- 24. Андрианов Е С и др. *Радиотехника и электроника* **56** 1501 (2011) [Andrianov E S et al. *J. Commun. Technol. Electron.* **56** 1471 (2011)]
- 25. Андрианов Е С и др. *Радиотехника и электроника* **57** 114 (2012) [Andrianov E S et al. *J. Commun. Technol. Electron.* **57** 106 (2012)]
- 26. Berndt R, Gimzewski J K, Johansson P Phys. Rev. Lett. 67 3796 (1991)
- 27. Blackie E J, Le Ru E C, Etchegoin P G J. Am. Chem. Soc. 131 14466 (2009)
- 28. Le Ru E C et al. J. Phys. Chem. C 111 13794 (2007)
- 29. Kneipp K, Moskovits M, Kneipp H (Eds) *Surface-Enhanced Raman Scattering. Physics and Applications* (Berlin: Springer, 2006)
- Schlücker S (Ed.) Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Weinheim: Wiley-VCH, 2011)
- 31. Cai W, Shalaev V Optical Metamaterials: Fundamentals and Applications (New York: Springer, 2010)
- 32. Pendry J B Phys. Rev. Lett. 85 3966 (2000)
- 33. Belov P A, Simovski C R, Ikonen P Phys. Rev. B 71 193105 (2005)
- 34. Chen H et al. *Phys. Rev. Lett.* **99** 063903 (2007)
- 35. Cummer S A et al. Phys. Rev. E 74 036621 (2006)
- 36. Leonhardt U IEEE J. Sel. Top. Quantum Electron. 9 102 (2003)
- 37. Liu Z et al. Science 315 1686 (2007)
- 38. Pendry J B, Schurig D, Smith D R Science 312 1780 (2006)
- 39. Schurig D et al. *Science* **314** 977 (2006)
- 40. Yang J et al. Opt. Express 17 19656 (2009)
- Колоколов А А, Скроцкий Г В УФН 162 (12) 165 (1992) [Kolokolov A A, Skrotskii G V Sov. Phys. Usp. 35 1089 (1992)]
- 42. Vinogradov A P, Dorofeenko A V Opt. Commun. 256 333 (2005)
- 43. Лагарьков А Н и др. *УФН* **179** 1018 (2009) [Lagarkov A N et al. *Phys. Usp.* **52** 959 (2009)]
- 44. Noginov M A et al. Opt. Express 16 1385 (2008)
- 45. Noginov M A et al. Opt. Lett. **31** 3022 (2006)
- 46. Popov A K, Shalaev V M Opt. Lett. 31 2169 (2006)
- 47. Anantha Ramakrishna S, Pendry J B Phys. Rev. B 67 201101(R) (2003)
- Sarychev A K, Pukhov A A, Tartakovsky G PIERS Online 3 1264 (2007)
- 49. Sarychev A K, Tartakovsky G Proc. SPIE 6320 63200A (2006)
- 50. Wuestner S et al. Phys. Rev. Lett. 105 127401 (2010)
- 51. Yu Z et al. Appl. Phys. Lett. 92 041117 (2008)
- 52. Шатров А Д *Радиотехника и электроника* **52** 909 (2007) [Shatrov A D J. Commun. Technol. Electron. **52** 842 (2007)]
- Шатров А Д Радиотехника и электроника 52 1430 (2007) [Shatrov A D J. Commun. Technol. Electron. 52 1324 (2007)]
- 54. Bergman D J, Stockman M I Phys. Rev. Lett. 90 027402 (2003)
- 55. Noginov M A et al. Nature 460 1110 (2009)
- 56. Fang A, Koschny T, Soukoulis C M J. Opt. 12 024013 (2010)
- 57. Fang A et al. Phys. Rev. B 79 241104(R) (2009)
- Gabitov I R, Kennedy B, Maimistov A I IEEE J. Sel. Top. Quantum Electron. 16 401 (2010)
- Быков В П Лазерная электродинамика. Элементарные и когерентные процессы при взаимодействии лазерного излучения с веществом (М.: Физматлит, 2006)
- 60. Климов В В Наноплазмоника (М.: Физматлит, 2010)
- 61. Davis L C Phys. Rev. B 14 5523 (1976)
- 62. Eguiluz A, Maradudin A A Phys. Rev. B 14 5526 (1976)
- 63. Gramotnev D K, Bozhevolnyi S I Nature Photon. 4 83 (2010)
- 64. Novikov I V, Maradudin A A Phys. Rev. B 66 035403 (2002)
- 65. Hill M T et al. Opt. Express 17 11107 (2009)
- 66. Зуев В С, Препринт № 3 (М.: ФИАН им. П.Н. Лебедева, 2006)
- 67. Зуев В С, Зуева Г Я Оптика и спектроскопия **107** 648 (2009) [Zuev V S, Zueva G Ya Opt. Spectrosc. **107** 614 (2009)]
- Palik E D (Ed.) Handbook of Optical Constants of Solids (Orlando: Academic Press, 1985)
- 69. Muller A et al. Appl. Phys. Lett. 84 981 (2004)
- Scully M O, Zubairy M S Quantum Optics (Cambridge: Cambridge Univ. Press, 1997) [Скалли M O, Зубайри M C Квантовая оптика (М.: Физматлит, 2003)]
- 71. Milonni P W J. Mod. Opt. **42** 1991 (1995)
- Ландау Л Д, Лифшиц Е М, Питаевский Л П Электродинамика сплошных сред (М.: Физматлит, 2003) [Landau L D, Lifshitz E M, Pitaevskii L P Electrodynamics of Continuous Media (Oxford: Pergamon Press, 1984)]

- 73. Sarychev A K, Tartakovsky G Phys. Rev. B 75 085436 (2007)
- Pantell R H, Puthoff H E Fundamentals of Quantum Electronics (New York: Wiley, 1969) [Пантел Р, Путхоф Γ Основы квантовой электроники (М.: Мир, 1972)]
- 75. Li K et al. Phys. Rev. B 71 115409 (2005)
- 76. Stietz F et al. Phys. Rev. Lett. 84 5644 (2000)
- 77. Bayer M, Forchel A Phys. Rev. B 65 041308(R) (2002)
- 78. Harbold J M et al. *Phys. Rev. B* **72** 195312 (2005)
- 79. Sosnowski T S et al. Phys. Rev. B 57 R9423 (1998)
- Анищенко В С, Астахов В В, Вадивасова Т Е Регулярные и хаотические автоколебания. Синхронизация и влияние флуктуаций (Долгопрудный: Интеллект, 2009)
- Кузнецов А П, Кузнецов С П, Рыскин Н М Нелинейные колебания (М.: Физматлит, 2002)
- Pikovsky A, Rosenblum M, Kurths J Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge Univ. Press, 2001) [Пиковский А, Розенблюм М, Куртс Ю Синхронизация. Фундаментальное нелинейное явление (М.: Техносфера, 2003)]
- 83. Fedyanin D Yu, Arsenin A V Opt. Express 19 12524 (2011)
- 84. Flynn R A et al. Opt. Express 19 8954 (2011)
- Вайнштейн Л А Электромагнитные волны (М.: Радио и связь, 1988)
- Scott A Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford: Oxford Univ. Press, 2003) [Скотт Э Нелинейная наука: рождение и развитие когерентных структур (М.: Физматлит, 2007)]

PACS numbers: 33.50.Dq, 73.20.Mf, 78.20.Ek DOI: 10.3367/UFNr.0182.201210k.1130

Управление излучением киральных молекул с помощью киральных нанометачастиц

В.В. Климов, Д.В. Гузатов

1. Введение

В настоящее время благодаря развитию нанотехнологий появились новые области оптики — нанооптика и наноплазмоника, предметом которых являются весьма нетривиальные свойства оптических полей на наномасшбах и их практические приложения [1, 2]. Одним из важнейших достижений в этой области является возможность эффективно управлять излучением обычных атомов и молекул с помощью наночастиц (Surface Enhanced Raman Scattering (SERS), Surface Enhanced Fluorescence (SEF)) [3–6]. Интересные эффекты были также обнаружены при исследовании влияния киральных наночастиц или наночастиц из метаматериалов с отрицательным показателем преломления на излучение обычных молекул [7, 8].

Более сложные оптически активные (киральные) молекулы значительно интереснее, так как именно они составляют основу жизни. При этом возникает естественный вопрос: можно ли эффективно и произвольно управлять излучением киральных молекул и использовать это для различных биомедицинских приложений (например, разделения рацемических смесей)? В настоящей статье будет показано, что это возможно, если для управления использовать наночастицы, изготовленные из метаматериалов (см., например, [9, 10]).

В.В. Климов. Физический институт им. П.Н. Лебедева РАН, Москва, РФ; ООО "Фотонные нанометатехнологии", Москва, РФ E-mail: vklim@sci.lebedev.ru

Д.В. Гузатов. Гродненский государственный университет им. Я. Купалы, Гродно, Белоруссия

2. Киральность и оптическая активность

Киральность — это свойство систем не совпадать со своим зеркальным изображением ни при каких вращениях и перемещениях [11]. Из этого определения следует, что, во-первых, киральность — это геометрическое свойство объекта, во-вторых, этим свойством могут обладать только пространственные, т.е. трёхмерные, объекты. Наиболее важными киральными объектами являются аминокислоты и сахара, которые в принципе могут существовать в форме правых или левых энантиомеров. Однако чрезвычайно важно то, что правые энантиомеры аминокислот и левые энантиомеры сахаров в живой природе не встречаются. Именно эта асимметрия делает оптические исследования таких и родственных явлений чрезвычайно важными. Возможность таких исследований основана на том, что киральные молекулы часто обладают свойством оптической активности, т.е. по-разному реагируют на свет с различной поляризацией. В частности, если линейно поляризованный свет падает на оптически активные молекулы, то его плоскость поляризации изменяется (вращается) и степень этого вращения определяется фактором

$$\frac{n_{\rm left} - n_{\rm right}}{n_{\rm left} + n_{\rm right}} \sim \frac{{\rm paзмер \, молекулы}}{{\rm длина \, волны}} \ll 1,$$
(1)

где *n*_{left}, *n*_{right} — показатели преломления волн с правой и левой поляризациями.

Поглощение волн с различной круговой поляризацией также различно, и степень этого различия определяется фактором

$$\frac{A_{\text{left}} - A_{\text{right}}}{A_{\text{left}} + A_{\text{right}}} \sim \frac{\text{размер молекулы}}{\text{длина волны}} \ll 1,$$
(2)

где A_{left}, A_{right} — показатели поглощения волн с правой и левой поляризациями. Так как размер молекул обычно мал по сравнению с оптическими длинами волн, эффекты оптической активности являются очень слабыми. Несмотря на эту малость, эффекты вращения плоскости поляризации и кругового дихроизма находят широкое применение при исследованиях различных конформаций биомолекул.

Применяя методы нанооптики и наноплазмоники, эти очень малые эффекты можно существенно увеличить (на 4–6 порядков!) с помощью использования наноструктурированных киральных метаматериалов [12] или даже кластеров некиральных наночастиц [13].

Мы же хотим научиться управлять именно *излуче*нием света киральными молекулами (а не поглощением света) с помощью киральных нанометачастиц (см. далее, что это такое).

3. Киральные молекулы

Для того чтобы решить задачу управления излучением света киральными молекулами, надо прежде всего понять разницу между "обычными" и "оптически активными" (киральными) молекулами. Обычные молекулы характеризуются только электрическим дипольным моментом, и их гамильтониан взаимодействия света с веществом имеет вид

$$H_{\rm int} = -\mathbf{d}\mathbf{E}\,,\tag{3}$$

где **d** — дипольный момент перехода между основным и возбуждённым состояниями, **E** — напряжённость элект-

рического поля в области расположения молекулы. Такой гамильтониан в принципе не позволяет описывать явления оптической активности.

Киральные (оптически активные) молекулы имеют как электрический, так и магнитный моменты переходов [14, 15]. Если при этом в качестве модели киральной молекулы рассмотреть спираль, то для правых молекул, для которых электрический и магнитный моменты перехода параллельны, гамильтониан взаимодействия с электромагнитным полем имеет вид

$$H_{\rm int} = -\mathbf{d}\mathbf{E} - \mathbf{m}\mathbf{H}\,,\tag{4}$$

в то время как для левых молекул, для которых электрический и магнитный моменты перехода параллельны, гамильтониан взаимодействия с электромагнитным полем

$$H_{\rm int} = -\mathbf{d}\mathbf{E} + \mathbf{m}\mathbf{H}\,.\tag{5}$$

В (4) и (5) **d**, **m** — дипольные моменты перехода между основным и возбуждённым состояниями в правой молекуле, **E**, **H** — напряжённости электромагнитного поля в области её расположения.

4. Киральные нанометачастицы

Для управления излучением киральных молекул нужно эффективно "перемешивать" электрические и магнитные поля, для чего идеально подходят киральные нанометачастицы. В простейшем случае в качестве такой частицы может быть рассмотрена плазмонная киральная наночастица, т.е. слоистая наночастица (наноразмер — размер менее длины волны), ядро которой состоит из золота, а оболочка — из натурального сахара. В общем случае материальные уравнения вещества киральной нанометачастицы имеют вид [16]

$$\mathbf{D} = \varepsilon (\mathbf{E} + \eta \operatorname{rot} \mathbf{E}), \quad \mathbf{B} = \mu (\mathbf{H} + \eta \operatorname{rot} \mathbf{H}), \quad (6)$$

где **D**, **E** и **B**, **H** — индукция и напряжённость электрического и магнитного поля соответственно, ε , μ — диэлектрическая и магнитная проницаемости материала киральной среды, η — размерный параметр киральности. Безразмерный параметр киральности удобно ввести выражением $\chi = \omega \eta / c$.

Из (6) видно, что, как и в случае оптически активных молекул (см. (4), (5)), происходит запутывание электрических и магнитных явлений и можно ожидать эффективного взаимодействия таких наночастиц с киральными молекулами. Заметим, что, если говорить более формально, материальные уравнения соответствуют так называемым киральным (биизотропным) средам [17].

Даже малая киральность наночастицы приводит к существенному изменению её резонансных оптических свойств. На рисунке 1 показана зависимость резонансных свойств киральной плазмонной сферической наночастицы от диэлектрической и магнитной проницаемостей. Рисунок 1а соответствует случаю нанометачастицы с нулевой киральностью. Из этого рисунка видно, что при $\varepsilon \approx -2$ имеет место обычный плазмонный резонанс, который практически не зависит от магнитной проницаемости наночастицы. Если наночастица имеет сколь угодно малую примесь киральности (рис. 16), то ситуация существенно меняется, поскольку в результате взаимодействия электрических и магнитных колебаний существенно изменяется структура резонанса, т.е. возникает плазмонно-киральный резонанс. Именно плазмонно-

гис. 1. Кирально-плазмонный резонанс в сферической частин $k_0a = 0,1$: (a) $\chi = 0,$ (б) $\chi = 0,1$.

киральный резонанс позволяет избирательно и эффективно управлять излучением киральных молекул.

5. Квантовая теория излучения киральной молекулы вблизи киральной нанометасферы

Как говорилось во введении, скорость спонтанного излучения существенно зависит от наноокружения, и в этом разделе будет последовательно описана квантовая теория спонтанного излучения киральной молекулы вблизи киральной наночастицы [18].

В киральном случае золотое правило Ферми [19] вполне применимо и скорость спонтанной релаксации может быть описана известным выражением

$$\Gamma = \frac{2\pi}{\hbar} \sum_{\text{final}} \left| \langle \text{initial} | H_{\text{int}} | \text{final} \rangle \right|^2 \rho(\omega) , \qquad (7)$$

где $\rho(\omega)$ — плотность конечных состояний, $H_{\text{int}} = -(\hat{\mathbf{d}}\hat{\mathbf{E}}(\mathbf{r}_0)) - (\hat{\mathbf{m}}\hat{\mathbf{H}}(\mathbf{r}_0))$ — гамильтониан взаимодействия электромагнитного поля и киральной молекулы, $\hat{\mathbf{d}} = e\hat{\mathbf{r}}, \ \hat{\mathbf{m}} = -i\hbar e/(2mc) (\hat{\mathbf{r}} \times \nabla)$ — операторы электрического и магнитного дипольных моментов,

$$\hat{\mathbf{E}}(\mathbf{r}) = i \sum_{s} \frac{a_{s} \mathbf{e}(s, \mathbf{r}) - a_{s}^{\dagger} \mathbf{e}^{*}(s, \mathbf{r})}{\sqrt{2}} ,$$
$$\hat{\mathbf{H}}(\mathbf{r}) = \sum_{s} \frac{a_{s} \mathbf{h}(s, \mathbf{r}) + a_{s}^{\dagger} \mathbf{h}^{*}(s, \mathbf{r})}{\sqrt{2}}$$

— операторы квантованного электромагнитного поля (индекс *s* нумерует моды).

В целом квантование электромагнитного поля сводится к нахождению собственных мод $\mathbf{e}(s, \mathbf{r})$, $\mathbf{h}(s, \mathbf{r})$ системы, и эти моды называются фотонами. К сожалению, в нашем случае обычные понятия фотонов (ТЕ- и ТМмоды) неприменимы и необходимо всю процедуру квантования строить заново. Для квантования мы предположим, что наша система молекула + наночастица помещена в бесконечно большой сферический резонатор с идеально проводящей стенкой (рис. 2). После этого фотонную моду внутри сферы можно искать в виде разложения по векторным сферическим гармоникам [20]:

$$\mathbf{e}_{mn}(\mathbf{r}) = A_{mn}^{\mathrm{L}}(\mathbf{N}\mathbf{\psi}_{mn}^{\mathrm{L}} + \mathbf{M}\mathbf{\psi}_{mn}^{\mathrm{L}}) + A_{mn}^{\mathrm{R}}(\mathbf{N}\mathbf{\psi}_{mn}^{\mathrm{R}} - \mathbf{M}\mathbf{\psi}_{mn}^{\mathrm{R}}), \quad (8)$$

причём сюда входят комбинации как ТЕ-гармоник, так и ТМ-гармоник, индексы L и R относятся к лево- и правополяризованным плоским волнам в свободном пространстве соответственно с волновыми числами

$$k_{\rm L} = rac{k_0 \sqrt{arepsilon \mu}}{1 - \chi \sqrt{arepsilon \mu}} \,, \qquad k_{\rm R} = rac{k_0 \sqrt{arepsilon \mu}}{1 + \chi \sqrt{arepsilon \mu}} \,.$$

Рис. 2. Геометрия квантования электромагнитного поля в присутствии киральной сферы.

Фотонная мода снаружи частицы ищется в виде комбинации расходящихся и сходящихся сферических ТЕ- и ТМ-волн [20]

$$\mathbf{e}_{mn}(\mathbf{r}) = C_{mn}^{(1)} \mathbf{N} \boldsymbol{\zeta}_{mn}^{(1)} + C_{mn}^{(2)} \mathbf{N} \boldsymbol{\zeta}_{mn}^{(2)} + D_{mn}^{(1)} \mathbf{M} \boldsymbol{\zeta}_{mn}^{(1)} + D_{mn}^{(2)} \mathbf{M} \boldsymbol{\zeta}_{mn}^{(2)} .$$
(9)

Применяя граничные условия непрерывности тангенциальных компонент напряжённостей полей и нормировку на один фотон во всём пространстве, можно найти явные выражения для всех коэффициентов, входящих в (8) и (9) [18]. Получающееся дисперсионное уравнение имеет два решения, которые соответствуют двум типам фотонов. Мы назовём эти фотоны А- и В-фотонами. При $\chi = 0$ фотоны А-типа сводятся к ТМ-фотонам, а фотоны В-типа — к ТЕ-фотонам. Плотность конечных состояний для фотонов любого типа $\rho(\omega) = \Lambda/(\pi\hbar c)$, в соответствии с теоремой Куранта [21], не зависит от присутствия частиц конечного объёма.

Используя найденные выражения и записывая матричные элементы перехода молекулы в виде $\mathbf{d}_0 = \langle e | \hat{\mathbf{d}} | g \rangle$ и $-\mathbf{i}\mathbf{m}_0 = \langle e | \hat{\mathbf{m}} | g \rangle$, скорость спонтанного излучения (7) произвольной киральной молекулы вблизи произвольной биизотропной сферы можно представить в виде суммы скоростей распада на фотоны А- и В-типа. Например, для скорости распада на фотоны типа А имеем

где

 $\gamma_{eg}^{\mathrm{A}} = \gamma_{eg}^{\mathrm{A},-1} + \gamma_{eg}^{\mathrm{A},1} + \gamma_{eg}^{\mathrm{A},0} ,$

$$\begin{split} \gamma_{eg}^{\mathrm{A},-1} &= \frac{k_0}{2\hbar r_0^2} \sum_{n=1}^{\infty} \frac{2n+1}{1+|O_n|^2} \times \\ &\times \left| (d_{0x} - \mathrm{i} d_{0y}) (\psi'_n(k_0 r_0) + T_n^{\mathrm{A}} \zeta_n^{(1)'}(k_0 r_0)) - \right. \\ &- O_n(d_{0y} + \mathrm{i} d_{0x}) (\psi_n(k_0 r_0) + L_n^{\mathrm{A}} \zeta_n^{(1)}(k_0 r_0)) + \\ &+ O_n(m_{0x} - \mathrm{i} m_{0y}) (\psi'_n(k_0 r_0) + L_n^{\mathrm{A}} \zeta_n^{(1)'}(k_0 r_0)) - \\ &- (m_{0y} + \mathrm{i} m_{0x}) (\psi_n(k_0 r_0) + T_n^{\mathrm{A}} \zeta_n^{(1)}(k_0 r_0)) \right|^2, \end{split}$$
(11)

(10)

 $\gamma_{eg}^{\mathbf{A}}$

$$^{1} = \frac{k_{0}}{2\hbar r_{0}^{2}} \sum_{n=1}^{\infty} \frac{2n+1}{1+|O_{n}|^{2}} \times \\ \times \left| O_{n}(d_{0y} - \mathrm{i}d_{0x}) (\psi_{n}(k_{0}r_{0}) + L_{n}^{\mathrm{A}}\zeta_{n}^{(1)}(k_{0}r_{0})) - \right. \\ \left. - (d_{0x} + \mathrm{i}d_{0y}) (\psi_{n}'(k_{0}r_{0}) + T_{n}^{\mathrm{A}}\zeta_{n}^{(1)'}(k_{0}r_{0})) + \right. \\ \left. + (m_{0y} - \mathrm{i}m_{0x}) (\psi_{n}(k_{0}r_{0}) + T_{n}^{\mathrm{A}}\zeta_{n}^{(1)}(k_{0}r_{0})) - \right. \\ \left. - O_{n}(m_{0x} + \mathrm{i}m_{0y}) (\psi_{n}'(k_{0}r_{0}) + L_{n}^{\mathrm{A}}\zeta_{n}^{(1)'}(k_{0}r_{0})) \right|^{2}, \quad (12)$$

$$\gamma_{eg}^{A,0} = \frac{2}{\hbar k_0 r_0^4} \sum_{n=1}^{\infty} \frac{(2n+1)n(n+1)}{1+|O_n|^2} \times \\ \times \left| d_{0z} (\psi_n(k_0 r_0) + T_n^A \zeta_n^{(1)}(k_0 r_0)) + \right. \\ \left. + O_n m_{0z} (\psi_n(k_0 r_0) + L_n^A \zeta_n^{(1)}(k_0 r_0)) \right|^2,$$
(13)

 T_n^A , L_n^A и O_n — некоторые коэффициенты, которые выражаются через функции Бесселя и зависят только от свойств сферы [18]. Для скорости распада на В-фотоны имеем аналогичные выражения [18].

6. Анализ результатов и иллюстрации

Выражения (11)-(13) фактически исчерпывают задачу о спонтанном излучении произвольной молекулы вблизи киральной сферы произвольного состава и размера. К сожалению, эти выражения несколько громоздки, что затрудняет их понимание и интерпретацию. В наиболее интересном случае наносферы результаты (11)-(13) могут быть упрощены. Однако вместо формального нахождения асимптотик ниже мы рассмотрим спонтанное излучение киральных молекул вблизи киральной нанометачастицы в рамках квазистатического (и квазиклассического) приближения [22]. Как будет ясно, такой, более физический, подход полностью согласуется с точным решением (11)-(13) и позволяет полностью понять физику процессов.

Ближние поля, создаваемые молекулой, которая описывается осциллирующими электрическим и магнитным дипольными моментами с амплитудами \mathbf{d}_0 , $-\mathbf{i}\mathbf{m}_0$, имеют хорошо известный вид:

$$\mathbf{E}_{0} = \frac{3\mathbf{r}(\mathbf{rd}_{0}) - r^{2}\mathbf{d}_{0}}{r^{5}}, \quad \mathbf{H}_{0} = -\frac{i(3\mathbf{r}(\mathbf{rm}_{0}) - r^{2}\mathbf{m}_{0})}{r^{5}}, \quad (14)$$

где **г** — радиус-вектор от центра сферы к точке наблюдения. В (14) и далее фактор монохроматической зависимости от времени опущен.

Ближние поля (14) индуцируют дипольные моменты в наночастице

$$\delta \mathbf{d} = \alpha_{EE} \mathbf{E}_0(\mathbf{r}_0) + \alpha_{EH} \mathbf{H}_0(\mathbf{r}_0), \qquad (15)$$
$$\delta \mathbf{m} = \alpha_{HE} \mathbf{E}_0(\mathbf{r}_0) + \alpha_{HH} \mathbf{H}_0(\mathbf{r}_0),$$

где электромагнитные поляризуемости киральной сферы имеют вид

$$\alpha_{EE} = a^3 \frac{(\varepsilon - 1)(\mu + 2) + 2\varepsilon\mu\chi^2}{(\varepsilon + 2)(\mu + 2) - 4\varepsilon\mu\chi^2},$$

$$\alpha_{EH} = a^3 \frac{3\chi\varepsilon\mu i}{(\varepsilon + 2)(\mu + 2) - 4\varepsilon\mu\chi^2},$$

$$\alpha_{HH} = \alpha_{EE}(\varepsilon \leftrightarrow \mu), \qquad \alpha_{HE} = -\alpha_{EH}.$$
(16)

Если дополнительно предположить, что расстояние между молекулой и наночастицей мало по сравнению с длиной волны, то интенсивность излучения системы частица + молекула описывается выражением

$$\Gamma \propto \left| \mathbf{d}_0 + \delta \mathbf{d} \right|^2 + \left| -i\mathbf{m}_0 + \delta \mathbf{m} \right|^2, \tag{17}$$

в котором интерференция между излучениями электрического и магнитного диполей не возникает из-за малости набега фазы. Подставляя в (17) выражения (15), получим

$$\Gamma \propto \left| \mathbf{d}_0 + \frac{\alpha_{EE}}{r_0^3} \left(3\mathbf{n}(\mathbf{n}\mathbf{d}_0) - \mathbf{d}_0 \right) + \frac{i\alpha_{EH}}{r_0^3} \left(3\mathbf{n}(\mathbf{n}\mathbf{m}_0) - \mathbf{m}_0 \right) \right|^2 + \left| \mathbf{m}_0 + \frac{i\alpha_{HE}}{r_0^3} \left(3\mathbf{n}(\mathbf{n}\mathbf{d}_0) - \mathbf{d}_0 \right) + \frac{\alpha_{EE}}{r_0^3} \left(3\mathbf{n}(\mathbf{n}\mathbf{m}_0) - \mathbf{m}_0 \right) \right|^2.$$
(18)

Если ориентация молекул не фиксированна (как это часто бывает на практике), то по ней надо провести усреднение, в результате которого имеем

$$\Gamma_{\rm eff} = \frac{4k_0^3 |\mathbf{d}_0|^2}{3\hbar} \left\{ 1 + \frac{2}{r_0^6} |\alpha_{EE} - i\xi \alpha_{EH}|^2 + |\xi|^2 + \frac{2}{r_0^6} |i\alpha_{HE} + \xi \alpha_{HH}|^2 \right\},$$
(19)

где $\mathbf{m}_0 = \xi \mathbf{d}_0$.

На рисунке 3 проведено сравнение результатов вычислений в рамках квантовой электродинамики (КЭД) и квазистатического приближения (19). Из рисунка видно, что результаты этой простой теории находятся в полном соответствии с результатами точного КЭД-расчёта (см. (11)–(13)) для наночастиц. Простота интерпретации теории позволяет в явном виде найти условия, при которых излучение киральной молекулы той или иной киральности будет подавлено. Для этого необходимо, чтобы:

1) система имела кирально-плазмонный резонанс

$$(\varepsilon + 2)(\mu + 2) - 4\varepsilon\mu\chi^2 = 0$$
(20)

(это позволяет усилить магнитные поля);

Рис. 3. Сравнение результатов вычисления скорости спонтанного излучения киральной молекулы в рамках КЭД и квазистатического приближения. Молекула расположена вблизи поверхности киральной сферической наночастицы с $\varepsilon = \varepsilon' + i0,1$, $\mu = -1,6$, $\chi = 0,2$ и $k_0a = 0,1$. Молекула ориентирована по радиусу.

Рис. 4. Скорость спонтанного излучения левой молекулы Γ_L/Γ_0 (а) и её отношение к скорости спонтанного излучения правой молекулы Γ_L/Γ_R (б). Молекулы расположены вблизи киральной нанометачастицы с $k_0a = 0,1, \chi = 0,2, \xi = m_{0z}/d_{0z} = 0,1; \varepsilon'' = 0,1.$

2) индуцированный в наночастице электрический момент был равен нулю,

 $d_0 \alpha_{EE} - \mathrm{i} m_0 \alpha_{EH} = 0 \,. \tag{21}$

Отсюда следует условие дискриминации

$$\mu^* \to -\frac{2d_0}{d_0 + 2m_0\chi}, \quad \epsilon^* \to -\frac{2m_0}{m_0 + 2d_0\chi},$$
 (22)

т.е. при таких μ и ε излучение киральной молекулы будет подавлено. В то же время излучение молекулы с противоположной киральностью ($m_0 \rightarrow -m_0$) вблизи наночастицы с параметрами (22) подавляться не будет!

Для иллюстрации этого эффекта на рис. 4 показаны скорость спонтанного излучения левой киральной молекулы и её отношение к скорости спонтанного излучения правой киральной молекулы. Из рисунка видно, что, действительно, при выполнении условия (22) (в данном случае при $\varepsilon \approx -0,4$ и $\mu \approx -2$ (что соответствует метаматериалу с отрицательным показателем преломления [23]) излучение правой молекулы почти подавлено, тогда как излучение левой молекулы усилено кирально-плазмонным резонансом. В результате скорость распада левой молекулы более чем в 10 раз превышает скорость распада правой молекулы. Заметим, что такие киральные метаматериалы с отрицательным показателем преломления вполне реальны [24]).

В том случае, когда нам нужно подавить излучение левых молекул и усилить излучение правых, метаматериал наночастицы, в соответствии с (22), должен иметь положительную диэлектрическую и отрицательную магнитную проницаемости. Такие метаматериалы также вполне возможны [9, 10].

7. Приложения обнаруженных эффектов

После того как мы теоретически показали, что выбором параметров киральной наночастицы можно подавить излучение одних энантиомеров и усилить излучение других, открываются широкие перспективы по применению данного эффекта.

Прежде всего, обнаруженный эффект может использоваться при исследовании с помощью сканирующих микроскопов образцов, в которых один тип энантиомеров доминирует, поэтому обнаружить и подсчитать

Рис. 5. Обнаружение отдельных молекул с заданной киральностью.

малое количество энантиомера с противоположной киральностью обычными методами не представляется возможным. Однако если на конец иглы сканирующего микроскопа поместить частицу (рис. 5), материал которой выбран в соответствии с условиями (22) так, чтобы подавлялось излучение основной массы ненужных молекул, то в поле зрения микроскопа попадут только искомые молекулы (поиски внеземной жизни, биотеррористические атаки и т.д.).

Ещё более важным направлением применения полученных результатов является чисто оптическое разделение рацемических смесей биомолекул (рис. 6). Такие смеси, в частности, возникают при химическом синтезе лекарств. Однако для корректного воздействия нужен только один определённый энантиомер. Применяемые в настоящее время химические методы разделения сложны и дороги, поэтому разработка чисто оптического метода разделения энантиомеров представляется весьма привлекательной. Полученные выше результаты позволяют, по крайней мере в принципе, сделать это. Принцип работы чисто оптической установки по разделению энантиомеров показан на рис. 6. Синтезированные молекулы тем

или иным способом возбуждаются в камере, поверхность которой покрыта наночастицами, соответствующими условию (22). Энантиомеры одного типа (скажем, "правые") быстро переходят в основное состояние, в то время как энантиомеры другого типа ("левые") остаются в возбуждённом состоянии. Применяя ионизирующий импульс излучения, можно электрическим полем удалить ионизированные молекулы, в результате чего в реакционной камере останутся только заданные энантиомеры. Весьма важно, что при данном методе синтеза не происходит загрязнения побочными химическими веществами, необходимыми при разделении химиче скими методами.

8. Заключение

Таким образом, проблема описания спонтанного излучения киральных молекул вблизи киральной сферы произвольного состава решена аналитически как в рамках КЭД, так и в квазистатическом приближении.

Показано, что если частица, являясь киральной, имеет отрицательный показатель преломления или отрицательную магнитную проницаемость, то излучение правых и левых молекул вблизи неё может существенно различаться. Заметим, что полученные результаты являются общими и не ограничиваются только случаем одной наночастицы. Уже показано, что кластеры киральных нанометачастиц являются даже более перспективными с точки зрения управления излучением энантиомеров [25].

Полученные результаты открывают дорогу к чисто оптическому разделению энантиомеров лекарственных препаратов.

Работа поддержана РФФИ (гранты 11-02-91065, 11-02-92002, 11-02-01272, 12-02-90014, 12-02-90417), БРФФИ (грант Ф12Р-006), Программами Президиума РАН, Фондом развития Центра разработки и коммерциализации новых технологий (Сколково).

Список литературы

- Novotny L, Hecht B Principles of Nano-Optics (Cambridge: Cambridge Univ. Press, 2006) [Новотный Л, Хехт Б Основы нанооптики (М.: Физматлит, 2009)]
- 2. Климов В Наноплазмоника (М.: Физматлит, 2010)
- 3. Климов В В УФН 173 1008 (2003) [Klimov V V Phys. Usp. 46 979 (2003)]
- 4. Kneipp K, Moskovits M, Kneipp H (Eds) Surface-Enhanced Raman Scattering. Physics and Applications (Berlin: Springer, 2006)
- 5. Lakowicz J R et al. J. Phys. D 36 R240 (2003)
- 6. Manno D et al. Nanotechnology 21 165502 (2010)
- 7. Lakhtakia A, Varadan V K, Varadan V V J. Phys. D 23 481 (1990)
- 8. Klimov V V Opt. Commun. 211 183 (2002)
 - 9. Cai W, Shalaev V Optical Metamaterials: Fundamentals and Applications (New York: Springer, 2010)
 - Noginov M A, Podolskiy V A (Ed.) *Tutorials in Metamaterials* (Boca Raton, FL: Taylor & Francis, 2012)
 - 11. Kelvin W T (Lord) Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (London: C.J. Clay and Sons, 1904)
 - 12. Hendry E et al. Nature Nanotechnol. 5 783 (2010)
 - 13. Govorov A O et al. *Nano Lett.* **10** 1374 (2010)
 - 14. Rosenfeld L Z. Phys. 52 161 (1929)
 - 15. Barron L D Molecular Light Scattering and Optical Activity (Cambridge: Cambridge Univ. Press, 1982)
 - Бокуть Б В, Сердюков А Н, Федоров Ф И Кристаллография 15 1002 (1970) [Bokut' В V, Serdyukov A N, Fedorov F I Sov. Phys. Crystallogr. 15 871 (1971)]
 - 17. Lindell I V et al. *Electromagnetic Waves in Chiral and Bi-isotropic Media* (Boston: Artech House, 1994)
 - Guzatov D V, Klimov V V Phys. Rev. A 75 052901 (2007); physics/ 0703046
 - 19. Fermi E Rev. Mod. Phys. 4 87 (1932)
 - Stratton J A Electromagnetic Theory (New York: McGraw-Hill, 1941) [Стрэттон Дж А Теория электромагнетизма (М.–Л.: Гостехиздат, 1948)]
 - Courant R, Hilbert D Methoden der mathematischen Physik (Berlin: J. Springer, 1931) [Methods of Mathematical Physics (New York: Interscience Publ., 1989); Курант Р, Гильберт Д Методы математической физики Т. 1 (М.–Л.: Гос. техн.-теоретич изд-во, 1933) с. 420, 421]
 - Klimov V V, Guzatov D V, Ducloy M Europhysics Lett. 97 47004 (2012)
 - Becenaro B Γ VΦH 92 517 (1967) [Veselago V G Sov. Phys. Usp. 10 509 (1968)]
 - 24. Kwon D-H et al. Opt. Express 16 11822 (2008)
 - Guzatov D V, Klimov V V, submitted to New J. Phys.; arXiv:1203.5393