4.22). Pseudo-
random numbers r1 and r2 are characterized by a uniform
distribution.
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Effective potential (4.15) has minima at positive and
negative values of the stress s. Transitions of the system
between the states corresponding to these minima occur as a
result of fluctuations inherent in the numerical solution of
Eqn (4.20). Because we consider only the unidirectional
movement of the upper displaced surface, the negative region
s < 0 is considered nonphysical, which allows analyzing the
behavior of jsj�t� in what follows. Typical realizations of
jsj�t� for the states of interest are shown in Fig. 14. In the DF
state, extended sections can be seen at which stresses are close
to zero. In the stick±slip mode, regular transitions between
zero and nonzero stresses s occur. Realizations of SF and
MSF� SF states are visually similar, which requires an
additional probability density analysis to determine the
friction state (see Fig. 13).

4.3 Multifractal fluctuation analysis
of self-similar time series
Multifractal fluctuation analysis allows numerically calculat-
ing all the main multifractal characteristics [112] describing
self-similar systems. This analysis is performed by themethod
first proposed in [113]. Recently, it has been widely applied to
time series analysis in meteorology [114], medicine [115],
economics [116], etc.

For a self-similar time series, the method essentially
consists in numerical calculation of the fluctuation function
Fq�s� related by a scaling expression to the scale parameter s
[113]:

Fq � s h�q� ; �4:24�

where h�q� is the generalized Hurst exponent depending on
the parameter q, which, in turn, can take any real values (we
note that h�q� at q � 2 corresponds to the classical Hurst
exponentH [117]). Thus, the function h�q� is calculated as the
slope of the dependence Fq�s�, which is linear in logarithmic
coordinates. The function h�q� is related to another classical

multifractal scaling parameter t�q� [112, 113]:
t�q� � qh�q� ÿ 1 : �4:25�

The self-similarity properties of time series can be described
using the multifractal spectrum function f �a� related to t�q�
by the Legendre transformations [112]:

a � t 0�q�; f �a� � qaÿ t�q� ; �4:26�

where a is the HoÈ lder exponent and the prime denotes
differentiation with respect to q. From (4.25), we obtain a
direct relation between f �a� and h�q�:

a � h�q� � qh 0�q� ; f �a� � q
ÿ
aÿ h�q��� 1 : �4:27�

The form of these dependences characterizes the properties of
the time series. For example, h�q� � const and, accordingly,
the linear increase of t�q� corresponds to amonofractal series.
The decrease of h�q� with increasing q, together with a linear
increase of t�q� is inherent in multifractal series characterized
by the fractal dimension spectrum at different q. There is a
single value of HoÈ lder's exponent a, and the dependence f �a�
has a narrow peak. The spectrum of f �a� values is realized in
the case of a multifractal series.

In general, two causes of multifractality for time series are
distinguished: a wide probability distribution function for the
values of elements of the series and time correlations between
terms in the series. In the former case, themultifractality is not
eliminated by `mixing' the series, i.e., randomly rearranging
its terms. In the latter case, mixing leads to the disappearance
of correlations. Such a series transforms into a monofractal
one because the grounds for multifractality are gone. For a
series characterized by both causes of multifractality, its
mixed series has weaker multifractality than the initial one
[113]. Hence, the analysis of mixed series by the method
described in [113] allows elucidating the cause of multi-
fractality, e.g., the presence of time correlations.
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We apply this method to the analysis of the stress time
series jsj�t� presented in Fig. 14 [106]. Dependences Fq�s� in
double logarithmic coordinates at several q values for a time
series corresponding to the DF state have a linear form
virtually over the entire range of s. It is characteristic of all
the series analyzed in this review and permits us unambigu-
ously and with a high accuracy to calculate the Hurst
exponent h�q� from scaling relation (4.24). The region
50 < s < 500 in which the linear form of Fq�s� is most clearly
expressed is chosen for the calculation of multifractal
characteristics.

We calculate the dependences h�q�, t�q�, and f �a� for the
series shown in Fig. 14 with the parametersN � 105, t � 103,
and dt � 0:01. The dependences in Fig. 15 suggest that the
series corresponding to the DF state has the strongest
multifractality, and the series corresponding to the stick±slip
mode has a weaker multifractality. The series corresponding
to MSF� SF and SF states are characterized by minor
changes in the parameter h depending on q, which corre-
sponds to a monofractal behavior. The strong multifractality
for the DF state is attributable to the fact that the distribution
function at small stresses in this state has a power-like form,
as in self-similar systems. Multifractality is weaker in the
stick±slip mode because the probability distribution corre-
sponding to the solution of the Langevin equation also has a
nonzero maximum, making it possible to pass, in the course
of time, into a state defined by this maximum, which
corresponds to lubricant melting. The system loses the self-
similarity and multifractality properties under such a transi-
tion, and the stationary liquid frictionmode sets in. However,
the presence of two maxima of Pa�s� that correspond to the
stick±slip mode leads in the course of time to the reverse
transition into a solid-like structure, and the system exhibits
the self-similar behavior again. In MSF� SF and SF states,
the system lacks multifractality, because the power-like
distribution function is not realized.

It can be inferred from the above description that
multifractality is due to the power-like form of the distribu-
tion function. We clarify whether the fact that Pa�s� has the
power-like form is a sufficient condition for multifractality.
For this, we rearrange all the series and find all the fractal
characteristics of the system again [106]. We first consider the
stress oscillation spectrum obtained using the fast Fourier
transform (FFT) algorithm [111] in the analysis of the time
series for the stick±slip behavior shown in Fig. 14. The
corresponding time series was obtained by iteration proce-

dure (4.21) with N � 2� 105, t � 103, and dt � 0:005. The
signal strength in the spectrum decreases with increasing the
frequency as Sp� f � / 1=f 1:8. This suggests the presence of
correlations in the system [in the absence of correlations, i.e.,
in the presence of white noise alone, Sp� f � � const]. The
Sp� f � spectra have such a form for all the states being
considered.

Hence, the system of interest based on Eqn (4.9) converts
white noise present in virtually all physical experiments into
color noise with a nonzero correlation time. After mixing, the
stress oscillation spectrum is described by Sp� f � / 1=f 0:017,
i.e., the exponent is virtually frequency independent. This
spectrum corresponds to white noise, which means that
correlations disappear after mixing. However, the form of
the distribution function remains unaltered, because the
terms are neither inserted into the series nor removed from
it. The group of curves 2 in Fig. 15 corresponds to the analysis
of series that correspond to curves 1, but after these series are
mixed. Evidently, h�q� represents the same straight line
h � 0:5 for the parameters of all series, the dependence f �a�
has a narrow peak, and t�q� is a straight line with a constant
slope at all its sections. These features correspond to a
monofractal system, with the value h � 0:5 being typical of
series with no correlations. We conclude that multifractality
in the system under consideration is due to two factors: a
power-like distribution function and the presence of correla-
tions.

5. Thermodynamic representation
of boundary friction

5.1 Free energy
The free energy density for a lubricant has the form [61, 118,
119]

f � a�Tÿ Tc�j 2 � a

2
j 2e 2el ÿ

b

2
j 4 � c

3
j 6 � g

2
�Hj�2 ; �5:1�

where T is the lubricant temperature, Tc is the critical
temperature, eel is the shear component of elastic strain, a, a,
b, c, and g are positive constants, andj is the order parameter
(the amplitude of the periodic part of themicroscopicmedium
density function) [61]. The parameter j is equal to zero in the
liquid-like phase and differs from zero in the solid-like one. In
what follows, a homogeneous case is considered, whichmeans
setting g � 0 everywhere.
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In accordance with (5.1), we define elastic stresses as
sel � qf=qeel:

sel � aj 2eel : �5:2�

Then the shear modulus is expressed as

m � aj 2 : �5:3�
The analysis of potential (5.1) allows distinguishing the

following situations. If the condition

a

2
e 2el � a�Tÿ Tc�4 0 �5:4�

is satisfied, two symmetric nonzero minima of the potential
separated by a single zero maximum (lower curve in Fig. 16)
are realized, which corresponds to a solid-like lubricant. In
the range of intermediate values

0 <
a

2
e 2el � a�Tÿ Tc� < b 2

4c
; �5:5�

the zero potential maximum transforms into a minimum
accompanied by two additional symmetric maxima separat-
ing the central minimum from two symmetric nonzero
minima (the middle curve in Fig. 16). In his situation, the
lubricant can have both a solid-like and a liquid-like
structure, depending on the initial conditions. For

a

2
e 2el � a�Tÿ Tc�5 b 2

4c
; �5:6�

a single zero minimum of f �j� is realized (the upper curve in
Fig. 16), which corresponds [in agreement with (5.3)] to the
zero value of the shearmodulus m and the liquid-like structure
of the lubricant. The abscissas of the extrema of potential
(5.1) are given by

j 2
� �

b

2c
�

����������������������������������������������������������������
b

2c

�2

ÿ
�
a

2c
e 2el �

a�Tÿ Tc�
c

�s
; �5:7�

where the minus sign corresponds to the symmetric maxima
of the potential and the plus sign corresponds to its symmetric
minima. According to (5.4)±(5.6), the melting of a lubricant is
a result of both an increase in the temperature T and a
mechanical impact accompanied by an increase in the shear
component of elastic deformation eel. Thus, the model takes
thermodynamic and shear melting into account.

5.2 Stationary states and phase diagrams
We let V denote the relative shear rate of rubbing surfaces
separated by an ultrathin lubricant layer of thickness h. The
relation between the shear rate and the elastic strain
developing in the lubricant layer is fixed using the Debye
approximation relating the elastic strain component eel to
the plastic one [61]:

_epl � eel
te
; �5:8�

where te is the Maxwell relaxation time of internal stresses.
The overall deformation in the layer determined by the sum of
the elastic and plastic components [61, 120],

e � eel � epl ; �5:9�

determines the velocity of the top block V [7]:

V � h_e � h�_eel � _epl� : �5:10�

The expression for the elastic component of shear strain
follows from the last three relations as [121, 122]

te _eel � ÿeel � Vte
h

: �5:11�

It follows from (5.11) that the stationary value of elastic strain
is reached at a constant shear rate V:

e 0el �
Vte
h

: �5:12�

In accordance with the minimum energy principle, a
system tends toward a state corresponding to a minimum of
the potential f �j� (see Fig. 16). In this case, a stationary value
of the order parameter is reached, given by Eqn (5.7) with the
plus sign (because the minus sign corresponds to unstable
states). Figure 17 presents stationary values of the squared
order parameter computed from expression (5.7) in which the
stationary elastic strain eel is defined by formula (5.12). Solid
and dashed sections of the curves respectively correspond to
stable and unstable stationary states.

A lubricant is solid-like at the zero shear rate (shear
stresses and strains are zero) and a low temperature T,
because a nonzero value of j is realized; also, the shear
modulus m is nonzero according to (5.3) (Fig. 17a, solid
section of curve 1). In this case, the lower curve in Fig. 16
depicts the potential. As the temperatureT exceeds the critical
value

Tc0 � Tc ÿ a

2a

�
teV
h

�2

� b 2

4ac
; �5:13�

the square of the order parameter changes jumpwise from
j 2
A � 0:5b=c to zero, and the lubricant transits to the liquid-

like state (the upper curve in Fig. 16). If this transition is
followed by a decrease in the temperature T, the lubricant
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f, J mÿ3

j

0

ÿ1

ÿ0.4 0 0.4

Figure 16. Dependence of the free energy density f in (5.1) on the order

parameter j (dimensionless quantity) at a � 0:7 J Kÿ1 mÿ3, Tc � 290 K,

b � 285 J mÿ3, and c � 1600 J mÿ3. The curves (from bottom up)

correspond to the temperatures T � 288, 302, 310 K and to shear strain

eel � 0.
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solidifies at a lower temperature:

T 0
c � Tc ÿ a

2a

�
teV
h

�2

: �5:14�

Also, a jump of the squared order parameter from zero to
j 2
B � b=c occurs. In the intermediate region T 0

c < T < Tc0,
the potential has the shape shown by the middle curve in
Fig. 16. It follows that the dependence j 2�T � has a hysteretic
character and corresponds to first-order phase transitions. It
follows from Fig. 17a that the lubricant melts at a lower
temperature when the shear rate increases. Curve 4 corre-
sponds to the case where the lubricant, once melted, cannot
solidify again after the temperature is decreased.4 The
lubricant always remains liquid-like, regardless of the
temperature, if the shear rate exceeds a critical value �m � 0�.5

As follows from Fig. 17b, when the shear rate exceeds the
critical value

Vc0 � h

te

�������������������������������������
2a�Tc ÿ T �

a
� b 2

2ac

r
; �5:15�

the lubricant melts; when the shear rate decreases below

V 0
c �

h

te

�������������������������
2a�Tc ÿ T �

a

r
; �5:16�

it solidifies.
Figure 18 shows the temperature T dependence of the

lubricant critical melting rate Vc0 in (5.15) and the critical
solidification rate V 0

c in (5.16). The lubricant is liquid-like
above the Vc0 curve, and the SF state is realized. In the
V < V 0

c region, the lubricant has a solid-like structure. In the
region between the curves in Fig. 18, the potential f �j� has
the form depicted by the middle curve in Fig. 16; therefore,
the lubricant state in this region is indefinite and depends on
the initial conditions. Thus, Fig. 18 presents a phase diagram
with two stationary friction states.

5.3 Friction force
The overall stress in a lubricant layer is the sum of viscous sv
and elastic sel contributions:

s � sel � sv : �5:17�

The friction force F is the total stresses times the contact
area A of rubbing surfaces,

F � sA : �5:18�

We determine viscous stresses in the lubricant layer from the
formula [7]

sv � ZeffV
h

; �5:19�

where Zeff is the effective viscosity of the lubricating material.
The boundary lubricant is a non-Newtonian liquid. Such
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Figure 17.Dependence of the stationary value of the squared order parameterj 2 (dimensionless quantity) in (5.7) on the lubricant temperatureT and the

shear rate V with the parameters in Fig. 16 and a � 4� 1012 Pa, h � 10ÿ9 m, and te � 10ÿ8 s. Curves 1±4 correspond to (a) the fixed values of the shear

rate V � 0, 650, 900, 1020 nm sÿ1, (b) fixed temperatures T � 0, 170, 270, 300 K.

4 The corresponding critical rate is easy to find from (5.14) at T 0
c � 0 or

from (5.16) at T � 0.
5 The corresponding critical rate is found from (5.13) at Tc0 � 0 or from

(5.15) at T � 0.
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Figure 18. Phase diagram with the regions of sliding (SF) and dry (DF)

friction with the parameters in Fig. 17.
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liquids are characterized by intricate dependences Z�_e�. For
example, the viscosity of polymer solutions and melts usually
decreases (pseudoplastic liquids) as the strain rate _e increases.
By contrast, the viscosity of solid particle suspensions
increases with increasing _e (dilatant liquids). For a qualita-
tive analysis, we therefore use the simple approximation [7]

Zeff � k�_e�g �5:20�
to take both situations into account. The proportionality
coefficient k [Pa s g�1] is thus introduced. According to (5.20),
g < 0 for pseodoplastic liquids, g > 0 for dilatant ones, and
g � 0 for Newtonian liquids, because viscosity is here
independent of the shear rate [see (5.20)].

With (5.10) and (5.20), we rewrite the expression for
viscous stresses (5.19) as

sv � k

�
V

h

�g�1
: �5:21�

Substituting (5.17) and (5.21) in (5.18) yields the final
expression for the friction force [118, 121]

F �
"
sel � k sgn �V �

�jV j
h

�g�1#
A ; �5:22�

where elastic stresses sel are defined by relation (5.2).6

Dependence (5.22) is shown in Fig. 19. All the curves in
Fig. 19a correspond to the parameters of the curves in
Fig. 17a. Curve 1 is absent in Fig. 19a because it was drawn
in Fig. 17a at a zero shear rate and the friction force at rest
vanishes [see (5.12), (5.22)]. The parameters of all curves in
Fig. 19b correspond to the parameters of the curves in
Fig. 17b.

It can be seen from Fig. 19a that the friction force
decreases as the temperature increases at a fixed shear rate
due to a decrease in the shear modulus. When the lubricant
melts �T > Tc0�, the friction force does not depend on
temperature, because the shear modulus is then equal to
zero in the framework of the model being considered. The

dependences exhibit hysteresis because shear modulus (5.3)
changes jumpwise during the phase transition. With the
parameters of curve 4, the melted lubricant does not solidify
again after the subsequent decrease in temperature (see the
caption to Fig. 17a); due to this, the friction curve remains
constant after melting at any T.

Figure 19b demonstrates a somewhat different behavior
of the friction force. Here, in accordance with (5.22), the total
friction force first increases with increasing the shear rate as a
result of increase in elastic strain component (5.12). But the
shear modulus decreases as the rate increases, which results in
a decrease in the elastic component of F. After the critical
velocity existing in this case is exceeded, the lubricant remains
solid-like, but the total friction force begins to decrease. As
the shear rate increases further, V > Vc0 [see (5.15)], the
lubricant melts and elastic strain (5.2) vanishes, together
with the first term in (5.22), which results in a sharp decrease
in the overall friction force. If V is increased again, F also
increases due to the growth of the viscous component [the
second term in (5.22)]. The lubricant solidifies with a sharp
increase in the friction force F at a different shear rateV � V 0

c

in (5.16). We note that the dependences of the friction force
aftermelting coincide for all curves in Fig. 19b, unlike those in
Fig. 19a, because the viscous component ofF depends only on
the shear rate, not on temperature. Figure 19b does not show
the melting transition for curve 4 to avoid cluttering the
figure. Curve 4 differs from the others in that its solid section
(stable friction force F before melting) and dashed section
(unstable F ) form a closed line. The friction force after
melting is always described by the dependence shown with
the dashed-dotted curve (stable F value after melting),
because the lubricant cannot solidify if the velocity V
decreases. The results shown in Fig. 19b are in good
qualitative agreement with the friction map (see Fig. 5) for
the boundary state proposed in Ref. [7] in summarizing
experimental data.

5.4 Melting kinetics
The dynamic characteristics of any tribologic system are
determined by its properties as a whole. Specifically, in the
hysteresis region considered above, the stick±slip motion
behavior can be realized in the friction process [6, 23].
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Figure 19.Dependence of the friction force F in (5.22) on the temperatureT of the friction surfaces and the shear rateVwith the parameters in Fig. 17 and

g � ÿ2=3,A � 3� 10ÿ9 m2, and k � 4� 105 Pa s1=3: (a) curves 2±4 correspond to constant values of the shear rateV � 650, 900, 1020 nm sÿ1; (b) curves
1±4 correspond to fixed values of temperature T � 0, 170, 270, 300 K.

6 Equation (5.22) contains the sign function sgn �x� and the absolute shear

rate jVj because V can take negative values.
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We let X denote the moving coordinate of the top block
(see Fig. 1) and write the corresponding equation of motion
[6, 14, 61]

M �X � KDXÿ F ; �5:23�

where DX is the spring extension, defined as

DX �
� t

0

V0 dt
0 ÿ X ; �5:24�

where t is the time of motion of the free spring end. IfV0 does
not change with time, expression (5.24) becomes

DX � V0tÿ X: �5:25�

To describe the lubricant behavior, we write the Landau±
Khalatnikov kinetic relaxation equation [72, 73] as

_j � ÿd q f
qj

; �5:26�

where d is the kinetic coefficient characterizing the inertial
properties of the system. Substituting energy (5.1) in (5.26)
yields the equation in the explicit form

_j � ÿd�2a�Tÿ Tc�j� aje 2el ÿ 2bj 3 � 2cj 5
�
: �5:27�

Time evolution of the system is calculated by solving kinetic
Eqns (5.11), (5.23), and (5.27) and determining the spring
extensionDX from (5.24), the friction force F from (5.22), and
the elastic stresses sel from (5.2). The relation _X � Vmust be
taken into account in solving the above equations. With a
small strain relaxation time te, Eqns (5.23) and (5.27) are
solved together, and the current strain is found from (5.12).

The solution of these equations is shown in Fig. 20. At the
selected temperature and the friction surfaces at rest, the
lubricant is solid-like. The right end of the spring begins to
move with a velocity V0 at the instant t � 0. Initially, both
constituents of friction force (5.22) increase monotonically
due to the increasing speed of the rubbing block V. Elastic
stresses sel and the spring extension DX also increase. When
the velocity exceeds the critical value V > Vc0, the lubricant
melts and elastic stresses sel vanish. But the force F does not
undergo jump-like changes because the sliding rate V of the
top block and the viscous component of the friction force
sharply increase. As the motion speed increases, the block
rapidly moves over a long distance, as is evidenced by the
increased slope ofX�t� after melting. Because the blockmoves
with a speedV that is much higher than the speed of the spring
V0, its extension DX decreases. The value of V0 remains
constant up to the first dotted line in Fig. 20; gradually, the
stationary state of the liquid-like lubricant sets in with the
unaltered values of the friction force F, the block speedV, the
spring extension DX, and zero elastic stresses sel. Also, the
dependence X�t� becomes linear. After the first dotted line,
the speed V0 is assumed to be zero (the right end of the spring
stops). The rubbing block starts to decelerate slowly because
the lubricant is liquid-like (the time instant between dotted
lines in Fig. 20). After the second dotted line, the speed
becomes V < V 0

c and the lubricant rapidly solidifies and
undergoes elastic stress, resulting in a nonzero elastic
component of the friction force; this change compensates
the jump-like decrease in the viscous component of the

friction force F due to the decreased speed of motion V. For
this reason, the friction force does not undergo jump-like
changes again. Lubricant solidification is followed by slow
relaxation of the quantities shown in Fig. 20, because the
motion of the top block is now accompanied by a decrease in
the spring extension DX and the elastic force maintaining the
motion.

5.5 Intermittent state
Experimental studies have shown unambiguously that the
intermittent (stick±slip) behavior of motion, in which the
relative velocity of rubbing surfaces varies periodically with
time, frequently appears in the framework of the boundary
friction state [6, 31, 84, 85, 123], which is illustrated in Fig. 21
showing the same dependences as in Fig. 20 but at different
parameters. It follows from Fig. 21 that the lubricant
periodically melts and solidifies, which accounts for the
oscillating motion. Figure 22 presents the same depen-
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dences, but the phase transition region is shown in more
detail. In Figs 21 and 22, the spring extension DX mono-
tonically increases at the onset of motion as in Fig. 20; this
results in an increase in the shear rate of the top block V,
leading to the enhancement of elastic stresses sel and the
friction force F. Meanwhile, the block covers a distance X,
which grows further with time. It is clear from Fig. 22 that the
lubricant melts and stresses relax to zero when the condition
V > Vc0 is satisfied, which results in a decrease in the total
friction force and a decrease in the shear rate V. Because the
rubbing block moves much faster than the right end of the
spring, the extension DX also decreases, as does the elastic
force that drives the motion. As the speed V increases in the
melted state, the friction force also increases. When the force
F and speed V reach maximum values, the extension of the
spring becomes so weak that V and F begin to decrease.
However, the condition V > V0 continues to hold for some
time after this; therefore, DX decreases further, until the
instant when the condition V < Vc0 is satisfied and the
lubricant solidifies. Solidification corresponds to a peak-
shaped increase in the friction force F (see the inset in

Fig. 22a), because other elastic stresses appear in the
lubricant (see the inset in Fig. 22d). The dependence V�t�
shown in the inset in Fig. 22b suggests that V decreases after
solidification. Such a sharp decrease in the speed is due to the
inability of the elastic force KDX to maintain the high-speed
motion, because DX falls significantly during sliding. The
lubricant now being solid-like and the speedV low, the spring
deforms again until the speed reaches the critical value at
which the lubricantmelts. This process is periodic in time. The
friction force in a liquid-like lubricant must be small if the
solidification condition V < Vc0 is to be fulfilled after
melting; it is necessary to ensure that the rubbing block
moves over a large distance and spring extension weakens
appreciably for the sliding time. Therefore, smaller values of
the coefficient k and the surface contact area A are chosen in
Figs 21 and 22 than in Fig. 20.

Figure 23 illustrates the time dependence of the friction
force at fixed temperature and increased speed V. According
to Fig. 23a, the frequency of stick±slip peaks increases with as
the speed increases because the critical elastic stresses at which
the lubricant melts are reached faster at a higher speed. As a
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result, melting occurs earlier and the system performs more
melting±solidification transitions per unit time. Figure 23b
reflects a higher temperature of the lubricating material.

Here, the lubricant is liquid-like for all selected speeds, but it
has a solid-like stricture at rest; therefore, the dependence has
a peak (shown in the inset) at the onset of motion atV0 � V01.
This magnified portion is analogous to that in Fig. 22a, the
sole difference being the absence of the peak corresponding to
solidification, because the lubricant remains liquid-like after
melting. Figure 23c corresponds to the temperature at which
the lubricant is liquid-like even at rest; therefore, there is no
peak corresponding to the melting.

Figure 24 depicts a situation with an increased lubricant
temperature T. The dependence in Fig. 24a matches the speed
V0 at which the temperature T � T1 corresponds to the solid-
like lubricant structure (at this temperature, the lubricant
does not melt as it moves and stick±slip friction is not
present). As the temperature increases further, the stick±slip
behavior develops, the amplitude of friction force fluctua-
tions decreases, and the frequency of phase transitions
increases. In Figure 24b, drawn for a higher speed V0, the
lubricant is liquid-like at T � T3 and T � T4, which results in
the sliding mode characterized by constant values of the
kinetic friction force and the shear stress of the rubbing
block. In the present model, the temperature T after melting
has no effect on friction force (5.22); therefore, F remains the
same at these temperatures.

6. Conclusion

The foregoing considerations enabled us to develop models
that can be used to describe the effects observed in the friction
of atomically flat solid surfaces in the presence of an ultrathin
lubricant layer. The results extend our knowledge of friction
physics of nanoscale objects that do not obey standard laws,
such as the Amontons law.

The melting of ultrathin lubricant films in the presence of
friction between atomically flat surfaces is represented as the
result of the action of spontaneous shear stresses induced by
external supercritical heating. The critical temperature of
friction surfaces at which melting occurs increases linearly
with the characteristic value of shear viscosity and decreases
with increasing the lubricant shear modulus. It is shown that
the stick±slip friction behavior is realized if the lubricant
temperature relaxation time is much longer than the relaxa-
tion time of shear stresses and strain. Hysteresis is described
for the dependences of stationary stresses on stationary strain
and the temperature of friction surfaces.

The additive noncorrelated noise of shear stresses and
strain is taken into consideration in conjunction with the
lubricant film temperature. The phase diagram is constructed
in which the intensities of lubricant strain and temperature
fluctuations define regions of liquid, intermittent, and dry
friction. Numerical analysis of the Langevin equation for
different regions of the diagram has enabled the construction
of stress time series that help explain friction experiments with
stick±slip motion. The conditions under which these series
become multifractal are elucidated.

A thermodynamic model of the melting of an ultrathin
lubricant layer has been developed.Melting and solidification
of lubricating materials are represented as first-order phase
transitions. When rubbing surfaces slide with a constant
velocity, the lubricant melts after the temperature or elastic
shear stresses exceed their critical values. Because a first-order
phase transition is considered, the lubricant solidifies at lower
values of these quantities. The relevant phase diagram is
constructed in the shear-rate±lubricant temperature coordi-
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nates. The system kinetics is considered in the framework of
the mechanical analog of a simple tribologic system. Three
cases are feasible depending on the values of the above
parameters: (1) the lubricant is always solid-like during
friction, (2) the lubricant is liquid-like, (3) periodic melting±
solidification transitions occur in the lubricant, resulting in
intermittent motion. The transition region for stick±slip
friction is considered in detail at small times, and the cause
behind such behavior is explained. The data obtained are in
qualitative agreement with the known experimental findings.

This work was partly supported by the Ukrainian
Ministry of Education and Science, Youth and Sports in the
framework of the project ``Modeling Friction of Metallic
Nanoparticles and Boundary Liquid Films Interacting with
Atomically Flat Surfaces'' (No. 0112U001380).
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