
Abstract. In the 1990s, the study of the chaotic behavior of ray
trajectories in inhomogeneous waveguides emerged as a new
field in ocean acoustics. It turned out that at ranges on the
order of or larger than 1000 km ray chaos is well developed
and should be taken into account when describing long-range
sound propagation in the ocean. The theoretical analysis of ray
chaos and of its finite-wavelength manifestation, wave chaos, is
to a large extent based on well-known methods and ideas from
the theory of dynamical and quantum chaos. Concrete examples
are used to review the results obtained in this field over the last
two decades.

1. Introduction

The transmission of sound in the ocean over distances of
several hundred or even thousand kilometers owes its
existence to the refractional waveguide of natural origin,
called the underwater sound channel (USC) [1±3]. The
vertical sound speed profile in deep USCs usually attains a
minimum at a depth of approximately 1 km. As a conse-
quence, sound energy appears to be partly trapped in the

waveguide, which prevents it from strong attenuation on
reflection from the absorbing bottom. Experiments on long-
range sound transmission are most frequently carried out
with soundwaves at frequencies on the order of 100Hz, which
experience but negligible dissipation in sea water (only several
decibels every 1000 km). For this reason, signals at such
frequencies yield to reliable detection even at distances in
excess of 10,000 km [4].

The wave field in a USC satisfies the ordinary linear wave
equation. To describe it, one may utilize the well-known
methods traditionally used to analyze fields in waveguides of
various physical natures.

Intensive theoretical and experimental studies of the long-
range sound transmission in the ocean have been carried out
now for more than sixty years. The issue has been considered
well-studied already in the mid-1980s. Later, however, it
transpired that there is a factor neglected previously, which
to a large degree determines the structure of sound fields on
distances of thousands of kilometers, namely ray chaos, the
role of which in ocean acoustics was recognized only at the
beginning of the 1990s. An important contribution was made
by S S Abdullaev and G M Zaslavsky [5±9], the results of
whose work are summarized in the review [10] published by
Physics±Uspekhi in 1991 (see also the monograph [11]).
Although the aforementioned work deals with the analysis
of general questions pertaining to chaotic ray dynamics in
inhomogeneous waveguides, to a substantial degree they
have initiated active research on chaotic phenomena as
applied to underwater acoustics tasks. At approximately
the same time (the end of the 1980s±beginning of the
1990s), a series of articles were published in the USA
which, in fact, launched systematic studies of ray and wave
chaos in deep USCs [12±15].
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In this review our goal is to introduce the reader to the
results obtained in this area over the past 20 years. Not having
the possibility (because of size limitations) of offering a
complete account of relevant research, we will touch largely
on those questions that have been solved with our direct
participation. We try to compensate for the necessary brevity
of our exposition by proposing an extended bibliography of
work dedicated to the issue discussed here.

The essence of the ray chaos phenomenon is that a ray
trajectory described by deterministic Hamiltonian equations
behaves similarly to a random process. Chaotic trajectories
are exceedingly sensitive to small variations in the initial
conditions: the difference in the vertical coordinates (depths)
z of two trajectories with close initial conditions grows (on
average) with the distance r approximately according to the
exponential law [10, 16±18]

Dz � exp �nr� ; �1�
where n is the so-called Lyapunov exponent. The difference in
ray grazing angles grows according to a similar law (with the
same n). Estimates show that in realistic models of USCs the
exponent n reaches amagnitude on the order of 0.01 kmÿ1 [16,
19]. At distances in excess of 1000 km, chaos is already well
developed, and accounting for it becomes of principal
importance. Studies of the ray chaos and its manifestations
for a finite wavelengthÐ the wave chaosÐ is currently
considered to be one of components of the theory of long-
range sound transmission in the ocean [20].

The phenomena of ray and wave chaos have well-known
`prototypes' in mechanics, exemplified, respectively, by
dynamical and quantum chaos [21±25]. The point is that a
ray trajectory in an inhomogeneous waveguide obeys the
same Hamiltonian equations as a nonlinear oscillator under
the action of a nonstationary (deterministic) external force. A
typical situation occurs when the oscillator behaves quasi-
randomly [26, 27]. An analysis of the phase space structure of
such an oscillator presents the classical task in the dynamical
chaos theory. The subjects of study in the quantum chaos
theory are systems the classical analogs of which demonstrate
chaotic behavior. A nonlinear oscillator excited by a nonsta-
tionary external force also falls into this category. Its wave
function obeys the SchroÈ dinger equation that coincides in
form with the parabolic equation defining sound field in a
waveguide.

The above analogy with a nonlinear oscillator invites one
to apply the methods of dynamical and quantum chaos
theory in studies of acoustic fields. However, the coincidence
of primary equations notwithstanding, problem statements
pertaining to the analysis of chaos in mechanics and acoustics
are not infrequently substantially different. For instance, one
of themain subjects of interest in ocean acoustics is the time of
sound travel along a ray trajectory, which for brevity is
dubbed the ray travel time [16, 19, 28±32]. The analog of this
quantity in mechanicsÐHamilton's principal function (also
the action)Ð is not commonly measured in experiments and,
hence, has not received a specific focus in the dynamical
theory of chaos. We will see in what follows that it is very
difficult to find a natural mechanical analog for the pulse
signal field.

The horizontal scales of medium parameter variations in
the ocean typically exceed the vertical scales by two orders of
magnitude [33]. The horizontal refraction of acoustic waves
can, therefore, be neglected in many cases. Adopting this
approximation, we will consider below an axisymmetric (in

fact two-dimensional) model of a medium in which the speed
of sound c depends on only two coordinates: distance r, and
depth z. We write out the sound speed field c�r; z� as [19, 33]

c�r; z� � �c�z� � dc�r; z� ; �2�

where �c�z� is the unperturbed smooth profile, and dc�r; z� is a
small perturbation thereof responsible for the origin of chaos.
The exploration of ray chaos in underwater acoustics began
from the analysis of waveguides with a periodic dependence
of dc on the distance [10, 12, 14]. Such a selection of the
perturbation type was motivated by the possibility of directly
adapting the known results from the dynamical theory of
chaos. Despite the apparently artificial character of the
periodic model, it helped uncover a set of general features
related to chaotic ray dynamics, which remain relevant in
waveguides with realistic inhomogeneities as well.

An example of a fairly realistic model is furnished by a
waveguide with the perturbation dc�r; z� brought about by
random internal-gravity waves (or simply internal waves, for
brevity) with statistics obeying the Garrett±Munk spectrum
[33]. Such a perturbation is typically dealt with when
analyzing acoustic fields in deep seas in the framework of
the theory of sound propagation in random media [33]. Note
the crucial factor that this theory and that of ray and wave
chaos study the fields in randomly inhomogeneous wave-
guides from different aspects complementing each other.

In the theory of wave propagation in random media, the
description of rays (as well as other wave field characteristics)
relies on the concept of a statistical ensemble of medium
realizations. The statistical properties of a ray with given
initial parameters z0 and w0 Ð the initial depth and angle to
the horizon, respectivelyÐare found by averaging over rays
with the same initial parameters for different medium
realizations forming the ensemble. This is a traditional
approach in underwater acoustics, and most studies dealing
with the analysis of the stochastic ray field structure are
carried out in its framework [33, 34].

Work exploring the ray chaos employs a different vantage
point in its analysis of the impact of sound speed fluctuations
dc�r; z�. The chaotic ray behavior is studied in a deterministic
mediumwith spatial variations of sound speed set by a certain
realization of the random perturbation dc�r; z�. Since for
r4 nÿ1 the ray trajectories with close initial conditions are
practically independent, averaging over the initial conditions
can be treated as statistical averaging. Results of numerical
modeling evidence that the statistical properties of chaotic
rays found in this way only weakly depend on the concrete
realization dc�r; z� used in computations [35±37]. One can
therefore expect that the analysis of ray statistics for a
particular realization of the sound speed field will lead to
results resembling those obtained by averaging over the
ensemble of waveguides. Admittedly, the important and
extremely interesting question of how well a single realiza-
tion of inhomogeneities represents the statistical ensemble as
a whole remains insufficiently studied.

The material in this review is arranged in the following
way. Section 2 briefly discusses the methods of acoustic field
description in the USC that will be used in this review.
Section 3 lists the main types of ocean inhomogeneities which
influence sound wave propagation. Section 4 explains the
basic principle of acoustic monitoring of temperature fields in
the ocean. It relies on the measurements of arrival times for
sound pulses propagating along individual ray trajectories.
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Here, we briefly review certain important experiments on
long-range sound transmission in the ocean, the results of
which lend support to the applicability of the ray description
of sound fields to distances measuring thousands of kilo-
meters. Section 5 is dedicated to the analysis of USC models
with periodic inhomogeneities. It discusses wave chaos onset
mechanisms for various relationships between inhomogeneity
scales, and also chaosmanifestations in the properties of wave
dynamics. Section 6 turns to the ray and wave chaos in more
realistic models of a USC characterized by sound speed
fluctuations imposed by random internal waves. It presents
the method of the statistical description of chaotic ray
trajectories and shows how it can be applied to estimate the
smoothed distribution of field intensity for a finite wave-
length. A substantial portion of Section 6 is dedicated to the
analysis of travel times for chaotic rays. It is also shown that
because of the link between the ray and modal field
representations in a waveguide the stochastic ray theory can
be applied for the analysis of field mode structure under the
conditions of wave chaos.

2. Basic equations

In this sectionwe list the basic equations employed to describe
sound fields in deepUSCs.We also give definitions of the field
characteristics used in Sections 3±6.

2.1 The Helmholtz equation and the parabolic equation
All internal motions in the ocean bulk are so slow that ocean
inhomogeneities do not change much during the time it takes
sound waves to cross them. This enables one to apply the
approximation of frozen inhomogeneities, i.e., to treat the
medium parameters as independent of time t. In what follows,
we consider deep USCs with the sound speed field (2), where
dc�r; z� is a weak perturbation caused by random internal
waves [1]. We assume the z-axis to be directed vertically
downward, with the water surface on the horizon z � 0. We
also assume that the unperturbed sound speed profile �c�z� has
a single minimum at the horizon z � za, which will be referred
to as the USC axis. The sound pressure ~v�r; z; t� is described
by the linear wave equation

1

c 2
q2~v

qt 2
ÿ D~v � 0 : �3�

Its solutions can conveniently be written out in terms of the
Fourier integral

~v�r; z; t� �
�
dO v�r; z;O� exp �ÿiOt� ; �4�

where v�r; z;O� obeys the Helmholtz equation [2, 3]

1

r

q
qr

r
qv
qr
� q2v
qz 2
� O 2

c 2
v � 0 ; �5�

with appropriate boundary conditions.
Only waves propagating at small grazing angles w and

trapped by the USC survive at distances measuring from
several hundred to a few thousand kilometers, which are of
interest to us. Namely such waves are the subject of our study.
In deep USCs typical at mid- and low latitudes, the grazing
angles for waves propagating without interaction with the
bottom (a typical ocean depth at these latitudes is about 5±
6 km) do not exceed 14�ÿ16�. They can be described in the

small-angle approximation. We write down v in the form

v�r; z;O� � rÿ1=2u�r; z;O� exp �ikr� ; �6�

where k � O=c0 is the wave number in a homogeneous
medium with a constant sound speed c0, which is approxi-
mately equal to the mean sound speed in the USC, and
u�r; z;O� is the smooth envelope of complex-valued field
amplitude. The argument O of function u�r; z;O� will be
omitted if we are dealing with a monochromatic source.
Substituting Eqn (6) in Eqn (5) and neglecting the second
derivative of u with respect to r, we arrive at the so-called
standard parabolic equation [38±40]

2ik
qu
qr
� q2u
qz 2
ÿ 2k 2

�
U�z� � V�r; z��u � 0 ; �7�

where

U�z� � 1

2

�
1ÿ c 20

�c 2�z�
�
; V�r; z� ' dc�r; z�

c0
: �8�

A nonstationary wave field excited by a pulsed source can be
synthesized from solutions to the parabolic equation (7) at
different carrier frequencies according to the formula

v�r; z; t� � rÿ1=2
�
dO 0 u�r; z;O 0� s�O 0� exp

�
iO 0
�
r

c0
ÿ t

��
;

�9�

where s�O� is the spectrum of the radiated sound pulse. It
should be noted that equation (7) formally coincides with the
SchroÈ dinger equation of quantummechanics. In this analogy,
r plays the role of time, kÿ1 of the Planck constant, andU� V
of the potential. This quantum-mechanical analogy opens
wide horizons for applying the method of dynamical and
quantum chaos to the study of ray andwave chaos inUSCs. It
is noteworthy that the integration over O in Eqn (9) formally
corresponds to the integration over the Planck constant. We
meant namely this fact in the Introduction when mentioning
difficulties with proposing a quantum-mechanical analog for
a pulsed signal field.

2.2 The geometrical optics approximation
and Hamilton's formalism
In the geometrical optics approximation, valid if the
wavelength l � 2p=k is small compared to the typical size of
medium inhomogeneities Linh, a solution to the parabolic
equation (7) is sought in the form [2, 3, 41]

u � A exp �ikS� ; �10�

where A�r; z� and S�r; z� are the amplitude and ray eikonal,
respectively. Both these functions are expressed through
parameters of ray trajectories. We use Hamilton's formalism
to describe the trajectories [10, 42, 43]. In its framework, the
trajectory at each point at a distance r is characterized by its
depth (vertical coordinate) z and generalized momentum (or
simply momentum) p. In the small-angle approximation,
p � tan w, where w is the ray grazing angle. The dependences
of z and p on the distance are given by theHamilton equations
(ray equations)

dp

dr
� ÿ qH

qz
;

dz

dr
� qH

qp
; �11�
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where H�r; p; z� is the Hamiltonian of the ray system. In our
case, it assumes the form

H�r; p; z� � H0�p; z� � V�r; z� ; �12�

where

H0�p; z� � p 2

2
�U�z� : �13�

Ray trajectories in an unperturbed (range-independent)
USC are periodic, oscillating curves. An example of a
trajectory, plotted in Fig. 1, is computed for a waveguide
with the so-called canonical sound speed profile, also called
the Munk profile [1, 2]

�c�z� � c0

�
1� E

�
exp

�
2�za ÿ z�

zth

�
� 2

zÿ za
zth

ÿ 1

��
; �14�

where c0 � 1:5 km sÿ1, za � 1 km, E � 0:0057, and zth � 1 km.
The grazing angle of this trajectory on the waveguide axisÐ
the depth corresponding to the minimum sound speedÐ
equals 10�. The oscillation cycle length (period) is about
50 km, which is typical for a deep water USC.

The ray eikonal S�r; z�, which is a close analog to the
action in mechanics [42], is expressed by the integral

S �
�
�p dzÿHdr�

computed along the ray trajectory.
In the two-dimensional medium considered here, the wave

field is represented by a one-parametric family of ray
trajectories z�r; a�, where a is the parameter labeling the
trajectories [41]. It can be shown that in the small-angle
approximation the ray amplitude is given by [37, 43]

A � C���������������jqz=qajp ; �15�

where the coefficient C depends on the source. The geome-
trical optics approximation is violated at caustics where the
derivatives qz=qa tend to zero.

Take as an example a monochromatic point source with
coordinates �0; zs�. The field excited by it is the solution of the

parabolic equation (7) subject to the initial condition

u�0; z� � d�zÿ zs� : �16�

In the vicinity of the source the solution has the same form
as in the homogeneous space with c�r; z� � c0:

u�r; z� �
���������
k

2pir

r
exp

�
ik
�zÿ zs�2

2r

�
: �17�

Since all the rays emanate from one and the same point, a is
naturally identified with the initial ray momentum p0.
Substituting Eqn (15) into Eqn (10) and comparing the result
with Eqn (17), we find

A �
�������������������������

k

2pi jqz=qp0j

s
: �18�

A characteristic feature of waveguide propagation is its
multipath character. As a rule, several rays reach the
observation point. They are sometimes called eigenrays. The
contribution from each of them is given by formula (10), and
the complex-valued field amplitude is expressed as the sum

u�r; z� �
X
j

Aj exp

�
ikSj ÿ imj

p
2

�
; �19�

where the index j numbers the eigenrays, and mj is the number
of contacts with caustics for the ray j (the Maslov index).

2.3 Ray travel times
In the geometrical optics approximation, the signal at some
reception point represents a superposition of sound pulses,
each arriving along one of the eigenrays. We term them the
ray pulses. Their arrival times, called the ray travel times as
mentioned in the Introduction, carry the main information
needed for acoustical monitoring of ocean temperature fields
(see Section 4). This is why their analysis occupies a
prominent place in ocean acoustics.

There is a very simple connection between the ray travel
time and the eikonal of a ray trajectory, which is elucidated
upon substituting Eqn (10) in Eqn (9). The resulting
expression defines the ray momentum. Since neither the
trajectory parameters nor either function A or S depend on
O, it can be readily seen that the ray travel time is

t � r� S

c0
: �20�

To analyze the spatio-temporal structure of a pulsed
signal at a given observation distance, ocean acoustics widely
exploits the sound field characteristic called the tÿz diagram
or timefront. The timefront is the distribution of ray travel
times in the time±depth plane. An example of the tÿz
diagram is presented in Fig. 2. The diagram is constructed
for a point source in an unperturbed USC with the Munk
profile (14) plotted in Fig. 1. Each point in the plot
corresponds to the arrival time and depth of one of the rays
at an observation distance of 400 km. Computations were
performed for the rays leaving the point source located on the
waveguide axis at the depth of 1 km and at grazing angles in
the interval of �12�.

The diagram, looking like two piecewise broken lines
shifted relative each other along the time axis t, consists of
segments, each formed by rays with the same identifiers �M,

3002001000

0

z,
k
m

1

2

3

4

1.50 1.55
c, km sÿ1 r, km

a b

Figure 1. The canonical sound speed profile (a), and an example of ray

trajectory in an unperturbed USC with this profile (b).
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where � is the sign of the angle at which the ray leaves the
source, and M is the number of turning points of the ray
trajectory. Such a shape of the tÿz diagram is typical for
models of the USC that are range-independent or smoothly
varying with distance. The number of diagram segments
grows with the propagation distance, but the mean interval
between them remains unchanged [37, 43].

We address the question about the distribution of chaotic
ray arrivals in the time±depth plane in a perturbed USC in
Section 6.4.

2.4 Action±angle variables
In the unperturbed (range-independent) waveguide with
V � 0, the Hamiltonian H � H0 remains constant along ray
trajectories. The action variable in this case is defined as the
integral along the oscillation cycle of the trajectory [10, 42]:

I � 1

2p

�
p dz � 1

p

� zmax

zmin

dz
����������������������������
2
�
H0 ÿU�z��q

; �21�

where zmin and zmax are, respectively, the depths of the upper
and lower ray turning points satisfying the condition
U�z� � H0. Formula (21) implicitly defines the function
H0�I � expressing the dependence of the Hamiltonian on the
action. The canonical transformation

p � p�I; y� ; z � z�I; y� ; �22�

connecting the momentum±coordinate �p; z� and action±
angle �I; y� variables, is defined through the relationship

p � qG
qz

; y � qG
qI

; �23�

where G�I; z� is the generating function. For p > 0, one has

G�I; z� �
� z

zmin

dzP�I; z� ; P�I; z� �
����������������������������������
2
�
H0�I � ÿU�z��q

:

�24�

If p < 0, G�I; z� should be replaced by the function
2pIÿ G�I; z�. The angular variable y defined in that way,
varying within each ray period from 0 to 2p, is interpreted as
the phase of the ray trajectory. It should not be confused with

the ray grazing angle. In order to make y a continuous
function of distance r, it has to be incremented by 2p at the
beginning of each new ray cycle [42]. In agreement with
Liouville's theorem, the Jacobian of any canonical transfor-
mation is equal to unity [42], hence, one finds

q
ÿ
I�p; z�; y�p; z��

q�p; z� � q
ÿ
p�I; y�; z�I; y��

q�I; y� � 1 : �25�

The canonical transformation introduced for the unper-
turbed waveguide can also formally be used in the presence of
perturbation. For V 6� 0, the ray equations take the form

dI

dr
� ÿ qV

qy
; �26�

dy
dr
� o� qV

qI
; �27�

where o�I � � dH0�I �=dI is the spatial angular frequency of
ray trajectory in the unperturbed waveguide. The cycle length
of the unperturbed ray is D�I � � 2p=o�I �.

In what follows, we will apply the functions I�r; I0; y0� and
y�r; I0; y0� to denote the action variable and ray angle
coordinate at the distance r. The arguments I0 and y0 are the
initial values of these coordinates at r � 0. Sometimes, using
analogous functions I�r; p0; z0� and y�r; p0; z0� is more
convenient. Here, p0 and z0 are the initial values for the ray
momentum and coordinate, respectively.

2.5 Modal representation of a wave field
At any distance r, the wave field can be represented as a series

u�r; z� �
X
m

am�r�jm�z� ; �28�

where jm�z� are the eigenfunctions of the Sturm±Liouville
problem in the unperturbed waveguide [2, 44]. Each term of
sum (28) describes a normal mode. For simplicity, we limit
ourselves to the analysis of contributions from those modes
both of whose turning points are located inside the water
depth. In the Wentzel±Kramers±Brillouin approximation,
the mth eigenfunction is fully determined by the parameters
of an unperturbed ray trajectory, with the action variable
(denoted as Im) satisfying the quantization rule [2, 44, 45]

kIm � mÿ 1

2
; m � 1; 2; . . . : �29�

In the depth interval between the turning points the mth
eigenfunction can be represented as [2, 44, 45]

jm�z� � j�m �z� � jÿm �z� ; �30�

where

j�m �z��
�
D�Im�P�Im; z�

�ÿ1=2
exp

�
�i
�
kG�Im; z� ÿ p

4

��
: �31�

2.6 Ray approach
to the description of the field mode structure
The ray approach to the computation of mode amplitudes
am�r� in an inhomogeneous waveguide �V 6� 0� consists in
expanding the field ray representation (19) in normal modes
and computing the resultant integrals by the stationary phase
method. A detailed discussion of this question is proposed by
Refs [37, 43, 46±48]. It turns out that each mode is formed by

0

1

2

3

ÿ0.8

ÿ14

�15

�16

�17

�18

ÿ15

ÿ16

ÿ17

ÿ0.6 ÿ0.4 ÿ0.2 0
t, s

z,
k
m

Figure 2.Timefront (tÿz diagram) presenting the distribution of ray travel

times in a range-independent waveguide with the canonical sound speed

profile (14) at a distance of 400 km. The diagram segments are labelled

with identifiers of the rays forming them.
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contributions of raysÐwe call themmodal raysÐthe actions
of which on the observation distance r satisfy the condition

I�r; I0; y0� � Im : �32�

The parameters I0 and y0 are interrelated, the relationship
between them being determined by the source generating the
field. It should be emphasized that for a given m the quantity
Im depends on the carrier frequency O and, for different O,
condition (32) singles out different rays.

As a simple example consider a situation where only a
single mode with a numberm0 is excited at the initial point of
transmission, viz.

u�0; z� � jm0
�z� : �33�

The rays forming the field u�r; z� emerge from all depths z0
between the turning points of the given mode. They all share
the same initial value of the action variable equal to Im0

. Since
a mode is the superposition of two quasiplane waves [the so-
called Brillouin waves given by the functions j�m �z� and
jÿm �z�], two rays with initial momenta p0 � �P�Im0

; z0�
emanate from each point. Condition (32) in this example
attains the form

I�r; Im0
; y0� � Im : �34�

Condition (34) defines the values of y0 (and hence z0) that
correspond to modal rays. The contribution of a single modal
ray to the mode amplitude am has the form [37, 43, 47±49]

am�r� � Q exp
�
i�F� b�� ; �35�

where

Q � 1��������������������������������������������
2pkjqI�r; Im0

; y0�=qy0j
p exp

��ikG�Im0
; z0�

�
; �36�

F � k
�
S�r;Zm� � sG�Im;Zm�

�
: �37�

Here, Zm is the depth of a modal ray at the distance of
observation, S�r;Zm� is its eikonal, s � ÿsgn p, p is themodal
raymomentum, and b is a constant independent of frequency.

Making use of the relationships written above, one can
compute the mode amplitude in close analogy with the
procedure applied to compute the field at a given waveguide
point. First, the parameters of modal rays (analogs of
eigenrays) are determined from condition (32). If there are
several such rays, the mode amplitude is computed by
summing their contributions. In a similar fashion, one can
compute amplitudes of modes generated by a point source
[37, 43, 47±49].

The approach discussed here establishes the link between
the field ray and modal representation in a range-dependent
waveguide with distance. With its assistance, the results
obtained for ray dynamics in the presence of perturbation dc
can be applied to the analysis of mode amplitude variations
caused by this perturbation.

3. Internal waves
and other inhomogeneities in the ocean

In modern ocean acoustics it is generally acknowledged that
the main factor causing chaotic behavior of ray trajectories in
the deepwater is sound speed fluctuations induced by random

internal waves [1, 19]. In spite of their fairly small amplitude,
dc=c0 ' 5� 10ÿ4, sound field distortions caused by them
accumulate as the sound waves propagate and become
noticeable already at distances of about 100 km. These
fluctuations can be estimated [50] by relying on the model of
the Garrett±Munk spectrum for internal wave perturbations
[1, 50, 51]:

dc
c0
� m

g
N 2�x; y; z� z�x; y; z� ; �38�

where m � 24:5, N is the buoyancy frequency attaining a
maximum at the thermocline depth, and z�x; y; z� describes
vertical displacements of fluid parcels in the internal wave.
This function is expressed as a superposition of modes of
internal waves with random amplitudes whose statistics are
given by the empirical Garrett±Munk spectrum. The
variance of sound speed fluctuations caused by internal
waves reduces with depth. Close to the surface, the root-
mean-square value of dc is on the order of 1 m sÿ1. The
random field of internal waves in the ocean contains a large
number of modes. Their horizontal periods vary from
several hundred meters to several hundred kilometers, and
the vertical periods from several dozen to several hundred
meters. Spectral weights of higher modes are rather small,
and yet they are responsible for the fine structure of the
sound speed field. Analytical estimates and numerical
simulations indicate that the field parameters computed
with the assistance of this model agree well with the actual
results of field measurements at distances measuring a few
hundred or even a few thousand kilometers [1, 52].

It is noteworthy that the aforementionedmodel takes into
account only the contributions from background internal-
gravity waves, which can be described in the linear approx-
imation. Alongside them, trains of intense nonlinear internal
waves which do not follow the Garrett±Munk spectrum are
not uncommon in the ocean. Their influence can be instru-
mental in the shelf zones of the ocean at relatively short sound
paths (several dozen kilometers) [53, 54].

There are other factors in the ocean that may affect the
sound propagation speed. One of them pertains to the
influence of Rossby waves occurring because of the depen-
dence of theCoriolis force on the latitude. These are planetary
waves propagating largely from eastern to western coasts.
Their horizontal scale is about several hundred kilometers,
with vertical displacements on the order of 10 cm, and periods
from several days for barotropic waves to months or years for
baroclinic waves. In contrast to internal-gravity waves,
Rossby waves can be treated as periodic or quasiperiodic
perturbations and modelled as a superposition of several
modes.

Large-scale ocean currents like the Gulf Stream or
Kuroshio substantially modulate the sound speed profile for
ray trajectories crossing them: the depth of the USC-axis
changes, and a common type of USCmay split in two or fully
disappear. These currents meander and spawn eddies (rings)
which scatter sound waves. The edges of these currents, so-
called fronts, characterized by large gradients of hydrological
parameters, cause refraction and backscattering of sound.
The fronts are the regions of vigorous turbulent mixing of
watermasses with different temperatures and salinities, which
leads to diffraction scattering of sound waves.

In addition to the localized currents, the ocean hosts other
coherent structures that essentially affect the long-range

January 2012 Ray and wave chaos in underwater acoustic waveguides 23



sound transmission, such as the so-called synoptic eddiesÐ
mesoscale inhomogeneities in the ocean with typical horizon-
tal scales from several dozen to several hundred kilometers.
These eddies are drifting cyclonic or anticyclonic vortical
structures with, respectively, a cold or warm core. They are
ubiquitous in the ocean and have lifetimes from several
months to more than a year. A characteristic vertical size of
synoptic eddies ranges from a few hundred meters to more
than one kilometer. The temperature contrast between the
water inside the eddy and the ambient water implies strong
inhomogeneities in the sound speed field, which can be
reasonably described by a two-dimensional model [43]. The
ocean also hosts topographic eddiesÐquasistationary for-
mations of a synoptic size developing over underwater
mountains or troughs.

The presence of strong large-scale inhomogeneities
requires in some cases taking into account the three-
dimensional structure of sound speed perturbations. Their
spatial scales, however, are commonly so large that their role
in the origin of chaotic dynamics of rays is rather modest.
Such inhomogeneities, therefore, are not considered in this
review. Nor do we consider the impact of surface waves. The
subject of our study are waves trapped by a USC. They
propagate at fairly small grazing angles and avoid reflections
not only from the absorbing bottom but also from the rough
ocean surface. It is assumed that fluctuations dc of the speed
of sound are solely due to the internal waves.

4. Acoustic thermometry and experiments
on long-range sound propagation in the ocean

Studies of long-range sound propagation in the ocean aim,
first of all, to resolve issues concerning the acoustic monitor-
ing of the temperature field in the water column. Temperature
variations give rise to perturbation of the speed of sound dc,
which then leads to variations of sound field. Long-term
measurements of the sound field parameters make the
reconstruction of variations in dc, in principle, possible
(through the solution of the relevant inverse problem). They
are then readily recast in terms of temperature variations.
Acoustical monitoring offers a number of advantages over
other remote sounding methods. For example, the abilities of
satellite remote sensing are limited to the surface layer,
whereas with the help of sound waves one may penetrate
into the depths of the ocean.

The most known scheme of acoustical monitoringÐ the
method of ocean acoustic tomographyÐwas proposed in the
seminal work ofMunk andWunsch [55]. TheMunk±Wunsch
approach relies on the fact that sound pulses arriving along
various rays at a signal reception point can be fairly well
resolved if the distance is sufficiently large. Moreover, their
arrival times are predicted with reasonable accuracy in the
framework of a simple medium model which neglects
fluctuations in the speed of sound caused by internal waves
and other relatively small-scale inhomogeneities.

The procedure of solving the inverse problem in the
acoustic tomography method is based on the following
simple considerations. Let us write out the sound speed
field in the form c�x; y; z� � cref�x; y; z� � dc�x; y; z�, where
cref�x; y; z� is some reference field for the water area under
study, which is constructed from long-term observational
data (the information is retrieved from appropriate data-
bases), and dc�x; y; z� is the sought-for perturbation of this
field. If the perturbation is not very large, then, in the first

approximation, we can assume that it will not noticeably
deflect the ray trajectories. The anomaly in the ray travel time
dt is expressed as [55]

dt � ÿ
�
G

dc
c 2ref

ds ; �39�

where the integration is performed along the unperturbed
trajectory G, and ds is an element of arc length. Formula (39)
expresses the link between the unknown perturbation dc and
measured anomalies dt in the ray travel time necessary for the
solution to the inverse problem. Reference [55] proposed a
method to solve the inverse problem, which was further
advanced later in numerous studies by other authors (see the
monograph [56] and references cited therein).

The Munk±Wunsch method was tested in a demonstra-
tion experiment carried out in the Atlantic in 1981 over a
water area measuring 300� 300 km2 [57]. The estimates
obtained in it agreed well with the results of direct measure-
ments of the temperature field variations performed by
contact methods.

The ray chaos imposes severe limitations on the capabil-
ities of the Munk±Wunsch method. Indeed, the Munk±
Wunsch scheme relies on computation of the family of
eigenrays that connect the source and receiver of sound.
Under the conditions of ray chaos, because of the extremely
high sensitivity of trajectories to small variations in initial
conditions, the number of eigenrays grows exponentially with
distance, and the inverse problem becomes practically
unsolvable at long paths [15].

Several authors proposed an analog to the method of
ocean acoustic tomography called the method of modal
tomography. The latter relies on using either the phases of
complex-valued amplitudes of normal modes or travel times
of acoustic pulses transferred by separate modes as observa-
ble acoustic parameters [58±60]. Variations in these para-
meters, just like variations in ray travel times, can simply be
expressed in terms of perturbation dc. The modal tomogra-
phy also suffers from limitations imposed by ray chaos:
scattering on internal waves increases the duration of modal
pulses, simultaneously modifying their shape in a rather
irregular way [61, 62].

The acoustic tomography method has been proposed for
the reconstruction of temperature perturbations over water
areas with a typical size of several hundred (up to one
thousand) kilometers. During the 1990s, the task of acoustic
sounding over water areas measuring 5±10 thousand km
(these are typical scales of ocean basins) emerged on the
agenda. The aimwas in diagnosing the variability in the mean
ocean temperature on climate scales and in the analysis of
greenhouse effect manifestations. The conclusion that this
task is, in principle, solvable was made by analyzing the data
of a set of large-scale marine experiments.

The best known and most impressive of such experi-
ments was carried out in 1991 involving the joint efforts of
an international team of scientists led by W Munk (USA)
[4]. In this experiment, the sound signal from a coherent
source was detected in different regions of the Atlantic and
Pacific Oceans over an unprecedented distance of about 18
thousand kilometers (Fig. 3). It proved possible to resolve
ray pulses with arrival times differing by just several
milliseconds. This experiment became a test of the feasi-
bility of acoustic signal detection at such long distances
prior to planned work on the acoustic thermometry of the
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ocean. The sound sources were disposed on the braid
immersed from a research ship board to the depth of the
local USC-axis (175 m) in the vicinity of Australia's Heard
Island situated in the subantarctic zone of the Indian Ocean.
Both monochromatic and narrow-band pulsed signals were
studied at frequencies close to 60 Hz. The maximum
radiated power reached 220 dB.

An important field experiment AET (Acoustic Engineer-
ing Test) was carried our during one week in November 1994.
A broad-band source with a central frequency of 75 Hz was
located in the North Pacific at a depth of 625 m near the axis
of a USC. The signals were recorded near Hawaii with the
help of a vertical braid composed of 20 receiving hydro-
phones. The distance between neighboring hydrophones was
35 m (1.75 of the wavelength at 75 Hz) and they covered a
depth range from 900 to 1600m. The acoustic path 3252 km in
length did not cross large submarine ridges or large-scale
hydrological features like fronts or currents.

The analysis of AET results was carried out in a series of
papers [19, 63±65]. The initial part of the detected signal was
rather stable and enabled the reliable arrival resolution and
identification for pulses propagating along steep rays. The
late part of the recorded signal, in contrast, was unstable, and
did not exhibit any stable arrivals.

The qualitative difference between the early and late parts
of the sound signal was explained with the help of ray chaos
theory. Reference [19] reports on the results of numerical
simulations of ray dynamics under conditions of the AET
with account for internal-gravity waves characterized by the
Garrett±Munk spectrum. They agree in general with the
experimental results (Fig. 4). Simulations confirm that the
divergence of trajectories with close initial conditions pro-
ceeds according to the law (1). The Lyapunov exponent n was
explored as a function of the grazing angle w0 at which the ray
intersects the USC-axis. For flat rays �jw0j4 5��, a typical
value of n is 1=100 kmÿ1, while for steep rays �6�4w0 4 11��
it drops to 1=300 kmÿ1. Thus, the steep rays are essentially less

chaotic than their flat counterparts. This partly explains the
stability of the initial part of the signal, as it is formed by
contributions from steep rays.

A similar picture was observed in the SLICE89 experi-
ment [66, 67] carried out on a path 1000 km in length in the
north-east Pacific in 1989 by using a source at a frequency
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Figure 3. Layout of the experiment on long-range sound transmission in the ocean [4]. Dark circles indicate the positions of receiving systems.
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of 250 Hz and vertical antenna 3 km in length containing
50 hydrophones. Notice that the chaotic character of flat
rays is not the general law of sound propagation in the deep
ocean. For example, experiments carried out in the Sea of
Japan with a source near the Gamov peninsula [68±70]
indicate a high stability of nearly axial rays, which by all
probability can be attributed to characteristics of internal
waves in that region.

These and other field experiments proved that low-
frequency acoustic signals can propagate over many thou-
sands of kilometers experiencing rather small attenuation. It
turned out that even on such long-range paths the important
sound field characteristics can be well described in the
framework of geometrical optics. In particular, sound pulses
arriving at the observation point along steep rays and forming
the initial part of the signal can in many cases be resolved and
identified. Moreover, it is shown that long-term observation
of arrival time variations allows one to monitor climatic
variations of the mean temperature [71]. On the other hand,
experiments indicate that sound speed fluctuations created by
internal waves and other hydrological inhomogeneities
essentially affect the long-range sound propagation. This
emphasizes the necessity of accounting for ray chaos effects
when properly considering sound transmission over large
distances.

5. Ray and wave chaos in waveguides
with periodic inhomogeneities

This section considers simplified models of USCs in which
sound speed perturbations are periodic functions of the
horizontal coordinate. We discuss the main mechanisms
responsible for the emergence of ray chaos. The section
explores the structure of the phase space for a periodic
model and looks into manifestations of ray chaos at a finite
wavelength. The assumption of periodic perturbation is
undoubtedly a very strong idealization. In reality, the
inhomogeneity of sound speed in the ocean is characterized
by a broad spatial spectrumwithout separated peaks. In order
to somewhat smooth over this contradiction, we offer to the
readers attention an approach which allows one to apply
certain results from the theory of periodically inhomogeneous
waveguides to the analysis of chaotic ray dynamics in
randomly inhomogeneous waveguides.

5.1 Chaos in waveguides with a smooth dependence
of perturbation on the depth
5.1.1 Nonlinear resonance. Let us consider the most simple
scenario for the origin of ray chaos in a USC.We depart from
the ray Hamiltonian (12) and assume that the perturbation
V�r; z� can be represented in the following form

V�r; z� � V�r� lr; z� � e �V�r; z� ; e5 1 ; �40�

where �V is some `slow' function of the vertical coordinate z.
The rayHamiltonian, expressed in the action±angle variables,
takes the form

H � H0�I � � e �V�I; #; r� : �41�

Expanding �V in a double Fourier series, viz.

�V�I; #; r� �
X
l;m

�Vl;m�I � exp
�
i�l#ÿmkrr�

�
; �42�

we reduce the ray equations (26) and (27) to the form [40]

dI

dr
� ÿ ie

2

X
l;m

l �Vl;m�I � exp
�
i�l#ÿmkrr�

�� c:c:; �43a�

d#

dr
� o�I � � ie

2

X
l;m

q �Vl;m

qI
exp

�
i�l#ÿmkrr�

�� c:c:; �43b�

where �Vl;m is the Fourier amplitude, kr � 2p=lr, and c.c.
stands for the complex conjugation. If the condition

lo�I � ÿmkr � 0 �44�

is satisfied, Eqns (43a) and (43b) exhibit resonance. It is
similar to ordinary nonlinear resonance in classical mechanics
(with the only difference being that the role of time is played
by the horizontal coordinate r) and came to be known as
spatial nonlinear resonance [10]. In what follows, the non-
linear resonance with l � l � andm � m � will be referred to as
the l � : m � resonance. Since condition (44) may hold for
different combinations of l, m, and I, the resonances every-
where densely cover the phase space. However, only a small
fraction of them pertaining to small values of l and m proves
to be significant for the ray dynamics, because the Fourier
amplitudes of the expansion (42) exhibit fast decay as the
index of a harmonic increases.

Let us isolate the resonance with l � l0, m � m0, and
I � I0 and consider ray dynamics in its vicinity. Omitting
off-resonance terms and substituting �Vl;m � V0 exp �ic0�,
where V0 2R, into Eqns (43a) and (43b), we find

dI

dr
� el0V0 sin �l0#ÿm0krr� c0� ; �45a�

d#

dr
� o�I � � e

qV0

qI
cos �l0#ÿm0krr� c0� : �45b�

Assuming that the deviation of action from the resonance
value, DI � Iÿ I0, is small, we may utilize the approxima-
tions o�I � � o�I0� � o 0DI, where o 0 � do=dI and
V0 � V0�I0�. We also neglect the term of order e on the
right-hand side of equation (45b). As a result, we arrive at
the following system of equations:

d�DI �
dr

� ÿel0V0 sinC ;
dC
dr
� l0o 0DI ; �46�

where the new variable C � l0#ÿm0krr� c0 ÿ p was intro-
duced. System of equations (46) corresponds to the Hamilto-
nian

~H � 1

2
l0o 0�DI �2 ÿ el0V0 cosC : �47�

Since this Hamiltonian formally coincides with that of a
nonlinear pendulum, the trajectories of solutions to system
(46) take the form of finite or infinite oscillations. Trapping
into resonance corresponds to finite oscillations, where the
magnitude of ray action I is localized within a narrow interval
around I � I0. Its width is given by the formula

DImax �
���������
eV0

jo 0j

s
: �48�

The reduction of nonintegrable system of equations (43a) and
(43b) to integrable system (46) is approximate and holds only
under certain conditions. First, the condition of mild
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nonlinearity,

e5 a5 eÿ1 ; �49�

must be satisfied. Here, a is the dimensionless nonlinearity
parameter:

a � jo
0jI
o

: �50�

Second, the integrability is lost if resonances neighboring in
the phase space overlap. This happens when the relation is
fulfilled:

K � DImax

dI
0 1 ; �51�

where dI is the distance between the resonances in terms of
action. Condition (51) is the Chirikov criterion [72]. For
overlapping resonances, a chaotic sea forms in the phase
space, which can be quite extended. If a ray belongs to the
chaotic sea, its trajectory becomes irregular, while its action
ceases to be a slowly varying quantity and can strongly
deviate from its initial value.

The impact of resonance overlapping on the ray dynamics
in a horizontally periodic waveguide can be visualized with
the help of a PoincareÂ map:

pm�1 � p�r � lrj pm; zm; r � 0� ; �52�
zm�1 � z�r � lrj pm; zm; r � 0� ;

which establishes the link between the ray momentum pm and
depth zm at the distance r � mlr with their values at
r � �m� 1�lr, i.e., through the period of perturbation. The
phase portrait of the PoincareÂ map, the so-called PoincareÂ
section, gives a qualitative description of ray motion for

various initial conditions. By way of example, consider the
canonical Munk USC (14) and the sound speed perturbation
in the form

dc � 2ec0
z

zth
exp

�
ÿ 2z

zth

�
sin

2pr
lr

; �53�

where lr � 10 km. Such a model approximately describes the
effect from the first mode of the internal wave field. In the
PoincareÂ sections, the sets of initial conditions related to
nonlinear resonances manifest themselves as chains of
ellipsoidal links, and chaotic layers look like disordered
clouds of points. Partition of the phase space into regions
with regular and chaotic behavior is typical for weakly
perturbed Hamiltonian systems. As demonstrated in Fig. 5,
with the growth in e the regions of regular motion shrink,
while the chaotic sea broadens because resonance over-
lapping becomes stronger. The resonances may overlap not
fully, but only partially. In this case, the elements of the
resonance chain transform into chains of stability islands
surrounded by the chaotic sea. For example, Fig. 5c shows the
chain of stability islands that corresponds to a partially
overlapped 5:1 resonance.

Themagnitude of the overlapping parameterK essentially
depends not only on the strength of perturbation, but also on
the degree of nonlinearity of unperturbed ray oscillations in
the waveguide. In particular, it can be shown that

K � �����
ea
p

; �54�

i.e., those rays characterized by large values of a become
chaotic much more easily. This circumstance served as a
rationale to treat the parameter a as the parameter of ray
stability [73, 74]. Such a treatment, though, may fail in the
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presence of strong oscillations of inhomogeneity with respect
to depth (see Section 5.2).

If for a certain value of ray action I the derivative do=dI
and, consequently, the parameter a come to nought, the left
inequality in formula (49) does not hold and the above theory
of nonlinear resonance becomes inapplicable. This case
corresponds to a local degeneracy of the respective Hamilto-
nian system with the formation of a so-called shearless torus.
The ray dynamics in the vicinity of shearless tori are the
subject of extensive literature (see the monograph [75] and
also articles [76±78]). It is well known that shearless tori
demonstrate an extraordinary ability to preserve Lyapunov
stability [79]. Moreover, the vanishing of derivative do=dI
implies a reduced divergence of the nearest rays, which results
in the formation of a weakly divergent ray bundle [80±83].
The condition do=dI � 0 is approximately realized in the
USC in the Sea of Japan for rays intersecting the channel axis
at approximately 2�. The weakly diverging ray bundle arising
in this case can serve as an explanation of the stability of
nearly axial rays, which is hinted at by the results of
experiments [69, 70]. Analogs of weekly diverging bundles
are encountered in quantum mechanics, for example, in
describing ferromagnetic spin chains in a magnetic field [84].
We also note that the parameter a is asymptotically connected
with the Chuprov waveguide invariant which characterizes
temporal and spatial scales of the interference pattern of an
acoustic field [85±87].

5.1.2 The influence of nonlinear ray resonance on the
characteristics of a wave field. It seems obvious that chaotic
ray dynamics should find reflection in the wave picture. In
order to clarify this question, we make use of the periodicity
of perturbation and introduce the Floquet operator F̂ linking
the complex-valued field amplitudes at two points on the
path, separated by one inhomogeneity period lr:

F̂u�r; z� � u�r� lr; z� : �55�

In quantum mechanics, an analogous operator is applied to
describe systems with a perturbation periodic in time. It finds
numerous applications in the quantum chaos theory [88].

According to the Floquet theorem, the solution to
parabolic equation (7) in a waveguide with a periodic
perturbation can be written as a sum of eigenfunctions of
operator (55) (referred to as the Floquet modes below):

um�r; z� � exp

�
ÿ ikEmr

lr

�
Cm�r; z� ; �56�

where Cm�r� lr; z� � Cm�r; z�, Em are some real-valued
constants, and m � 1; 2; . . . . The Floquet modes are the
mathematical analogs of the Floquet states in quantum
mechanics, and quantities Em are the analogs of quasienergies
[23, 88, 89]. Since the Floquet operator is Hermitian,
functions Cm�r; z� form a complete orthonormal set. The
Floquet modes can be expressed through the modes jm�z� of
unperturbed waveguide. With this goal, consider functions

cm�z� � Cm�0; z� �57�

and present each of them as the expansion

cm�z� �
X
q

Cqmjq�z� : �58�

In order to find the coefficients Cqm, we resort to the matrix
representation of the Floquet operator:

Fmn �
�
dzjm�z� F̂jn�z� ; �59�

where F̂jn�z� denotes the solution to parabolic equation (7) at
r � lr, obtainedwith the initial condition u�0; z� � jn�z�. The
eigenvalues xm and eigenvectors Xm of the matrix of operator
F̂, satisfying the equation

F̂Xm � xmXm ; �60�

establish the link between the modes of unperturbed
waveguide and the Floquet modes. In particular, we have

xm � exp �ÿikEm� ;

and the components of the mth eigenvector Xm are the
coefficients of expansion (58) �C1m;C2m; . . .�.

With the help of Floquet modes, we can express the wave
field at r � nlr �n � 1; 2; 3; . . .� as the expansion

u�nlr; z� �
X
m

gm�n�cm�z� ; �61�

where

gm�n� � exp �ÿinkEm� gm�0� : �62�

We turn once again to the analogy between the wave and
quantum dynamics. It is well known that the action of a
periodic perturbation on a quantum system with a discrete
spectrum leads to resonance transitions between its energy
levels, which obey the relationship

1

�h
DEm�Dm;m � of; �63�

where �h is the Planck constant, DEm�Dm;m � Em�Dm ÿ Em, Em

is the energy of the mth level, and of is the perturbation
frequency. A similar phenomenon takes place in periodically
inhomogeneous waveguides, too. In this case, a periodic
horizontal inhomogeneity gives rise to resonant transfer of
acoustic energy between the modes of the unperturbed
waveguide. In this case, the resonance condition assumes the
form

kDEm�Dm;m � kr ; �64�

where DEm�Dm;m is the difference between the respective
eigenvalues of the Sturm±Liouville problem in the unper-
turbed waveguide. If the differenceDEm�Dm;m is small, we can
write down that

kr � kDEm�Dm;m ' dE

dI
�Im�Dm ÿ Im� � oDm ; �65�

where Im are the action values satisfying quantization rule
(29). Thus, Dm coincides with the order of respective non-
linear ray resonance. Moreover, because of the correspon-
dence between rays and modes given by quantization rule
(29), the modes of an unperturbed waveguide with the values
of action falling in the region of nonlinear ray resonance, viz.

k�I0 ÿ DImax� � 1

2
4m4 k�I0 � DImax� � 1

2
; �66�
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exchange energy most intensively. If the ray resonance is
well isolated and does not overlap with its neighbors, the
evolution of modes of the unperturbed waveguide that
satisfy formula (66) is largely governed by a separate
block in the Floquet operator matrix, which is well
isolated from the rest of the matrix. Each such block
spawns its series of Floquet modes. For overlapping
resonances, the respective blocks overlap, too. As a result,
inequality (66) becomes violated and the number of
effectively interacting modes sharply increases. This phe-
nomenon came to be known in the quantum chaos theory
as delocalization [90].

To analyze the relationship between the wave function of
a quantum-mechanical system and the structure of phase
space of a classical analog of this system, theWigner function
is frequently applied. It is sometimes called the quasiprob-
ability of joint distribution of momentum and coordinate
[91]. In the wave theory, theWigner function of the wave field
in the vertical section of the waveguide, c�z�, defined by the
relation

W�p; z� � k

2p

�
dz c

�
zÿ z

2

�
c �
�
z� z

2

�
exp �ikpz� ; �67�

is treated as the local spatial field spectrum [43]. Certain
important properties of this characteristics of the field
become better expressed if one turns to the smoothed Wigner
function [91]:

w�p; z� � 1

2pDpDz

�
dp 0 dz 0W�p 0; z 0�

� exp

�
ÿ�zÿ z 0�2

2D2
z

ÿ �pÿ p 0�2
2D2

p

�
: �68�

If the smoothing scales Dp and Dz satisfy the condition
DpDz � 1=�2k�, formulas (67) and (68) define the so-called
Husimi transform [22]. It is easy to check that, in this case, one
obtains

w�p; z��
�����2pD2

z�1=4
�
dz 0 c��z 0� exp

�
ikp�z 0ÿ z� ÿ �z

0ÿ z�2
4D2

z

�����2;
�69�

where w�p; z� represents the projection of c�z� onto the so-
called coherent state (the state with minimum uncertainty
[45]). The Husimi transform (69) of the eigenfunction cm�z�
will be denoted as wm�p; z�.

By way of example, consider functions wm�p; z� of a
waveguide with the reference sound speed profile (14) and
periodic perturbation (53) with the amplitude e � 0:01 and
the horizontal period lr � 10 km [43, 89, 92]. The phase
portrait of the ray system in this waveguide is displayed in
Fig. 6.

Figure 7 exhibits some characteristic Husimi functions
of Floquet modes for such a waveguide. All plots show the
contours of main islands on the phase portrait. These
include the large central island surrounded by five smaller
ones formed by the periodic orbits of the 5:1 resonance.
Each of the five islands is in turn surrounded by six small
satellites. Figure 7 demonstrates that different Floquet
modes are localized in different regions of phase space.
The modes depicted in Fig. 7a, b, and e are localized inside
the stability islands and, consequently, are formed by

regular rays. The mode in Fig. 7c, localized near the
boundaries of islands of the 5:1 resonance, offers an
example of the state that belongs simultaneously to the
stable zone and the chaotic sea. States like this correspond
to tunneling between the regions of regular and chaotic
motion [93]. Such a process is impossible in the classical ray
dynamics. In Fig. 7d, the Floquet mode is localized in the
vicinity of the unstable periodic ray orbit of the 5:1
resonance. In the PoincareÂ map, this orbit is represented
by five dark circles which are located in Fig. 7e at the
maxima of the Husimi function. The localization effect for
the Floquet mode in the vicinity of unstable periodic orbit is
even more apparent in the field intensity distribution for
this mode in the longitudinal waveguide section, i.e., in the
rÿz plane. In the vicinity of periodic trajectory, one
observes an amplified intensity [43, 92]. An analogous
phenomenon in the quantum chaos theory is known as
scarring [94]. Finally, Fig. 7f plots the Floquet mode
belonging to the chaotic sea, i.e., formed by chaotic rays.

5.2 Ray dynamics in the presence
of fast inhomogeneity oscillations with depth
5.2.1 Vertical resonance. In Section 5.1, we described the
mechanism leading to the origin of ray chaos when the sound
speed perturbation smoothly depends on the depth z. Here,
we continue with amore complex case, when the perturbation
exhibits fast oscillations with the depth. In the real ocean such
oscillations are caused by high modes of the internal-gravity
wave field. As an example, consider a simple model in which
the perturbation of the underwater sound channel is
described by the formula

V�r; z� � eY�z� sin kzz sin krr ; �70�

where Y�z� is a slowly varying function, and

kz 4

���� dYdz
���� : �71�

If this inequality is satisfied, the perturbation exhibits fast
oscillations along the ray trajectory, except for the regions
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Figure 6. The phase portrait of the ray system in the waveguide model

given by the relationships (14) and perturbation (53) with the amplitude

e � 0:01 and the horizontal period lr � 10 km [89].
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satisfying the condition

dC�

dr
� kz p� kr ' 0 ; �72�

where C� � kzz� krr. In these regions, the oscillations of
perturbation become `frozen' with respect to the ray and the
so-called vertical resonance occurs. It is a variety of resonance
in systems with fast and slow oscillations explored in detail in
a series of studies by A I Neishtadt and colleagues [95±99]. In
our case, the role of slow oscillation is performed by the ray
oscillations of frequency o in the waveguide. The approach
proposed by Neishtadt's group resides in resolving the
motion into resonant and nonresonant components and
analyzing each of them subsequently. In the nonresonant
mode, the system of ray equations can be reduced to an
integrable one with the help of the averaging method [100].
Consider the ray motion in the vicinity of one of the
resonances (72), for example, corresponding to
dC�=dr � 0. In this case, the equation for the ray trajectory
can be brought into the form

d2z

dr 2
� dp

dr
� ÿ dU

dz
ÿ e
2
kzY�z� sinC� : �73�

Using Eqn (73), one readily obtains the system of equations in
the Hamiltonian form:

dC�

dr
� kzy � q ~H�C�; y�

qy
;

�74�
dy

dr
� ÿ e

2
kzY�z� sinC� ÿ dU

dz
� ÿ q ~H�C�; y�

qC
;

which describes the ray behavior in the vicinity of vertical
resonance. Here, y is the deviation from the resonance in
terms of the variable p, given by the expression

y � pÿ pres � p� kr
kz
: �75�

The resonance Hamiltonian ~H, in accordance with equations
(74), has the following form

~H�C�; y� � kz y
2

2
ÿ e
2
kzY cosC� � dU

dz
C� : �76�

Subject to the inequality���� dUdz
���� < ekzY

2
; �77�
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the phase portrait of a system of equations (74) for the fixed
value of z contains the region of oscillatory motion bounded
by a separatrix, the region corresponding to the vertical
resonance. The area of this region depends on z and varies
along the ray. Rays, therefore, can intersect the separatrix,
getting into the separatrix loop and, accordingly, into the
vertical resonance. The criterion of getting into the vertical
resonance can be formulated as the inequality [101]

~H
���
z�r�

4 ~Hs

���
z�r�

; �78�

whereHs is the value of Hamiltonian ~H on the separatrix, the
values of phase C� are bounded within the interval �ÿp; p�,
and the index z�r� implies that ~H and ~Hs are computed along
the ray trajectory z�r�. The area of resonance region reaches a
maximum at dU=dz � 0, i.e., when the ray crosses the axis of
the USC. In this case, one expects the influence of a vertical
resonance to be the strongest. Taking this into account
together with condition (72), we find the equation defining
the rays most susceptible to the influence of the vertical
resonance [102, 103]:

p�za;H � �
����������������������������
2
�
HÿU�za�

�q
' kr

kz
; �79�

where za is the depth of the channel axis.
Having been trapped in the vertical resonance, the ray

leaves it later, since inequality (77) can hold only along a
limited portion of the trajectory. Every passage of the ray
through the vertical resonance results in a jump in the ray
action I. As proved in Refs [95, 96], the magnitude of this
jump is extremely sensitive to the initial conditions. As a
result, multiple transits through the resonance give birth to
chaotic diffusion. Moreover, Neishtadt and Vasiliev [104]
have proven the absence of stable periodic trajectories among
those intersecting the separatrix of the resonance domain.

Thus, ray scattering on the vertical resonance spawns ray
chaos. In this case, Eqn (79) defines the position of the chaotic
layer in the phase space. For example, in the case of strong
vertical oscillations, kr 5 kz, the vertical resonance leads to
chaos for the rays propagating at small angles to the channel
axis and belonging to the central domain of the phase space.
This is demonstrated in Fig. 8 which plots the PoincareÂ
section computed for a USC with a biexponential sound
speed profile:

c�z� � c0

�
1� b 2

2

�
exp �ÿaz� ÿ Z

�2�
; �80�

where c0 � 1480 m sÿ1, a � 0:5 kmÿ1, b � 0:557, and
Z � 0:6065. The perturbation has the form (70), where

Y�z� � z

zth
exp

�
ÿ 2z

zth

�
: �81�

The values of the perturbation parameters are the following:
zth � 1 km, e � 0:005, kz � 2p=0:2 kmÿ1, and kr �
2p=5:0 kmÿ1. As is seen from the depicted PoincareÂ
section, rays traveling at small angles to the channel axis
belong to the extended chaotic sea. This helps to explain on
a qualitative level the characteristic features of received
acoustic signals in a series of experiments on long-range
sound propagation [19, 66]. First, the near-axial rays are
characterized by the slowest propagation velocities. Accord-

ingly, scattering on the vertical resonance can be an
explanation for strong spreading and irregularity of the
tail part of the acoustic signal. Second, as mentioned above,
the dynamics of rays that escape the vertical resonance can
be reduced to the integrable dynamics by averaging over
fast phases C�. Such rays are therefore exhibit Lyapunov
stability. This offers a key to understanding the stability of
early signal arrivals formed by relatively steep rays. Hence,
it also follows that early arrivals can certainly be used for
solving hydroacoustic tomography tasks.

5.2.2 Bifurcations of periodic orbits. The theory of vertical
resonance treats ray dynamics at a somewhat different angle
than the nonlinear resonance theory considered in Section
5.1. We would like to learn how these two approaches are
related [43, 105]. With this goal, we consider the Hamiltonian

H � H0�I � � eF�I; #; r� sin ÿkzz�I; #�� �82�

with a periodic perturbation F�I; #; r� � F�I; #; r� lr�. Let us
assume that the function F includes many horizontal
harmonics. Condition (79) then takes the form

p �m�max �
mkr
kz

; �83�

where m is the order of a harmonic. Consider a certain
nonlinear resonance

lo � mkr � 2pm
lr

: �84�

The resonant Fourier amplitude of the perturbation is
computed in the following way:

Hl;m � 1

8pilr

� lr=2

ÿlr=2
dr exp

�
ÿi 2pmr

lr

�
Wl�I; r� � c:c:; �85�

Wl�I; r� �
� p

ÿp
d#F�I; #; r� exp �ÿil#� ikzz�

ÿ
� p

ÿp
d#F�I; #; r� exp �ÿil#ÿ ikzz� : �86�

For large kz, the integrals on the right-hand side of Eqn (86)
can be computed with the help of the stationary phase
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Figure 8.The PoincareÂ section for aUSCwith a biexponential sound speed

profile and the perturbation (70).
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method. Let us introduce the notation

C1; 2 � ÿl#� kzz�#� ; �87�

in which case the conditions that the phase be stationary
become the following:

dC1; 2

d#
� ÿl� kz

dz

d#
� ÿl� kz p

o
� 0 : �88�

According to formulas (84), the frequency o can be replaced
by the quantity mkr=l, and we obtain

mkr � kz p�I; #� � 0 : �89�

The contribution of stationary phase points depends on the
second derivative

d2C1; 2

d# 2
� � kz

o2

dp

dr
: �90�

Making use of the approximation

dp

dr
� ÿ dU

dz
; �91�

and performing integration in Eqn (86), we find

W�I; r� � 1

2i

X
j

 
D

����������������
kz

���� dUdz
����

s !ÿ1
F�#j; r�

� exp

�
iCj � i

p
4
sgn

dC 2
j

d# 2

�
� c:c:; �92�

where the index l is omitted, #j is the jth solution to equation
(89) in #, andCj takes the valuesC1 orC2 that corresponds to
it. From Eqn (92) it follows that the function Hl;m�I � has
singularity if dU=dz � 0 and jpj � pres. Comparing this with
Eqn (89), we find that the singularity occurs when the vertical
resonance condition (83) holds true. Hence, it follows that
nonlinear resonances residing in close proximity to the zone
of vertical resonance in phase space experience substantial
broadening. This results in locally enhanced resonance
overlapping and the appearance of an extended chaotic
layer. On the other hand, nonlinear resonances located far
from the vertical resonance zone turn out to be suppressed
since the values of respective Fourier amplitudes are close to
zero because of strong oscillations of the integrand in
Eqn (86).

However, the case considered here admits a much more
interesting scenario for the origin of chaos. A selective
amplification of Fourier amplitudes may result in increasing
the derivatives dHl;m=dI and d2Hl;m=dI

2. The ensuing
consequences can be illustrated in the following way. Take
equation (45b), and rewrite it in the form

d#

dr
� qH0�I �

qI
� e

qHl;m�I �
qI

cosCl;m ; �93�

where Cl;m � l#ÿmkrr� f0. Consider the properties of
equation (93) in the vicinity of elliptic ray orbits of
nonlinear resonance, satisfying the conditions Cl;m � 0
and l d#=dr � mkr. In this case, equation (93) transforms into

m

l
kr � qH0�I �

qI
� e

qHl;m�I �
qI

: �94�

If the inequality���� q2H0

qI 2

���� > e
���� q2Hl;m

qI 2

���� �95�

is satisfied, equation (94) has a single root defining the action
variable that corresponds to the elliptic point. In the presence
of vertical resonance, however, this inequality becomes
violated already for small amplitudes of perturbation e. In
this case, two additional roots may appear, each correspond-
ing to a periodic ray orbit, either elliptic or hyperbolic. Thus,
bifurcation of one of two types takes place: either pitchfork or
saddle±center. An analogous situation is encountered for
hyperbolic ray orbits that correspond to the conditions
Cl;m � p and l d#=dr � mkr. Bifurcations of elliptic and
hyperbolic orbits happen for nearly the same values of e.
New elliptic orbits appearing as the result of bifurcation may
correspond to new island chains in the phase space. In this
case, the nonlinear resonance of multiplicity l :m gains two
satellites. The reproduction of periodic ray orbits accompa-
nies a further increase in e.

As an illustration, let us follow the inception of the chaotic
layer plotted in Fig. 8 for small values of the perturbation
amplitude e. Figure 9 illustrates the evolution of the PoincareÂ
section with a growth in e. The vertical resonance with
pmax � 0:04 leads to broadening of the nonlinear 15:2
resonance. As a result, this resonance becomes apparent in
the PoincareÂ section even for a very small e. At e � 0:0001, the
island chain that corresponds to the 15:2 resonance looks like
a usual resonance chain in nondegenerate Hamiltonian
systems (Fig. 9a). At e � 0:0002, this is already not the
caseÐ the islands elongate along the radial coordinate
(Fig. 9b). This stretching leads in the end to bifurcations of
singular points. The result of bifurcations is displayed in
Fig. 9c, where we observe the appearance of two chain-
satellites with the same number of islands. Thus, the non-
linear 15:2 resonance turns out to be triply degenerate. As e
grows even further, a chaotic layer forms in the place of
separatrices of degenerate resonances. This example confirms
that chaos in the presence of vertical resonance can evolve
according to the scenario characteristic of degenerate
Hamiltonian systems [75±79, 106].

5.2.3 The influence of vertical resonance on wave field proper-
ties. The applicability of the ray method relies on the
smallness of the acoustic wavelength, as compared with
inhomogeneity scales of the ocean. The ocean is a stratified
medium, and its horizontal variability scale Lr exceeds its
vertical scale by two or three orders of magnitude, namely

Lz 5Lr : �96�

On the other hand, the wave vector of an acoustic wave also
has two components, vertical and horizontal. A USC is
capable of confining only the waves propagating at small
angles to the horizontal plane; hence, the vertical wave
number is much less than the horizontal one. It thus follows
that the vertical length of an acoustic wave can be of the same
order as Lz. In that case, the ray approximation will
incorrectly describe the influence of vertical inhomogeneity
on the wave propagation [107].

Reference [108] reports that small-scale structures of the
sound speed profile do not exert a strong influence on the
sound wave refraction, and that the accuracy of ray modeling
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can substantially be improved by smoothing the perturbed
sound speed profile. Smoothing, however, removes small-
scale depth variations of perturbation, which play a key role
in the stochastization of near-axial rays. This hints that wave
effects must suppress the influence of vertical resonance on
the near-axial sound propagation.

In order to test the last statement, we turn to the
properties of the Floquet modes for the USC model
corresponding to Fig. 8. Figure 10 demonstrates the Husimi
distributions for two typical Floquet modes at a sound
frequency of 200 Hz. A part of the Floquet modes is
`stretched' in the phase space, similarly to the mode plotted
in Fig. 10a, covering almost entirely the chaotic sea. To what
extent do such Floquet modes correspond to the instability
of sound propagation at small angles to the USC axis?
Reference [109] shows with the help of the Leboeuf±Voros
criterion [110] that these Floquet modes can only be
classified as `weakly chaotic'. Reference [111] explores the
dynamics of a wave packet in the phase space with the help
of the Husimi function (69). It indicates that at a frequency
of 200 Hz (and lower) the phase volume occupied by the
wave packet oscillates instead of growing monotonically
with an increase in the horizontal coordinate r, as pre-
scribed by the theory of ray chaos.

We would like to focus our attention on the following
phenomenon. Many of the Floquet modes belonging to the
chaotic sea look like chains of eight ordered intense spots
(Fig. 10b). Each such burst is located in the vicinity of one of
the periodic orbits of a 8:1 resonance. All these orbits are
unstable, which allows one to connect the spot formationwith
scarring, i.e., the wave functions localized in the vicinity of
unstable periodic orbits [94].

On the other hand, as shown in Section 5.2.2, under the
conditions of vertical resonance the number of periodic orbits

can sharply increase as a result of a bifurcation cascade.
Indeed, direct computation of periodic ray orbits with the
length 8lr, which may correspond to a chain of eight intensity
bursts, gives an immense number of solutions, with the initial
points of the orbits being scattered without order in phase
space (Fig. 10c). If we take into account that the contribution
of an orbit is inversely proportional to the rate of its
Lyapunov divergence, the situation is partly clarified: the
eight of nine most stable orbits are located in the vicinity of
elliptic points of the 8:1 resonance (Fig. 10d).

It should be noted that a cluster formed by several less
stable orbits is present in the vicinity of each of these eight
orbits. If the sound frequency is insufficiently high, the
contributions of separate orbits belonging to the same cluster
are indistinguishable. As a result, the clusters are reflected in
the Floquet modes as superscarsÐspots of high intensity
concomitant to orbit bifurcations [113]. As the frequency of
sound is reduced, the traces of periodic orbit bifurcations in
the structure of Floquet modes become weaker and weaker,
before fading away altogether [103, 109, 111].

5.3 Ray and wave chaos in randomly inhomogeneous
waveguides: the quasideterministic approach
The methods and approaches used to explore deterministic
periodic waveguides differ essentially from those of the theory
of waves in random media. One of the most important
properties of periodic waveguides, influencing many aspects
of both ray and wave dynamics, is the sharp separation of the
phase space of ray equations into regular and chaotic
domains. The ray motion is regular and predictable within
the former, and exhibits stochastic properties within the
latter. This, undoubtedly, leaves imprints on the properties
of acoustic fields when correspondence conditions between
the ray and wave descriptions are fulfilled.
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Notions of the Lyapunov ray instability and the predict-
ability horizon are also applicable to waveguides with
random perturbations. In this case, one assumes the ergodi-
city of ray dynamics in phase space, which is rather natural
since the broad spectrum of perturbation harmonics leaves no
chance for the existence of impermeable stability zones. At the
same time, studies of the statistics of the Lyapunov exponents
at a finite distance from the source reveal that a considerable
fraction of rays preserves stability over distances essentially
exceeding the Lyapunov horizon [18]

rLyap � 1

n
; �97�

where n is the global Lyapunov exponent (i.e., the exponent as
r!1).

Such rays form compact beams which can stand out
through their intensity owing to the reduced geometrical
divergence. Reference [31] dubbed them `coherent clusters'.
One has to distinguish coherent clusters from regions of
random field focusing responsible for the formation of
caustics [114, 115]. The main difference lies in the fact that
the initial conditions for rays belonging to a coherent cluster
form a compact set in phase space, the position of which may
change depending on realizations of random inhomogene-
ities. A set of this kind can be singled out by different
techniques, for example, by computing the map of stability
exponents in the phase space or with the assistance of
computations of eigenfunctions for the Frobenius±Perron
operator [116]. For a perturbation composed of a small

number of harmonics, use can be made of the method
proposed in Ref. [117].

If our goal is not only to find coherent clusters, but also to
propose some physical explanation for their formation, we
can resort to the one-step PoincareÂ map method [118±120]
based on a reduction in ray propagation on a limited path in a
randomly inhomogeneous waveguide to the equivalent quasi-
deterministic problem with a periodic inhomogeneity. Below,
we give a brief description of this method.

Consider the ray Hamiltonian of the following form

H � p 2

2
�U�z� � eY�z� x�r; z� ; �98�

where e5 1, Y�z� is a slowly varying function, and x�r; z� is
the random function satisfying the conditions


x�r; z�� � 0 ;


x 2�r; z�� � 1

2
: �99�

Suppose that x�r; z� is a differentiable function with known
spectral properties and consider some its realization. This
allows us to treat x�r; z� as an unknown deterministic
function. In order to identify the regions of initial condi-
tions corresponding to coherent clusters, we make use of the
invariance condition on a finite interval: if some set of initial
conditions in phase space transforms into itself without
mixing at r � t, it corresponds to Lyapunov stable trajec-
tories in the interval r 2 �0; t�. Such sets can be found with
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the help of the map

pi�1 � p�r � tj pi; zi; r � 0� ; �100�
zi�1 � z�r � tj pi; zi; r � 0� ;

where p�r � tj pi; zi; r � 0� and z�r � tj pi; zi; r � 0� are the
solutions to ray equations at r � t that correspond to the
initial conditions p�r � 0� � pi and z�r � 0� � zi. We stress
that all map iterations are carried out with the help of one and
the same `piece' of the function x�r; z�. Hence, it follows that
map (100) is equivalent to an ordinary PoincareÂ map for
Hamiltonian (98) in which the function x�r; z� is replaced by
the periodic function ~x:

~x�r 0 � nt; z� � x�r 0; z� ; 04 r 04t ; �101�

where n � 0; 1; 2; . . . . The main distinction of map (100) from
the ordinary PoincareÂ section lies in the fact that map (100)
describes the dynamics only within the finite interval r 2 �0; t�,
whereas the range of values for r is not bounded for the
ordinary PoincareÂ map. Relatedly, map (100) came to be
known as the one-step PoincareÂ map.

The main property of the one-step PoincareÂ map stems
from the analogy with the ordinary PoincareÂ map: each point
of continuous closed trajectory of the one-step PoincareÂ map
(100) corresponds to the initial condition for the trajectory of a
ray which preserves Lyapunov stability in the interval r 2 �0; t�.
Note that the inverse statement is generally incorrect; there-
fore, the given stability condition is not a necessary one.

The main advantage of the one-step PoincareÂ map is that
it admits a qualitative analysis with the help of the theory of
periodic waveguides. As an illustration, consider the simplest
case when x does not depend on the depth z. Then, in
accordance with conclusions of Section 5.1, the structure of
the phase portrait of map (100) is governed by the nonlinear
resonances

lo�I � � mkr ; �102�

where kr � 2p=t. For t5 2p=o, the impact of resonances can
be neglected, since the corresponding Fourier amplitudes are
small, and the system of ray equations can be reduced to the
integrable one with the help of the averaging method. Thus,
the rays become chaotic only gradually. Of interest is the case
of large values of t4 2p=o. Since the function ~x�r� contains
an infinite number of harmonics, an infinite number of
n� l : n�m resonances, where n is an integer number,
correspond to each resonance value of action satisfying
relation (102). Realizing that the amplitudes of resonances
decay quite fast with a growth in their order, we can neglect all
resonances with jnj > 1. In that case, one readily obtains the
expression for the resonance width with respect to the spatial
frequency of ray oscillations in the waveguide:

Do � 2
���������������������
ejo 0Yl xmj

p
; �103�

where Yl and xm are the resonance amplitudes of the Fourier
series for the functions Y�#� and ~x�r�. It is noteworthy that as
t grows the fluctuations of quantity xm weaken and xm !
const� S�n � kr�, where S�n� is the spectral density for the
function x�r�. Thus, for large t the resonance widths rather
weakly depend on realizations of random perturbation. The
Fourier amplitudes Yl also decay quite fast with increasing l.
We may therefore limit ourselves to considering only the

resonances with l � 1. In this case, the distance between the
nearest resonances in terms of frequency is described by the
simple formula

do � 2p
t
: �104�

Making use of the Chirikov criterion

K � Do�t�
do�t� ' 1 ; �105�

we can estimate the minimum distance from the sound source
up to which the ray dynamics is predominantly Lyapunov
stable.

Let us turn now from the ray to the wave description. In
this case, the role of the one-step PoincareÂ map is played by
the shift operator [121]

Ĝu�r � 0; z� � u�r � t; z� �106�

describing the wave field evolution between r � 0 and r � t.
In the same manner, as the one-step PoincareÂ map is an
analog of the ordinary PoincareÂ map, the operator Ĝ is the
analog of the Floquet operator (55). Eigenfunctions and
eigenvalues of the operator Ĝ are defined by the relationship

Ĝum�r; z� � exp �ÿikEm� um�r; z� : �107�

Similarly to the Floquet operator, the operator Ĝ can be
expanded over the basis of the modes of an unperturbed
waveguide with the help of representation (59). The connec-
tion between stability (instability) of rays and wave dynamics
can be judged both by the structure of separate wave
functions, as we did earlier in Section 5.1, and by the
statistical properties of the spectrum. In the quantum chaos
theory, one of the most representative characteristics, which
points to the degree of manifestation of classical chaos in
quantum dynamics, is the distribution of level spacings
defined as

s � Em�1 ÿ Em : �108�

As applied to the operator Ĝ, it is reasonable to use the
distribution of level spacings, which is averaged over the
ensemble of realizations of random inhomogeneity:

r�s; t� � lim
N!1

1

N

XN
n�1

Pn�s; t� ; �109�

where Pn�s; t� is the distribution of level spacings computed
with the nth inhomogeneity realization. The regular ray
dynamics implies that the modes tend to combine in separate
groups which weakly interact with each other. As a result, in
accordance with the theory of randommatrices, the matrix of
operator Ĝ attains a block structure, each block giving birth
to its own series of eigenvalues Em. Moreover, the series of
eigenvalues spawned by different matrix blocks do not
correlate with each other. Accordingly, the statistics of level
spacings s is described by the Poisson distribution [88, 122]

r�s� � exp �ÿs� : �110�
The global ergodic chaos assumes a dissimilar pictureÐall
modes strongly interact with each other, while the wave
functions overlap in the phase space. In this case, the nearest
levels experience `repulsion' and the level spacings are
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distributed according to the Wigner±Dyson law [88, 122]

r�s� � As z exp �ÿBs 2� ; �111�
where A and B are the constants selected so as to satisfy the
normalization conditions�1

0

r�s� ds � 1 ;

�1
0

sr�s� ds � 1 ; �112�

and z takes the values of 1, 2, or 4, depending on the symmetry
of the operator Ĝ. The eigenvalues of operator Ĝ are
unimodular (i.e., they lie on the unit circle in the complex
plane), while the operator Ĝ itself does not generally possess
symmetry with respect to inversion of the horizontal
coordinate r. These two circumstances indicate that the
operator Ĝ belongs to a circular unitary ensemble for which
z � 2 [121]. An intermediate regime of a mixed phase space
which hosts regions of regular and chaotic ray dynamics
corresponds to a certain combination of the Poisson and
Wigner±Dyson statistics. Finding a satisfactory expression
for P�s� in this case is rather difficult [123, 124]. In practice,
one frequently uses the approximation of statistics of
interlevel separations based on the heuristic Brody distribu-
tion [88, 125]

r�s� � �b� 1�Abs
b exp �ÿAbs

b�1� ; �113�

where

Ab �
�
G
�
b� 2

b� 1

��b�1
; �114�

and G�. . .� is the Euler gamma-function. At b � 0, formula
(113) reduces to the Poisson distribution, and for b � 1 to the
Wigner distribution (i.e., theWigner±Dyson distributionwith
z � 1). As the step t increases, the net area of stability regions
of map (100) decreases, while the area of chaotic regions
increases. The distinction between the Wigner±Dyson dis-
tributions for z � 1 and z � 2 is quite small. Taking this into
account, it should be expected that the value of the Brody
parameter b that corresponds to the best approximation will
vary with the growth of t from 0 to 1, reflecting the origin of
chaos.

In order to check this assumption, consider a USC with
a biexponential sound speed profile (80) and the perturba-
tion

dc�r; z� � ec0
z

zth
exp

�
ÿ 2z

zth

�
sin g�r; z� m�r� ;

�115�
g�r; z� � p

�
v exp

�
ÿ z

zth

�
� m�r�

�
:

Here, e � 0:0014, and zth � 1 km. The function m�r�
represents the sum of 10,000 harmonics with random
phases and wave numbers kr distributed over the interval
from 2p=100 kmÿ1 to 2p kmÿ1 with the spectral density
decaying as kÿ2r . The function m�r� is constrained by the
normalization condition hm 2i � 1. Figure 11 demonstrates
examples of ray phase portraits of map (100). At v � 5, the
perturbation oscillates with depth sufficiently gently, and
the ray chaos develops with the growth of t according to the
scenario that corresponds to overlapping resonances. The
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Figure 11. Examples of phase portraits constructed with the help of map (100) for a USC with a biexponential sound speed profile and the perturbation

(115). Parameter values are as follows: (a) v � 5, t � 100 km, (b) v � 5, t � 500 km, (c) v � 20, t � 10 km, and (d) v � 20, t � 30 km.
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area of the regular motion region slowly decreases as t
increases, so that a small stability island is preserved even at
distances in excess of several hundred kilometers from the
source. In the case of v � 20, the vertical oscillations of
perturbation are strong. Relatedly, chaos develops accord-
ing to the scenario presented in Section 5.2. In this case, all
stability regions disappear quite fast, and they are already
absent at t � 30 km.

The dependence of the Brody parameter on t at the
frequency of 200 Hz, plotted in Fig. 12, corresponds to our
expectations on the whole: b increases, on average, with the
growth in t, and this growth is faster for v � 20 than for
v � 5. We should, however, note that ray map (100) still
assumes a much higher growth rate for b: the global ray
chaos already emerges for t of order 20±30 km, whereas b
approaches unity only for t ' 500 km. Such a strong
reduction in the growth rate of b can be attributed to the
fact that the wave corrections to the geometrical optics
approximation commonly weaken the manifestation of ray
chaos in the wave picture, similarly to what we have already
seen in Section 5.2.3.

It seems reasonable to expect a sharper transition from the
Poisson to Wigner statistics at a higher frequency of 600 Hz
because of a weakening of the wave properties. A surprise,
however, awaits us here. The sharp growth of parameter b
with t ceases at t ' 120 km and is replaced by a slow decrease
of b stemming from the appearance of an increasingly larger
number of degenerate eigenstates of the operator Ĝ. The
nature of this phenomenon becomes clear if we take into
account that the origin of ray chaos in the presence of fast
vertical oscillations of the perturbation is accompanied by
bifurcations of periodic orbits (see Fig. 9). As shown in
Refs [126, 127], strong fluctuations of spectral density occur
in the vicinity of bifurcation points. Moreover, the amplitude
of these fluctuations increases with the signal frequency, i.e.,
as the ray limit is approached.

Thus, the statistics of the spectrum of operator Ĝ contra-
dict the ideas of random matrix theory in the presence of
strong vertical oscillations of perturbation. This effect proves
to be insignificant at a frequency of 200 Hz and does not
noticeably affect the dependence of the Brody parameter b on
t, because the influence of bifurcations weakens with an
increase in the wavelength.

6. Waveguides with random
sound speed perturbations

6.1 Statistical description of ray chaos
The feasibility of a statistical description of the ray field
structure stems from the fundamental property of the chaotic
behavior of trajectories, which is called mixing [26, 27].

Let us consider a set of trajectories leaving a small domain
R of a phase plane. For the distance r4 nÿ1, the points
depicting these trajectories will be scattered over a much
larger domain R0. Mixing, in particular, implies that the
fraction of trajectories that visit some subdomain of R0, to
be denoted asDR0, depends only weakly on the shape and size
of the domain R. The relative number of trajectories coming
to DR0 (of those that left R) can be interpreted as the
probability of a trajectory getting into this subdomain. This
definition of probability becomes more rigorous as r!1 if
simultaneously the size of R tends to zero. In our tasks,
however, the finiteness of r is essential. We therefore cannot
consider excessively small domains of initial conditions R or
speculate about the probability of a ray visiting very small
domains DR0.

To compute the statistical characteristics of the trajectory
with the initial conditions p�0� � p0 and z�0� � z0, we
consider a set of trajectories leaving a small domain R
containing the point �p0; z0� as the statistical ensemble. We
define the probability density for a ray to pass through the
point �p; z� at the distance r through the relationship

Ppzj p0z0�p; z; rjp0; z0� �
1

SR

�
��
R
dp 00 dz

0
0 d
ÿ
zÿ z�r; p 00; z 00; r0�

�
d
ÿ
pÿ p�r; p 00; z 00; r0�

�
;

�116�

where SR is the area ofR. The probability of a ray visiting the
domain DR0 is given by the integral

PDR0 �
�
DR0

dp dz Ppzjp0z0�p; z; rjp0; z0� : �117�

As already mentioned, because of the finiteness of r, this
definition gains some practical sense only for sufficiently large
DR0, and, additionally, the domain of initial conditions R
cannot be too small. For this reason, the probability density
thus introduced can be applied to compute mean values of
sufficiently smooth functions of p and z.

In a similar way, we define the probability density
PIyjI0y0�I; y; rjI0; y0� in the action±angle coordinates:
PIyjI0y0�I; y; rjI0; y0� gives the probability of the ray leaving
the point �I0; y0� to get into the vicinity of the observation
point �I; y�. Treating the canonical transformation (22) as a
nonlinear substitution of variables, connecting two pairs of
random quantities, and taking into account that its Jacobian
equals unity by virtue of the Liouville theorem (25), we find
the link between the two probability densities introduced
above:

PIyjI0y0�I; y; rjI0; y0�
� Ppzjp0z0

ÿ
p�I; y�; z�I; y�; rjp�I0; y0�; z�I0; y0�

�
: �118�

Usage of the action±angle variables often enables sub-
stantial simplification of a statistical description of chaos: the
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Figure 12. The Brody parameters b as a function of t. The white circles

correspond to f � 200 Hz and v � 5; the black circles are consistent with

f � 200 Hz and v � 20, and the squares are peculiar to f � 600 Hz and

v � 20.
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angular variable y makes a practice of rapidly `forgetting' its
initial value and can be considered as uniformly distributed in
the interval �0; 2p� already over quite short distances. In this
case, one obtains

PIyjI0y0�I; y; rjI0; y0� �
1

2p
PIjI0�I; rjI0� : �119�

The functionPI jI0�I; rjI0� describes slow diffusion of rays over
the action variable. A similar approach is widely applied for
the analysis of chaotic dynamics in systems with periodic
perturbation [26, 27].

If the perturbation is a realization of a random medium
which is statistically homogeneous along the r-axis, the
probability density defined by relationship (116) can only
weakly depend on the particular realization of the random
waveguide [37, 128±130]. This proposition, confirmed by
numerical simulation results, hinges on the fact that initially
close trajectories rapidly diverge under conditions of chaos
over distances that exceed inhomogeneity correlation radii.
On long paths, the rays intersect practically independent
inhomogeneities and behave as if they were propagating in
different realizations of a random medium. It is, therefore,
natural to expect that averaging over initial conditions can
lead to results resembling those obtained by averaging over
the statistical ensemble of realizations.

6.2 Distributions of chaotic ray parameters
6.2.1 A model of randomly inhomogeneous USC. We present
further the results of numerical modeling carried out for the
waveguide model with the unperturbed sound speed profile
�c�z� (taken from Ref. [131]) depicted in Fig. 13a. This profile
obeys formula (14) with the parameters c0 � 1:48 km sÿ1,
e � 0:00238, zth � 0:485 km, and za � 0:7 km.

It is assumed that a weak perturbation dc�r; z� originates
from random internal waves with statistics defined by the
widely known empirical Garrett±Munk spectrum [1]. Fluc-
tuations of the sound speed dc�r; z� are statistically homo-
geneous and isotropic in the horizontal plane. Their char-
acteristic scales in this plane vary from several kilometers to
several dozen kilometers. The intensity of fluctuations decays
with the depth, and their characteristic vertical scales measure

from several dozen to several hundred meters. To generate
individual realizations of random field dc�r; z�, we used the
method proposed in paper [50]. The realizations dc�r; z� have
been generated by adopting formula (19) of Ref. [50]. The
spectrum of the perturbation dependence on the horizontal
coordinate r is concentrated in the wave number interval from
2p=100 kmÿ1 to 2p=4 kmÿ1, and the root-mean-square
amplitude of dc is 0.5 m sÿ1 near the surface and drops with
depth, according to the law exp �ÿz=L�, where L � 0:66 km.
Figure 13b plots the vertical sections of the field dc�r; z� at
three different distances.

6.2.2 The Wiener process approximation. The method of
approximately computing the function PI jI0�I; rjI0�, pre-
sented in Refs [35±37, 43], exploits the fact that, since the
perturbation is weak, the variable I changes only slightly on
the typical longitudinal scale rl of medium inhomogeneities
(from several kilometers to several dozen kilometers).
Because of this, the right-hand side of the Hamilton equation
for action (26) can formally be treated as a delta-correlated
random function. In this case, the dependence of ray action
variable I on r is modelled by a Markovian random process,
the probability density of which obeys the Fokker±Planck
equation

qPI jI0
qr
� 1

2

q
qI

B�I � qPI jI0
qI

: �120�

The diffusion coefficient B�I � can easily be assessed by
resorting to numerical simulations of ray trajectories for
concrete random medium realizations, performed with the
help of a standard ray program [35±37, 43]. In our waveguide
model, the quantity B weakly depends on I and can be
replaced with the constant B � 1:4� 10ÿ7 km. The diffusion
coefficients in other models of a deep-sea USC [37, 61, 128,
129, 132] have the same order of magnitude.

For a constant B, the dependence of the ray action on the
distance can be represented in the form I�r� � I0 � x�r�,
where I0 � I�0�, and x�r� stands for the so-called Wiener
random process [133, 134] satisfying the stochastic Langevin
equation

dx

dr
� x�r� ; �121�

where x�r� is the white noise with a zero mean and correlation
function x�r� x�r 0�h i � Bd�rÿ r 0�.

We call attention to the following important issue. The
random function x�r� defined by equation (121) can take both
positive and negative values. However, the action variable I is
nonnegative by definition. This circumstance is readily
accounted for by introducing a reflecting boundary for
trajectories x�r� at x � ÿI0 [37, 43, 129]. The possibility of
introducing the boundary is an additional assumption. Its
validity is confirmed by numerical modeling results.

If the boundary is present, the solution to the
Fokker±Planck equation (120) with the initial condition
PI jI0�I; rjI0� � d�Iÿ I0�, which describes diffusive spreading
(over I ) of a bundle of rays with the same initial action I0,
takes the form

PI jI0�I; rjI0� �
1�����������
2pBr
p

�
�
exp

�
ÿ�Iÿ I0�2

2Br

�
� exp

�
ÿ�I� I0�2

2Br

��
: �122�
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Figure 13.Unperturbed sound speed profile (a), and the vertical sections of

perturbation dc at three different distances (b).
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If the condition

Br5 I0 �123�

holds true, the ray action variable on the path to the
observation point r does not manage to approach the value
of I � 0, and the reflecting boundary is not needed. This
condition holds for rays with sufficiently large initial grazing
angles w0 (I0 increases monotonically with the growth in jw0j).
We will therefore call the rays obeying condition (123) steep.
The second term on the right-hand side of formula (122) can
be neglected when describing them. The variance of the action
variable for a steep ray grows with distance according to the
diffusion law

sI �

�Iÿ I0�2

�1=2 � Br : �124�

Numerical simulations indicate that, for estimates, condition
(123) can partly be relaxed, with the requirement that 5 be
replaced by <. In our waveguide model, such a condition is
valid for rays grazing at angles w > 5� on the waveguide axis
at a distance of r � 3000 km.

Hamilton equation (27) for the variable y can also be
approximately replaced by a very simple Langevin stochastic
equation. Let us neglect the second term on the right-
hand side of Eqn (27) and replace o�I � by the function
o�I0� � o 0�I0�x [35±37]. Representing the angular variable
as y�r��y0� o�I0�r�y�r�, where y0� y�0�, and y0� o�I0�r
is the ray angular variable at the distance r in the unperturbed
waveguide, we obtain the stochastic equation

dy

dr
� o 0�I0�x : �125�

Hence, it follows that, for steep rays, the variance of the
angular variable reduces to

sy �

�yÿ y0�2

�1=2 � ��o 0�I0����B
3

�1=2

r 3=2 : �126�

At short distances, where the ray action variables differ
only slightly from their initial values, the ray trajectory
distortion is largely determined by perturbations of the
angular variable, i.e., the function y�r�. According to
equation (125), its magnitude is proportional to o 0�I0�. This
implies that the sensitivity of the ray trajectory to the
influence of sound speed fluctuations depends to a substan-
tial extent on the derivative of o 0�I0�, which in turn is set
solely by the unperturbed sound speed profile �c�z�. This
agrees perfectly well with the results of papers [61, 73, 74,
87, 135], in which it is proved that the sensitivity of ray
trajectories to the perturbation dc�r; z� is defined by the
stability parameter a given by relationship (50). The numer-
ical modeling results presented in these papers confirm that
the instability of trajectories indeed increases with a.

We call the replacement of Hamilton equations (26) and
(27) by the stochastic equations (121) and (125) the Wiener
process approximation. Numerical simulations indicate that
this approximation describes fairly well the statistical proper-
ties of rays on paths measuring thousands of kilometers. Let
us demonstrate it with a particular example. We are going to
explore the applicability of relationships (119) and (122).

Formulas (119) and (122) describe the distribution of
action variables of rays with initial conditions in a small
domain R of a phase plane. Figure 14 presents the results of

numerical trajectory computations for the rays emanating
from domains R shown in Fig. 14a, c, e with small black
rectangles. Figure 14a, b exhibits the rays coming from depths
z close to the waveguide za-axis, at initial grazing angles of
about 3�. The trajectories of 10,000 rays with initial para-
meters �p0; z0� uniformly filling the black rectangle in Fig. 14a
were computed to the distance r � 3000 km with the help of a
ray program. The randomly scattered points in Fig. 14a
display the distribution of these rays in the phase plane �p; z�
for a particular realization of random perturbation dc�r; z�.
The action distribution for these rays is presented by one of
stepwise lines in Fig. 14b, which displays a normalized
histogram. The second stepwise line is the histogram of
analogous distribution computed for another realization of
perturbation dc�r; z�. The normalized histograms are com-
pared with the probability density for the action variable I,
predicted by formula (122) (smooth curve). Analogous results
for rays emanating at angles close to 6� and 9� are plotted in
Fig. 14c, d and e, f, respectively. This and other comparisons
of the theory to numerical simulations confirm not only the
applicability of formula (122), but also our assumption that
the ray statistics on long paths are only weakly dependent on
the concrete realization of random medium inhomogeneities.

6.2.3 A point source field. For a point source, the initial
coordinates of the rays lie on the straight line z � zs in the
phase plane pÿz, where zs is the source depth. We demon-
strate how formula (122) can be applied to describe the
statistics of these rays.

Assume the initial momenta to be confined to the interval
ÿpmax < p0 < pmax. The probability density of p0 will for-
mally be considered �2pmax�ÿ1 in this interval, and zero
outside it. Such a choice of the probability density is in fact
concerned with the assumption that the directivity pattern of
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Figure 14. The distribution of rays leaving a small domain R of a phase

plane. Three selected domainsR in panels a, c, and e are indicated by small
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of rays (leaving the respective rectangles) at a distance of 3000 km. Panels

b, d, and f display the distributions of ray action variables I at this distance.
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(panels c and d), and 9� (panels e and f).

January 2012 Ray and wave chaos in underwater acoustic waveguides 39



the source at hand is isotropic within the angular interval set
by the choice of pmax.

At distances of about 1000 km, where formula (119) is
applicable, the probability density for the action variable is
defined as

PI�I; r� � 1

2pmax

� pmax

ÿpmax

dp0 PI jI0
ÿ
I; rjI�p0; z0�

�
: �127�

The function I�p0; z0� in the integrand is given by canonical
transform (22). With account for relationship (118), the joint
probability density of the momentum and coordinate at the
distance r is expressed as

Ppz�p; z; r� � 1

2p
PI

ÿ
I�p; z�; r� : �128�

Integrating last formula over p and z, we find the probability
densities for z and p, respectively. In particular, for z we
obtain

Pz�z; r� � 1

4ppmax

�
�
dp

� pmax

ÿpmax

dp0 PI jI0
ÿ
I�p; z�; rjI�p0; z0�

�
: �129�

The smooth curves in Fig. 15 display the probability
densities for I, y, and p on a path of 3000 km, computed in
the Wiener process approximation, i.e., based on formulas
(122), (127), and (129) (for the angular variable ymodulo 2p,
we expect a uniform distribution). It is assumed that
Z�p0� � 1=�2pmax�, i.e., the source directivity pattern is
approximately isotropic. These curves are compared with
probability density estimates (normalized histograms)
obtained from numerical simulations of 48,000 rays. The
computations were performed for a point source at 0.7 km
depth, and the initial angles of emergent rays fall in the range
�12�. As is apparent, predictions made in the Wiener process
approximation agree well with the numerical modeling
results.

6.3 Smoothed wave field intensity
In this section, we will show how the knowledge of ray
statistical characteristics can be exploited to assess the sound
field intensity. We will be dealing with the estimate of spatial
intensity distribution which is smoothed along the vertical
coordinate.

On ray paths measuring thousands of kilometers, the field
at an observation point is formed by a huge number of chaotic
rays. A smoothed distribution of field intensity, defined by
the relationship

J�r; z� � 1������
2p
p

Dz

�
dz 0
��u�r; z 0���2 exp �ÿ�zÿ z 0�2

2D2
z

�
; �130�

where Dz is the smoothing scale, can be estimated through the
noncoherent summation of their contributions [3]. According
to expression (18), the sum of intensities of eigenrays at the
observation point can be written out as��u�r; z���2 �X

j

k

2pjqz=qp0j
����
p0�p0; j

� k

2p

� pmax

ÿpmax

dp0 d
ÿ
zÿ z�r; p0; zs�

�
; �131�

where the index j numbers the rays arriving at the point �r; z�.
We divide the interval �ÿpmax; pmax� of initial momentum
values into many small subintervals with boundary points pn,
n � 1; . . . ;N. Let us represent the last expression in Eqn (131)
in the form

��u�r; z���2 � k

2p

XNÿ1
n�1

� pn

pnÿ1
dp0 d

ÿ
zÿ z�r; p0; zs�

�
; �132�

where each of integrals has a form that coincides with that of
the right-hand side of relationship (116) in the case where the
domainR degenerates into a section of the p-axis. According
to Eqns (116) and (118), one finds� pn�1

pn

dp0 d
ÿ
zÿ z�r; p0; zs�

� � �pn�1 ÿ pn�

�
�
dpPpzjp0z0�p; zjpj; zs�

� pn�1 ÿ pn
2p

�
dpPI jI0

ÿ
I�p; z�; rjI�pj; zs�

�
; �133�

where the integration is carried out over all possible values of
p. Substituting Eqn (133) into Eqn (132) and substituting
pn�1 ÿ pn ! dp0, we obtain��u�r; z���2� k

�2p�2
� pmax

ÿpmax

dp0

�
dpPI jI0

ÿ
I�p; z�; rjI�pj; zs�

�
: �134�

This relationship can be rewritten as��u�r; z���2 � pmax k

p
Pz�z; r� ; �135�

where Pz�z; r� is the probability density of coordinate (129).
The substitution of Eqn (135) into Eqn (130) yields [133]

J�r; z� � 2kpmax

�2p�3=2Dz

�
dz 0 exp

�
ÿ�zÿ z 0�2

2D2
z

�
Pz�z 0; r�: �136�
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Figure 16 compares the prediction made with formula
(136) (dashed curve) to the results obtained through compu-
tations of smoothed intensity by numerically solving the
parabolic equation at a carrying frequency of 75 Hz for four
realizations of random perturbation. The smoothing scale Dz

of 0.4 km was selected. Apparently, formula (136) offers a
rough but correct estimate by the order of magnitude for the
smoothed intensity.

6.4 Travel times of chaotic rays
6.4.1 The effect of travel time clustering. As discussed in
Section 4, extensive experimental material has been accu-
mulated to date on sound propagation along distances of
about 1000 km (see, for example, Refs [1, 136]). A
remarkable property of fields in deep-sea acoustic wave-
guides, which was already known in the 1970s, is the
unexpectedly high stability of the initial part of the received
signal, formed by steep rays. Sound pulses propagating
along rays grazing at rather large angles yield to detection
and identification with relative ease, and their arrival times
can be computed with good accuracy in the framework of
the simplest medium model, without account for fluctua-
tions dc caused by internal waves [55]. It is for this reason
that the ray travel times are considered to be the main input
parameters for the solution to inverse problems in systems
of acoustic monitoring of the ocean temperature field [55,
137, 138].

At first glance, it seems surprising that a part of the signal
remains stable even in the presence of inhomogeneities dc
conductive to the ray chaos. The unperturbed model of the
waveguide enables the correct prediction of the peak posi-
tions in the initial parts of signals recorded over distances 3±5
thousand kilometers in length, where the ray chaos is already
well developed [16, 28, 63]. An explanation of this effect
(although not exhaustive) was proposed in the second half of
the 1990s, when it had become clear that arrival times of
chaotic rays to an observation point tend to form stable
clusters [13, 15, 19]. The ray characteristic called the identifier
and denoted as �M acquires the principal role in their

description. The definition of the identifier was given in
Section 2.3.

Numerical simulations show that each cluster is formed
by rays with the same identifier, i.e., with the same
topology. The cluster center is close to the arrival time of
the unperturbed (regular) ray with the identifier equal to
that of chaotic rays forming the cluster. Those stable peaks
that are resolved in both field and numerical experiments,
and are associated with the arrivals of steep unperturbed
rays, are in fact formed by groups of ray pulses reaching the
receiving point along chaotic trajectories with the same
topology. On long paths, rays with the same identifiers
may substantially diverge from each other in space at
intermediate distances [19].

To illustrate these statements, consider tÿz diagrams, i.e.,
the distributions of ray arrivals in the time±depth plane (see
Section 2.3), at a distance of 3000 km in unperturbed �dc � 0�
and perturbed waveguides, plotted in Fig. 17a and b,
respectively. To construct them, trajectories of 50,000 rays
emanated by a point source at the depth zs � 0:7 km with
initial grazing angles in the interval�12� have been computed
by numerically integrating Hamilton equations in the
unperturbed and perturbed waveguides. Each point of the
diagram corresponds to the arrival of a single ray. In Figure
17a (unperturbed waveguide), the points form continuous
piecewise broken lines. The dependence between the ray
travel time and its vertical coordinate is also given by a
continuous function in the perturbed waveguide (Fig. 17b).
However, this dependence under the conditions of chaos
becomes so complex on long paths that our bundle of rays
turns out to be insufficiently dense to visualize its continuity.
The random scatter of points in the tÿz diagram indicates the
ray chaos. When recording signals at the depth z0, the ray
travel times are determined by the intersections of the tÿz
diagram with the horizontal straight line z � z0. In the
unperturbed waveguide, the intersection with each diagram
segment (a portion of the broken line) specifies a single ray.

Each segment of the tÿz diagram in the unperturbed
waveguide is formed by rays with equal identifiers. In the
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analogous diagram for the perturbed waveguide, the arrivals
of rays with a given identifier form compact groups of
points, which we call fuzzy segments. The section of fuzzy
segment of the straight line z � zr determines the cluster of
ray travel times for a point receiver at the depth zr. Figure 17
indicates that segments formed by steep rays do not
substantially differ on the initial parts of tÿz diagrams in
the unperturbed and perturbed waveguides. This fact
precisely reflects the stability of the initial part of the
received signal, alluded to above.

Figure 17 also displays ray identifiers for selected parts of
the diagrams.

Looking at Fig. 18, which shows rays with the identifier
�140,marked in Fig. 17, we conclude that the perturbation dc
leads not only to spreading the tÿz diagram segments but also
to their left displacement toward shorter times.

The similarity of the initial parts of tÿz diagrams
notwithstanding, the dependence of ray travel times on the
angles at which the rays leave the source is cardinally different
in the unperturbed and perturbed waveguides. If we select a
certain unperturbed ray and start monotonically varying its
emerging angle ws, the respective point in the tÿz diagramwill
monotonically move along the piecewise broken line passing
from segment to segment. Acting in the same manner in the
perturbed waveguide, we will see that the point mapping the
ray in the tÿz diagram `jumps' chaotically in the time±depth
plane. This chaos, however, preserves nontrivial regularity: in
the initial part of the tÿz diagram, the point moving
chaotically always stays in the vicinity of segments of the
unperturbed diagram, `running' from one unperturbed
segment to another (not necessarily neighboring) and return-
ing back.

6.4.2 Estimates of scatter in chaotic ray travel times. The
description of a cluster hinges on an approximate formula for
the difference in travel times between perturbed and unper-
turbed rays joining the point source and receiver and
possessing the same identifiers [35, 37, 74, 139, 140]. This
formula has the form

dt � dtV � dtI ; �137�

where

dtV � ÿ 1

c 2r

�
dr dc

ÿ
r; z�r�� ; �138�

dtI � o 0��I �
2cr

� r

0

dr 0
ÿ
I�r 0� ÿ �I

�2
; �139�

�I is the action variable of an unperturbed ray, and I�r� is the
dependence of the perturbed ray action on the distance. On
relatively short paths (several hundred kilometers), a weak
perturbation does not manage to substantially distort ray
trajectories, and the coincidence of identifiers for the
perturbed and unperturbed rays in fact implies the coin-
cidence of their trajectories. In this case, the main contribu-
tion to dt comes from sound speed fluctuations dc along the
unperturbed trajectory z�r�. The term dtI on the right-hand
side of Eqn (137) can be omitted on short paths, and we arrive
at the well-known result: dt � dtV [1, 55]. The width of the
cluster, estimated as h�dtV�2i1=2, grows with distance propor-
tionally to r 1=2. At distances measuring several hundred
kilometers, the typical magnitude of dtV is several millise-
conds.

Another mechanism dominates on paths of the order of
several thousand kilometers. It relates to strong changes in
the form of ray trajectory occurring under the influence of the
perturbation dc. In this case, the right-hand side of formula
(137) is governed by the term dtI. To analyze its statistical
characteristics, one may apply the approach discussed in
Sections 6.1 and 6.2 and show that the mean cluster
displacement is defined by the formula [35, 37, 139, 140]

hdtIi � o 0��I �
12cr

Br 2 ; �140�

while its spread

�dtI ÿ hdtIi�2�1=2 is approximately jhdtIij.

According to Eqns (139) and (140), the direction of cluster
displacement is determined by the sign of the derivative of
o 0�I �. In typical deep-sea waveguides, the length of the ray
cycle increases with the grazing angle on the waveguide axis.
This implies that o 0�I � is typically negative, and that the
cluster displaces toward shorter times, as we have seen in
Fig. 18. According to the available estimates, the cluster
width on long paths grows with distance proportionally to
r 2 and amounts to approximately 0.01 s or 0.1 s for,
respectively, steep or flat rays at a distance of 3000 km.

Admittedly, the link between the ray travel times and
amplitudes remains as yet unstudied. This question, however,
is very important because the rays forming the cluster
generally have essentially different amplitudes and, conse-
quently, contribute differently to the signal peak associated
with a given cluster.

Reference [19] considers a numerical example showing
that, despite a huge number of rays forming a cluster, the peak
that corresponds to this cluster is in fact formed by pulses with
maximum amplitudes arriving along just several rays. The
scatter in travel times for these rays is relatively small, and the
peak can be 5±10 times tighter than the full cluster.

When discussing clusters, we were comparing the travel
times of rays reaching one and the same point in space and
having the same identifiers. We now turn to the estimate of
travel time scatter for a bundle formed by rays radiated at
angles in the vicinity of some fixed angle w0. In this case, the
initial values of variable I are nearly the same for all rays:
I0 � I�w0�. At distances of about 1000 km, where the chaos is
already well developed, the rays of this bundle not only
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Figure 18.The arrivals of rays with identifier�140 at a distance of 3000 km
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explore different depths but, generally speaking, also have
different identifiers. An approximate formula expressing the
arrival time difference for rays with identifiers ��M� DM�
and �M has the form [35, 37, 139, 140]

dt � 4pDMI0
cr

: �141�

For DM 6� 0, this quantity commonly by far exceeds (in
absolute value) dtV and dtI. Estimating DM as
h�yÿ y0�2i1=2=p and making use of formula (126), we find



dt 2
�1=2 � ��o 0�I0��� r 3=2

cr

�
B

3

�1=2

: �142�

Hence, it follows that the scatter in ray travel times grows
proportionally to r 3=2. Such a distance dependence agrees
well with the results of other authors [74]. At a distance of
3000 km, estimate (142) gives a value of order 1 s, which
exceeds the cluster width by one or two orders of magnitude.
This result once again indicates how strongly the ray travel
time depends on the trajectory topology.

6.5 Smoothed distribution of sound energy
over waveguide normal modes
In Section 2.6 we presented simple analytical relationships
which enabled the amplitudes of normal modes to be
expressed in terms of ray trajectory parameters. With their
assistance, the stochastic ray theory based on the Wiener
process approximation can be applied to the analysis of field
mode structure. We demonstrate this here by computing, as
an example, the intermodal redistribution of sound energy
that accompanies scattering on sound speed fluctuations
dc�r; z�. The quantities jam�r�j2 will, for the sake of brevity,
be termed the intensities of normal modes. Our goal is an
estimate of smoothed modal intensities

Jm�r� �
X
m 0

��am 0 �r���2 exp �ÿ�mÿm 0�2
2m 2

�
�
�X

m 0
exp

�
ÿ�mÿm 0�2

2m 2

��ÿ1
; �143�

where m is the smoothing scale. As in Section 6.3, which dealt
with the analogous task of computing smoothed sound field
intensity (130), we make use of noncoherent ray summation.
However, while Section 6.3 operated with the summation of
eigenrays forming the field at a given waveguide point, here
we have to sum the contributions from modal rays that form
the mode field. Under ray chaos conditions, the number of
modal rays becomes very large, they are practically indepen-
dent, and it is natural to expect that a rough estimate of Jm can
be obtained by summing their intensities. The results of
numerical modeling performed in Refs [49, 141] lend support
to this conjecture.

Consider a situation where the initial field obeys formula
(33), i.e., only a single mode with the order m0 is excited at
r � 0. In this case, the analog of formula (131) for the mode
intensity, according to Eqns (35) and (36), becomes��am�r���2 � 1

2pk

X
j

1��qI�r; Im0
; y0�=qy0

��
y0�y0; j

� 1

2pk

� 2p

0

dy0 d
ÿ
Im ÿ I�r; Im0

; y0�
�
; �144�

where the index j enumerates the modal rays. The integral in
the last expression can be transformed just as the integral on
the right-hand side of formula (131). Dividing the interval of
integration over y0 into small subintervals, we note that
integrals over each of them are also analogous to the integral
in relationship (116). For the subinterval �y0; y0 � dy�, we
have

1

dy

� y0�dy

y0
dy0 d

ÿ
Im ÿ I�r; Im0

; y0�
� � PI�Im; rjIm0

� : �145�

Since the right-hand side is independent of y0, we obtain��am�r���2 � 1

k
PI�r; ImjIm0

� : �146�

Assuming m4 m, the integration limits over m 0 can formally
be moved to infinity. In that case, one-finds

X
m 0

exp

�
ÿ�mÿm 0�2

2m 2

�
'
�1
ÿ1

dm 0 exp
�
ÿ�mÿm 0�2

2m 2

�
�

������
2p
p

m : �147�

We approximate the summation over m in formula (143)
by integration, as in Eqn (147). Then, formally replacing m
with kI� 1=2 [based on quantization rule (29)], we go over
from the integration over m to integration over I:

Jm�r� � 1������
2p
p

m

�
dI 0 PI�r; I 0jIm0

� exp
�
ÿ k 2�Im ÿ I 0�2

2m 2

�
: �148�

We take advantage of relationship (122), which gives the
explicit expression for function PI�r; I jI0�. For modes with
high orders, which are formed by steep rays satisfying
condition (123), the second term on the right-hand side of
Eqn (122) can be neglected, and the integration limits over I 0

can formally be shifted to infinity. In this case, one obtains

Jm�r� � 1������������������������������
2p�m 2 � k 2Br�p exp

�
ÿ �mÿm0�2
2�m 2 � k 2Br�

�
: �149�

At a frequency of 75 Hz, formula (149) is only applicable to
modes with ordersm > 7. In order to describe the modes with
smaller wave numbers, we have to account for both terms on
the right-hand side of Eqn (122), as well as for the finiteness of
a lower integration limit. Note that according to Eqn (149) the
number of effectively excitedmodes increases with distance as
r 1=2 on very long paths. This dependence was also found in
Ref. [142] by analyzing numerical simulation results.

To test the applicability of estimate (149), we numeri-
cally solved parabolic equation (7) at a carrying frequency
of 75 Hz with the initial condition u�0; z� � j24�z�. The
intensities of modes at a distance of 3000 km are exhibited
in Fig. 19a for two realizations of random perturbation.
Figure 19b plots the results for the smoothed intensity with
the smoothing scale m � 4. The solid lines show intensities
Jm computed by directly, numerically solving the parabolic
equation for four perturbation realizations (values jamj2 for
two of these realizations are given in Fig. 19a). The dashed
line corresponds to the prediction of formula (149).
Notably, the smoothed intensity shows no strong sensitiv-
ity to the perturbation realizations, and our analytical
estimate satisfactorily agrees with numerical simulation
results. Reference [37] reports that smoothed mode inten-
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sities can be computed in just the same way as in the case of
a point source.

Making use of the relationships expressing the mode
amplitudes in terms of ray trajectory parameters enables the
analysis of field mode structure not only for a monochro-
matic, but also for a pulse source. The investigation of
sound pulses transferred by separate modes is beyond the
scope of this review. This question is thoroughly discussed
in Refs [43, 130].

7. Conclusions

In this review, by discussing concrete examples we tried to
describe themain tasks arising in the research of ray andwave
chaos in underwater acoustic waveguides. We considered two
models of waveguides: with periodic inhomogeneities of the
speed of sound, and with inhomogeneities given by realiza-
tions of a random field. At first glance, it may seem that the
properties of ray and wave chaos in these models are
cardinally different. In contrast to the phase space structure
in a periodic waveguide, which breaks into subdomains with
absolutely different properties (the chaotic sea and stability
islands), the phase space structure in models with random
inhomogeneities seems rather uniform. However, in essence,
this is not the case. Because of significant scatter in the
Lyapunov exponents [19], at any finite distance there are
bundles of weakly diverging rays which form analogs of
stability islands. Although the fraction of such rays at long
distances is small, their contribution to the net wave field may
play a decisive role [19].

Despite the seemingly artificial character of periodic
models, it was exactly these that laid the basis to exploring
chaos in underwater acoustics. For one thing, they benefited
from the direct use of the powerful methods of dynamical and
quantum chaos theory, such as the methods of the PoincareÂ
map or quasistationary states (Floquet states) [23]. Studying
such models helps us to understand the general properties of
chaotic ray dynamics and can hint at new research avenues for

the analysis of waveguides with other types of inhomogene-
ities. We argue that the `potential' of periodic models is not
yet exhausted, and results obtained with their assistance can
have analogs in real underwater sound channels.

One of the goals of ray chaos studies consists in finding
out limitations imposed by this phenomenon on the mere
feasibility of solving inverse problems pertaining to the
reconstruction of the large-scale structure of the oceanic
temperature fields. From this viewpoint, it seems extremely
important to search for sound field characteristics that
remain stable in the face of refractive index fluctuations in
the field of internal waves. An example of such characteristics
is furnished by the travel time clusters discussed in Section 6.4.
Owing to the clustering effect, even at distances as long as
several thousand kilometers, one can distinguish the con-
tributions from large-scale temperature field inhomogeneities
in temporal variations of the received signal structure (under
the conditions of developed ray chaos). Notice, incidentally,
that an important contribution to understanding the cluster-
ization effect came from the studies of travel times in a
periodic waveguide model, performed in Ref. [15].

To conclude, we note that the research of wave chaos is to
a substantial degree hindered by an insufficient understand-
ing of the applicability bounds of the geometrical optics
method. We know that some of its predictions remain valid
at distances in the range of thousands of kilometers, in
essence, at least from numerical simulations and from
comparisons of theoretical results with the data of field
observations. Similar difficulties arise in quantum chaos
theory, as well. In our opinion, of promise are the studies
exploring the utility of the ray approach for assessing the field
characteristics smoothed over temporal, angular, and spatial
scales. Numerical simulations indicate that by choosing
sufficiently large smoothing scales one frequently succeeds
in compensating for the errors of ray approximation. The
scales of smoothing, however, require empirical tuning at the
current stage.
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